University of Work

This is a repository copy of A DiCre recombinase-based system for inducible expression in Leishmania major.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119532/
Version: Accepted Version

Article:

Santos, Renato E R S, Silva, Gabriel L A, Santos, Elaine V et al. (4 more authors) (2017) A DiCre recombinase-based system for inducible expression in Leishmania major. MOLECULAR AND BIOCHEMICAL PARASITOLOGY. pp. 45-48. ISSN 0166-6851
https://doi.org/10.1016/j.molbiopara.2017.06.006

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

```
A DiCre recombinase-based system for inducible expression in Leishmania
major
```

```
Renato E. R. S. Santos }\mp@subsup{}{}{1}\mathrm{ , Gabriel L. A. Silva }\mp@subsup{}{}{1}\mathrm{ , Elaine V. Santos }\mp@subsup{}{}{1}\mathrm{ , Samuel M. Duncan }\mp@subsup{}{}{2}\mathrm{ ,
Jeremy C. Mottram }\mp@subsup{}{}{2,3}\mathrm{ , Jeziel D. Damasceno }\mp@subsup{}{}{1*}\mathrm{ and Luiz R. O. Tosil*
1Department of Cell and Molecular Biology; Ribeirão Preto Medical School,
University of São Paulo; Ribeirão Preto, SP, Brazil.
2 Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and
Inflammation, University of Glasgow, United Kingdom.
\({ }^{3}\) Centre for Immunology and Infection, Department of Biology; University of York; York, UK.
```

[^0]Keywords: DiCre recombinase; Leishmania; inducible expression; DNA damage response; 9-1-1 complex; Rad9-Rad1-Hus1.

Abstract

Here we present the establishment of an inducible system based on the dimerizable Cre recombinase (DiCre) for controlled gene expression in the protozoan parasite Leishmania. Rapamycin-induced DiCre activation promoted efficient flipping and expression of gene products in a time and dose-dependent manner. The DiCre flipping activity induced the expression of target genes from both integrated and episomal contexts broadening the applicability of the system. We validated the system by inducing the expression of both full length and truncated forms of the checkpoint protein Rad9, which revealed that the highly divergent C-terminal domain of Rad9 is necessary for proper subcellular localization. Thus, by establishing the DiCre-based inducible system we have created and validated a robust new tool for assessing gene function in Leishmania.

The genus Leishmania encompasses over 20 species, including those that are the causative agents of devastating human diseases worldwide collectively called leishmaniasis [1]. The Leishmania genome is organized in directional gene clusters that may include hundreds of genes from which transcription occurs in a polycistronic fashion. No canonical RNA Pol II promoters have been identified in this parasite and gene expression regulation seems to have been devolved to post-transcriptional processes [2]. The remarkable genome plasticity of Leishmania, which leads to frequent genome rearrangements, not only impacts gene expression control, but also hinders the genetic manipulation of the parasite [3,4]. Therefore, a dependable and robust genetic toolkit is necessary for effective post-genomic functional studies in this protozoan.

Over the past decades, a collection of genetic manipulation tools for Leishmania has been introduced. For instance, transient and stable transfection, gene replacement and disruption, expression vectors and functional complementation and rescue are well-established and reliable tools [5-7]. More recently, the introduction of protein stabilization strategies $[8,9]$ a tetracyclineinducible system for protein expression [10], the dimerizable Cre recombinase (DiCre)-based system for inducible knockouts [11,12] and the establishment of CRISPR cas9 genome editing [13] has further improved our capacity to address peculiar aspects of this parasite's biology. Given the stringent regulation of DiCre recombinase activity and the variety of strategies for genetic regulation conferred by the use of loxP recombination sites [14,15], we decided to adapt the DiCre-based inducible system for controlled gene expression in Leishmania major. Our strategy involves the generation of a cell line constitutively expressing DiCre recombinase and carrying an inverted gene of interest flanked by cis orientated loxP sites. These constructs are integrated into the 18 S rRNA locus and expressed under the control of the Pol I promoter. The antisense orientation of the gene of interest prevents transcription of coding RNA from the positive strand until activation of DiCre recombinase activity by rapamycin treatment. Once activated, DiCre catalyzes the 'flip' of the sequence flanked by cis loxP sites, resulting in transcription of a coding RNA and subsequent protein expression (Figure S1A). To prevent continual gene 'flipping' by loxP site recombination we employed left-element mutant (lox66) and right-element mutant (lox77) sites [16]. These mutated lox sequences act as sites of recombination to generate a wild-type loxP site and a double mutant Lox72 site for which DiCre has a dramatically reduced affinity. As such, a single recombination
event is favoured upon DiCre recombinase induction, thereby preventing reinversion, leading to continual expression of the gene of interest (Figure S1B).

The advantages of this approach include: (i) the use of fewer transfection rounds and, consequently, fewer selectable markers when compared to the tetracycline-inducible system developed for L. mexicana by Kraeva and colleagues [10]; (ii) the possibility to induce expression of gene products from both chromosomal and/or episomal contexts; (iii) the system promotes a non-leaky expression that can be induced in a time and dosage-dependent manner; (iv) the possibility to compare the expression of endogenous and mutated proteins including the conditional expression of deleterious gene products.

To create the system, plasmid pGL2339 (Figure S2A) was digested and the array encoding the blasticidin resistance cassette and the dimerizable Cre recombinase subunits was integrated into the ribosomal locus to generate the DiCre ${ }^{\text {SSU }}$ cell line (Figures 1A and Table S2). Next, the plasmid pGL2332 (Figure S2B) was digested and the lox66/lox77-flanked 6xHA-GFP cassette containing the puromycin resistance marker was integrated into the ribosomal locus of the DiCre ${ }^{\text {sSu }}$ cell line to generate the GFPfilox cell line (Figures 1B and Table S2). Both integration events were confirmed by PCR analysis, which also ascertained that the 6xHA-GFP coding sequence was present in the antisense orientation in the GFPflox cell line (Figure 1C). To test the system and the DiCre flipping activity, the GFPflox cell line was incubated with the DiCre dimerization ligand, rapamycin, and the inversion of the GFP cassette was confirmed by PCR analysis using the appropriate set of primers (Figure 1D). Semi-quantitative PCR analysis showed that the flipping reaction is time dependent and seem to reach its maximal level around 96 hours after induction (Figure S3). Importantly, flipping of the GFP cassette in the absence of rapamycin was not detectable in the PCR analyses shown in Figure 1D or Figure S3, indicating a non-leaky DiCre activity in the GFPfiox cells. Upon rapamycin induction, expression of $6 x H A-G F P$ was detectable after 12 hours and its levels were dose and timedependent (Figure 1E). Consistently, 6xHA-GFP was not detectable in the absence of rapamycin, further confirming the stringent regulation of the system (Figure 1E). We further used immunofluorescence analysis (IFA) to examine the expression profile within the population and observed that 6xHA-GFP was detectable by IFA only after rapamycin incubation (Figure 1F). Consistent with the western blot analysis, the IFA also demonstrated the rapamycin dose-dependence of the system (Figure S3) further confirmed by the quantification of GFP corresponding signal (Figure 1G). Besides confirming the tight regulation of the system, this set of data also
demonstrates that the system is suitable for subcellular compartmentalization studies in this parasite.

To expand the limits of the system we tested it for the ability to flip sequences from an episome, which can be found in multiple copies in the cell. To that end, the plasmid pGL2332 was transfected into the DiCre ${ }^{\text {ssu }}$ cell line to generate the pGFPfiox cell line (Figure 1H). PCR analysis confirmed the DiCre background and the presence of the target plasmid (Figure 1I), and the flipping of the 6xHA-GFP cassette upon rapamycin incubation (Figure 1J). Consistently, western blot analysis confirmed the expression of the cassette exclusively in rapamycin treated cells (Figure 1K). These results further demonstrate the tight control of DiCre activity and greatly extend the applicability of the system as a reliable tool for inducible protein expression not only from the genomic context, but also from episomal targets. It is noteworthy that this system it is not expected to be reversible, which can be a disadvantage if reversion of the expressed phenotype is required. However, the irreversibility of the system can be taken an advantageous feature to be explored in both in vitro and in vivo infections assays where inclusion of selection drugs and rapamycin might not be desired.

To further validate the DiCre flipping tool we used the protein Rad9, which participates in the Leishmania DNA Damage Response as part of the checkpoint clamp 9-1-1 [17,18]. In eukaryotic cells, Rad9 has an unstructured C-terminal domain that corresponds to $\sim 1 / 3$ of the protein and is necessary for its function in signalling genotoxic stress [19]. The unstructured C-domain of Leishmania Rad9 is $\sim 3.5 \mathrm{x}$ longer than its human counterpart (Figure 2A) and, so far, no function has been reported for this C -terminal extension. To start exploring the function of this C terminal domain, Rad9 full length or C-terminal truncated encoding sequences, were cloned into the pGL6000 vector (Figure S2C), to generate the Rad9-6xHA ${ }^{\text {flox }}$ and Rad9 ${ }^{\prime} C^{\prime}-6 x_{H A}{ }^{\text {flox }}$ cassettes, respectively. These constructs were digested and integrated into the ribosomal locus of the DiCre ${ }^{\text {SSU }}$ cell line to generate the Rad9flox and Rad9 $9 \mathrm{C}^{\text {fliox }}$ cell lines, respectively (Figure 2B and Table S2). Proper Integration was confirmed by PCR analysis (Figure 2C) and, as expected, flipping of the cassettes was detected exclusively upon rapamycin incubation (Figure 2D). Accordingly, expression of Rad9-6xHA and Rad94C'-6xHA was detectable at comparable levels after induction with rapamycin, as demonstrated by western blot analysis (Figure 2E; upper panel). Anti-Rad9 polyclonal serum was used in western blot analysis to evaluate changes in total Rad9 levels (i.e. Rad9-6xHA plus endogenous Rad9) in the Rad9 ${ }^{\text {fiox }}$ cell line after DiCre activation (Figure 2E; middle
panel). Our analysis indicated that, upon induction, Rad9-6xHA was overexpressed when compared to the endogenous Rad9. Quantification of Rad9 signal revealed that up to $\sim 65 \%$ of the total Rad9 expressed in these cells corresponded to the induced version of the protein demonstrating that the system can mediate overexpression. Interestingly, the induction of Rad9-6xHA resulted in significant decrease in the levels of endogenous Rad9. However, the same effect was less pronounced when the truncated Rad9 ${ }^{\prime} \mathrm{C}^{\prime}-6 \mathrm{xHA}$ was expressed (Figure 2E; middle panel and Figure 2F). These data suggest that Leishmania Rad9 levels are under tight regulation, which probably involves the participation of its C -terminal extension. Whether this requires a direct or indirect role of this domain remains to be investigated. We were not able to properly assess Rad9 ${ }^{\prime}$ ' $-6 x H A$ levels relative to endogenous Rad9 using the polyclonal anti-Rad9 serum. One reason for this is that anti-Rad9 serum detects a faster migrating protein with the same molecular mass as Rad9 ${ }^{\prime} \mathrm{C}^{\prime}-6 \mathrm{xHA}$, hindering its detection. Similarly to the endogenous Rad9, the level of this protein was also reduced upon induction of Rad9-6xHA (Figure 2E; middle panel). While the presence of this band could represent cross-detection of an unrelated protein, these data suggest that it could be a processed form of Rad9 and further characterization is needed to clarify this.

We also analysed the effect of the deletion of the C-terminal extension on the Rad9 subcellular localization. Using IFA, we observed that in the majority of the cells Rad9-6xHA was almost exclusively found in the nuclear compartment, as previously described for Rad9 [17] (Figures 2G and S4). On the other hand, truncated Rad94C'6xHA presented a less defined localization being prominently detected in the cytoplasm of the majority of the cells (Figure 2G and S4). Consistently, quantitative analysis of the IFA data showed that Rad9-6xHA signal is concentrated in the region containing the nuclear DNA staining, while Rad9 ${ }^{\prime} \mathrm{C}^{\prime}-6 x H A$ signal expands beyond the nuclear staining limits (Figure 2H). Based on these data, it is reasonable to conclude that the C-terminal extension is necessary for proper subcellular distribution of Rad9 in Leishmania.

In summary, we have demonstrated that the DiCre-based expression system described here is a valuable addition to the Leishmania genetic manipulation toolkit. Its use to study the parasite Rad9 revealed important features of the protein, produced reagents for future studies and proved its value for functional analyses in this parasite.

Acknowledgments

This work was supported by FAPESP - Fundação de Amparo à Pesquisa no Estado de São Paulo grants 14/06824-8, 14/00751-9, 13/00570-1 and 13/26806-1, the Medical Research Council (MR/K019384) and the Wellcome Trust [104111]. The Confocal Microscopy Laboratory was supported by FAPESP 04/08868-0. The Multiphoton Microscopy Laboratory was supported by FAPESP 09/54014-7. Roberta Ribeiro Costa Rosales and Elizabete Rosa Milani for assistance with microscopy experiments.

Author contribution

RERSS performed the experiments, collected data, and critically revised the manuscript. GLAS generated and analysed the pGFPfiox cell line. EVS conducted the anti-Rad9 western blot analysis in Figure 2E. SMD and JCM generated pGL2332 and pGL2339 plasmids, provided reagents and critically revised the manuscript. JDD generated the DiCre ${ }^{\text {SSU }}$ cell line, planned experiments, performed analysis presented in Figure 2A, helped acquire data of Figure 2G and wrote the manuscript. LROT planned experiments and wrote the manuscript.

References

[1] J. Alvar, I.D. Vélez, C. Bern, M. Herrero, P. Desjeux, J. Cano, J. Jannin, M. den Boer, the W.L.C. Team, Leishmaniasis Worldwide and Global Estimates of Its Incidence, PLoS One. 7 (2012) e35671. doi:10.1371/journal.pone.0035671.
[2] S. Martínez-Calvillo, S. Yan, D. Nguyen, M. Fox, K. Stuart, P.J. Myler, Transcription of Leishmania major Friedlin Chromosome 1 Initiates in Both Directions within a Single Region, Mol. Cell. 11 (2003) 1291-1299.
[3] J.-M. Ubeda, D. Légaré, F. Raymond, A. Ouameur, S. Boisvert, P. Rigault, J. Corbeil, M.J. Tremblay, M. Olivier, B. Papadopoulou, M. Ouellette, Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy, Genome Biol. 9 (2008) R115.
[4] M.B. Rogers, J.D. Hilley, N.J. Dickens, J. Wilkes, P.A. Bates, D.P. Depledge, D. Harris, Y. Her, P. Herzyk, H. Imamura, T.D. Otto, M. Sanders, K. Seeger, J.-C. Dujardin, M. Berriman, D.F. Smith, C. Hertz-Fowler, J.C. Mottram, Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania., Genome Res. 21 (2011) 212942.
[5] J.H. LeBowitz, C.M. Coburn, S.M. Beverley, Simultaneous transient expression assays of the trypanosomatid parasite Leishmania using β galactosidase and β-glucuronidase as reporter enzymes, 1991.
[6] J.D. Damasceno, S.M. Beverley, L.R.O. Tosi, A transposon toolkit for gene transfer and mutagenesis in protozoan parasites., Genetica. 138 (2010) 30111.
[7] J.N.G.. M.J.. Duncan S.M, Recent advances in reverse genetics of Leishmania: manipulating a manipulative parasite., Unpubl. Data. (2017).
[8] L. Madeira da Silva, K.L. Owens, S.M.F. Murta, S.M. Beverley, Regulated expression of the Leishmania major surface virulence factor lipophosphoglycan using conditionally destabilized fusion proteins, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 7583-8.
[9] L. Podešvová, H. Huang, V. Yurchenko, Inducible protein stabilization system in Leishmania mexicana, 2017.
[10] N. Kraeva, A. Ishemgulova, J. Lukeš, V. Yurchenko, Tetracycline-inducible gene expression system in Leishmania mexicana, 2014.
[11] S.M. Duncan, E. Myburgh, C. Philipon, E. Brown, M. Meissner, J. Brewer, J.C. Mottram, Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in L eishmania mexicana cell cycle regulation, Mol. Microbiol. 100 (2016) 931-944.
[12] T. Beneke, R. Madden, L. Makin, J. Valli, J. Sunter, E. Gluenz, A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids, R. Soc. Open Sci. 4 (2017).
[13] F.A. Ran, P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, F. Zhang, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc. 8 (2013) 22812308.
[14] G.D. Van Duyne, A Structural View of Cre- loxP Site-Specific Recombination, Annu. Rev. Biophys. Biomol. Struct. 30 (2001) 87-104.
[15] N. Jullien, F. Sampieri, A. Enjalbert, J.-P. Herman, Regulation of Cre recombinase by ligand-induced complementation of inactive fragments., Nucleic Acids Res. 31 (2003) e131.
[16] H. Albert, E.C. Dale, E. Lee, D.W. Ow, Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome., Plant J. 7 (1995) 649-59.
[17] J.D. Damasceno, V.S. Nunes, L.R.O. Tosi, LmHus1 is required for the DNA damage response in Leishmania major and forms a complex with an unusual Rad9 homologue, Mol. Microbiol. 90 (2013) 1074-1087.
[18] J.D. Damasceno, R. Obonaga, E. V. Santos, A. Scott, R. McCulloch, L.R.O. Tosi, Functional compartmentalization of Rad9 and Hus1 reveals diverse assembly of the 9-1-1 complex components during the DNA damage response in Leishmania, Mol. Microbiol. 101 (2016) 1054-1068.
[19] V.M. Navadgi-Patil, P.M. Burgers, The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms., Mol. Cell. 36 (2009) 743-53.

Legends to Figures

Figure 1. Establishment of an inducible DiCre-based expression system in L. major. (A) Schematic representation (not in scale) of the cassette encoding the truncated forms of DiCre after integration into the 18 S ribosomal RNA locus (SSU) of L. major wild type cell (LT252) to generate the DiCre ${ }^{\text {sSU }}$ cell line; BLA: blasticidin resistance marker. (B) Schematic representation (not in scale) of the 6xHA-GFP cassette (see Figure S1B for details) after integration into the SSU locus of the DiCre ${ }^{\text {SSU }}$ cell line (A) to generate the GFP ${ }^{\text {flox }}$ cell line; PAC: puromycin resistance marker; upon rapamycin (RAP) addition, the indicated lox sites mediate the flipping of 6xHA-GFP cassette allowing its expression. In (A) and (B), black arrows indicate approximate annealing position of primers used for PCR analysis. (C) PCR analysis of genomic DNA (gDNA) using the indicated set of primers (annealing positions shown in (A) and (B)); DHFR-TS was the loading control for all PCR analyses presented in this work. (D) PCR analysis of gDNA from GFPfiox cells cultivated in the presence (+) or absence (-) of 100nM RAP for 48h; primers are indicated below each panel (see annealing positions in (B)). (E) Western blot analysis of total cell extracts from the GFPfiox cells cultivated with RAP for the indicated periods of time; two distinct cell-equivalent amount of extracts was analysed; anti-HA was used to detect 6xHA-GFP; EF1 α was the loading control. (F) Immunofluorescence analysis of GFPflox cells cultivated in the presence (+) or absence (-) of 100nM RAP for 48h; images were acquired with a DMI 6000B inverted microscope (Leica); n and k indicate nuclear and kinetoplast DNA, respectively; scale bar $=5 \mu \mathrm{~m}$. (G) GFPflox cells were subject to immunofluorescence as in (F) after cultivation with RAP for 48h; signal corresponding to 6xHA-GFP from individual cells was quantified using Image J software; bars indicate mean +/- Standard Deviation (S.D.); p values by KruskalWallis test were: $\left({ }^{* *}\right)=0.0057 ;\left({ }^{* * *}\right)=0.0008$. (H) The plasmid pGL2332 (Figure $\mathrm{S} 1 \mathrm{~B})$ was transfected as a circular episome in the DiCre ${ }^{\text {SSU }}$ cells to generate the pGFPflox cell line; as in (B), RAP addition is expected to induce expression of 6xHAGFP; schematic representations are not in scale. (I) PCR analysis of gDNA using the indicated set of primers (annealing positions shown in (A) and (H). (J) PCR analysis of gDNA from pGFPflox cells cultivated in the presence (+) or absence (-) of 100 nM RAP for 48h; primers are indicated below each panel (see annealing position in (H)). (K) Western blot analysis of total cell extracts from the pGFPflox cells cultivated in the presence (+) or absence (-) of 100nM RAP for 48h; anti-HA was used to detect $6 x H A-G F P ;$ EF 1α was the loading control.

Figure 2. Expression of Rad9 and Rad94C' using the DiCre-based inducible system. (A) Predicted amino acid sequence of Rad9 from L. major (LmjF.15.0980) and Homo sapiens (NP_004575.1) were subject to disorder prediction using IUPred (http://iupred.enzim.hu); values above 0.5 (horizontal black dotted line) can be considered as disordered regions; horizontal grey bars above each graph indicate the Rad9 domain (Pfam: PF04139) and the disordered C-terminal domain; C-terminal domain of human Rad9 and the corresponding region in L. major Rad9 is indicated as C; the extended C -terminal of L. major Rad9 is indicated as C^{\prime}. (B) Full length Rad9 from L. major or a truncated version lacking the C-terminal extension (C'), were cloned as C-terminal fusion with a 6xHA tag to generated the Rad9-6xHA ${ }^{\text {flox }}$ and
 constructs are arranged in an inverted orientation, flanked by the indicated lox sequences and were integrated into the ribosomal locus (SSU) of the DiCre ${ }^{\text {SSU }}$ cells (see Figure 1A) to generate the Rad9 ${ }^{\text {fiox }}$ and Rad9 ${ }^{\text {C fliox }}$ cell lines, respectively; black arrows indicate approximate annealing position of oligonucleotides used for PCR analyses; PAC: puromycin resistance marker. (C) PCR analysis of gDNA using the indicated set of primers (see annealing positions in (B)). (D) PCR analysis of gDNA from cells cultivated in the presence (+) or absence (-) of 100nM RAP for 48h; primers are indicated below each panel (see annealing positions in (B)). (E) Western blot analysis of total cell extracts from the indicated cells cultivated in the presence (+) or absence (-) of RAP for 48 hours; anti-HA (upper panel) and antiRad9 (bottom panel) was used to detect Rad9-6xHA Rad94C'-6xHA; a protein with a similar migration pattern of Rad9 $9 \mathrm{C}^{\prime}-6 \mathrm{xHA}$ is detected by anti-Rad9 and is indicated with (*); GAPDH was the loading control. (F) Levels of endogenous Rad9 in western blot analysis shown in (E) were determined and normalized with the GAPDH signal, using Image J software; signal from cells exposed to RAP was plotted as a fraction relative to signal from respective non-induced culture. (G) Immunofluorescence analysis of the indicated cells cultivated in the presence (+) or absence (-) of 100 nM RAP for 48h; images are representative of a Z-maximal projection from 14 Z-slices acquired with a multiphoton system coupled with LMS780 AxioObserver microscope (Zeiss); n and k indicate nuclear and kinetoplast DNA, respectively; black bars on the DIC field indicate the section where quantification shown in (H) was performed; n and k indicate nuclear and kinetoplast DNA, respectively; scale bar (white) $=5 \mu \mathrm{~m}$. (H) Signal corresponding to DAPI, Rad9-6xHA and Rad9 $9 C^{\prime}$-6xHA in the section indicated by the black bar in (G) was quantified with ImageJ.
A

B

H

$$
F
$$

6xHA-GFP Signal Intensity

Supplementary Information

A DiCre recombinase-based system for inducible expression in Leishmania

Renato E. R. S. Santos ${ }^{1}$, Gabriel L. A. Silva ${ }^{1}$, Elaine V. Santos ${ }^{1}$, Samuel M. Duncan², Jeremy C. Mottram ${ }^{2,3}$, Jeziel D. Damasceno ${ }^{\text {* }}$ and Luiz R. O. Tosi ${ }^{1 *}$

${ }^{1}$ Department of Cell and Molecular Biology; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil.
${ }^{2}$ Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom.
${ }^{3}$ Centre for Immunology and Infection, Department of Biology; University of York; York, UK.

* To whom correspondence should be addressed. jezielbqi@gmail.com and luiztosi@fmrp.usp.br Tel: + 5516 36023117; Fax: +55 1636020728.

Figure S1

A

B

Figure S1. Schematic description of the flipping activity catalysed by DiCre recombinase.
(A) DiCre recognizes cis-inverted loxP sites and catalyse the inversion of any flanked sequence; the same loxP sequences are generated upon inversion, therefore re-inversion can proceed with the same efficiency; loxP sequence (5 ' to 3^{\prime}) is shown in the inset.
(B) Right and left mutated elements lox66 and lox77, respectively, are used to flank the sequence of interest; the sequences (5^{\prime} to 3^{\prime}) for lox66 and lox77 are shown in the insets; red lower case indicate the mutated nucleotides; upon inversion, loxP and lox72 sequences are generated and re-inversion occurs at markedly reduced efficiency; upon inversion, Poll promoter-driven transcription of coding RNA from the positive strand mediates the expression of the gene of interest.

Figure S2

Figure S2. Description of the plasmids and strategies used to generate the cell lines reported in this work.
(A) pGL2339 plasmid bears the cassette encoding the inactive truncated forms of Crerecombinase (DiCre) FKBP12-Cre59 and FRB-Cre60; to generate the DiCre ${ }^{\text {SSU }}$ cell line; the plasmid was digested with Pacl and Pmel restriction enzymes and transfected into the L. major WT cell line (LT252); cells bearing the integration into the 18 S ribosomal locus were cloned by serial dilution in M199 medium containing $10 \mu \mathrm{~g} / \mathrm{ml}$ blasticidin.
(B) pGL2332 plasmid bears the coding sequence for N -terminal 6xHA-tagged GFP; this fusion is inverted in relation to the 5 ' and 3^{\prime} SSU sequences, and flanked by lox66 and lox77 sites; to generate the GFPflox cell line, pGL2332 was digested with Pacl and Pmel restriction enzymes and transfected into the DiCre ${ }^{\text {SSU }}$ cell line; cells bearing the integration into the 18 S ribosomal locus were cloned by serial dilution in M199 medium containing $10 \mu \mathrm{~g} / \mathrm{ml}$ puromycin and $10 \mu \mathrm{~g} /$ ml blasticidin.
(C) To generate pGL6000 plasmid, pGL2332 was digested with Kpnl and Nhel restriction enzymes to remove the 6xHA-GFP coding sequence and ligated to a PCR product bearing the $6 x H A$ tag and a multiple cloning site containing Sdal, Ndel and Bglll restriction sites; the resulting vector allows for cloning of genes of interest as a C-terminal 6xHA fusion flanked by the lox66/lox77 sites; to generate the pGL6002 and pGL6004 plasmids, PCR products of the coding sequence for the full length or C-terminal truncated Rad9, respectively, were cloned into Sdal and Ndel restriction sites of the pGL6000 plasmid; to generate the Rad9flox and Rad9 ${ }^{\prime}$ 'flox cell lines, pGL6002 and pGL6004 plasmids, respectively, were digested with Pacl and Pmel restriction enzymes and transfected into the DiCre ${ }^{\text {SSU }}$ cell line; selection and cloning of transfectant parasites was done as in (B).

Figure S3
A
B

Figure S3. Time course analysis of DiCre-mediated flipping efficiency.
(A) Schematic representation (not in scale) of the 6xHA-GFP cassette after integration into the SSU locus of the DiCressu cell line to generate the GFPfiox cell line; PAC: puromycin resistance marker; upon rapamycin (RAP) addition, the indicated lox sites mediate the flipping of 6xHAGFP cassette allowing its expression; a, c, d and e indicate approximate annealing position of oligonucleotides used for the PCR analyses shown in (B).
(B) Genomic DNA (gDNA) was extracted from GFPfiox cell line after cultivation with 100nM RAP for the indicated period of time; $\sim 10 \mathrm{ng}$ of gDNA was subjected to semi-quantitative PCR analysis using the indicated set of primers; $\sim 15 \%$ of the PCR reaction was resolved in agarose gels; the number of cycles performed in each PCR reaction is indicated at right; annealing position for primers $\mathrm{c}+\mathrm{d}$ and $\mathrm{a}+\mathrm{e}$, which detect only the molecules that has not been flipped, is shown in (A); DHFR-TS was used as the loading control.
(C) Signal corresponding to PCR products using primers $\mathrm{c}+\mathrm{d}$ and a+e shown in (A) was measured using Image J software and then normalized with DHFR-TS signal; mean values obtained with each set of primers were calculated for each time point and are expressed relative to the 0 hours time point; vertical lines indicate standard error of the mean.

Figure S4

Figure S4. GFPflox cell line was cultivated in the presence of the indicated rapamycin concentrations for 48 hours; cells were fixed and subjected to immunofluorescence analysis using mouse anti-HA as primary antibody and anti-mouse conjugated with Alexa-Fluor 488 as secondary antibody (false coloured green); images were acquired with a DMI 6000B inverted microscope (Leica); scale bar $=25 \mu \mathrm{~m}$

Figure S5

Figure S5. Rad9flox and Rad9 ${ }^{\text {C'flox }}$ cell lines nere cultivated in the presence (+) or absence (-) of rapamycin for 48 hours; cells were fixed and subjected to immunofluorescence analysis using mouse anti-HA as primary antibody and anti-mouse conjugated with Alexa-Fluor 488 as secondary antibody; images were acquired as a series of 14 Z-slices with a multiphoton system coupled with LMS780 AxioObserver microscope (Zeiss); images are representative of a Z-maximal projection from 14 Zslices; scale bar $=25 \mu \mathrm{~m}$.

Suplementary Table 1: Primers used in this work		
Designation in text	Sequence (5' $\left.\rightarrow \mathbf{3}^{\prime}\right)$	Reference
a	CATTCCGTGCGAAAGCCGG	Duncan et al., 2016
b	GATGGTTTCCACCTGCAC	
c	CCGTGGGCTTGTACTCGGTCA	
d	CTCGCCCTTGCTCACCAT	This work
e	GGCATGGACGAGCTGTACAAG	
f	ATTCTCGAGATGTCACTCCAATTCACAGTGAG (Xhol Site)	
Rad9NdeIFw	ATTCATATGATGTCACTCCAATTCACAGTGAG (Ndel site)	
Rad9ABCSdaIRv	ATTCCTGCAGGGTTCTGCGTCGGCCCTCGCGACAT (Sdal site)	
Rad9ABSdaIRv	ATTCCTGCAGGTGGCAGCGGAATGAAGCCGGCTG (Sdal site)	
DHFR_Flank_Fw DHFR_Flank_Rv	ATGCCCGGGCATATGTCCAGGGCAGCTGCGAGGTTT ATGCCCGGGCATATGCTATACGGCCATCTCCATCTT	

Suplementary Table 2: Cell lines used in this work	
Designation in text	Genetic nomenclature
DiCre ${ }^{\text {ssu }}$	SSU DiCre BLA
GFPfiox	SSU DiCre BLA SSU lox66((6xHA::GFP) AS $^{\text {) }}$) 10×77 PAC
pGFPflox	SSU DiCre BLA [lox66((6xHA::GFP) AS $^{\text {) }}$ lox77 PAC]
Rad9flox	SSU DiCre BLA SSU lox66((Rad9::6xHA $\left.)_{\text {AS }}\right)$ lox 77 PAC
Rad9 ${ }^{\text {C/flox }}$	SSU DiCre BLA SSU lox66((Rad94C::6xHA) $\left.)_{\text {AS }}\right)$ lox77 PAC
*AS = Anti Sense	

Experimental procedures

Parasites culture

L. major LT252 (MHOM/IR/1983/IR) and all other cell lines were cultured as promastigotes at $26^{\circ} \mathrm{C}$ in M199 medium plus 10\% heat-inactivated fetal bovine serum. Generation of cell lines was done using the transfection protocol previously described (Kapler et al., 1990).

PCRs and cloning

Genomic DNA was extracted with DNeasy Blood \& Tissue Kit (QIAGEN) according to manufacturer instructions. PCRs were performed using Taq DNA Polymerase (Thermo) for products up to 2 kb or Phusion ${ }^{\circledR}$ High-Fidelity DNA Polymerase (NEB) for products with more than 2 kb .
For generation of pGL6002 plasmid, the sequence coding for the 718 amino acids of full length Rad9 was amplified from gDNA using Rad9NdelFw and Rad9ABCSdaIRv as primers (Table S1). For generation of pGL6004 plasmid, the sequence coding for the first 370 amino acids of Rad9 was amplified from gDNA using Rad9NdelFw and Rad9ABSdaIRv as primers (Table S1).

Antibodies and western blotting analyses

Rabbit anti-LmRad9 antibody was previously described (Damasceno et al., 2013) and was used at 1:3 000 dilution. Rabbit anti-GAPDH antibody was kindly provided by Dr. Paul Michels and was used at the 1:15 000 dilution. The commercial antibodies used were as follows: mouse antiHA (Sigma-Aldrich) at 1:1000 dilution, mouse anti-EF1a (Merck Millipore) at 1:50 000 dilution. HRP-conjugated anti-mouse and anti-Rabbit antibodies (GE Life Sciences) were used at 1:10 000 and 1: 30000 dilution, respectively.

Unless otherwise indicated, total cell extracts equivalent to $\sim 10^{6}$ cells were resolved by SDSPAGE, transferred to PVDF membrane (GE Life Sciences) and analyzed with the indicated antibodies. Bands were detected with ECL Prime Western Blotting Detection Reagent (GE Life Sciences) and visualized with Hyperfilm ECL (GE Life Sciences).

Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 10 min at room temperature. Fixed cells were adhered to poly-L-lysine coated glass slides and permeabilized with 0.3% Triton X-100 for 30 min. Cells were pre-blocked with 2% BSA in 1x PBS for 1 hour. Anti-HA antibody was used at $1: 1000$ dilution to detect $6 x H A-G F P$, Rad9-6xHA and Rad9 4 C-6xHA. Primary antibody was visualized with anti-mouse secondary antibody conjugated with Alexa Fluor 488 or Alexa Fluor 594 (Invitrogen). Slides were mounted with ProLong ${ }^{\circledR}$ Gold Antifade Reagent (Thermo) and $2 \mu \mathrm{~g} /$ mL Hoechst 33342 (Thermo).

Plasmids

>pGL2339

CCTTTGAGTGAGCTGATACCAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTATCAACTTTGTATAGAAAAGTTGCCCTTAATTA ATGACGAACAACTGCCCTATCAGCTTGTGATGGCCGTGTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGAGCCT GAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCAAAACAAAACGATGAGGCAGCGGAAAGGAATAGAGTTGTCAGTCCAT TTGGATTGTCATTTCAATGGGGGATATTTAAACCCATCCAATATCGAGTAACGAAGTTTGTACAAAAAAGCAGGCTTGCCCTCGAGGTTTTCGTCGCGCATCGGT GTAGGTCGAATACCCTTGCCTTTCAGTGCGGGGTTTTTTCCTATAAAGCATTTATTGTCTCGACGCTTCTCCTGCTTGGTTCTCTCTCGCACTTGCATGACAGAT TTCAAGATATCTTGCCTGTACACTCGTCATTAAAAACAGCTTATTCCCGGTTATTTTTCTCAACGAAGAAAATGGCCCCTAAGAAGAAGAGAAAGGTGTCAAGAG GAGTGCAGGTGGAAACCATCTCCCCAGGAGACGGGCGCACCTTCCCCAAGCGCGGCCAGACCTGCGTGGTGCACTACACCGGGATGCTTGAAGATGGAAA GAAATTTGATTCCTCCAGGGACAGAAACAAGCCCTTTAAGTTTATGCTAGGCAAGCAGGAGGTGATCCGAGGCTGGGAAGAAGGGGTTGCCCAGATGAGTGT GGGTCAGAGAGCCAAACTGACTATATCTCCAGATTATGCCTATGGTGCCACTGGGCACCCAGGCATCATCCCACCACATGCCACTCTCGTCTTCGATGTGGAG CTTCTAAAACTGGAAGCTAGCCCCAGCAACCCCGGCGCCAGCAACGGCTCCACCTCTGATGAAGTCAGGAAGAACCTGATGGACATGTTCAGGGACAGGCA GGCCTTCTCTGAACACACCTGGAAGATGCTCCTGTCTGTGTGCAGATCCTGGGCTGCCTGGTGCAAGCTGAACTGAAGGTCCTCACCCGACTGGGCAGCTG GAGTGCAGAGAACTTTGCGCGACCGGAAGACGCTAGTGAGATTGGGCACAGTGGAGCTAGCGTGCGCGCGGTAGCTTTGGCAGCACTGGGATTTTGTCCTC TGTACTGCCTGGCTCTCGTGTTTATTTTTGGTTAGAGTGTGCGTTGCTCGGATCCCTGCCTGGTTCTCGTGCTTATTTTTGGTTAGATGGTGCGTTGTTCTACTT TCAATCATCGTTTTGTTTTGTTTTTCATATCTGTTTTCCAAAGAACTCTGATTGTCTTCATCCACCCGGTTTTCCCCGCCTGGTCTCGCTTTGAGATTGTTTTTATT CCTCTCCGGTTTTTCCCCATTGGGATAAAAGTGCGTCCCGTGTGTCTACCCCTCCAGTCCCCACAAGCGGCTCAGATGTACAGAGCACCTGCTCTTCTCTGAC GTGCACTTTTTGCTCTTGCAGTCTTGCGCGGCCTCTAGTCTCCCCTGCCACGCACGGATGCTGACGCCAAGCAGCATTCTGCGCAGGAAAGCGTGGTATCCC GACGAGGCAGATCGCGGGCTCGCATGTACCGGCGACGGACATCCTACACACATTATCCTCATGTAGAACCTCAAAGCAAGGGAAGAAGAAAAGGGTTGACAC GTTGTTATGTTTTTTTTTGTGCCTGGGAGTAAGCGGGCGCCGATCTTCAAGTATCCTCTCAATTTCACTGGCAGGGCGCGAAGTGCGCGGGCTCCTCGCGTGC CGCCGCAATGTCAGTCGCGGCTCTACCAGTGCTACAGGGATGTCGGGTGGTGTCGTTGATGATTTGGCATCAAGTGCACGCGCGGCCGCTTTCTTCCATCTG CACTCGCTCTGCGCTTCGTTTTCTTCTTCCCTTGCGCGCGCGTGACGCCGCGCTCCTCACCTGCGCGCCCCGCCCCGACTTGGGTCCTCTCGTGCTGCAAC GGACGCCGACAGCTTCCTTCCACGCATTTCGTGCCTCCGCACCGTTCTCCACCGCCAGCGCAGACTTGTACATACGCACACACCACCATGGCCCCTAAGAAG AAGAGAAAGGTGTCAAGAATCCTCTGGCATGAGATGTGGCATGAAGGCCTGGAAGAGGCATCTCGTTTGTACTTTGGGGAAAGGAACGTGAAAGGCATGTTT GAGGTGCTGGAGCCCTTGCATGCTATGATGGAACGGGGCCCCCAGACTCTGAAGGAAACATCCTTTAATCAGGCCTATGGTCGAGATTTAATGGAGGCCCAA GAGTGGTGCAGGAAGTACATGAAATCAGGGAATGTCAAGGACCTCCTCCAAGCCTGGGACCTCTATTATCATGTGTTCCGACGAATCTCAGCTAGCCCCAGCA ACCCCGGCGCCAGCAACGGCTCCAACAGGAAATGGTTCCCTGCTGAACCTGAGGATGTGAGGGACTACCTCCTGTACCTGCAAGCCAGAGGCCTGGCTGTG AAGACCATCCAACAGCACCTGGGCCAGCTCAACATGCTGCACAGGAGGTCTGGCCTGCCTCGCCCTTCTGACTCCAATGCTGTGTCCCTGGTGATGAGGAG AATCAGAAAGGAGAATGTGGATGCTGGGGAGAGAGCCAAGCAGGCCCTGGCCTTTGAACGCACTGACTTTGACCAAGTCAGATCCCTGATGGAGAACTCTGA CAGATGCCAGGACATCAGGAACCTGGCCTTCCTGGGCATTGCCTACAACACCCTGCTGCGCATTGCCGAAATTGCCAGAATCAGAGTGAAGGACATCTCCCG CACCGATGGTGGGAGAATGCTGATCCACATTGGCAGGACCAAGACCCTGGTGTCCACAGCTGGTGTGGAGAAGGCCCTGTCCCTGGGGGTTACCAAGCTGG TGGAGAGATGGATCTCTGTGTCTGGTGTGGCTGATGACCCCAACAACTACCTGTTCTGCCGGGTCAGAAAGAATGGTGTGGCTGCCCCTTCTGCCACCTCCC AACTGTCCACCCGAGCCCTGGAAGGGATCTTTGAGGCCACCCACCGCCTGATCTATGGTGCCAAGGATGACTCTGGGCAGAGATACCTGGCCTGGTCTGGC CACTCTGCCAGAGTGGGTGCTGCCAGGGACATGGCCAGGGCTGGTGTGTCCATCCCTGAAATCATGCAGGCTGGTGGCTGGACCAATGTGAACATTGTGAT GAACTACATCAGAAACCTGGACTCTGAGACTGGGGCCATGGTGAGGCTGCTAGAGGATGGGGACTGAAGTGTGCGTGAGTGTGCGCGTGCGTGTTGGTGCG CACCGCGCTCGCTGTCCCCGCGGCGCACGCACACCTCCCTCGCTCTCTCCCCCTCTTTCCGTGCCTTCTTTGTCTCCCTTCCTGTACGCTATTTTGGTTTCTT GTGCTTGCTTTATCTTGTGGGCGGGTGTGGGCCCGACCTGCACGTCTGTGACGGAGTGACGTCTAGAGAGCTCGGGTCGACCACACGTACACACGTACACA CACACGTGCGCATGCTTGACGCATACGCGACGAATTCGAAAGCTCACCTCATTCCTCCCTCCTCACACCATCATCGGCATCCATAGAGACACGTGCGCGTAGA ACGATACAGCTCACGCGCACAGAGAGGCGTGTTCTGGTCGTGCGCATCATCGGCACAGCACTGGCGGACGAAACTCGCACACAGGCACGCCGCCTCCTTTC ACCCGTCATAGATAGTTGAATTAGACGCCCTCCTCCTCCCTCATCATCGCCGTCGTCATCCGGGTCCGAGCACTAGTATGGCCAAGCCTTTGTCTCAAGAAGAA TCCACCCTCATTGAAAGAGCAACGGCTACAATCAACAGCATCCCCATCTCTGAAGACTACAGCGTCGCCAGCGCAGCTCTCTCTAGCGACGGCCGCATCTTCA CTGGTGTCAATGTATATCATTTTACTGGGGGACCTTGTGCAGAACTCGTGGTGCTGGGCACTGCTGCTGCTGCGGCAGCTGGCAACCTGACTTGTATCGTCGC GATCGGAAATGAGAACAGGGGCATCTTGAGCCCCTGCGGACGGTGCCGACAGGTGCTTCTCGATCTGCATCCTGGGATCAAAGCCATAGTGAAGGACAGTG ATGGACAGCCGACGGCAGTTGGGATTCGTGAATTGCTGCCCTCTGGTTATGTGTGGGAGGGCTAAAGATCTTCTAGTGATCCCGCCCGCACCCGCGCGCGCT CAGGCCGCGTGTCGTCGTGCTCTTTCCATTTTTTTTTTGTGTGTGGTGGTGATTTGAGCTGCTCTCCGTTGTGTGCTGGGGACCCTCCTTCCCTCGATCTCCT CGTGCGGGGTCTCCGACGCGCAGACGCGGTGCGTGCGAGCGTGCACGTGCTGTCGCCGTGGCTGTAGTTGCGAGCGGAGAGAGAGAGAGAGGGAGGGA GGGAGGGCAGAGGGCAGAGGACATGCGGGTGGGAACGTGCACCGGCCTCGTCTCACGCAGGCCCGGGCGGTACCCTACCCAGCTTTCTTGTACAAAGTG GGGCGACTAGACCGTAACGCCTTTTCAACTCACGGCCTCTAGGAATGAAGGAGGGTAGTTCGGGGGAGAACGTACTGGGGCGTCAGAGGTGAAATTCTTAGA CCGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGAGATCGAAGATGATTAGAGACCATTGTAGTCCAC ACTGCAAACGATGACACCCATGAATTGGGGATCTTATGGGCCGGCCTGCGGCAGGGTTTACCCTGTGTCCAGCACCGCGCCCGCTTTTACCACCTTACGTATC CTTTCTATTCGGCCTTTACCGGCCACCCACGGGAATATCCTCAGCACGTTTTCTGTTTTTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGGGGGAGTACGTT CGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTGGAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGACAG GATGAGGATTGACAGATTGAGTGTTCTTTCTCGATTCCCTGAATGGTGGTGCATGGCCGCTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGG ACGAGATCCAAGCTGCCCAGTAGAATTCAGAATTGCCCATAGAATAGCAAACTCATCGGCGGGTTTTACCCAACGGTGGGCTGCATTCGGTCGAATTCTTCTCT GCGGGATTCCTTTGTAATTGCACAAGGTGAAATTTTGGGCAACAGCAGGTCTGTGATGCTCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTGAGA ACAAGAAAAACGACTTTTGTCGAACCTACTTGATCAAAAGAGTGGGGAAACCCCGGAATCACATAGACCCACTTGGGACCGAGGATTGCAATTATTGGTCGCG CAACGAGGAATGTCTCGTAGGCGCAGCTCATGTTTAAACCGCAACTTTATTATACATAGTTGATAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAA CCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCG CAGCCTGAATGGCGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTGCAATCTGCTCTGATG CCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTC TCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAAT AATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAA TAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTT TGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAG AGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCG CCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAAC CATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTT GATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGC GAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTA TTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGTCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGG GAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTA GATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGT CAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGT TTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCA CTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCA AGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCT ACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGA GCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCT ATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGTCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACC GTATTACCG

pGL2339 Features	
ORI	$7197-7870$
5'SSU	$108-361$
FKBP12	$624-935$
Cre59	$981-1106$
FRB	$2178-2454$
Cre60	$2490-3344$
BLA	$3864-4259$
3'SSU	$4603-5558$
AMP	$6192-705$

>pGL2332
TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGT CAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACGCGGTGTGAAATACCGCACA GATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGC TGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGATCCTTAATTA ATGACGAACAACTGCCCTATCAGCTTGTGATGGCCGTGTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGAGCCT GAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCAAAACAAAACGATGAGGCAGCGGAAAGGAATAGAGTTGTCAGTCCAT TTGGATTGTCATTTCAATGGGGGATATTTAAACCCATCCAATATCGAGTAACAATTGCCCGCTTTCCATTTCGTCACCTTCCGCCTCTCTCTCTCTCTCTCTCACC ATCTACGCGTGCACATCATCAACTGTCTCTTGTCGGTGCTCACCACCCTCAACCACCCCTCACTTTCAAGGCTTCCCGAACGCACACAAAAGGCGTGAAAACC GCTCGCGGTGTGTTGAGCCGTCCACCGTAGCCTCGAGGTGATAACTTCGTATAGCATACATTATACGAACGGTACTCCTATCTAGAACTAGTATCGATGAGCTCT CGCGAGGTACCCTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGCGGTCACGAACTCCAGCAGGACCATGTGATCGCGCTTCTCGTTGGGGTCTTT GCTCAGGGCGGACTGGGTGCTCAGGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGTTCTGCTGGTAGTGGTCGGCGAGCTGCAC GCTGCCGTCCTCGATGTTGTGGCGGATCTTGAAGTTCACCTTGATGCCGTTCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGTAGTTGTACTCCA GCTTGTGCCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTCAGCTCGATGCGGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCGCGGGTC TTGTAGTTGCCGTCGTCCTTGAAGAAGATGGTGCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGTAG CGGCTGAAGCACTGCACGCCGTAGGTCAGGGTGGTCACGAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTG CCGTAGGTGGCATCGCCCTCGCCCTCGCCGGACACGCTGAACTTGTGGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGTGAACA GCTCCTCGCCCTTGCTCACCATCATATGAGATCTTCGCGAGCTAGCTGCGTAATCGGGCACATCGTACGGGTATGCGTAGTCTGGCACGTCGTATGGGTACGC GTAATCAGGCACATCGTAAGGGTATGCGTAATCGGGCACATCGTACGGGTATGCGTAGTCTGGCACGTCGTATGGGTACGCGTAATCAGGCACATCGTAAGGG TACATGCTAGCGTGATAACTTCGTATAATGTATGCTATACGAACGGTACTCGCGGCCGCGGCGCGCCTTAAGCAAGAGCATAGCCTTACTTGCGGGCTTCCTCA ACAGTACACCCCCTATTCGACAGTGCTTCTGCGAGAAATCGTACATCTGCGCTCAGGTTGCAAATTCGCAAACGCCCAACACACGAACATTCTCTGATTTATTC TATCTGCCTCGGTACATGCTTTTCTTCCTTCTGTGCGGTGTGAAGCATATTTGCAGTGGATTATGCTTTCGCTTAGCCGTGTTTTTGTTTCTCCCACTACTACTGC TGCTACTGTTCTTTTCGTGTTCTAGCCCTTCGAGGGGCCCTAGTGATCCCGCCCGCACCCGCGCGCGCTCAGGCCGCGTGTCGTCGTGCTCTTTCCATTTTT TTTTTGTGTGTGGTGGTGATTTGAGCTGCTCTCCGTTGTGTGCTGGGGACCCTCCTTCCCTCGATCTCCTCGTGCGGGGTCTCCGACGCGCAGACGCGGTG CGTGCGAGCGTGCACGTGCTGTCGCCGTGGCTGTAGTTGCGAGCGGAGAGAGAGAGAGAGGGAGGGAGGGAGGGCAGAGGGCAGAGGACATGCGGGTG GGAACGTGCACCGGCCTCGTCTCACGCAGCTGGAGCCCACGAATGCCACCACCACACCCTTCTTCCCCCCCCCTCCCTCTTCTTCCCACGGCGGCGACGAC GACGGGGGCTCAGCTCACGCTTCTGTAGGGTATTATATTAAAGCACATGTGCGTGCTGTGCTTCGGCTTCTTGTTGGTGGTCGTTCGCTTTCAAGTCCACGAC TCCTGCCGTTGCTCACCGCCGGGCTGTCTTCTTTCGCCCCTCCCTCGGTGCCTCTTCCGCCGCCGCACGCGTGCGCTGATCACGCGTCTTGCGTGATGTGC CTGTGTGTATACACACCGTGCACGGAGAGAGCGAGCGAGCGAGAGAGAGAGAGGGCGAGAGGAAGAATGGCCGGTGCCTCGCGTGGGCAAGCGTGCGCG AGTTTGTCGTGTCGCTGCGCCGCGTGGATGTCGCGCAGCGCAAGACCCCGTGCGCCTGAAACGTGAAGGGAGGTCGAGAAGCGTGCCGCATGAGGCCTTA AGGCAGGAAAGTGAAAAGAGCTCGACGCGAGTGCAGCACGCGCGACATCGAACAGGACGGAATAGACACTCAGCCCCTTCCCCTTTCAAAAACTGAATGGA CGGACATCGTAACGCGCTTCTCTCCCCTCCACTCCCCCTGTCCCTGTCTCCTTGACGTGTGCTGCTCTCGTGAGCGACAGATGAAGCGAGGCGTAGAAGGAA AGGGGGGGGAGCGAGGCCTGCACGAAAAGCAAGTTTGAGGCAGACG TGGTTTCACACGATTCCTGTGCAAGAAGCGTGCCTGCGTGACGGTGTGGCTGTGTATGCATGCGTGAAGGGTTACCGCAACGATGCGCAATGGACTCCCCCG СTTTCСATTTCGTCACCTTCCGCCTCTCTCTCTCTCTCTCTCACCATCTACGCGTGCACATCATCAACTGTCTCTTGTCGGTGCTCACCACCCTCAACCACCCC TCACTTTCAAGGCTTCCCGAACGCACACAAAAGGCGTGAAAACCGCTCGCGTGTGTTGAGCCGTCCACCGTAGCCCTCCCCCTGTCCCCGGGGGATCCACT AGACGACCTTCCATGACCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCCGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACT ACCCCGCCACGCGCCACACCGTCGACCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCAA GGTGTGGGTCGCGGACGACGGCGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTCGCCGAGATCGGCCCGCGCATGG CCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCG GCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGCCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAG ACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTCGAGTGCCCGAAGGACCGCGCGACCTGGTGCATGACCC GCAAGCCCGGTGCCTAGATGTGTGCCCTTGTGTGCGTGTGTGTTTGGTGGTTTGCAGCGATGCCCGGCGCGTGTGGGCACCTCCTTGGGTGCGCGCCCGC CGTGGCAGCTGCGCGTGCGTGCGAGATGTGAGGCAGAGGAAGAGGAAGGCGATGCGGGCGACAGCGCAGCGAGGTGCGGCGGAGCGTAGGGGGGAAAT GGACGAGCAGGCGCGCTGTGAATCGGAGCTGCGGCACCACCCAAGTCGTGGTGCCCCGCGAATGGCTGTTCTGCCCGCCCTCGCTTCACGCCTCCCCCTC CCCTCGCGTGCCCTCGCGTGGCCTCCCTTGTTATCCCTCTCTCTCGCACGCACACGCACACGCGTATACGCGAGCCCGCTATTCTGCCTTCGTCTGGCTCTT TGTATTTTGCTTGCTTCTTCAGCACACTTGTGTGCTGTGCGTTCAGCGATATCTTCCACTACTTTGTTTTCTCCTCCCCCTCGGGAGGTGCTTCGCTTGTGCTTT GACGGTGGTGCGTGGCTGCTGGGTTATGTGCCGGGCGTGCGCGCCTCCGCCGCCTCCCTGCAGCTTGTGGGTGCGCTGCGTTCGCACCGCGCTCGCGTG CATGCACATGCCTGCACTGCGTGCGGGACGCCTTCCGGGCGCGTTGGCCCCCCGCCTCTGCAGCCACGGTCTGTTTATTGATTGTGCTTGCTTCATCGGCTC TTCTCTGCGCGCGTGCGTGCGTGCGTGTGCGTGTCCGTGCGTATGCGTGAGGCGCAACGGTCCCCAGAGCAAGGCATGTCGAGGGGAACACTATAGACGC ATGTGTACGTGTACACGATGTGTATACGTATACGTGTACCGAATGGTGCGTGCGCGTGTGCAGCATTGCCGTGACGGCATGTACGAAGCGCTGCAGTGGGATG GACCCTGTGCGCGTGCCGGAGAGGTAGTGTCGCGTGTGGGTGCGGAGTGATGGAGGCCAGGGGGCTTACGAGCACCGTCGCTTTTCCCCCGATGGCGGC TGGCACGCAGCGCACGCACCGGGGATGTGTGACGTGCGTCGCTGTGCGCCTCTCCCTCTCCCCTGTGCGCGCGGCGCATGGATGCACCGCTGTTGTGTGA GGTTGCCCGCACCTGCGTTGTTGCCTGTGATGACGTCCCTCCCTCTCTTGCACTCTCCCCGTCCCCACCTGCCCTGCACCGTGGTCGACTGCTCCCGACGC CCTGCACAGACTCTCGTCGCCACCACCAGCAGCAGCCCTCTATATACCCGCCACTGCCGCAGCGTTCGGGCCGTGGCCTCTGCGTTTCACTTGCTCTCCCCT CGCTCTGTTCATTGCTTCCTTCTGTTCCCCTCGCTGCCCGCGTCCGCGACTAGACCGTAACGCCTTTTCAACTCACGGCCTCTAGGAATGAAGGAGGGTAGTT CGGGGGAGAACGTACTGGGGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAAC CAAAGTGTGGAGATCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGGGATCTTATGGGCCGGCCTGCGGCAGGGTTT ACCCTGTGTCCAGCACCGCGCCCGCTTTTACCACCTTACGTATCCTTTCTATTCGGCCTTTACCGGCCACCCACGGGAATATCCTCAGCACGTTTTCTGTTTTT TCACGCGAAAGCTTTGAGGTTACAGTCTCAGGGGGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTGGAGCGTGCG GTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGACAGGATGAGGATTGACAGATTGAGTGTTCTTTCTCGATTCCCTGAATGGTGGTGCATGGCCG CTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAGATCCAAGCTGCCCAGTAGAATTCAGAATTGCCCATAGAATAGCAAACTCATCGGC GGGTTTTACCCAACGGTGGGCTGCATTCGGTCGAATTCTTCTCTGCGGGATTCCTTTGTAATTGCACAAGGTGAAATTTTGGGCAACAGCAGGTCTGTGATGC TCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTGAGAACAAGAAAAACGACTTTTGTCGAACCTACTTGATCAAAAGAGTGGGGAAACCCCGGAAT CACATAGACCCACTTGGGACCGAGGATTGCAATTATTGGTCGCGCAACGAGGAATGTCTCGTAGGCGCAGCTCATGTTTAAACCTGCAAGCTTGGCGTAATCA TGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAG CTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGG TTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACG GTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCA TAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAG CTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAG GTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGA GTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG GTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA CAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA CGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCT AAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCC CGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATA AACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCG CCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAG GCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTA TGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGAC CGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTC AAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAA CAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTG TCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATT ATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC

pGL2332 Features	
5'SSU	$409-662$
pXSL	$663-850$
Lox66	$860-893$
GFP	$1652-936 \mathrm{C}$
6xHA	$1841-1677 \mathrm{C}$
Lox77	$1884-1851 \mathrm{C}$
PAS	2876
PAC	$3578-4174$
3'SSU	$5518-6477$
ORI	$7462-6723 \mathrm{C}$
AMP	$8525-7665 \mathrm{C}$

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGT CAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACGCGGTGTGAAATACCGCACA GATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGC TGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGATCCTTAATTA ATGACGAACAACTGCCCTATCAGCTTGTGATGGCCGTGTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGAGCCT GAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCAAAACAAAACGATGAGGCAGCGGAAAGGAATAGAGTTGTCAGTCCAT TTGGATTGTCATTTCAATGGGGGATATTTAAACCCATCCAATATCGAGTAACAATTGCCCGCTTTCCATTTCGTCACCTTCCGCCTCTCTCTCTCTCTCTCTCACC ATCTACGCGTGCACATCATCAACTGTCTCTTGTCGGTGCTCACCACCCTCAACCACCCCTCACTTTCAAGGCTTCCCGAACGCACACAAAAGGCGTGAAAACC GCTCGCGGTGTGTTGAGCCGTCCACCGTAGCCTCGAGGTGATAACTTCGTATAGCATACATTATACGAACGGTACTCCTATCTAGAACTAGTATCGATGAGCTCT CGCGAGGTACCGCGTGGATCTGGATCCTTACCTTGAGGCATAATCAGGAACGTCGTAGGGGTAACTTGAGGCATAATCAGGAACGTCGTAGGGGTAACTTGAG GCATAATCAGGAACGTCGTAGGGGTAACTTGAGGCATAATCAGGAACGTCGTAGGGGTAACTTGAGGCATAATCAGGAACGTCGTAGGGGTAACTTGAGGCAT AATCAGGAACGTCGTAGGGGTATCTAGAAACACCGCCCTGCAGGAATCATATGAATAGATCTAATGCTAGCGTGATAACTTCGTATAATGTATGCTATACGAACGG TACTCGCGGCCGCGGCGCGCCTTAAGCAAGAGCATAGCCTTACTTGCGGGCTTCCTCAACAGTACACCCCCTATTCGACAGTGCTTCTGCGAGAAATCGTACA TCTGCGCTCAGGTTGCAAATTCGCAAACGCCCAACACACGAACATTCTCTGATTTATTCTATCTGCCTCGGTACATGCTTTTCTTCCTTCTGTGCGGTGTGAAG CATATTTGCAGTGGATTATGCTTTCGCTTAGCCGTGTTTTTGTTTCTCCCACTACTACTGCTGCTACTGTTCTTTTCGTGTTCTAGCCCTTCGAGGGGCCCTAGT GATCCCGCCCGCACCCGCGCGCGCTCAGGCCGCGTGTCGTCGTGCTCTTTCCATTTTTTTTTTGTGTGTGGTGGTGATTTGAGCTGCTCTCCGTTGTGTGCT GGGGACCCTCCTTCCCTCGATCTCCTCGTGCGGGGTCTCCGACGCGCAGACGCGGTGCGTGCGAGCGTGCACGTGCTGTCGCCGTGGCTGTAGTTGCGAG CGGAGAGAGAGAGAGAGGGAGGGAGGGAGGGCAGAGGGCAGAGGACATGCGGGTGGGAACGTGCACCGGCCTCGTCTCACGCAGCTGGAGCCCACGAA TGCCACCACCACACCCTTCTTCCCCCCCCCTCCCTCTTCTTCCCACGGCGGCGACGACGACGGGGGCTCAGCTCACGCTTCTGTAGGGTATTATATTAAAGC ACATGTGCGTGCTGTGCTTCGGCTTCTTGTTGGTGGTCGTTCGCTTTCAAGTCCACGACTCCTGCCGTTGCTCACCGCCGGGCTGTCTTCTTTCGCCCCTCC CTCGGTGCCTCTTCCGCCGCCGCACGCGTGCGCTGATCACGCGTCTTGCGTGATGTGCCTGTGTGTATACACACCGTGCACGGAGAGAGCGAGCGAGCGA GAGAGAGAGAGGGCGAGAGGAAGAATGGCCGGTGCCTCGCGTGGGCAAGCGTGCGCGAGTTTGTCGTGTCGCTGCGCCGCGTGGATGTCGCGCAGCGCA AGACCCCGTGCGCCTGAAACGTGAAGGGAGGTCGAGAAGCGTGCCGCATGAGGCCTTAAGGCAGGAAAGTGAAAAGAGCTCGACGCGAGTGCAGCACGC GCGACATCGAACAGGACGGAATAGACACTCAGCCCCTTCCCCTTTCAAAAACTGAATGGACGGACATCGTAACGCGCTTCTCTCCCCTCCACTCCCCCTGTC CCTGTCTCCTTGACGTGTGCTGCTCTCGTGAGCGACAGATGAAGCGAGGCGTAGAAGGAAAGGGGGGGGAGCGAGGCCTGCACACACACACACACACACA САСАСАСАСАСАСАСАСАСАСАСАСАСАСАСАСАСАСGAAAAGCAAGTTTGAGGCAGACGTGGTTTCACACGATTCCTGTGCAAGAAGCGTGCCTGCGTGAC GGTGTGGCTGTGTATGCATGCGTGAAGGGTTACCGCAACGATGCGCAATGGACTCCCCCGCTTTCCATTTCGTCACCTTCCGCCTCTCTCTCTCTCTCTCTCA CCATCTACGCGTGCACATCATCAACTGTCTCTTGTCGGTGCTCACCACCCTCAACCACCCCTCACTTTCAAGGCTTCCCGAACGCACACAAAAGGCGTGAAAA CCGCTCGCGTGTGTTGAGCCGTCCACCGTAGCCCTCCCCCTGTCCCCGGGGGATCCACTAGACGACCTTCCATGACCGAGTACAAGCCCACGGTGCGCCTC GCCACCCGCGACGACGTCCCCCGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGACCCGGACCGCCACATC GAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCAAGGTGTGGGTCGCGGACGACGGCGCCGCGGTGGCGGTCTGG ACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTCGCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATG GAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGC CGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGG CTTCACCGTCACCGCCGACGTCGAGTGCCCGAAGGACCGCGCGACCTGGTGCATGACCCGCAAGCCCGGTGCCTAGATGTGTGCCCTTGTGTGCGTGTGT GTTTGGTGGTTTGCAGCGATGCCCGGCGCGTGTGGGCACCTCCTTGGGTGCGCGCCCGCCGTGGCAGCTGCGCGTGCGTGCGAGATGTGAGGCAGAGGA AGAGGAAGGCGATGCGGGCGACAGCGCAGCGAGGTGCGGCGGAGCGTAGGGGGGAAATGGACGAGCAGGCGCGCTGTGAATCGGAGCTGCGGCACCAC CCAAGTCGTGGTGCCCCGCGAATGGCTGTTCTGCCCGCCCTCGCTTCACGCCTCCCCCTCCCCTCGCGTGCCCTCGCGTGGCCTCCCTTGTTATCCCTCTC TCTCGCACGCACACGCACACGCGTATACGCGAGCCCGCTATTCTGCCTTCGTCTGGCTCTTTGTATTTTGCTTGCTTCTTCAGCACACTTGTGTGCTGTGCGTT CAGCGATATCTTCCACTACTTTGTTTTCTCCTCCCCCTCGGGAGGTGCTTCGCTTGTGCTTTGACGGTGGTGCGTGGCTGCTGGGTTATGTGCCGGGCGTGC GCGCCTCCGCCGCCTCCCTGCAGCTTGTGGGTGCGCTGCGTTCGCACCGCGCTCGCGTGCATGCACATGCCTGCACTGCGTGCGGGACGCCTTCCGGGC GCGTTGGCCCCCCGCCTCTGCAGCCACGGTCTGTTTATTGATTGTGCTTGCTTCATCGGCTCTTCTCTGCGCGCGTGCGTGCGTGCGTGTGCGTGTCCGTGC GTATGCGTGAGGCGCAACGGTCCCCAGAGCAAGGCATGTCGAGGGGAACACTATAGACGCATGTGTACGTGTACACGATGTGTATACGTATACGTGTACCGAA TGGTGCGTGCGCGTGTGCAGCATTGCCGTGACGGCATGTACGAAGCGCTGCAGTGGGATGGACCCTGTGCGCGTGCCGGAGAGGTAGTGTCGCGTGTGGG TGCGGAGTGATGGAGGCCAGGGGGCTTACGAGCACCGTCGCTTTTCCCCCGATGGCGGCTGGCACGCAGCGCACGCACCGGGGATGTGTGACGTGCGTC GCTGTGCGCCTCTCCCTCTCCCCTGTGCGCGCGGCGCATGGATGCACCGCTGTTGTGTGAGGTTGCCCGCACCTGCGTTGTTGCCTGTGATGACGTCCCTC ССТСТСTTGCACTCTCCCCGTCCCCACCTGCCCTGCACCGTGGTCGACTGCTCCCGACGCCCTGCACAGACTCTCGTCGCCACCACCAGCAGCAGCCCTCT ATATACCCGCCACTGCCGCAGCGTTCGGGCCGTGGCCTCTGCGTTTCACTTGCTCTCCCCTCGCTCTGTTCATTGCTTCCTTCTGTTCCCCTCGCTGCCCGC GTCCGCGACTAGACCGTAACGCCTTTTCAACTCACGGCCTCTAGGAATGAAGGAGGGTAGTTCGGGGGAGAACGTACTGGGGCGTCAGAGGTGAAATTCTTA GACCGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGAGATCGAAGATGATTAGAGACCATTGTAGTC CACACTGCAAACGATGACACCCATGAATTGGGGATCTTATGGGCCGGCCTGCGGCAGGGTTTACCCTGTGTCCAGCACCGCGCCCGCTTTTACCACCTTACG TATCCTTTCTATTCGGCCTTTACCGGCCACCCACGGGAATATCCTCAGCACGTTTTCTGTTTTTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGGGGGAGTA CGTTCGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTGGAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGA CAGGATGAGGATTGACAGATTGAGTGTTCTTTCTCGATTCCCTGAATGGTGGTGCATGGCCGCTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAAC GGACGAGATCCAAGCTGCCCAGTAGAATTCAGAATTGCCCATAGAATAGCAAACTCATCGGCGGGTTTTACCCAACGGTGGGCTGCATTCGGTCGAATTCTTC TCTGCGGGATTCCTTTGTAATTGCACAAGGTGAAATTTTGGGCAACAGCAGGTCTGTGATGCTCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTG AGAACAAGAAAAACGACTTTTGTCGAACCTACTTGATCAAAAGAGTGGGGAAACCCCGGAATCACATAGACCCACTTGGGACCGAGGATTGCAATTATTGGTC GCGCAACGAGGAATGTCTCGTAGGCGCAGCTCATGTTTAAACCTGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACA ATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCA GTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACT CGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGC TCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACC GGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCT GTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAG CCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTAT CTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAG CAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCAT GAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTT AATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGG CCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTG CAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCA TCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAG CTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAG ATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCG CCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCAC TCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACA CGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAAC AAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCT TTCGTC

pGL6000 Features	
5'SSU	$409-662$
pXSL	$663-850$
Lox66	$860-893$
6xHA	$1152-946$ C
Lox77	$1238-1205 \mathrm{C}$
PAS	2230
PAC	$2932-3528$
3'SSU	$4872-5831$
ORI	$6816-6077$ C
AMP	$7879-7019 \mathrm{C}$

[^0]: * To whom correspondence should be addressed. jezielbqi@gmail.com and luiztosi@fmrp.usp.br Tel: + 5516 36023117; Fax: +55 1636020728.

