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Response to Referees 
 
We would like to thank the anonymous referees for their comments. We have amended the 
manuscript in response and believe it has improved as a result; we hope that the revised paper 
will be acceptable for publication. 
 
Reviewer #1 
 
This paper summarizes some examples where state-of-the-art time series analysis procedures 
are applied to structural health monitoring (SHM) problems.  This study is not a comprehensive 
review of time series analysis as it applies to SHM as duly noted by the authors on page 3.  
However, it does address what is probably the biggest challenge for all SHM methods, which 
the authors refer to as “confounding influences.”  Several procedures to deal with different types 
of confounding influences are presented and illustrated with experimental data.  Some 
outstanding research issues are also presented.  This reviewer believes that this paper is most 
appropriate for this special issue of IEEE Proceedings.  Listed below are some minor issues that 
the authors should address in a revision prior to final submittal. 
 

1. Page 1, column 1, Line 40. I think the real assumption is that the structure is not 
changing during the measurement process and, hence, the data can be associated 
with a time t 

 
Response: With respect, this is not correct. We anticipate that the structure will be changing 
during the acquisition period for the training data. This is because there will be environmental or 
operational variations during the training period. The main assumption is that the structure 
remains undamaged during the collection of training data. We have not made changes. 
  

2. Page 1, column 1, Line42.  AS stated it implies that different sensor reading time-
histories will be concatenated into a single vector?  My assumption would that be 
that each of the time histories would form a column or row of a matrix? 

 
Response: At a given instant in time ݐ௜, the feature vector ݔ௜ may indeed contain components 
from more than one sensor.  Over the different samples, these vectors form a set; this is as 
much structure as we wish to impose at this point. In the application of certain algorithms, it may 
be advantageous to assemble the vectors row-wise into a matrix. We have not made changes. 
 

3. Page 1, column 1, Line52, The sentence beginning “Data-based SHM is ….”  First, the 
authors haven’t defined what they mean by “Data-based SHM”  I guess this term is 
first alluded to in Line 44.  Second, in the sentences starting on line 44 and 52, I 
believe all SHM approaches make inferences based on subsequently measured 
data – I don’t think such inferences are restricted to data-based approaches, at 
least as this reviewer interpret the term “data-based.”  It is hard for me to envision 
any SHM or NDE approach that is not data based? 

 
Response: Accepted. We have italicised the initial term to indicate that it is a definition and 
modified the sentence to read: 
 
Data-based SHM is then the process of making inferences about structural condition on 
subsequently measured data, potentially without recourse to physical law-based models. 
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4. Page 2, column 1, line 46.  This is minor, but at first read, I had trouble understanding 

“…by the vertical axis and the vertical dashed line”  I might suggest “…by the 
vertical axis at the origin and the vertical dashed line at 250 samples” 

 
Response: Accepted; the change has been made. 
  

5. Page 2, column 1, line 57.  I think the results, particularly the wider limits, would be 
more evident if Fig. 1 and 2 were plotted on the same vertical scale. 

 
Response: With respect, we had already pointed out the wider limits in the text, so we believe 
the figures are clear enough. 
 

6. Page 2, column 2, line 26.  Unless the authors have an unnaturally intimate 
relationship with their control charts, I don’t really understand how they can assess 
if a chart is “happy”.  I might suggest replacing “happily” with “effectively.” 

 
Response: Accepted; the change has been made. 
 

7. Page 2, column 2, line52.  It would lend credibility to this discussion regarding 
variability of modal parameters if the authors could cite a study upon which these 
numbers are based. 

 
Response: this is a little difficult. This is an issue which is often discussed within the modal 
analysis community and the 1% accuracy for natural frequencies (along with 10% accuracy for 
modeshapes), is indeed accepted within that community. Finding the first paper where someone 
said this, has eluded us; we could reference earlier papers by ourselves, where this statement 
has gone unchallenged  but this would hardly add credibility. We have not made a change. 
 

8. Page 3, column 1, line44. Typo with right parentheses on Section II? 
 
Response: Fixed. 
   

9. Page 3, column2, line40.  I found this discussion a bit confusing.  The discussion 
refers to measurements 1356-2482, but Fig. 5 has time samples 0 – approx. 1200.  
I assume sample points in Fig. 5 are the same as measurements in this 
discussion.  If my assumption is correct, I think it will help the reader if this 
terminology can be made consistent and that the discussion can directly relate the 
measurement numbers to the sample numbers in Fig. 5. 

 
Response: Accepted, we have added a footnote in explanation. 
 
In the figures, the term 'Sample Point' or 'Sample Point Number' is a general term which simply 
means the points are counted from the beginning of the record plotted. In the case of Figures 8, 
9, 10, 11 and 12, the sample numbers also coincide with the measurement numbers given in 
the text which specify the three test phases. 
 

10. Page 4, column2 line 22.  The term “supervised learning” does not appear in the 
introduction?  Also, I believe the authors are using the term supervised learning in 
reference to the ability to model the influence of temperature on the features.  
However, it seems to me the ability to identify damage is still being done in an 
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unsupervised learning mode.  If I’m correct about this, I think this should be stated 
explicitly. 

 
Response: This was a typo’, we have corrected the term to ‘unsupervised learning’. 
 

11. Page 4, column 2 line 24.  In the entire discussion of the naïve analysis the authors 
introduce the Mahalanobis squared distance as a measure of discordancy.  
However, when I examine Figures 9, 10 and 11 it appears it is actually being used 
as the damaged-sensitive feature?  I think a little bit more explanation on what 
distinguishes a measure of discordancy from a feature is needed in the context of 
this example. 

 
Response: The MSD is being used as a damage- or novelty index. As such it is certainly a 
damage sensitive feature, but a rather trivial one. It is essentially the output of a two-class 
classifier based on the actual input features. As such we prefer not to denote it has a feature. 
 

12. Page 5, column 1 line17.  I think the authors should explicitly state what level of 
threshold is shown by the horizontal dashed line, 3 standard deviations from the 
mean? 

 
Response: This is given in the text, at the bottom of Page 4, Column Two, in the original 
manuscript: 
 
In this work, the threshold value is computed using the Monte Carlo method described in [11] 
and corresponds to a 99\% confidence threshold unless otherwise indicated.  
 

13. Page 6, column 2, line 2.  I think more explanation is needed.  If the undamaged data 
has been acquired during three identical temperature cycles, why is the upward 
trend only noticed at the end of the third cycle?  

 
Response: This is a good point, and we don’t have an immediate answer. It may be that the 
temperature cycles were not exactly replicated. Such drift does sometimes occur when one 
moves around in the training data, even when the system is still in normal condition. The drift is 
less visible in the cointegration results in Figure 12. As we have nothing more definite to say, we 
have made no changes. 
 

14. Page 6, column 2, line 23.  I’m having trouble with the notation.  Again, it seems like 
the multivariate time series would be represented by a matrix?  I’m assuming 
multivariate here means the data are from multiple sensors?  This seems 
inconsistent with the notation used on page 1, column 1, line 50? 

 
Response: the notation is consistent with the opening paragraph; for the sake of clarity, we have 
added after equation (2), 
 
‘and where ݕ௜ = .(௜ݐ)ݕ Ԣ  
 
15. Page 7, column 2, line 17.  I assume the statement “..eigenvectors are assembled 
columnwise into a vector, ..”  should read “..eigenvectors are assembled columnwise into a 
matrix,..”   I suspect that this might be related to comments 2 and 14.  However, if this reviewer 
is having trouble with this issue, then I suspect other will as well. 
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Response: This was a typo’ and is now fixed. 
 

15. Will Figures 17, 18 and 19 be effective if printed in B&W? 
 
Response: We believe so, we have used a dark shade, a light shade and a dashed line to help 
with this. We also anticipate that the majority of readers will print the paper in colour from the 
journal website. 
 
 
Reviewer 2 
 
The reviewer would first like to thank the authors for a strong contribution to the journal.  The 
paper is very well done and provides a very insightful contribution on co-integration methods for 
non stationary systems.  Major and minor comments provided below:  
 
Response: Thank you  
 
Major issues: 

1. The title and the abstract are not related to the paper - the paper is really focused on the 
use of cointegration and mixture of experts methods for time series-based analysis for 
SHM.  Neither term are even used in the abstract.  The reviewer feels the title and 
abstract should better reflect the paper content. 

 
Response we have amended the title to: 
 
Some Recent Developments in SHM based on Nonstationary Time Series Analysis 
 
and we have amended the abstract as follows: 
 
Many of the algorithms used for Structural Health Monitoring (SHM) are based on or motivated 
by time series analysis. Quite often, detection methods are variants of approaches developed 
within the Statistical Process Control (SPC) community. Many of the algorithms used represent 
mature theory and have a rigorous probabilistic or mathematical basis. However, one of the 
main issues facing SHM practitioners is that the structures of interest rarely respect the 
assumptions inherent in deriving algorithms. In the case of time series data, SPC-based 
approaches usually require the data to be stationary and, unfortunately, SHM data is often 
nonstationary because of benign variations in the environment of the structure of interest, or 
because of deliberate operational changes in the use of the structure. This nonstationarity can 
manifest itself as slowly-varying trends on the data or in abrupt switches between regimes. 
Recent work in nonstationary time series methods for SHM has made considerable progress in 
accommodating nonstationarity and  some of that work is discussed within this paper: in terms 
of understanding slowly-varying trends, the cointegration algorithm from econometrics is 
presented; for understanding abrupt switches, Bayesian mixtures of experts are presented. 
Another issue in time series analysis is indirectly related to the assumption of linear behaviour of 
structures and the impact of this assumption is briefly considered in terms of its effects on 
detection thresholds in SPC-like methods; again, progress has been made recently. Some 
issues still remain, and these are discussed also. 
 
Some very minor comments for the authors: 
 

1. Figure 7 caption references "Figure 7" when it intends to cite "Figure 6". 
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Response: Corrected. 
 

2. Figure 8 could be improved with the 3 forms of data delineated in the figure. 
 
Response: We respectfully disagree. We feel the transitions are clear in the figure, and we have 
given the points at which transitions occur in the text. If we overlay vertical lines, for example, 
we will obscure features of the data. 
 

3. Figure 5 seems to be cropped on the right. 
 
Response: The figure is OK as a .eps file, we are unsure what happened. If the problem 
persists at the proof stage, we will attempt to generate a plot without the problem. 
 

4. Page 6, Line 8 - authors intend to say, "...for more of a SHM context." - add "of a". 
 
Response: Corrected. 
 

5. Page 6, Lines 31-32, Column 1 - some more discussion about data standardization is 
needed here. 

 
Response: We have added a footnote: 
 
The process of standardisation of a given variable is simply to remove its mean and to divide by 
its standard deviation. There is some disagreement on whether data should be standardised 
before PCA is applied. Some argue that standardisation stops variables from dominating the 
decomposition simply because they have a greater magnitude; the counter argument is that 
such  variables are therefore more important and should be allowed to dominate. 
 

6. Page 6, Lines25-26, Column 2 - the authors state that if y is n-dimensional, there are up 
to n-1 linearly independent cointegration vectors.  Why?  Can the authors elaborate? 

 
Response: Yes  The cointegration algorithm used in the paper is, like PCA, based on an 
eigenvalue problem. The first eigenvector produces the cointegrating vector which gives the 
most stationary residual. The second eigenvector gives the cointegrating vector, (weighted) 
orthogonal to the first, that gives the next most stationary residual, and so on. This ultimately 
results in n – 1 vectors. With respect, we think that adding this argument to the paper is a 
digression and we would prefer to point the reader to a reference.  
 

7. Page 7, Line 27, Column 1 - a paranthese is accidentally added after the citation [23]. 
 
Response: Corrected. 
 

8. Page 8, Lines 27-34, Column 1 - the description here is rather unsatisfying.  Can the 
authors.  How does the experiment interruption map into the spike?  The causality here 
is not self-evident to the reviewer.  Perhaps what is contained in [9] could be briefly 
summarized as it pertains to the spike in Figure 12. 

 
Response: The discussion in [9] is quite long, so we would respectfully prefer to direct the 
reader towards it rather than reproduce or precis it in the current paper. 
 

9. Citation 19 - looks like there is a typo here. 
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Response: Corrected. 
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Some Recent Developments in SHM based on

Nonstationary Time Series Analysis
Keith Worden, Tara Baldacchino, Jennifer Rowson and Elizabeth J. Cross

(Invited Paper)

Abstract—Many of the algorithms used for Structural Health
Monitoring (SHM) are based on or motivated by time series
analysis. Quite often, detection methods are variants of ap-
proaches developed within the Statistical Process Control (SPC)
community. Many of the algorithms used represent mature theory
and have a rigorous probabilistic or mathematical basis. However,
one of the main issues facing SHM practitioners is that the
structures of interest rarely respect the assumptions inherent
in deriving algorithms. In the case of time series data, SPC-
based approaches usually require the data to be stationary and,
unfortunately, SHM data is often nonstationary because of benign
variations in the environment of the structure of interest, or
because of deliberate operational changes in the use of the
structure. This nonstationarity can manifest itself as slowly-
varying trends on the data or in abrupt switches between regimes.
Recent work in nonstationary time series methods for SHM has
made considerable progress in accommodating nonstationarity
and some of that work is discussed within this paper: in
terms of understanding slowly-varying trends, the cointegration
algorithm from econometrics is presented; for understanding
abrupt switches, Bayesian mixtures of experts are presented.
Another issue in time series analysis is indirectly related to the
assumption of linear behaviour of structures and the impact
of this assumption is briefly considered in terms of its effects
on detection thresholds in SPC-like methods; again, progress
has been made recently. Some issues still remain, and these are
discussed also.

I. INTRODUCTION

IN a sense, all Structural Health Monitoring (SHM) is a

matter of time series analysis; the temporal element of the

activity is implicit in the term ‘monitoring’. An individual act

of monitoring occurs when one or more sensors on a structure

of interest are interrogated; readings are taken and recorded.

For the sake of mathematical convenience, it will be assumed

that the measurement is instantaneous and can be associated

with a time t. It will further be assumed that more than one

sensor can be interrogated at a time, so the measurement will

be vector valued and will be denoted here by x(t). In a data-

based, or machine learning approach to SHM [1], it is usual

to monitor a structure over a period of time when it is known

to be undamaged or in its normal condition; the resulting set

of measurements is usually referred to as the training set. If

N points of training data are observed, the training set will

take the form {xi = x(ti); i = 1, . . . , N}. (Throughout this

paper, vectors will be denoted by underlines and matrices by

upper case letters.) Data-based SHM is then the process of

making inferences about structural condition on subsequently

All authors are with the Department of Mechanical Engineering, University
of Sheffield, Mappin Street, Sheffield S1 3JD, UK.

Manuscript received April 31, 2015; revised Month 00, 2015.

measured data, potentially without recourse to physical law-

based models. As the measurements will almost alway form a

multivariate sequence ordered with respect to time, it follows

that data-based SHM is a matter of time series analysis in

its most general sense. In general, the time series will not

necessarily be raw sensor measurements like accelerations, but

will be pre-processed features constructed in order to enhance

damage sensitivity.

The most basic form of inference in data-based SHM

is damage detection i.e. one seeks to establish only if the

structure is no longer in its normal condition. This form of

diagnosis is usually carried out in terms of novelty detection

or outlier analysis [1]. The idea behind these methods is that

the training data are used to construct a statistical model of the

structure in its normal condition. Subsequent data are tested

for consistency with the statistical model and if deviations are

found, the implication is that the structure has left its normal

(undamaged) condition. There are many methods of novelty

detection of varying levels of sophistication; however, they

all suffer from a potentially serious problem - the problem

of confounding influences. The problem is simply that a

structure may change its condition for benign reasons e.g. it

may be subject to environmental or operational variations. A

simple example will suffice; suppose that the measurements,

or more properly features of interest are the first few natural

frequencies of the monitored structure. It is usually the case

that damage will reduce the local stiffness of the structure and

can also increase damping (e.g. a crack can dissipate energy

through interfacial friction); both of these effects of damage

will cause the natural frequencies to decrease, so natural

frequencies are damage-sensitive features. The problem is that

natural frequencies are also (and more) sensitive to other

benign influences like ambient temperature, wind and traffic

loading (on bridges for example). The issue is then that a

change in the natural frequencies from a benign cause could

be attributed to damage and thus produce a costly false alarm.

An effective SHM methodology may thus need a means

of removing confounding influences before the diagnostic

analysis is made. A good, and fairly recent, review of the

issues surrounding confounding influences can be found in

[2].

Fortunately, the variations due to confounding influences

often have different characteristics to the signal components

of interest i.e. those that expose the dynamic properties of

the structure of interest, and this means they can sometime be

removed. Suppose that the feature of interest is an acceleration

and further suppose that the statistics of the vibration signal

do not change with time i.e. the signal is stationary. While the
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dynamics of the structure will be characterised by timescales

which are fractions of seconds, variations due to temperature

say, will occur on timescales of the order of hours; the high-

frequency signal of interest will then be carried on a low-

frequency trend and the combined signal is nonstationary. If

the temperature is known (measured), a low-order polynomial

fit to the whole data record will capture the trend and not

the local dynamics and the fitted trend can then be removed.

This is an example of a subtraction scheme for trend removal.

If the temperature has not been measured, one must resort

to other methods like projection methods. Projection methods

rely on the availability of multiple features and exploit the fact

that confounding influences will occupy a low-dimensional

subspace of the feature space and can be projected out. The

next section of this paper will discuss a recently developed

projection method which seems particularly attuned to the

SHM problem - the application of cointegration. In contrast

to environmental variations, which often manifest as trends,

operational variations tend to manifest as short timescale

transients e.g. an aircraft dropping a store. Such variations

may be well handled by regarding the structure as switching

between different normal conditions. The problem here is

that the normal condition set in feature space may have a

complicated structure which then requires more sophisticated

methods of novelty detection [3]–[6]. Some simple examples

will serve to illustrate some of the issues discussed above. In

all cases, the signals are intended to represent normal condition

data.

In order to focus the discussion on the issues of non-

stationarity, rather than on SHM algorithms, the detection

algorithm will be assumed to be the simplest one possible.

The univariate X-chart will be used from the discipline of

Statistical Process Control (SPC) [7]. The idea is that one

observes a single sensor variable (or feature) over a training

period; the mean and standard deviation of the training signal

are estimated and then upper and lower control limits for

the signal are derived. If subsequent measurements leave the

control interval, damage is deemed to have occurred. If one

assumes the the sensor signal is a Gaussian noise process, then

the control limits are straightforwardly determined e.g. the

mean plus or minus three standard deviations gives a 99.7%

confidence interval; this means that only three from a thousand

observations would leave the interval as a result of random

fluctuations. To illustrate how this might work, Figure 1 shows

1000 samples from a Gaussian process with zero mean and

unit standard deviation; the control limits have been estimated

from the statistics of the first 250 points - the training set in

this case. (In the following group of figures, the training set

is delimited by the vertical axis at the origin and the vertical

dashed line at 250 samples.)

This situation raises no issues; the stationarity of the signal

means that the control limits are appropriate outside the

training set and there are no false-positive indications of

damage beyond the number expected for a 99.7% confidence

interval. Now, suppose that the noise process is supplemented

by a continuous linear trend as in Figure 2. This is by no

means unrealistic, if the feature of interest here were a natural

frequency of a bridge say, a noise component would arise as a

Fig. 1. SPC control limits for a stationary Gaussian noise process.

result of estimation errors and a trend could arise as a result of

variations in the ambient temperature. If the first 250 samples

are used as a training set as before, they produce wider limits

as a result of the fact that the training data are nonstationary;

however, because the trend continues and the training set has

not captured all possible benign variations, the signal leaves

the control limits soon after the training period and begins

to give continuous false-positive indications of damage. If

the trend could be removed, a stationary stochastic process

would result and the simple SPC approach would function

quite effectively.

Fig. 2. SPC X-chart for a nonstationary (linear trend) process.

The next example illustrates switching behaviour consistent

with an operational variation. This time, the example is

motivated directly by reality. Suppose the measured feature

is a natural frequency of an aircraft structure (which will

have been extracted by processing raw accelerometer data).

If the nominal value of the frequency is 15 Hz, accumulated

experience with most modal analysis methods means that one

would expect measurement errors of the order of 1% i.e. with
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a standard deviation of 0.15. Furthermore, suppose that the

dropping of a store from the aircraft raises the frequency by

1%. Figure 3 shows a representation of this situation over

1000 samples where the operational change occurs at point

501. As before, the control limits are estimated from training

data over the first 250 samples. As in the trend case, the oper-

ational variation causes many more false positive indications

of damage than the 0.3% expected from the structure in the

initial condition. If a model of the switching behaviour were

established and the predictions subtracted from the frequency

measurements, the residual error would be a stationary random

process and thus appropriate for the simple SPC approach.

Fig. 3. SPC X-chart for a nonstationary (abrupt shift) process.

The remainder of this paper will illustrate how recent

developments in time series analysis for SHM allow one to

overcome some of the issues discussed above. The paper is not

intended as a survey paper in any real sense and is very biased

towards the work of the authors, simply because this is the

work with which they are most familiar. The idea is to discuss

some of the issues regarding time series analysis and highlight

some means of resolving them. The layout of the paper is as

follows: Section II discusses how (fairly) recently developed

projection methods have allowed progress on the removal

of slowly varying trends from SHM data and also discusses

some remaining issues. Section III considers how abrupt (but

benign) changes in structural behaviour can be accommodated

within SHM time series analysis. The paper then closes with

some brief conclusions. The most effective algorithms shown

in Sections II and III are probabilistic, but differ somewhat in

their philosophy; the approach to trend removal - cointegration

- is based here on a maximum likleihood approach, while

the means of dealing with switching behaviour is a Bayesian

algorithm. This has been done deliberately; however, there

is an impact on the reader, a complete understanding of the

approach to switching behaviour here requires some familiarity

with concepts from Bayesian machine learning theory. A good

reference on the background to, and terminology of, Bayesian

methods in machine learning can be found in [8].

II. REMOVAL OF CONFOUNDING INFLUENCES:

PROJECTION METHODS

A. Case Study: Experiment and Feature Selection

To illustrate the removal of counfunding influences, a case

study is presented here. The context is experimental wave-

based SHM; the inspection of a composite sample using

Lamb waves. The material of this section has been presented

elsewhere, notably in [9], where the experiment and results

are discussed in much more detail. The ‘structure’ under

consideration is a 300-mm-square composite laminate plate,

instrumented via two piezoelectric sensors/actuators as shown

in Figure 4.

300 mm 

3
0

0
 m

m
 

Transmitter Receiver 

Damage 

Fig. 4. Schematic of composite plate used in case study showing the positions
of the sensor/actuators and imposed damage.

The piezoelectric elements can operate in a symmetric

fashion and in both pitch-catch and pulse-echo modes with

the former mode adopted here. The purpose of the experiment

was to examine the effects of environmental variations on

SHM features. Lamb wave signals travelling between the

sensor-actuator pair were recorded every minute with the plate

located in an environmental chamber. In the first phase of the

test, the environmental chamber was held at a temperature of

25◦C for the first 1355 measurements. In the second phase,

the temperature was cycled three times between 10◦C and

30◦C (measurements 1356-2482) and the temperature in the

chamber was recorded. In the third and final phase, a hole

was drilled in the plate and the temperature was again cycled

between 10◦C and 30◦C (measurements 2483-2944). The

temperature profile imposed during phase 2 is shown in Figure

51.

The Lamb wave signal launched from the actuator was a

five-cycle toneburst modulated by a Hanning window; the

actuation frequency was chosen at 80 kHz in order to pref-

erentially excite the symmetric Lamb wave mode. A typical

1In the figures, the term ’Sample Point’ or ’Sample Point Number’ is a
general term which simply means the points are counted from the beginning
of the record plotted. In the case of Figures 8 9, 10, 11 and 12, the sample
numbers also coincide with the measurement numbers given in the text which
specify the three test phases.

Page 9 of 19

PROCEEDINGS OF THE IEEE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



REVIEW
 CO

PY

4

Fig. 5. Temperature profile imposed on the composite plate during the second
phase of the experiment.

example of the received signal is given in Figure 6. The

features for damage detection were then obtained by Fourier

transforming the time-history of the received Lamb wave

signal; a typical example of a spectrum (magnitude) is given

in Figure 7. In order to reduce the dimension of the feature

vector, 50 spectral lines (magnitude only) around the peak in

the spectrum were selected.
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Fig. 6. Typical waveform of the received Lamb wave signals used for SHM.
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Fig. 7. Spectra of the received Lamb wave signal corresponding to the
waveform in Figure 6.

Note that there are two time-series in the feature selction

process with quite different natures. The raw Lamb wave

response data consists of a univariate series sampled in the

MHz range; the feature selection process converts this into a

multivariate (50-dimensional) series sampled once per minute.

The latter series is carried forward into the SHM analysis.

Figure 8 shows how all the spectral line features vary across

the three phases of the experiment. It is clear from this figure

that the variations in the features as a result of changes in

the environment are of the same order of magnitude as the

variations induced by damage; this represents a problem in

the context of novelty detection.

Fig. 8. Features (spectral line magnitudes) for SHM shown over the three
phases of the experiment.

The next subsections will illustrate how confounding in-

fluences can be misleading if a naive approach to novelty

detection is taken and how a more sophisticated approach

can overcome the problem. It is assumed from this point

on that data available for training will include some from

the temperature-varying phase of the test, but none from the

phase were damage was induced. This is consistent with the

usual situation for unsupervised learning as discussed in the

introduction.

B. Naive Analysis

The analysis in this section can be considered naive in two

senses. In the first sense, the novelty detection algorithm is

one of the simplest and most restricted possible. The second

sense arises because it is assumed that there is no means of

transforming the data into a more effective form for analysis.

It will be shown later, that when the data are transformed,

the simplicity of the algorithm is no longer an issue. The

detection algorithm adopted here is from the discipline of

outlier analysis [10], and assesses the discordancy of a single

observation with respect to the rest of the data, or a fixed

set of training data. A discordant outlier in a data set is

an observation that appears inconsistent with the rest of the

data and therefore is believed to be generated by an alternate

mechanism to the other data. A measure of discordancy is

defined which allows comparison against an objective criterion

allowing the outlier to be judged to be statistically likely or

unlikely to have come from the assumed generating model.

The discordancy test for multivariate data used here is the

Mahalanobis squared-distance (MSD) measure given by [10],

[11],

Dζ = (xζ − x)TS−1(xζ − x) (1)
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where xζ is the potential outlier datum, x is the mean vector of

the sample observations and S the sample covariance matrix.

In order to label an observation as an outlier or an inlier there

needs to be some threshold value against which the discor-

dancy value can be compared. This value is dependent on both

the number of observations and the number of dimensions

of the problem being studied. The value also depends upon

whether an inclusive or exclusive threshold is required. In

this work, the threshold value is computed using the Monte

Carlo method described in [11] and corresponds to a 99%

confidence threshold unless otherwise indicated. The MSD is

arguably the simplest discordancy measure as it assumes a

Gaussian distribution for the normal condition data; the MSD

of a test point is then essentially the log likelihood of the point

belonging to the normal condition set.

The first piece of analysis here is based on a training

dataset chosen as every second data point recorded when

the temperature of the plate was held constant (i.e. during

phase one of the experiment); this assumes that the plate

under constant temperature is the normal condition. For the

outlier analysis, the mean, x, and covariance matrix, S, were

calculated for the 678 training set samples. All the feature

samples were then in turn designated xζ and values for Dζ , the

novelty index (discordancy), were calculated using equation

(1). Figure 9 shows the results of this analysis, with the

novelty index plotted on a log scale (note that the novelty

indices of the samples in the training set are also plotted). The

horizontal dotted line represents the threshold value, whereas

the vertical lines separate the three regimes corresponding to

the phases of the experiment. Not surprisingly, almost all of

the novelty indices from samples in the constant temperature

regime are below the threshold. Meanwhile, the features from

the temperature cycling period and the damage set are all sub-

stantially over the threshold, indicating an abnormal response

from the plate for the majority of the testing period. This is

clearly an undesirable situation; if the outlier analysis was to

be intended as a damage detector, responses from the plate

under a changing temperature would be wrongly classified as

such.
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Fig. 9. Outlier analysis: naive results assuming constant temperature training
data.

Figure 9 provides an insight into how badly a novelty

detector would work if the constant temperature data were

considered to define the normal condition; the temperature

fluctuations lead to a 100% rate of false-positive detection

of damage, which is very clearly undesirable. An obvious

improvement should come from including data from the un-

damaged plate when the temperature was fluctuating in the

training set. Figure 10 shows the results of the same outlier

analysis as before, but this time with the training data extended

to include data from the fluctuating temperature regime. The

training dataset next used included every second data point

up to data point 2000; this includes data from just under two

full cycles of temperature fluctuation. The improvement in the

approach is clear in Figure 10; redefining the normal condition

to include data points from the temperature fluctuating regime

of the experiment has clearly decreased the discordancy of the

data points from this regime. However, some structure still

remains visible in the MSD from the fluctuating temperature

period and many points cross the threshold (indicated by

the dashed line) yielding many false-positive indications of

damage. The MSD is evidently nonstationary over the phase

two data and thus violates the primary condition for applying

any concepts from SPC; furthermore, if the data are not i.i.d

and Gaussian, the threshold calculated via the procedure of

[11] is inappropriate. In terms of damage detection, this outlier

analysis would still be very inappropriate.
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Fig. 10. Outlier analysis: naive results assuming some varying temperature
training data.

C. Principal Component Analysis

Fortunately, recent years have provided new means of avoid-

ing the naive analysis of the last section when confounding

influences are present. The new methods allow the removal

of the confounding influences prior to novelty detection.

Broadly speaking, the removal methods fall into two categories

subtraction schemes and projection schemes. The subtraction

schemes are arguably less general in their applicability as they

rely on the availability of measurements of the variables that

are driving the environmental or operational variations (in this

case, temperature). Subtraction methods work by fitting a re-

gression model which accounts for the component of measured

features dependent on the driving variable; this component

can then be subtracted from the training, and any subsequent

testing, data. Because they are arguably more general, the

current paper will concentrate on projection methods; the

reader curious about subtraction methods can consult [1], [2],

or [12] which also demonstrates subtraction schemes based on

interpolation rather than regression.
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The projection methods are typically based on linear al-

gebra, applied to the multivariate feature space. They are all

based on the same principle, which is that the confounding

influences will occupy a subspace (hopefully low-dimensional)

of the feature space; this will be referred to as the trapping

subspace here. If this subspace can be computed, evidently

projecting the feature data onto the subspace orthogonal to

the trapping subspace will remove all of the confounding influ-

ences. Two examples of projection methods will be presented

here; although the methods differ in their criteria for defining

the trapping subspace, the means of computation are exactly

the same, both methods define an eigenvalue problem in which

a subset of eignevectors span (and thus define) the trapping

subspace.

The first method discussed here will be Principal Compo-

nent Analysis (PCA). PCA is a very well-established method

from multivariate statistics, so the background theory will not

be repeated here; the reader can consult a standard textbook

like [13] for the theory, or consult [1] for more of an SHM

context. PCA works by linearly transforming a multivariate

feature set into a set of uncorrelated variables ordered in

terms of their variance (power). This means the first principal

component (PC) gives the linear combination of the original

features with highest variance, the second PC is the linear

combination orthogonal to the first that gives the next highest

variance, and so on. The application to SHM is then based

on the observation that the trends in the data make the higher

contributions to the variance; as an illustration, if one considers

the signal in Figure 2, the noise component of the signal

has variance 1.0, while the trend component has variance 9.1.

This motivates the definition of the trapping subspace as that

spanned by the first few principal components; removal of

the confounding influences is then accomplished by projection

onto the remaining minor components. Historically, PCA (and

the closely related Factor Analysis) were the first projection

methods conceived for SHM [14], [15].

Having defined the procedure it is a simple matter to illus-

trate it. The PCA algorithm was applied to the training data

described above which contained examples of the temperature

variations. To be more certain of capturing the confounding

influences, the data were projected onto the ten smallest minor

components. The results of applying outlier analysis to the

projected data are shown in Figure 11. It is important to

note that the data were not standardised before PCA as is

commonly done2. In fact, pre-standardisation produced much

inferior results; this matter is discussed in much more detail

in [9].

The results of PCA projection show a marked improvement

over those shown in Figure 10; almost all of the structure

is removed from the MSD over the phase two data and the

number of false positives is reduced considerably. There is

only really one remaining concern with the results, which is

2The process of standardisation of a given variable is simply to remove its
mean and to divide by its standard deviation. There is some disagreement on
whether data should be standardised before PCA is applied. Some argue that
standardisation stops variables from dominating the decomposition simply
because they have a greater magnitude; the counter argument is that such
variables are therefore more important and should be allowed to dominate.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample Point Number

Lo
g 

N
ov

el
ty

 In
de

x

Fig. 11. Outlier analysis based on PCA projection of training and testing
data.

that some residual nonstationarity remains, the MSD values

trend upwards towards the end of the undamaged period

and finally cross the threshold, yielding a small number of

false positives. As discussed above, there are other projection

methods based on different definitions of the trapping subspace

which might prove beneficial. In fact, one might argue that

PCA is not particularly well-matched to SHM by its projection

criterion; one might question why the signatures of damage

are likely to reside in the minor components. In the next

section a different projection method is presented which is

arguably matched to SHM requirements - the application of

cointegration.

D. Cointegration

Cointegration is a property of multiple nonstationary time

series [16]–[18]. In essence, two or more nonstationary time

series will be said to be cointegrated if some linear com-

bination of them is stationary. Symbolically, a multivariate

nonstationary time series y
i

is cointegrated if a vector β exists

such that zi is stationary, where,

zi = βT y
i

(2)

and where y
i
= y(ti).

In this situation, βT is termed a cointegrating vector. In

general, there will not be a unique cointegrating vector; in

fact, if y
i

is n-dimensional, there may be up to n − 1
linearly independent cointegrating vectors. A more general and

precise definition of cointegration requires one to introduce

the concept of an order of integration; this is the number of

times one must difference a nonstationary time series before

it becomes stationary. For engineering applications, most vari-

ables of interest can be considered to be integrated of order

1 (denoted I(1)), which implies that their first differences

will be stationary [19]. In general, a set of time series are

cointegrated if they share a common order of integration and

a linear combination of the variables exists with a lower order

of integration. As the order of integration must be the same for

cointegrated variables, the first step in a cointegration analysis

will often be to ascertain the order of integration of each of

the variables to be included in the analysis. This assessment is
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commonly achieved in econometrics by testing each variable

for a unit root; if a unit root is present in the characteristic

equation that defines some time series, then that time series

will be inherently nonstationary. The unit root test that will be

used here is called the Augmented Dickey Fuller (ADF) test

and the steps needed to implement it will be described here

briefly, but readers should refer to [20], [21] or [18] (which

provides a tutorial) for more details and background theory.

The ADF test involves fitting each variable to a model type

of the following form:

∆yi = ρyi−1 +

p−1
∑

j=1

bj∆yi−j + εi (3)

where the difference operator ∆ is defined by ∆yi−j = yi−j−
yi−j−1. A suitable number of lags p should be included to

ensure that the residuals εi becomes a white noise process

[16]. This equation is an example of an error correction model

(ECM). In this form, the stability (and therefore stationarity)

of the model in equation (3) is determined by the value of ρ; if

it is statistically close to zero the process will be nonstationary

and integrated order 1, I(1). The idea of the ADF statistic is

therefore to test the null hypothesis of ρ = 0 by comparing

the test statistic,

tρ =
ρ̂

σρ

(4)

where ρ̂ is the least-squares estimate of ρ and σρ is the variance

of the estimate, against critical values that can be found in

[22], in much the same way that one would when conducting

a Student’s t-test. The hypothesis is rejected at level α if tρ <

tα. If the hypothesis is accepted, the time series has a unit

root and is I(1). If the hypothesis is rejected, the test should

be repeated for ∆yi; if the hypothesis is then accepted yi is

an I(2) nonstationary sequence. This process can be continued

until the integrated order of the time series is found. Additional

hypotheses and test statistics are needed if the model form

needs to be extended to include shifts or deterministic trends

(or both) [20], [21]. Once the order of integration of each

of the variables of interest has been determined, those that

are integrated of the same order can then be included in a

cointegration analysis.

One of the most common approaches to finding cointegrat-

ing vectors is the the Johansen procedure [23]; this is based

on finding the most stationary linear combination possible for

a set of nonstationary variables. This procedure is most often

used with I(1) variables and is based on a maximum like-

lihood argument. The theory behind the Johansen procedure

is complex and so will not be included here (the reader may

consult [16], [23] instead); however, as before, the necessary

steps to implement the Johansen procedure will be provided

without justification. The first step of the Johansen procedure

is to fit the variables in question to a vector autoregressive

(VAR) model, which takes the form,

y
i
= A1yi−1

+A2yi−2
. . . Apyi−p

+ εi (5)

where the most suitable model order p has been determined by

an Akaike information criterion (AIC) or similar (see [16] for

example). Once p has been established, attention shifts from

the VAR model to the corresponding Vector Error Correction

Model (VECM), which takes the form,

z0i = ABT z1i +Ψz2i + εi (6)

where z0i = ∆y
i
, z1i = y

i−1
and z2i =

(∆yT
i−1

,∆yT
i−2

, . . .∆yT
i−p

}T

It transpires that the most stationary linear combinations

of the variables, or cointegrating vectors, are to be found in

the matrix B in the VECM of the variable set. However, the

VECM cannot directly be found via standard least-squares as

it represents a rank-deficient system, instead, one proceeds to

estimate B via the residuals of two other regressions,

z0i = C0z2i +R0i

z1i = C1z2i +R1i (7)

From these residuals, the following product moment matri-

ces can be defined:

Smn =
1

N

N
∑

i=1

RmiR
T
ni m,n = 0, 1 (8)

Finally, using the moment matrices, the cointegrating vec-

tors are found as the eigenvectors of the generalised eigenvalue

problem,

(λiS11 − S10S
−1

11 S01)vi = 0 (9)

The cointegrating vector that will result in the most sta-

tionary combination of the original variables will be the

eigenvector vi corresponding to the largest eigenvalue λi. If

the eigenvectors are assembled columnwise into a matrix, the

result is the matrix B for the VECM of equation (6). Again

readers are referred to [16], [18], [23] for more details of the

theory behind these steps.

From a practical SHM point of view, the cointegrating

vectors of a set of variables should be established using data

from some training period from the undamaged structure that

encompasses the anticipated environmental and operational

variations. Upon projecting new data onto a cointegrating

vector, the combination will remain stationary all the time

the structure continues to act in its normal condition, but

should become nonstationary on the introduction of damage.

One can argue that cointegration is better matched to SHM

requirements by its motivation for the trapping subspace. As

observed above, with PCA, damage sensitivity may be lost

as there is no compelling reason why sufficient evidence of

damage should manifest itself in different principal compo-

nents to the confounding influences when these components

are fixed on the basis of signal power. Cointegration projects

out components of data that correspond to long-term trends i.e.

nonstationarity. As environmental variations usually manifest

themselves on longer timescales than the dynamics of the

structure that are sensitive to damage, the method appears to

be well matched to SHM needs. This can be demonstrated

here in the context of the case study.
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The outlier analysis was carried out as before, except that

the projection step carried the data into the subspace spanned

by the first ten (and thus most stationary) cointegrating vectors.

The results of the analysis are given in Figure 12. Comparing

the results from PCA and cointegration analysis, there are two

respects in which cointegration appears to be superior. In the

first case, consideration of Figures 11 and 12 shows that there

are more excursions over the threshold in the temperature-

fluctuating period for the PCA results than in the cointegration

results, which would suggest that cointegration has been more

successful in removing the temperature trend. There is a

strong argument in support of this observation (see [9] for

more discussion). The Johansen procedure works by choosing

those linear combinations appropriate for SHM first; PCA

effectively chooses them last. This disadvantages PCA because

of the orthogonality property between PCs. By the time the

algorithm has worked down to the minor components, there is

not complete flexibility in forming linear combinations, only

certain directions in the feature space remain orthogonal. In the

cointegration algorithm, the most stationary vectors are chosen

first with greatest flexibility. The second respect in which

cointegration is superior is in its sensitivity; the excursions

above threshold for the damage condition are higher for

cointegration than for PCA; the effect may appear small in

the figures, but one should bear in mind the logarithmic scale.
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Fig. 12. Outlier analysis based on cointegration projection of training and
testing data.

A final remark on Figure 12 concerns the spike above

threshold at the interface between phases one and two (con-

stant and varying temperature). At this point, the experiment

was interrupted and modifications were made within the cham-

ber; the question of whether cointegration failed at point is

related to the question of whether this event should or should

not be detected by an SHM algorithm; much more discussion

on this point is given in [9].

E. Issues with Cointegration

Hopefully, the last section has convinced the reader that

cointegration is a useful tool for the removal of confounding

influences in SHM. However, use of the method requires some

care. As a mathematical tool, certain conditions are required

before cointegration can be applied with mathematical rigour;

fortunately, some of the more important of these conditions

appear to ‘effectively’ hold when one considers engineering

problems [19]. Even so, recent work in SHM has unearthed

circumstances where further thought is clearly needed. The

remainder of this section will very briefly illustrate some issues

which require clarification via further work.

1) Heteroskedasticity: Often, when engineers or physicists

require stationarity, they will be satisfied with weak station-

arity i.e. constancy with time of the mean and variance of a

stochastic process. This condition at least allows one to apply

some ideas from SPC to monitoring. If higher-order statistical

moments are changing with time, it may be a challenge to

define meaningful control limits or thresholds, but if the mean

and variance are constant, one can use traditional ideas from

SPC as guidance, if not with assured rigour. Unfortunately,

weak stationarity does not seem to be as common as one

would like; if the means of the signals of interest vary then

there is the potential for cointegration to come to rescue, but

what of time-varying variance? Although it is not a completely

precise use of the term, the property of time-varying variance

will be referred to here as heteroskedasticity [24]. The problem

is that, if multiple moments of signals are nonstationary, one

cannot rely on cointegration - at least not the linear method -

to provide a stationary residual. This will be illustrated via a

case study. For reasons of space, the description will be very

terse indeed, the reader is referred to [25] for more details.

The case study in question was concerned with monitor-

ing the health of a (retired) footbridge at the UK National

Physical Laboratory. The footbridge was intended to allow a

comprehensive study of SHM using a wide variety of sensor

modalities. The bridge was monitored in its normal undamaged

condition over an extensive period covering a wide range of

seasonal variations in its environment. Later in the monitoring

campaign, systematic damage was introduced by overloading

a cantilever portion of the bridge with a large weight. The

authors of the current paper were interested in applying

novelty detection in order to detect damage. However, the data

considered was provided from a number of tilt sensors which

proved extremely sensitive to the environmental conditions of

the bridge. Figure 13 shows the response from one of the

tilt sensors between January 2009 and February 2011; over

this period, the bridge was not deliberately damaged, so the

tilt signals could be used as training data for outlier analysis;

however, the signal is clearly nonstationary in both the mean

and variance.

Despite some concerns about the applicability of the ap-

proach, in the absence of a better method, cointegration

was applied to the data from seven tilt sensors in order to

produce a residual for monitoring purposes. The results from

cointegration are shown in Figure 14.

The figure requires a little explanation. The first vertical

black line shows the end of the period of training data; this

was taken as a full year in order to represent a full range

of environmental conditions. The second vertical (blue) line

shows the day on which deliberate damage was introduced

via an overload; this means that the residual between the

black and blue vertical lines is validation data for the structure

in its (assumed) undamaged condition. (Further damage was
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Fig. 13. A tilt sensor signal from the NPL footbridge.

Fig. 14. Cointegrated residual from the tilt sensor signals from the NPL
footbridge.

introduced at later dates. The dates are indicated by vertical

red lines in Figure 14; however, they are not relevant for

the discussion here.) Measurements were taken from the tilt

sensors on an hourly basis; however, the residuals plotted in

Figure 14 are averaged over 24 measurements, yielding daily

data. The averaging means that the figure shows, in SPC terms,

an X-bar chart [7]. The horizontal dashed lines in the figure are

the standard plus or minus three standard deviations control

limits. The issue here is that the cointegrated residual is very

clearly heteroskedastic; it retains structure showing seasonal

changes in variance. Despite the obvious concerns about the

validity of the control limits, the exercise appears to have

been rather successful in the sense that the residual does not

leave the control limits until after the deliberate damage was

introduced; the speed that it does leave the limits is consistent

with the timescale under which the cracks produced by the

overload propagated and were found in visual inspections.

The problem is that one cannot interpret the control limits

as one would like to; the nonstationarity in the variance has

invalidated the assignment of 99.7% confidence to the region

between the limits. This case study illustrates the issue of

heteroskedasticy quite well and shows clearly that further

research is needed. A cointegration theory is needed which

can transform sets of heteroskedastic variables into (at least)

weakly stationary residuals.
2) Nonlinearity: The second major issue with cointegration

is that it is currently a linear theory. Although there have been

attempts at generalisation, there is no completely satisfactory

variant of the theory that can deal with the situation where

a nonlinear transformation is needed in order to generate a

stationary residual. A simple synthetic example which would

cause problems for linear cointegration is given by the equa-

tions,

xi = αti + ui

yi = βt2i + vi (10)

where xi and yi are the sampled variables of interest, sharing

a deterministic dependence on time ti; ui and vi are assumed

to be independent Gaussian noise processes. The issue is that

a nonlinear combination of the variables is needed in order to

remove the explicit dependence on ti. The combination zi =
a1x

2
i + a2yi could be comparatively stationary if appropriate

parameters a1 and a2 could be found. This problem was posed

in [26] and a solution based on optimisation was proposed. In

that paper, a differential evolution (DE) algorithm was used

in order to determine a1 and a2 in such a way that some

measure of nonstationarity was minimised. The optimisation

algorithm was successful in terms of finding good parameters;

however, a close look at the cointegrated residual showed it to

be heteroskedastic (Figure 15). The issue is clearly the result of

the noise terms in equations (10); in fact, a simple calculation

shows,

zi = a1x
2
i + a2yi

= a1(α
2t2i + 2αtiui + u2

i ) + a2(βt
2
i + vi) (11)

Thus, even setting the a1 and a2 parameters to remove the

dominant t2i terms, leaves a ‘noise’ component with linearly

increasing variance. The nonlinear cointegration scheme has

thus produced a heteroskedastic residual, with all the issues

that causes.

Nonlinearity also impacts on time series analysis in a

slightly more subtle way. Many SPC-based algorithms assume

that the monitored residuals have Gaussian distributions. If a

structure or system is nonlinear, this Gaussian behaviour is

not assured and the thresholds and alarm levels in X-charts

etc. will be incorrectly estimated. One possible solution to

this problem, which will not be discussed in detail here, is the

use of Extreme Value Statistics (EVS) in order to compute

thresholds [27].

III. SWITCHING MODELS

The discussion now moves on to the issue of nonstationarity

due to abrupt switching behaviour. As mentioned in the intro-

duction, this section makes much more demands of the reader
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Fig. 15. Heteroskedastic residual from nonlinear cointegration algorithm.

in terms of familiarity with ideas from Bayesian machine

learning. It is hoped that, even without this familiarity, the

main ideas will make themselves heard.

This section deals with a particular type of response sur-

face switching model; the mixture of experts (MoE) model

[28]. Details regarding the equations and derivations of the

specific MoE model used here can be found in [29], and

references therein. An MoE model is capable of automatically

and probabilistically switching, via gates, between different

regimes represented by experts. In the following sections, a

Bayesian MoE model is introduced as a switching model in the

context of SHM of the Z24 bridge: confounding influences are

determined via a single environmental variable, temperature,

which is required to be removed from the SHM feature dataset.

A. Bayesian Mixture of Experts

Let xi be a dx dimensional input of the Z24 bridge at time

instant ti. Let the corresponding scalar output of interest be

yi, which for the case study used in this paper is given by

the second natural frequency of the bridge. A regression MoE

model with M experts is,

yi =

M
∑

m=1

gm(xi, πm, θgm)fm(xi, wm) , (12)

where the mth expert is represented as a linear-in-the-

parameters vector function given by fm(xi, wm) = [xi 1]wm,

where wm is a column vector representing the expert’s

weights, and the 1 provides a bias term. The gating func-

tion gm(xi, πm, θgm) is a normalised Gaussian function [30].

Each gate is parametrised by: the mean µ
m

and the inverse

covariance Λm given by θg = {µ,Λ} = {µ
m
,Λm}Mm=1, and

the mixing coefficients π = {πm}Mm=1 satisfying πm ≥ 0 and
∑M

m=1
πm = 1. The bold notation in this section refers to sets

of parameters or multidimensional matrices.

The likelihood function for the MoE model is represented

as,

p(yi|xi, π,θg,θe) =

M
∑

m=1

gm(x, πm, θgm)p(yi|xi, θ
e
m) , (13)

where the probability distribution of the mth expert is a Gaus-

sian distribution, that is, p(yi|xi, θ
e
m) = N (yi|[xi 1]wm, τ−1

m ),
having mean fm and variance τ−1

m .

The parameter vector for the experts consists of the weight

vector W = {wm}Mm=1 and inverse variance τ = {τm}Mm=1,

given by θe = [W, τ ]. Thus the set of unknown model

parameters is given by [π,θg,θe].
Given N i.i.d training samples are available such that

X = [x1, . . . , xN ]⊤, and y = [y1, . . . , yN ]⊤, the complete-

data likelihood for the model is expressed as,

p(X, y, Z|π,θg,θe) =
N
∏

i=1

M
∏

m=1

(

πmN (xi|µm
,Λ−1

m )

N (yi|[xi 1]wm, τ−1
m )

)zim

,

(14)

where Z = {zim}M,N
m=1,i=1

are referred to as the latent

variables and they simplify the likelihood problem. If (xi, yi)
was generated from the mth expert then zim = 1, or 0

otherwise.

B. Priors

Since the model is to be trained via Bayesian inference,

priors are assigned to parameters of the gates and experts,

except for the mixing coefficients π which are treated as non-

random variables. A Gaussian-Wishart prior is assigned to the

gate parameters,

p(µ,Λ) =p(µ|Λ)p(Λ)

=

M
∏

m=1

N (µ
m
|m0, (β0Λm)−1)W(Λm|B0, ν0) .

(15)

Similarly, the prior distribution of the joint weight and

precision parameters of the experts is a Gaussian-Gamma

distribution,

p(W, τ |a) =
M
∏

m=1

N (wm|0, (τmAm)−1)Ga(τm|ρ0, λ0) ,

(16)

where a = {am}Mm=1, and am = [am,1 . . . am,dx+1. Am is

a diagonal matrix containing the elements am. am,j is the

hyperparameter on which the expert weight wm,j depends and

it is assigned a Gamma distribution,

p(am,j) = Ga(am,j |c0, d0) . (17)

Hence, the joint distribution of all the random variables

conditioned on the mixing coefficients can be expressed hi-

erarchically as,
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p(y,X,Z,µ,Λ,W, τ ,a|π) = p(X, y, Z|π,θg,θe)

p(µ,Λ)p(W, τ |a)p(a) ,
(18)

shown as a graphical model in Figure (16).
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Fig. 16. A graphical model for the Bayesian MoE model given in Equation
(18). The plate denotes N i.i.d observations of observed variables x

i
and

yi (grey shading), and unobserved variables z
i

(no shading). The red circles
represent gate parameters while the purple circles represent expert parameters.
The square boxes represent known parameters associated with the priors, given
in Section III-B.

C. Variational Bayesian Inference

Bayesian inference involves finding a posterior distribution

of the parameters of the model p(θg,θe,a|y, π) according to

Bayes’ theorem,

p(θg,θe,a|y, π) =
p(y|X,π,θg,θe)p(θg,θe,a)

p(y|π)
, (19)

where p(θg,θe,a) is the parameter prior distribution given

in Section III-B. An approximate Bayesian framework needs

to be used to solve (19) since the marginal likelihood (or

evidence) p(y|π) consists of a complex integral over the

multidimensional parameter space. The choice of conjugate

prior distributions, along with a latent variable model is

elegantly accommodated by the variational Bayes expectation-

maximisation (VBEM) framework [31]. The VBEM algorithm

is an iterative process which updates approximate variational

posterior distributions for the latent variables q(Z) and model

parameters q(θg,θe,a) sequentially. Each variational distri-

bution update equation is determined by optimising the varia-

tional lower bound of p(y|π), and the update steps are stopped

when this lower bound plateaus. The variational distributions

of both the latent variables and the parameters for the MoE

model described in this paper can be expressed in a factorised

form as follows,

q(Z,µ,Λ,W, τ ,a) = q(Z)q(µ,Λ)q(W, τ)q(a) . (20)

The functional form of these distributions will be the same

as the priors since conjugate priors were used in Section

(III-B), and details of the expressions and derivations can be

found in [29].

The mixing coefficients π of the gates are optimised us-

ing maximum likelihood techniques: after every pass of the

variational update equations the lower bound is maximised

with respect to π, and hence π can be updated. Optimising

the mixing coefficients of the gates in this way enables the

number of experts to be set to a large number, and any mixing

coefficient that converges to zero can be removed.

A posterior predictive distribution p(yN+1|xN+1,D), where

D = [y,X] and xN+1 is a new unseen input data point,

can be obtained once the VBEM algorithm has converged.

In this case, the posterior predictive distribution is a Student-t

distribution, and the mean E[yN+1] and variance var[yN+1] of

the predictions can be calculated.

D. Case Study: Z24 Bridge Data

The Z24 bridge is a well-studied bridge within the SHM

community due to a year long comprehensive monitoring

campaign [32]. The modal parameters of the structure were

tracked, and environmental elements affecting the bridge, such

as air temperature, were measured. Towards the end of the

monitoring campaign a number of realistic damage events

were introduced to the structure, and consequently SHM of

the Z24 bridge was performed by various different groups,

see [33], [34] among others.

In this work the features of interest are the temperature on

the deck top and the second natural frequency of the bridge

f2, which serve as the input and output of the modelling

process respectively. Figure 17 shows the time histories of

these two variables, including the separate portions used for

training (consists of temperature variation only) and testing

(consists of both temperature variation and damage effect) the

model. The vertical black line represents the point at which

the different levels of damage were introduced to the bridge.

The second natural frequency exhibits nonstationarity due

to large fluctuations in the dataset before the introduction of

damage. The authors in [35] established a bilinear relationship

between f2 and temperature using treed Gaussian processes

since the anomalous regions occurred during very cold periods

when the bridge deck was frozen causing an increase in

stiffness. This scenario demonstrates how damage sensitive

parameters can also be susceptible to environmental variations.

The VBEM-MoE algorithm was run 50 times due to the

local maxima issue, and the model with the largest lower

bound was chosen as being the model that best represents

the data. The number of experts was set to 6 and any experts

having πi < 10−5 were discarded. The results for the Z24

bridge data were obtained by training the MoE model using

both temperature and its square as inputs to the model. The

final model had 3 experts, with 2 splits occurring at 0.42◦C and

13.4◦C as shown by the black vertical lines in Figure 18. The

red lines represent the mean of the predictions on the training

data (blue), with 99% confidence intervals given by the dashed

black lines. The algorithm is successful at identifying a switch
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Fig. 17. The top plot shows the temperature variation on the deck top(input),
while the bottom plot shows the corresponding second natural frequency, f2,
(output) of the Z24 bridge. The training portion of the data is shown in blue
while the testing data is shown in yellow.

at around 0◦C. The extra switch at 13.4◦C is introduced by the

algorithm since the variance here is different to the previous

portion of the data being modelled: the gates and experts take

on a Gaussian distribution, and so assign a separate expert to

the two regions.
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Fig. 18. VBEM-MoE model output with 3 experts: the observed training data
is shown in blue, the model output is given in red and 99% confidence intervals
are given by the dashed black lines. The top plot shows the model predictions
on the training time history of f2 (second natural frequency). The bottom plot
shows the bilinear relationship between f2 and temperature, and the black
vertical lines indicate the different regimes according to the individual experts.

This MoE model was then applied to the test data set, and

the model predictions (red) are compared to the measured

data (yellow) shown in Figure 19. The model is successful in

detecting damage to the bridge (black vertical line) since the

observed signal quickly moves outside the confidence intervals

(black dashed lines) determined by the algorithm.
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Fig. 19. VBEM-MoE model with 3 experts: the observed test data (yellow)
compared to the model output (red). 99% confidence intervals are given by
the dashed black lines. The black vertical line indicates the start of damage.

IV. CONCLUSION

Long conclusions are not warranted here. The paper has

discussed some of the troublesome issues which can arise

in the application of time series methods to SHM problems.

It is argued that the most serious problem is nonstationarity.

Nonstationarity manifests itself most often in SHM via con-

founding influences i.e. the introduction of benign environ-

mental or opertaional changes which can confuse detection

algorithms. The paper discusses how confounding influences

can be removed or avoided via machine learning methods in

the two situations where nonstationarity appears via a slowly-

varying trend or an abrupt change. The paper also highlights

some of the issues remaining and requiring further work.
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