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ABSTRACT 

The ability to interpret the predictions made by quantitative structure activity relationships 

(QSARs) offers a number of advantages. Whilst QSARs built using non6linear modelling 

approaches, such as the popular Random Forest algorithm, might sometimes be more predictive 

than those built using linear modelling approaches, their predictions have been perceived as 

difficult to interpret. However, a growing number of approaches have been proposed for 

interpreting non6linear QSAR models in general and Random Forest in particular. In the current 

work, we compare the performance of Random Forest to two widely used linear modelling 

approaches: linear Support Vector Machines (SVM), or Support Vector Regression (SVR), and 

Partial Least Squares (PLS). We compare their performance in terms of their predictivity as well 

as the chemical interpretability of the predictions, using novel scoring schemes for assessing 

Heat Map images of substructural contributions. We critically assess different approaches to 

interpreting Random Forest models as well as for obtaining predictions from the forest. We 

assess the models on a large number of widely employed, public domain benchmark datasets 

corresponding to regression and binary classification problems of relevance to hit identification 

and toxicology. We conclude that Random Forest typically yields comparable or possibly better 

predictive performance than the linear modelling approaches and that its predictions may also be 

interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking 

at interpreting non6linear QSAR models, we directly compare two methodologically distinct 

approaches for interpreting Random Forest models. The approaches for interpreting Random 
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 3

Forest assessed in our article were implemented using Open Source programs, which we have 

made available to the community. These programs are the ��� � package [https://r6forge.r6

project.org/R/?group_id=1725] for the R Statistical Programming Language, along with a 

Python program !�����"#��""��� [https://doi.org/10.5281/zenodo.495163] for Heat Map 

generation. 

INTRODUCTION 

The ability to interpret the predictions made by quantitative structure6activity relationships 

(QSARs), in terms of the size and sign of the influence of the underlying descriptor values, is 

valuable for a number of reasons. Mechanistic interpretation is viewed as particularly important 

in a regulatory context
1
 and could yield novel mechanistic insight or consistency with established 

understanding could complement statistical validation, by conferring greater confidence in the 

predictions.
2
 Furthermore, interpretable predictions could guide structural modifications required 

for desired changes in molecular properties.
2
 Analysis of descriptor contributions may also help 

to rationalize outliers.
3
 

Traditionally, QSARs were linear models.
2,4

 For linear models, both the relative size and sign of 

the influence of an individual descriptor on the predictions is straightforward to obtain in terms 

of the corresponding coefficient.
4,5

 The product of the coefficient and descriptor value for a 

given chemical will yield the component of an individual prediction arising from a particular 

descriptor.
6
 In principle, although complications may arise in practice,

6,7
 this makes the 

predictions obtained from linear QSARs relatively straightforward to interpret. 

A number of algorithms for building linear QSARs, either for prediction of continuous 

(regression models) or categorical (classification models) measures of biological activities, are 
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 4

used by modern QSAR practitioners. These include partial least squares (PLS),
8
 for regression  

or classification
9
 as well as, when used with a linear kernel function, Support Vector Machines 

(SVMs)
10,11

 and Support Vector Regression (SVR)
12

 for classification
13

 and regression
14

 

respectively. 

However, in recent decades, QSAR models have been increasingly developed using non6linear 

modelling approaches.
2,15

 Interpreting the predictions made by these models is typically harder 

than for linear models. Indeed, it has been argued that there is an inherent trade6off between 

predictive performance and interpretability, with non6linear models suggested to generally be 

more predictive but less interpretable.
16

 Nonetheless, in addition to approaches for estimating the 

overall “importance” of various descriptors in a QSAR model,
16

 a growing number of studies has 

advocated approaches which evaluate how specific molecular characteristics contribute towards 

individual predictions made by a non6linear QSAR model.
2,17–25

 

One non6linear modelling approach which is popular within the QSAR community
15,16

 is 

Random Forest.
9,26

 Approaches for estimating descriptor “importance” for Random Forest 

models are well established.
9,26–28

 However, more recently, proposals for estimating the relative 

magnitude and sign of the influence of a given descriptor on a given prediction, as is the focus of 

our article, have been presented,
2,18,19,23,29–31

 including those which are specifically designed for 

Random Forest models.
19,23,29–31

 

In our current article, we consider QSAR models developed using Random Forest, PLS and 

SVM (or Support Vector Regression), using a linear kernel, for binary classification and 

regression modelling tasks which are relevant for hit identification or predictive toxicology. We 

compare the predictive performance of these algorithms, as well as the extent to which their 
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 5

predictions for individual molecules can be interpreted in a chemically and biologically 

meaningful manner according to various established approaches for model interpretation, using 

well6known, publicly available benchmark datasets. As well as evaluating different algorithms 

for interpreting individual predictions, we further investigate the degree to which obtaining a 

chemically and biologically meaningful interpretation depends upon the quality of the 

corresponding prediction for a given molecule. 

Specifically, we compare two different approaches for interpreting the same Random Forest 

prediction. The first approach
19,23,29–32

 was originally proposed for Random Forest regression 

models
19

 and was then extended to binary classification models.
29,30

 The second approach is 

based on estimating local gradients (i.e. vectors of partial derivatives) of the prediction with 

respect to the descriptors and is analogous to algorithms recently used to interpret various kinds 

of non6linear QSAR models.
2,18,20,33

  We evaluate these approaches via means of novel scoring 

schemes for assessing Heat Map images representing the influence of molecular substructures on 

model predictions. We extend the Heat Map approach introduced by Rosenbaum et al.
13

 to work 

with any linear or non6linear classification or regression model, built using the same descriptors 

as per their earlier work, and present an Open Source implementation of our extension. Our 

extension of their approach includes novel “symmetrized” normalization schemes for translating 

descriptor contributions associated with substructural features into Heat Map molecular images. 

We present the first evaluation of our approach for interpreting binary classification Random 

Forest models
29,30

 in cheminformatics, using suitable benchmark classification datasets. To the 

best of our knowledge, we present the first comparative assessment of methodologically distinct 

approaches to interpreting predictions obtained from a non6linear QSAR model. 
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 6

METHODS AND DATA 

���������	
����
���		

More expansive descriptions of these modelling algorithms and, for those algorithms yielding 

linear models, the equations generating the predictions, are provided in the Supporting 

Information. 

�������������$%����&�	'(���)�����
8,34

 develops a linear regression model based upon so6

called “latent variables”, which correspond to a selected set of orthogonal, linear combinations of 

the original descriptors. A simple modification can transform PLS regression into a binary 

classifier: the two class labels are mapped onto two real numbers (1 and 0), PLS regression�is 

used to build a model from the training set and the numeric predictions (or score) made by the 

regression model are converted into predicted class labels via comparison to some suitable 

threshold.
9
 This so6called “probit” treatment yields ������*�	'.

35
 Note that this model differs 

from a classical probit regression, for which a random outcome is observed with a probability 

described by the model.
36

 

'%""����+��������������&'+�(
10,11

 build a binary classification model with a functional form 

which is contingent upon the selected “kernel function”. '%""����+��������)������&'+�(
12,14

 is 

an analogous approach to SVM. Using a linear “kernel function”
11,13

 yields linear SVM and SVR 

models. 

�����,�������������������
9,26

 builds classification models, meaning binary classification 

models in our current article, via generating a forest of decision trees using the training data. 

Each tree is grown using independent random samples of the training data. Whilst “bootstrap” 

samples are commonly employed,
9,15,26

 we employed sampling without replacement. This was 
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 7

required in order to be able to calculate descriptor contributions via the “Kuz’min/Palczewska” 

approach (see below) using the ��� �software package.
37

 

By default, binary classification predictions are made for a new molecule by passing it down 

each of the decision trees in the forest, each tree calculating a score corresponding to the fraction 

of molecules belonging to “class 1” in the terminal node to which the new molecule is assigned. 

If that fraction is greater than 0.5, i.e. if a majority of molecules belong to “class 1”, the tree 

predicts the new molecule to belong to “class 1”. The forest then returns an overall score 

corresponding to the proportion of trees predicting the molecule to belong to “class 1”. If this 

overall score is greater (not greater) than the threshold of 0.5, i.e. if a majority of trees (do not) 

vote for “class 1”, the predicted class is “class 1” (“class 0”). We also considered a non6default 

“averaged predictions” approach, which is analogous to Random Forest regression, where the 

overall score is calculated as the arithmetic mean of the scores generated by each tree and 

classification is based on the same threshold of 0.5. 

�����,���������)�����
9,26

 model development is virtually identical to Random Forest 

classification. The bioactivity predicted for a molecule is the arithmetic mean of the bioactivity 

of all molecules assigned to the relevant terminal node, for a given tree, averaged across all trees 

in the forest. 

������
�
������	��������	

A variety of “hyperparameters” can affect the performance of the modelling algorithms used for 

our current article. In addition,  the degree of random “downsampling”,
38

 to address class 

imbalance, may be considered another hyperparameter for the binary classification datasets. 

Hence, a variety of hyperparameter combinations were evaluated, which are summarized in 
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 8

Supporting Information Table S1. The best hyperparameter options were selected via iterative 

application of stratified, 26fold cross6validation on the training set.
39

 Different combinations of 

hyperparameters were evaluated in terms of the cross6validated Matthews Correlation 

Coefficient (�  )
40,41

 or the Coefficient of Determination (�
-
)
42,43

 for a binary classification or 

regression modelling approach respectively. Further details are provided in the Supporting 

Information. 

����������	��������	

The descriptors employed in our current work correspond to a set of “features” representing 

molecular substructures. The corresponding descriptor takes the value 1, or 0, if a feature 

encoded substructure is present, or not present, in a particular molecule. Specifically, the widely 

used extended connectivity fingerprint (ECFP)
44

 features were employed. Here, we calculated 

these features as per Rosenbaum et al.
13

 In brief, for each molecule, features are grown to 

represent circular substructures centered on each of the heavy atoms in the molecule. For each 

central atom, an initial identifier was assigned based on the Daylight invariant information 

(including atomic number and number of connections)
45

 and ring type information. The 

assignment of this initial identifier is considered iteration number 0. In subsequent iterations, this 

initial identifier is supplemented with the identifiers of attached heavy atoms. Features are 

generated at each iteration by hashing the combinations of identifiers. The unique features, 

corresponding to molecular substructures of increasing size, obtained at each iteration are saved. 

This procedure stops when the maximum number of iterations is reached, which is controlled by 

the depth of the fingerprint: the longest path between atoms in the fingerprint. As per Rosenbaum 

et al., we used a depth of 4.
13
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 9

��
����	��������	

Prior to selecting the most appropriate hyperparameters and building a final model on a given 

training set, the training set was used to select the most biologically relevant 200 features. 

Further details are provided in the Supporting Information. 

�����
��	�
�
����	

The datasets used in the current work were the protein binding regression datasets of Sutherland 

et al.,
46

 along with several binary classification datasets containing molecules assessed with 

respect to various endpoints: protein binding (MUV846, MUV548, MUV713 datasets),
47

 Ames 

test (Kazius dataset)
48

 and Chromosome aberration test (CA dataset)
17

 toxicity tests. (A summary 

of these datasets is provided in �
���	�.) Whilst possible limitations of the Kazius
48

 dataset have 

been noted and expanded Ames datasets described in the literature,
22,49

 the Kazius,
48

 Sutherland
46

 

and MUV
47

 datasets are accepted QSAR benchmarks
13,50–53

 and the Kazius, MUV and CA 

datasets have previously been used to illustrate approaches for interpreting QSAR 

predictions.
13,17

 

�
���	�� Benchmark datasets 

Type Dataset 

Name
 

Endpoint Size
a 

Unique ECFP 

features before 

feature 

selection 

Reference 

Binary 

classification 

MUV846 Coagulation factor Xia 

(protease) inhibition 

15030 (30 actives, 

15000 decoys) 

175146 Rohrer and 

Baumann
47 

MUV548 Protein kinase A 15030 (30 actives, 154311 
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 10

inhibition 15000 decoys) 

MUV713 estrogen receptor 

alpha coactivator 

binding inhibition 

15030 (30 actives, 

15000 decoys) 

150857 

Kazius Mutagenicity (Ames 

test) 

4337 (2401 

mutagens, 1936 

non6mutagens) 

46282 Kazius et al.
48

 

CA Chromosome 

aberration test 

939 (351 positive, 

588 negative) 

15846 Mohr et al.
17

 

Regression DHFR dihydrofolate 

reductase inhibition 

(pIC50 values) 

397 4792 Sutherland et 

al.
46

 

COX2 cyclooxygenase62 

inhibition (pIC50 

values) 

322 3434 

BZR benzodiazepine 

receptor activity 

(pIC50 values) 

163 2755 

AchE acetylcholinesterase 

inhibition (pIC50 

values) 

111 1587 

 

 

ACE angiotensin converting 

enzyme inhibition 

114 1637 Sutherland et 

al. & Priest et 
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 11

(pIC50 values) al.
46,54

 

THR thrombin inhibition  

(pKi values) 

88 1084 Sutherland et 

al. & Böhm et 

al.
46,55

 

THERM thermolysin inhibition 

(pKi values) 

76 1017 Sutherland et 

al. & Gohlke 

et al.
46,56

 GPB glycogen 

phosphorylase b 

inhibition (pKi values) 

66 817 

a.� One CA dataset
17

 entry (“CA847”) was automatically removed during the preparation of 

datasets for calculations. 

 

For all MUV datasets, the actives were treated as “class 1” and the decoys were “class 0”. For 

the Kazius dataset, mutagens were “class 1” and non6mutagens were “class 0”. For the CA 

dataset, positives, i.e. compounds determined to cause chromosome aberrations based on the 

chromosome aberration test,
17

 were “class 1” and negatives were “class 0”. Not all the MUV 

datasets
47

 were modelled, due to the considerable computational overhead. 

����
�
����	��	�
�
����	���	
���
�����	

All datasets were initially retrieved as SDF files and the structures processed using Pipeline 

Pilot
57

 prior to calculating ECFP features. This was designed to generate neutral, single molecule 

representations, in standard tautomeric forms, with consistently represented functional groups 
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including explicit hydrogens, as well as remove any obviously erroneous structures. Further 

details are provided in the Supporting Information. 

��
�����
�	� 
��
����	��	������� �	�������
��	

The performance of all modelling approaches was assessed via ��repetitions of �6fold “external 

cross6validation”.
58

 Feature selection was carried out, independently, using the entirety of each 

cross6validation training set and hyperparameters selection was carried out using “internal”
58

 

cross6validation on those training sets. This avoided optimistically biasing the results obtained on 

the “external cross6validation” test sets due to their having been used for model optimization.  

For all datasets except the CA dataset, for which the single set of 10 folds defined by Mohr et al. 

was used,
17

 the partitioning into folds was carried out randomly and independently for each 

repetition, with stratified sampling employed for the classification datasets. Two repetitions of 

five6fold cross6validation were used for the Kazius
48

 and MUV
47

 datasets, as per Rosenbaum et 

al.,
13

 whilst the performance of the regression approaches on the Sutherland datasets
46

 was 

evaluated using 20 repetitions of 106fold cross6validation as per Hinselmann et al.
50

  

Finally, it should be recalled that all model development protocols were dependent upon random 

selections. In the case of Random Forest models, this is intrinsic to the algorithm. In the case of 

binary classification models, this is true due to the random selection of subsets of the majority 

class when downsampling. In the case of all models, except for Random Forest regression 

models, this is further due to the random selection of internal cross6validation folds used to guide 

hyperparameter selection (see “Hyperparameters selection”). Hence, as well as averaging test set 

results across multiple repetitions of K6fold “external cross6validation”, performance statistics 
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were averaged across five repetitions of the entire modelling and evaluation procedure: each 

repetition employed a different random number generator (RNG) seed for all random operations. 

For binary classification datasets, the overall predictive performance of the models was 

evaluated in terms of Matthew’s correlation coefficient (�  ),
40,41

 Cohen’s Kappa (��""�),
35,59

 

the area under the ROC curve (�. ),
60,61

 and balanced accuracy (��).
62

 For regression datasets, 

the overall predictive performance of the models was evaluated in terms of the coefficient of 

determination (�
-
), Pearson’s correlation coefficient (�) and root mean squared error 

(��'/).
8,40,42,43

 These were calculated, and may be interpreted, as explained in the Supporting 

Information. 

���������	������������	

By “descriptor contributions”, we mean a vector of estimates of signed influences of each 

descriptor value upon the prediction made by the model for a given molecule. Here, we first 

provide an overview of the different kinds of descriptor contributions which were calculated, and 

their interpretation, followed by a detailed explanation of how these different kinds of descriptor 

contributions were calculated.  

For the linear modelling approaches (PLS regression, Probit6PLS, Support Vector Machines and 

Support Vector Regression with linear kernel functions), the coefficients were treated as 

descriptor contributions. For both Random Forest regression and Random Forest classification, 

two different kinds of methodology were employed to estimate descriptor contributions. The first 

approach was developed by Kuz’min et al.
19

 for Random Forest regression and extended by 

Palczewska et al. to binary classification.
29,30

 The second approach was to estimate the local 

gradient, i.e. a vector of partial derivatives of the predicted value with respect to each of the 
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descriptors. The local gradients approach is analogous to�the approaches presented in a number 

of recent publications for interpreting non6linear QSARs.
2,18,20,33

 N.B. For brevity, we refer to the 

first and second approach as the “Kuz’min/Palczewska” approach and the “local gradients” 

approach respectively. 

Whilst this would not generally be the case, all analyzed descriptor contributions presented in 

our current work are estimates of the extent to which the corresponding molecular substructures 

promoted biological activity. This is because we employed binary descriptors for which the 

descriptors took values of 1 or 0, denoting the presence or absence of a corresponding 

substructure, and we only analyzed the descriptor contributions for molecules where the 

corresponding substructures were present. (See sections “Descriptors employed” and “Heat Map 

interpretation of individual predictions” for details.) However, for the linear models, the 

significance of given substructures in specific, local contexts (e.g. specific chemical classes), as 

opposed to their global significance, is not estimated. 

For Random Forest classification, only the descriptor contributions calculated based on the 

“local gradients approach” were dependent upon the whether the default (majority voting) or 

“averaged predictions” approach was employed. However, as explained under 

“Kuz’min/Palczewska approach” below, only the predictions made using the “averaged 

predictions” approach can be guaranteed to be consistent with the descriptor contributions 

calculated according to the “Kuz’min/Palczewska” approach. Hence, we only consider the 

“averaged predictions” when evaluating the interpretability of Random Forest classification 

predictions based on the “Kuz’min/Palczewska” approach. 

	�������������������""������
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The output generated for all linear modelling approaches can be expressed using a common 

functional form. This allows coefficients to be obtained for the descriptors.  The output generated 

by each model, for any given molecule, is either the predicted bioactivity, for regression models, 

or the score used, in combination with a threshold, to make predictions for classification models. 

The common functional form is presented in equation (1): �� is the model output for the �th 

molecule, ��� is the value of the 0th descriptor (out of � descriptors in total) for the �th molecule, 

�� is the coefficient for the 0th descriptor and � is an offset constant. N.B. Consideration of 

Supporting Information equations (i)6(vi) demonstrates that the values of �� in equation (1) are 

calculated from different model6specific parameters. 

�� =	∑ ������
� +  (1) 

In the current work, these coefficients (��) were treated as “descriptor contributions” for all linear 

models. In general, treating the coefficients as “descriptor contributions” does not quantify the 

total component of a given prediction arising from a given descriptor, which is given by the 

product of the descriptor and coefficient values (i.e. �����).6 Nonetheless, in the current work, the 

“descriptor contributions” analyzed for linear models were directly equivalent to the components 

of a given prediction arising from individual descriptors. (This is because, as described under 

“Descriptors employed”, we employed binary descriptors, for which ��� = 1 or 0, and we only 

analyzed the descriptor contributions where ��� = 1  – corresponding to the presence of molecular 

substructures, as explained under “Heat Map interpretation of individual predictions”.) 

Specifically, they corresponded to an estimate of the extent to which the corresponding 

molecular substructures promoted biological activity. Since the coefficients calculated for linear 
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models are constant for all molecules, the significance of given substructures in specific, local 

contexts (e.g. specific chemical classes), as opposed to their global significance, is not estimated. 

�%�1,��2�����������""������

This approach starts with a trained Random Forest model for which the training set molecules, 

and their measured bioactivities, assigned to each node are known. Subsequent to treating the 

class labels as numeric bioactivity values (i.e. “class 1” is treated as 1 and “class 0” is treated as 

0), the approaches considered in our current article are identical for both binary classification and 

regression i.e. binary classification “descriptor contributions” are calculated towards “class 1”, 

such that negative values indicate contributions towards “class 0”. The steps required to obtain 

the descriptor contribution for a single descriptor and for a single molecule (3) are as follows. 

1.� For a single tree in the forest, start at the “root node” corresponding to the complete 

“local training set”: this “root node” is the first “parent node”. 

2.� Obtain the arithmetic mean bioactivity for all training set molecules in the current “parent 

node”. For binary classification, this is equivalent to calculating the fraction of “local 

training set” molecules belonging to “class 1” (see the preceding discussion). 

3.� Go to the “child node” into which the molecule 3 is directed based on its value for the 

descriptor used to partition the “parent node” compared to the “split value” (see 

“Modelling approaches”). 

4.� 4� the descriptor used to split the “parent node” corresponds to the descriptor of interest, 

obtain the corresponding “local increment”, as per equation (2). In equation (2), ����,� 

denotes the “local increment” associated with the 0th descriptor calculated for the ����5����
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“child node”   in tree 6; �����
�,�

 (�����
�,�

) corresponds to the arithmetic mean bioactivity of 

the “local training set” molecules assigned to the “child node”  �(“parent node” �)�in tree 

6. 

����,� =	�����
�,� −	�����

�,�
 (2) 

5.� Repeat steps [2]6[4], with each “child node” from the previous iteration becoming the 

“parent node” in the next iteration, until a “terminal node” is reached. 

6.� Repeat steps [2]6[5] for all trees in the forest. 

7.� Calculate the “descriptor contribution” from the “local increments” as per equation (3): 

����denotes the descriptor contribution obtained for the 0th descriptor for molecule 3; 6�

denotes a particular tree in the forest; ����� denotes the total number of trees in the forest; 

� denotes a particular “child node” in a given tree. N.B. The set of “child nodes” for 

which “local increments” (����,�) are summed in equation (3) will be, as explained for 

step [4], contingent upon the specific molecule and descriptor for which a “descriptor 

contribution” is calculated. 

���� =	 �
� !""

∑ ∑ ����,��
� !""
� 	 (3) 

It should be noted that these “descriptor contributions” are equivalent to the descriptor specific 

components of the prediction generated by a Random Forest regression model. This is also true 

for the score for “class 1” generated by a binary classification model under either of the 

following scenarios.  The first scenario is that the “averaged predictions” predictions approach 

(see “Modelling approaches”) of averaging the proportion of terminal node “local training set 
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molecules” in “class 1”, across all trees in the forest, is employed. The second scenario is that the 

default approach of each tree predicting the terminal node majority class, with the model 

returning the proportion of trees voting for “class 1”, is employed and, for each tree, all the 

terminal node molecules belong to the same class. (This default approach is equivalent to 

predicting the class with the majority of votes once this proportion is compared to the threshold 

of 0.50.) Indeed, under the second scenario, the “averaged predictions” and default predictions 

approaches are identical. Under these circumstances, the relationship between the Random 

Forest model output and the descriptor contributions is given in equation (4).
19,29,30

 In equation 

(4), �� is the model output for molecule 3 (either the predicted bioactivity for a regression model 

or the score for “class 1” for a binary classification model); ����denotes the descriptor 

contribution obtained for the 0th descriptor for molecule 3; �# is a constant, for a given model. 

�� =	�# + ∑ �����
�  (4) 

	�����)���������""����� 

For this approach, an estimate of the value, for a given molecule 3, of the partial derivative of 

the model output with respect to a given descriptor was calculated as per equation (5). In 

equation (5), �����denotes the descriptor contribution obtained for the 0th descriptor for molecule 

3; �� $��� , %��∗�'�∗(�) denotes the model output calculated for molecule 3 based on its values 

for the 0th descriptor (���) and all other descriptors; �� $��� + ∆, %��∗�'�∗(�) denotes the model 

output when the value of the 0th descriptor is adjusted by ∆ and all other descriptor values are 

kept the same.  
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���� =
+,$-.,/∆,%-.∗,'.∗0.)1	+,$-.,,%-.∗,'.∗0.)

∆   (5) 

N.B. (1) The model output is the predicted bioactivity for a regression model, or score for “class 

1” for a binary classification model. (2) Since binary descriptors were used for the work 

presented in the current article (see “Descriptors employed”), i.e. the only possible descriptor 

values were 1 or 0, ∆ would be +1 if  ��� = 0 and 61 if ��� = 1. (3) In practice, since only 

descriptor contributions for descriptors where ��� = 1 were used as the basis for analysis in our 

current article (see “Heat Map interpretation of individual predictions”), ∆ = 61 for all 

calculations performed. 

��
�	�
�	���������
����	��	���� ���
�	����������	

The high dimensionality (see Table 1) of ECFP fingerprints and the fact that their corresponding 

substructures overlap
13,44

 means it makes sense
13,24

 to aggregate the descriptor contributions 

obtained for all substructures containing a given bond (or atom) and color that bond (or atom) 

according to the aggregate descriptor contributions. This allows for the contributions of different 

regions of the molecule to the output generated by the model to be visualized in a manner that is 

transparent to chemists. 

Here, we employed variations of the Heat Map coloring scheme of Rosenbaum et al.,
13

 where 

bonds (or atoms) are colored via calculating raw scores for those bonds (or atoms), based on the 

descriptor contributions for the corresponding ECFP feature encoded substructures present in the 

molecule, and then normalizing the raw bond (or atom) scores between 0 and 1. The original, 

raw score for a bond (or atom) is computed by summing the descriptor contribution values for all 

substructures containing the bond (or atom). This means that bonds (or atoms) associated with 
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features making a positive (negative) contribution to the model prediction, according to the 

descriptor contributions, are assigned positive (negative) raw scores. The normalized bond (or 

atom) score is transformed to a color, which runs from strong red (normalized score of 0), to 

orange (normalized score above 0.25), through yellow (normalized score close to 0.5), to green 

(normalized score at least 0.54), and ultimately to strong green (normalized score of 1). The 

more positive the raw bond (or atom) score, the closer to 1 the normalized score will lie and, 

hence, the more green the assigned color will be.
13

  

In this work, various approaches to normalizing the raw bond (or atom) scores were considered: 

(a) Single Molecule Normalization, (b) Full Dataset normalization, (c) Symmetrized Single 

Molecule Normalization and (d) Constant Symmetrized Normalization. Approaches (a – d) 

correspond to equations (6 – 9) respectively. Approaches (a) and (b) were proposed by 

Rosenbaum et al.,
13

 whilst the symmetrized schemes (c) and (d) were introduced in the current 

work. In contrast to the previously proposed normalization schemes, Symmetrized Single 

Molecule Normalization and Constant Symmetrized Normalization ensure that negative and 

positive raw scores are matched to normalized scores less than 0.5 and greater than 0.5 

respectively. This ensures that regions of the molecule contributing negatively (positively) to the 

prediction are colored from yellow, to orange, to red (from yellow to green). In principle, 

Symmetrized Single Molecule Normalization, as opposed to Constant Symmetrized 

Normalization, may result in weaker green coloring being assigned to equally positive regions of 

the molecule upon moving to a molecule with large magnitude negative raw scores. However, 

both Full Dataset Normalization and Constant Symmetrized Normalization may result in small 

magnitude positive or negative raw bond (or atom) scores being assigned normalized scores 
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close to 0.5, such that they appear yellow i.e. their sign is indeterminate from the Heat Map 

image. 

 2� =	 $3!													1						3!456,478)
$3!49:,478	1		3!456,478)

 (6) 

2� =	 $3!													1						3!456,;<)
$3!49:,;<	1		3!456,;<)

    (7) 

2� =	 $3!	/		|3|!49:,478)
$		>	×		|3|!49:,478)

         (8) 

2� =	 @3!	/		|3|!49:,<" A
@		>	×		|3|!49:,<" A          (9) 

In equations (6 – 9), 2� denotes a raw bond (or atom) score and 2� denotes a normalized score. 

2����,�+B
 denotes the minimum (i.e. most negative if there are negative raw scores) raw score for 

the molecule, whilst 2���C,�+B
 denotes the maximum (i.e. most positive if there are positive raw 

scores) raw score for the molecule.	2����,-3
 and 	2���C,-3

denote the minimum and maximum raw 

bond (or atom) scores respectively across a specified dataset of molecules; in keeping with 

Rosenbaum et al.,
13

 this dataset was the training set plus the molecule of interest.  		|2|���C,�+B
 

denotes the largest raw bond (or atom) score ,�)���%�� for the molecule of interest. Finally, 

	|2|���C,3��
 denotes the largest raw bond (or atom) score ,�)���%�� corresponding to a set of 

model predictions and associated descriptor contributions. In the current work, this set was the 

complete set of descriptor contributions calculated for all molecules of interest (see “Molecules 

considered for detailed analysis”) for a given dataset with all combinations of modelling, 
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descriptor contribution and, where relevant to the descriptor contributions, predictions 

approaches. 

Due to software implementation challenges, it was not possible to generate Heat Map images 

corresponding to Full Dataset Normalization, i.e. equation (7), for Random Forest models. (See 

“Computational details” in the Supporting Information.)  

The interpretability of predictions was assessed via evaluating the biological plausibility of the 

Heat Map colors. Further details are provided under “Quality assessment of Heat Map images”. 

��������	���������	���	���
����	
�
�����	

Heat Map images and corresponding “external, leave6one6out” predictions were generated and 

evaluated for specific molecules of interest. The models used to generate these Heat Maps and 

predictions were built upon the entirety of the corresponding dataset, save for the molecule of 

interest where applicable, using the same procedure employed to build models evaluated via 

“external cross6validation”. For the Kazius and CA datasets, the same molecules subjected to 

detailed analysis by Rosenbaum et al.
13

 and Mohr et al.
17

 respectively were considered and 

removed, in turn, from the datasets. For all protein interaction datasets, corresponding Protein 

Data Bank (PDB)
63,64

 protein6ligand crystal structures, with ligands not found in the original 

datasets, were identified. Further details are provided in the Supporting Information. 

In addition to these molecules, for which manual evaluation of the Heat Map images was 

performed, “external, leave6one6out” predictions and corresponding Heat Map images were 

generated for an additional set of molecules from the Kazius dataset matching a set of 

toxicophore encoding SMARTS patterns. These SMARTS patterns are provided in the 
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Supporting Information file “Kazius_2005_SI_SA_SMARTS_subset_v2.xls” and were derived 

from Kazius et al.,
48

 as explained therein. 

!�
����	
���������	��	��
�	�
�	��
���	

The Heat Map images generated for the molecules of interest were assessed in terms of (a) 

available mechanistic knowledge concerning (potential) toxicophores and detoxifying groups or, 

for the models trained on the protein interaction datasets, (b) the corresponding PoseView
65

 

images of protein6ligand interactions available from the PDB. 

Primarily, these images were assessed by considering how the molecular substructures 

highlighted as most positive (i.e. green), suggesting a significant positive contribution towards a 

prediction of membership of the active (toxic) class (“class 1”) or the predicted continuous 

biological activity, corresponded to those substructures expected to be directly responsible for 

promoting biological activity. In the case of molecules from the Kazius
48

 and CA datasets,
17

 this 

entailed comparing the most positive regions of the molecule to the known (or hypothesized) 

toxicophores for Ames mutagenicity or chromosome aberration respectively.
13,17,48

 In the case of 

those images which corresponded to PDB ligands, the most positive regions of the molecule 

were compared to the interactions indicated by the PoseView images
65

 provided by the PDB.
63

 

An important point to note is that, by assessing the correspondence between the Heat Map and 

the known influence of the biologically relevant substructures, this assessment is not necessarily 

equivalent to an assessment of how well the interpretation approach provides the basis for the 

model’s prediction. Rather, this assessment evaluates the extent to which the Heat Map images 

can provide insights into the biological significance of different molecular substructures. For a 

prediction made for an untested chemical, this is useful information to obtain from a QSAR 
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model in its own right, hence an assessment of how well the Heat Map images can provide this 

information on chemicals for which the most biologically relevant substructures are known is 

valuable. (This assumes the ability of the Heat Map images to provide this information on those 

chemicals is representative of how well they would provide this information on chemicals for 

which the most biologically significant substructures are unknown.)  Furthermore, if it can be 

assumed that the model makes correct predictions for the right reason, this assessment indicates 

how well a Heat Map image explains the basis for the model’s prediction. 

Assessment of the correspondence between green coloring, suggesting a significant positive 

contribution to predicted bioactivity, on the Heat Map and the substructures expected to be 

directly responsible for promoting biological activity took account of two important 

considerations. The first consideration was the extent to which regions of the molecule known to 

directly promote biological activity were highlighted as green. The second consideration was the 

extent to which biologically irrelevant and, for the minority of molecules for which this was 

applicable, known activity reducing regions of the molecule were highlighted as green. Both 

failing to (fully) identify those regions of the molecule directly responsible for promoting 

biological activity, as well as wrongly identifying biologically irrelevant or activity reducing 

regions of the molecule as promoting biological activity with respect to the endpoint of interest, 

would mislead scientists seeking to interpret the images, e.g. medicinal chemists seeking ideas 

for lead optimization. Hence, the following ranking scheme was initially used to assess the 

images (�
���	"). 

For some molecules for which Heat Map images were analyzed, detoxifying substructures were 

identified which were known to reduce (or even abolish) the biological activity expected to be 

conferred by the corresponding toxicophore.
13,48

 For Heat Map images corresponding to 
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predictions for PDB ligands, hydrogen bond donors/acceptors (e.g. tertiary amines) in regions 

suggested to be involved in hydrophobic interactions by the corresponding PoseView
65

 images 

were penalized when evaluating positive (green) coloring according to the ranking scheme 

(�
���	"). A failure to satisfy ligand hydrogen bond acceptors and, possibly even more so, 

donors located within a hydrophobic pocket is enthalpically unfavorable.
66

  

�
���	"� Summary of the ranking scheme initially used to denote the quality of the Heat Map 

images based on considering the biological relevance of the most positively highlighted (i.e. 

green) regions of the molecule 

Biological 

relevance 

(positive 

coloring): Rank
a 

Biological 

relevance 

(positive 

coloring): Label 

Criteria used for assignment
 

1 Strongest All regions of the molecule contributing directly towards 

biological activity were highlighted as most positive in 

their entirety, without any biologically irrelevant 

substructures, or substructures expected to reduce 

biological activity, highlighted as most positive. 

2 Strong The regions of the molecule contributing directly towards 

biological activity were partially highlighted as most 

positive, without any biologically irrelevant substructures, 

or substructures expected to reduce biological activity, 
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highlighted as most positive. 

3 Weak All regions of the molecule contributing directly towards 

biological activity were highlighted as most positive in 

their entirety, but some biologically irrelevant 

substructures, or substructures expected to reduce 

biological activity, were also highlighted as most positive. 

4 Weaker The regions of the molecule contributing directly towards 

biological activity were partially highlighted as most 

positive, but some biologically irrelevant substructures, or 

substructures expected to reduce biological activity, were 

also highlighted as most positive. 

5 None No match between the molecular regions highlighted as 

most positive and those known to directly promote 

biological activity was observed. 

a.� A lower rank denotes greater biological relevance i.e. higher Heat Map image quality. 

For the minority of molecules with known activity reducing substructures, an analogous analysis 

was performed based upon assessing the correspondence between those substructures highlighted 

as most negative (i.e. red) and the known activity reducing substructures. 

Ultimately, these Heat Map images will be useful for chemists inspecting them to gain insights 

into the basis for a given model prediction and/or the indicated biological significance of 

molecular substructures, according to a given interpretation approach and QSAR model. 
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However, manual assessment of Heat Map images is not only time consuming but is also prone 

to inconsistent categorization, i.e. the scheme outlined in �
���	" does not fully remove all 

potential subjectivity or inconsistency associated with manual Heat Map evaluation. 

Nonetheless, assessment according to a systematized scheme is necessary for effective 

evaluation of the degree to which different interpretation approaches yield chemically and 

biologically meaningful interpretations of QSAR predictions. To overcome the limitations of 

manual assessment, an automated, numeric “quality score” scheme was implemented. This 

automated scheme, as illustrated by ������	�, was only implemented in the current work for 

Heat Map images based on atom coloring and either Symmetrized Single Molecule 

Normalization, or Constant Symmetrized Normalization. Furthermore, it was only applied to a 

subset of Kazius dataset molecules for which toxicity promoting substructures and, where 

applicable, corresponding detoxifying substructures were encoded using SMARTS patterns 

derived from the work of Kazius et al.
48

 

Each of the relevant Heat Map images  is assigned a single, numeric “quality score”, as 

illustrated by ������	�, designed to estimate the degree to which the image provides a 

chemically and biologically meaningful interpretation of the corresponding model prediction. 

For a molecule with one or more SMARTS pattern identified toxicophores, the quality score 

measures the degree to which the green coloring of atoms fully and precisely identifies the atoms 

lying inside the biologically active substructure(s). (Only atoms estimated to make a relatively 

significant positive contribution to the predicted bioactivity will be colored green if symmetrized 

normalization and atom coloring is used.) This is quantified in terms of the F6measure, which 

takes into account the proportion of true positives to false “negatives” and false positives.
67

 Here, 

the true positives are all atoms with a normalized atom score >= 0.54, which was visually 
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estimated to be the point at which an atom starts to appear green, and which were matched by 

toxicophore SMARTS. False positives have normalized atom scores >= 0.54, yet are not 

matched by a toxicophore SMARTS. False “negative” atoms are those matched by the 

toxicophore SMARTS, but which are not selected based on this threshold. This calculation is 

illustrated, for an example molecule, on the LHS of ������	�. 

For a molecule which also contains substructures that are known to be deactivating, an analogous 

calculation is performed with regards to those atoms highlighted as sufficiently red. (This 

calculation is illustrated, for an example molecule, on the RHS of ������	�.) For Heat Map 

images generated via symmetrized normalization and atom coloring, this means those atoms are 

known to make a significant negative contribution to the predicted bioactivity. The atoms 

indicated to significantly reduce toxicity, based on the Heat Map, were those with a normalized 

score <= 0.25, which was visually estimated to be the point at which an atom becomes 

discernably red. In this latter case, the overall quality score is calculated as the arithmetic mean 

of the two F6measures.  
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������	� The procedure for calculating numeric Heat Map quality scores for an image obtained 

via symmetrized normalization (Symmetrized Single Molecule Normalization in this example) 

and atom coloring. The relevant normalized atom score estimates are shown matched to the atom 

IDs. In this case, the overall quality score would be the arithmetic mean of the two F6measures 

i.e. 0.62. Further details are provided in the associated text.  SMARTS matching of toxicophores 

and detoxifying substructures was implemented using OpenBabel (version 2.3.2) & Pybel,
68,69

 

based on SMARTS adapted from the work of Kazius et al.
48

 and reported in the Supporting 

Information. The atom IDs, used to identify the corresponding atom score estimates for this 

image, were identified using OpenBabel
68

, via this command: “obabel [SDF containing molecule 

of interest] 6O [name of image].svg 6xi –xu”.  
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The quality of the Heat Map images was compared to the quality of the corresponding 

predictions (see below). The raw prediction scores of the binary classification models were 

normalized to facilitate comparison across methods. The raw prediction scores for “class 1”, the 

“toxic” class, are of different scales. Normalization entailed transforming these values, where 

required, to lie between 0 and 1. Subsequent to normalization, a score greater than 0.50 resulted 

in predicted assignment to “class 1” for all methods.  Details of this normalization are provided 

in the Supporting Information. 

&�����
����	���'���	���������	(�
����	
��	��
�	�
�	��
��	(�
����	

Heat Map images have the potential to inform chemists in the analysis and design of molecules. 

The quality of those images, in terms of correctly highlighting active regions of the molecule, is 

therefore of paramount importance. It is useful to understand the extent to which the quality of a 

Heat Map image depends upon the quality/strength of the corresponding prediction. If a strong 

correlation between Heat Map quality and prediction quality is observed, this can help chemists 

judge whether a Heat Map image offers meaningful interpretation in the absence of knowing the 

true determinants of biological activity. Firstly, in the case that predictions are made for a 

biologically untested molecule, statistical estimates of the prediction quality (e.g. as obtained 

from cross6validation on the training set) may suggest whether the Heat Map image can be 

trusted. Secondly, in the case that the prediction is experimentally tested yet the mechanism of 

action remains unknown, the known quality of the prediction could be used to judge whether the 

Heat Map image offers useful insights. 
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In order to determine whether the quality of these Heat Map images, calculated robustly as per 

������	�, corresponded to the quality of the corresponding predictions, it was necessary to rank 

the quality of these predictions. Since the scoring scheme described in ������	� could only be 

applied to external leave6one6out binary classification predictions for the Kazius dataset, high 

quality predictions were defined as correct predictions, with all incorrect predictions being 

considered of low quality. 

&�����
����
�	���
���	

Scripts and software configuration files, used for evaluation of the modelling approaches 

considered in our article, have been made freely available.
70

 These files are described, along with 

information about software and hardware dependencies used to generate our results, in the 

Supporting Information. Two key dependencies, which we have made freely available to the 

cheminformatics community, are the ���  package
37

 for the R Statistical Programming 

language
71

 and the !�����"#��""�� Python program.
72

  The ���  package implements 

algorithms for interpreting predictions made using the �����,������package. The 

!�����"#��""���program allows for any set of descriptor contributions, associated with binary 

descriptors corresponding to fingerprints calculated as per our work, to be used as the basis for 

Heat Map images. Hence, the former program supports interpretation of Random Forest 

predictions, whilst the latter program supports the interpretation of any QSAR prediction built 

using the same fingerprints as our models, as long as suitable descriptor contributions can be 

calculated.  These dependencies were used to generate the Heat Map images analyzed in our 

current article, as well as provide estimates of the underlying normalized and corresponding raw 

atom scores. Additional details are presented in the Supporting Information. 
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RESULTS & DISCUSSION 

������� �	�������
��	

The overall performance estimates for the investigated modelling approaches, from “external 

cross6validation”, are presented in �
���	) for key binary classification datasets. The 

performance of all modelling approaches on all remaining binary classification datasets was 

worse, in terms of all figures of merit, than for the Kazius dataset and typically worse than for 

the CA dataset. Subsequent investigations of prediction interpretations, based on additional 

leave6one6out predictions, are discussed in detail for the Kazius dataset, with some illustrative 

examples also taken from the CA dataset. Since modelling results on the other datasets are not 

considered in greater detail in our article, further detailed performance estimates are only 

presented in the Supporting Information (Tables S5 and S6 under “Predictive performance: 

additional result summaries”). 

Nonetheless, in summary, Random Forest classification, with “averaged predictions”, is the best 

performing approach, in terms of the arithmetic mean AUC, for all but one (MUV713) of the 

five classification datasets. (For MUV713, Random Forest classification using the default 

majority vote predictions is marginally better, with identical mean AUC at 3dp. However, the 

average performance of all models on the MUV713 dataset is close to that expected from 

random guessing.)
61

 Random Forest classification, using the “averaged predictions” approach, 

also typically yields the highest predictive performance in terms of the arithmetic mean values 

for all other performance metrics. However, it should be noted that the differences in 

performance between methods are sometimes marginal and may not be robust.  

Page 32 of 84

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 33

Likewise, Random Forest regression is the best performing approach according to the arithmetic 

mean R
2
 for four (ACE, DHFR, GPB, THR) out of the eight regression datasets. Again, it should 

be noted that the differences in performance are sometimes marginal and may not be robust. 

Regarding the robustness of the results, an approximate assessment of statistical significance was 

carried out for the pairwise differences in mean performance metrics. For both the classification 

and regression datasets, over half of differences were statistically significant according to a 

standard paired, two6tail t6test, even upon applying multiple testing corrections.
73

 However, this 

test suffers from elevated Type 1 error in our evaluation framework of averaged K6fold 

testing,
74,75

 as explained in the discussion of “Statistical Significance” in the Supporting 

Information. Therefore, it is likely that the results are not trustworthy and, hence, no detailed 

analysis is presented. 

�
���	)� Overall performance estimates of binary classification modelling approaches obtained 

from "external cross6validation" for key datasets: arithmetic mean performance statistics (3dp) 

Dataset Modelling Approach AUC MCC Kappa BA 

CA Random Forest classification (AP)
a 

0.762 0.369 0.352 0.683 

Random Forest classification 0.748 0.358 0.333 0.676 

Support Vector Machine 0.747 0.346 0.327 0.670 

Probit6PLS 0.746 0.339 0.326 0.664 

Kazius Random Forest classification (AP)
a
 0.876 0.600 0.598 0.802 
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Random Forest classification 0.862 0.595 0.592 0.799 

Probit6PLS 0.855 0.570 0.566 0.787 

Support Vector Machine 0.854 0.568 0.564 0.785 

a.� “AP” denotes Random Forest binary classification predictions made using the, non6

default, “averaged predictions” approach described under the Random Forest 

classification�subsection of “Modelling approaches”.  

����
��	��	��
�	�
�	���������
�����	��	���� ���
�	����������	

A variety of Heat Map images were generated, corresponding to (a) leave6one6out binary 

classification predictions for the Kazius and CA datasets, for 39 and 15 molecules respectively, 

or (b) regression predictions made for eight PDB ligands corresponding to one of the Sutherland 

datasets. A summary of these images and the assessment made of the correspondence between 

the Heat Map and the known biologically relevant substructures is provided in the Supporting 

Information (see “FinalImagesAnalysis_withImages_resub.xlsx”). 

As well as different approaches to generating descriptor contributions, different Heat Map 

images were also obtained for the same molecule via translating these descriptor contributions 

into Heat Map images according to (a) different normalization schemes and (b) atom or bond 

coloring based on the descriptor contributions. These different schemes are explained in “Heat 

Map interpretation of individual predictions” under “Methods & Data” above. Due to software 

implementation limitations explained under “Computational details” in the Supporting 

Information, it was only possible to generate “Full Dataset Normalization” Heat Map images for 
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the linear modelling methods: Probit6PLS, PLS regression and, with a linear kernel, SVM and 

Support Vector Regression. 

Systematic manual assessments, according to �
���	", were made for all Heat Map images 

corresponding to the examples from the Kazius and CA datasets (two and 15 molecules 

respectively) which were previously used for assessment of interpretation approaches,
13,17

 along 

with all PDB ligands. In addition, it was possible to calculate automated numeric Heat Map 

quality scores, as per ������	�, for all 39 molecules in the Kazius dataset, identified via 

toxicophore SMARTS pattern matches, for which Heat Map images were generated. Whilst 2026 

Kazius dataset molecules were identified via toxicophore SMARTS pattern matches and, in 

principle, automated numeric Heat Map quality scores could have been calculated for all of 

these, the currently available software for generating Heat Map images
72

  requires laborious 

manual intervention via a GUI to obtain each image. This limited the number of Heat Map 

images it was practical to generate for the current paper. 

*����	��	���������	�������	������	����	��
�	�
�	���������
�����	

The choice of atom or bond coloring, as well as the choice of normalization scheme, can yield 

discernably different Heat Map images. This is illustrated by ������	".  

Only the symmetrized normalization schemes introduced in this paper (Symmetrized Single 

Molecule Normalization and Constant Symmetrized Normalization) are guaranteed to ensure that 

positive raw bond (atom) scores, calculated from the underlying descriptor contributions, are 

translated into yellow to green coloring, becoming increasingly green with increasing magnitude, 

and negative raw scores are translated into yellow to orange to red coloring. With the previously 

proposed normalization schemes,
13

 Full Dataset Normalization and especially Single Molecule 

Page 35 of 84

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 36

Normalization, green or red coloring might be assigned which would give a misleading 

impression as to the sign of the raw bond (or atom) scores indicating whether a particular 

molecular substructure was responsible for a negative or positive effect on the model’s 

prediction. This can be seen by comparing the images in ������	" with the estimated 

corresponding raw atom scores for this molecule in ������	). N.B. All normalized and raw atom 

scores we present are estimates, as discussed under “Computational Details” in the Supporting 

Information.   

As illustrated by ������	", both Full Dataset Normalization and Constant Symmetrized 

Normalization can make the magnitude of all normalized bond (or atom) scores close to 0.5. This 

either reduces the colors to yellow, which conveys no information about the sign of the raw bond 

(or atom) scores and allows for no visual interpretation, or makes them only weakly green or 

orange, which makes differences between different parts of the molecule harder to discern. 

In principle, Constant Symmetrized Normalization ensures that only substructures contributing 

negatively to the prediction and substructures contributing positively would appear red and green 

respectively, in keeping with Symmetrized Single Molecule Normalization, as well as offering 

certain theoretical advantages. Firstly, it allows for the variation in the strength of negative and 

positive coloring between molecules to be evaluated, due to the use of consistent normalization 

across all Heat Map images. However, as long as the regions are sufficiently positive or negative 

to appear green and red respectively under Symmetrized Single Molecule Normalization or 

Constant Symmetrized Normalization, this would have no bearing on the outcome of the 

evaluation schemes applied in our work. Secondly, the use of Constant Symmetrized 

Normalization avoids a hypothetical problem with Symmetrized Single Molecule Normalization: 

the possibility that a positive region of the molecule may switch from green to yellow due to the 
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inclusion of a large magnitude negative raw atom score associated with a red substructure. 

However, this does not appear to have happened in practice, as consideration of both ������	+ 

and ������	, indicates. Rather, as illustrated by ������	,, the effect of Constant Symmetrized 

Normalization appears to typically be to reduce the normalized atom scores close to 0.5, making 

the corresponding atoms (or bonds) appear yellow and, hence, impossible to obtain any 

interpretation from. For this reason, the use of Symmetrized Single Molecule Normalization is 

recommended and Heat Map images generated according to this scheme were used to draw 

conclusions from our work.  

Regarding the choice of atom or bond coloring, atom coloring is arguably more appropriate for 

discerning whether a hydrogen bond donor or acceptor atom
66

 is making a significant 

contribution towards the prediction. Different bond coloring either side of this atom could lead to 

an ambiguous interpretation. However, it ,�� be possible for some pi6bonds to act as weak 

hydrogen bond acceptors,
76

 in which case bond coloring would be more appropriate, as was 

previously suggested in the literature on different grounds.
13

 However, the Pybel software
69

 used 

for SMARTS matching, hence automated numeric Heat Map quality scoring, for the current 

paper identified the parts of the molecule matched by the SMARTS patterns in terms of atom 

indices. Hence, this automated scoring was only applicable to Heat Map images based on atom 

coloring. For this reason, only Heat Map images corresponding to atom coloring are considered 

for the rest of our article.      
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������	" Heat Map analysis of a binary classification leave6one6out SVM prediction made for 

molecule “CA23” in the CA dataset (c.f. Figure 4(b) in Mohr et al.), determined to be toxic 

(positive result) in the chromosome aberration test.
17

 (A) Expert reasoning assigned toxicophore 

(epoxide functionality), based on the rationale provided in Mohr et al.:
17

 this substructure was 

flagged by an Ames test alerts knowledgebase, with 80% of Ames positives being chromosome 

aberration positives, and is known to exhibit electrophilic reactivity with DNA. (B – H): Heat 

Map images based on descriptor contributions associated with the same SVM prediction, 

generated according to either bond or atom coloring obtained via different normalization 

schemes. 
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������	) Image of the molecule “CA23” in the CA dataset
17

 displayed in HeatmapViewer.jar 

GUI,
13

 as generated by running the HeatMapWrapper tool,
72

 with both atom and bond coloring 

switched off. The intermediate output generated via running the HeatMapWrapper tool in atom 

color, Symmetrized Single Molecule Normalization mode, based on leave6one6out SVM 

descriptor contributions, was processed to reveal estimated raw atom scores ranging from weakly 

negative in one case (60.004), through zero in most cases, to positive (+0.215) in one case. The 

estimated raw atom scores are rounded to 3dp. This image corresponds to all Heat Map images 

shown in ������	", with different normalization schemes generating the different normalized 

scores used for coloring. Via switching off atom coloring, based on normalized scores, the 

epoxide oxygen (in red) and carbon atoms (in black) can readily be discerned. N.B. The specific 
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atom IDs, used to identify the corresponding atom score estimates, were identified as per ������	

�. 

���������	
��	'�
�������	��	���������	��
�	�
�	(�
����	
���������	������	

Ultimately, the Heat Map images are designed to provide chemically and biologically 

meaningful interpretations of model predictions to chemists, hence require manual consideration. 

However, a systematized evaluation scheme is required to allow for a reasonable assessment of 

the degree to which different modelling and prediction interpretation approaches, underpinning 

these Heat Map images, tend to yield chemically and biologically meaningful interpretations.  

Whilst a manual, qualitative evaluation scheme (�
���	") was initially devised, this has a 

number of weaknesses. These prompted the development of an automated, numeric scoring 

scheme (������	�). The following figures (������	+, ������	,, ������	-) compare and contrast 

the application of both schemes to two Kazius dataset molecules, with Heat Map images 

generated according to various scenarios, for which external leave6one6out predictions were 

obtained.   

Arguably the greatest weakness of the manual ranking scheme (�
���	"), is the potential for 

subjectivity or inconsistency in assignments to be made. Inconsistency is likely to be greater if a 

larger number of images are considered, with the laborious requirement to visually consider each 

image restricting the number of images which can be considered and, hence, limiting the 

robustness of any observed trends. The application of the automated, numeric scoring scheme 

(������	�) allows for greater objectivity and for a large number of Heat Map images to be 

assessed with ease, allowing more robust conclusions to be drawn. Of course, this assumes a 

large number of Heat Map images have been generated and the molecular features directly 
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responsible for promoting (or reducing) activity have been suitably encoded as SMARTS 

patterns.  

Nonetheless, it could be argued that the imposition of hard boundaries between those atoms 

involved in biologically relevant and irrelevant molecular substructures, via SMARTS matching, 

whilst removing subjectivity, might sometimes be problematic. Firstly, it should be 

acknowledged that this sharp distinction between biologically relevant and irrelevant molecular 

substructures is a simplification e.g. whole molecule physicochemical properties, such as logP, 

may affect biological activity and arise from molecular features not directly involved in 

interactions at the site of biological action. Secondly, the SMARTS patterns may fail to account 

for all biologically relevant knowledge. For example, consider the molecule shown in ������	.. 

Whilst the putative toxicophore
17

 encompasses the entire arylhydrazide substructure, it ,�� be 

the case that biological activity arises from metabolism of this substructure to yield the aromatic 

amine substructure.
17,48

 Hence, it can reasonably be argued that application of the qualitative, 

manual quality assessment scheme should only assign credit for green coloring of that 

substructure. A different example, which further illustrates the potential problem associated with 

applying hard boundaries between biologically relevant and irrelevant sets of atoms as supposed 

by the automated scoring scheme, is ������	+. According to the SMARTS patterns used for 

application of the automated scoring scheme, ������	+ (B) and (E) should be penalized for 

highlighting the ortho positions, to the sulfonamide attached to the aromatic ring, as red. 

However, one might reasonably argue that, at least in this context, this still serves to indicate that 

the specific effect of having a sulfonamide attachment at this end of the ring is detoxifying. In 

principle, one could adjust the SMARTS patterns to accommodate these scenarios when 

applying the numeric scoring scheme e.g. by expanding the SMARTS patterns used for 
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automated assessment of the molecule in ������	+ to accommodate more of the aromatic ring. 

However, the most appropriate modifications would still need to be decided with care. For 

example, consider simply extending these SMARTS patterns to encompass a larger portion of 

the aromatic ring. This could risk giving credit to Heat Map images which highlighted a 

significant portion of the aromatic ring, or other attachment points, without highlighting the 

attachments which were actually responsible for promoting (or attenuating) biological activity. 

Likewise, with reference to this example, the exact point at which to stop the SMARTS pattern 

indicating that a sulfonamide attachment to the ring was detoxifying and a para6nitro attachment 

was a toxicophore is also debatable.  

In spite of this, it should still be concluded that the numeric, automated scoring scheme is a more 

appropriate means for systematic assessment of Heat Map images than the qualitative, manual 

scheme. As well as the potential for inconsistency and difficulty of applying to large numbers of 

images already discussed, consider scenario in which there are two toxicophores that can be 

encoded as SMARTS patterns (������	-). The qualitative scheme would fail to assign more 

credit to a Heat Map image which fully highlighted one toxicophore and partially highlighted 

another than to a Heat Map image which only partially highlighted one of them. The numeric, 

automated scheme overcomes this limitation.   
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������	+ Heat Map (atom coloring & Symmetrized Single Molecule Normalization) analysis of 

binary classification leave6one6out predictions made for molecule “102861161” in the Kazius 

dataset (c.f. Figure 3(A) in Rosenbaum et al.).
13

 (A) Molecule with biologically significant 

substructures shown, based on a combination of mechanistic reasoning, expert knowledge and 

data analysis reported previously in the literature,
13,48

 and experimental Ames test assignment 

reported.
13

 (B – F) Heat Map images: (B) Random Forest classification (Kuz’min/Palczewska, 

averaged predictions); (C) Random Forest classification (local gradients, majority vote 

predictions); (D) Random Forest (local gradients, averaged predictions); (E) Probit6PLS; (F) 

SVM. The predictions shown are the normalized scores (transformed into values between 0 and 

1) for the toxic class, with predicted assignment to the toxic class if this score was greater than 
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0.50. The green dotted lines show the atoms matched to toxicophore SMARTS and the red 

dotted lines the atoms matched to corresponding detoxifying SMARTS. SMARTS matching and 

identification of matched atoms were carried out as per ������	�.  The manual and automated 

assessments of Heat Map quality are based on the schemes explained under “Quality assessment 

of Heat Map images”. 

 

������	, Heat Map (atom coloring & Constant Symmetrized Normalization) analysis of binary 

classification leave6one6out predictions made for molecule “102861161” in the Kazius dataset 

(c.f. Figure 3(A) in Rosenbaum et al.).
13

 (A) Molecule with biologically significant substructures 

shown, based on a combination of mechanistic reasoning, expert knowledge and data analysis 
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reported previously in the literature,
13,48

 and experimental Ames test assignment reported.
13

 (B – 

F) Heat Map images: (B) Random Forest classification (Kuz’min/Palczewska, averaged 

predictions); (C) Random Forest classification (local gradients, majority vote predictions); (D) 

Random Forest (local gradients, averaged predictions); (E) Probit6PLS; (F) SVM. Predictions are 

reported as per ������	+. The green dotted lines show the atoms matched to toxicophore 

SMARTS and the red dotted lines the atoms matched to corresponding detoxifying SMARTS. 

SMARTS matching and identification of matched atoms were carried out as per ������	�.  The 

manual and automated assessments of Heat Map quality are based on the schemes explained 

under “Quality assessment of Heat Map images”. 
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������	- Heat Map (atom coloring & Symmetrized Single Molecule Normalization) analysis of 

binary classification leave6one6out predictions made for molecule “2816660665” in the Kazius 

dataset. (A) Molecule with SMARTS matches shown in green for specific aromatic nitro (RHS) 

and azide (LHS) toxicophores, derived from the work of Kazius et al.
48

 based on a combination 

of mechanistic reasoning, expert knowledge and data analysis reported, and experimental Ames 

test assignment reported in the Kazius dataset SDF file.
13

 The SMARTS matches  (B – F) Heat 

Map images: (B) Random Forest classification (Kuz’min/Palczewska, averaged predictions); (C) 

Random Forest classification (local gradients, majority vote predictions); (D) Random Forest 

(local gradients, averaged predictions); (E) Probit6PLS; (F) SVM. Predictions are reported as per 

������	+. The SMARTS matches show the atoms matched to SMARTS patterns. SMARTS 
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matching and identification of matched atoms were carried out as per ������	�. The manual and 

automated assessments of Heat Map quality are based on the schemes explained under “Quality 

assessment of Heat Map images”. Quality scores, not to be confused with prediction scores, 

based on Heat Map correspondence to detoxifying groups were not assigned as no detoxifying 

groups were identified via SMARTS matching. 

 

������	. Heat Map (atom coloring & Symmetrized Single Molecule Normalization) analysis of 

binary classification leave6one6out predictions made for molecule CA31 in the CA dataset (c.f. 

Figure 6(A) in Mohr et al.).
17

 (A) Molecule with biologically significant substructures shown, 

based on a combination of mechanistic reasoning and expert knowledge reported previously in 
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the literature,
17

 and experimental chromosome aberration test assignment reported.
17

 (B – F) 

Heat Map images: (B) Random Forest classification (Kuz’min/Palczewska, averaged 

predictions); (C) Random Forest classification (local gradients, majority vote predictions); (D) 

Random Forest (local gradients, averaged predictions); (E) Probit6PLS; (F) SVM. Predictions are 

reported as per ������	+. The manual assessments of Heat Map quality are based on the scheme 

explained under “Quality assessment of Heat Map images”. Here, the assignments were not 

simply based on matching the entire putative toxicophore,
17

 but were informed by consideration 

of the likely toxic substructure revealed via metabolism, which is expected to be the 

arylhydrazine substructure and may even be the aromatic amine substructure arising from further 

metabolism.
17,48

 

�������������	��	������	��
�	�
�	(�
����	�����	���	���������	���������
����	
����
���	

The distributions of overall quality scores, calculated as the average of scores based on Heat Map 

correspondence to SMARTS pattern assigned toxicophores and detoxifying substructures as per 

������	�, for all Kazius dataset Heat Map images generated according to atom coloring and 

either Symmetrized Single Molecule Normalization or Constant Symmetrized Normalization are 

shown in ������	/ (A) and (B) respectively. As indicated by ������	,, Constant Symmetrized 

Normalization tended to produce yellow coloring, yielding no information, which results in low 

quality scores. Hence, as previously noted, Symmetrized Single Molecule Normalization is 

recommended and no further consideration is given to the results obtained from Constant 

Symmetrized Normalization. 

Furthermore, since only one of the molecules for which numeric Heat Map quality scores were 

assigned was associated with a detoxifying SMARTS pattern match, the use of the average of the 

scores calculated as per ������	� is not representative of the distribution. Hence, this single 
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molecule was excluded from further analysis and all subsequent distributions reflect the quality 

scores calculated based on Heat Map correspondence to the identified toxciophores for the 

remaining 38 molecules, or relevant subsets thereof. As expected, removing this single molecule 

has little impact upon the overall distribution, as can be seen by comparing ������	/ (A) and 

������	0 (A). 

Consider the median quality scores presented in ������	0 (A). These suggest that the degree to 

which Heat Map images, based on atom coloring and Symmetrized Single Molecule 

Normalization, can be meaningfully interpreted was typically somewhat higher for those 

corresponding to linear SVM predictions compared to all other interpretation approaches. They 

also suggest the Kuz’min/Palczewska approach to calculating descriptor contributions for 

Random Forest classification predictions yielded Heat Map images with slightly higher median 

quality scores than the local gradients approach. The trend in arithmetic mean quality scores 

followed the same pattern. 

However, it might be argued that the quality scores of Heat Map images associated with toxic 

predictions are of greater relevance, as these indicate the extent to which toxicophores are 

correctly identified when a toxic prediction is made. A Heat Map image which fully and 

precisely highlighted the toxicophores in combination with a prediction of toxicity, as per ������	

�� (F), would be valuable to medicinal chemists seeking to design out a predicted toxic liability 

during lead optimization. (Of course, this is also reliant on the prediction of toxicity being 

reliable as per ������	�� (F).)  Consider the distributions of quality scores, reflecting the degree 

to which Heat Map images associated with toxic predictions correctly identified the 

toxicophore(s), in ������	�1 (A). These indicate roughly the same rank ordering as per ������	0 

(A), except that the ordering of quality scores associated with Heat Map images corresponding to 
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different kinds of Random Forest classification local gradients descriptor contributions is 

reversed.   

 

������	/ Automated Heat Map numeric quality scores, calculated as the average of F6measures 

for their correspondence to toxicophore and detoxifying substructure SMARTS matches as 

explained in ������	�, for Heat Map images generated using atom coloring and (A) 

Symmetrized Single Molecule Normalization or (B) Constant Symmetrized Normalization. 

Quality score distributions correspond to all 39 leave6one6out predictions made for a subset of 

Kazius dataset molecules identified via toxicophore SMARTS matches. The different quality 

score distributions are annotated according to the different approaches used to obtain the 
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underlying descriptor contributions: RF (LG, AP) = Random Forest classification (local 

gradients, averaged predictions); RF (LG, default) = Random Forest classification (local 

gradients, majority votes predictions); RF (K/P, AP) = Random Forest classification 

(Kuz’min/Palczewska, averaged predictions); Probit6PLS (linear coefficients); SVM (linear 

coefficients). The distributions are represented as boxplots, with the bold lines showing the 

medians and the superimposed circle the arithmetic means, with error bars denoting the standard 

errors in the means. 

 

������	0 Automated Heat Map numeric quality scores, based on their correspondence to 

toxicophore substructure SMARTS matches as explained in ������	�, for Heat Map images 
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generated using atom coloring and Symmetrized Single Molecule Normalization.  In sub6figure 

(A), quality score distributions correspond to 38 leave6one6out predictions made for a subset of 

Kazius dataset molecules identified via toxicophore SMARTS matches, excluding the single 

molecule (“102861161”) for which a detoxifying substructure was also identified via SMARTS 

pattern matches.  In sub6figure (B), the distributions correspond to the subsets of those 38 

molecules which were correctly predicted. The number of molecules correctly predicted to be 

toxic or non6toxic varied across methods: Random Forest classification (averaged predictions) = 

28; Random Forest classification (majority vote predictions) = 29; Probit6PLS = 28; SVM = 31.  

The different quality scores distributions are annotated according to the different approaches 

used to obtain the underlying descriptor contributions: RF (LG, AP) = Random Forest 

classification (local gradients, averaged predictions); RF (LG, default) = Random Forest 

classification (local gradients, majority votes predictions); RF (K/P, AP) = Random Forest 

classification (Kuz’min/Palczewska, averaged predictions); Probit6PLS (linear coefficients); 

SVM (linear coefficients). The distributions are represented as boxplots, with the bold lines 

showing the medians and the superimposed circle the arithmetic means, with error bars denoting 

the standard errors in the means. 
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������	�1 Automated Heat Map numeric quality scores, calculated based on their 

correspondence to toxicophore SMARTS matches as explained in ������	�, for Heat Map 

images generated using atom coloring and Symmetrized Single Molecule Normalization. In sub6

figure (A), the distributions of quality scores correspond to all toxic leave6one6out predictions 

made for a subset of Kazius dataset molecules identified via toxicophore SMARTS matches, 

excluding the single molecule (“102861161”) for which a detoxifying substructure was also 

identified via SMARTS pattern matches. In sub6figure (B), the distributions of quality scores 

correspond to the subsets of those toxic predictions which were correct. The number of 

molecules (correctly) predicted to be toxic, hence the number of Heat Map images for which 

these distributions were generated, varied across methods: Random Forest classification 
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(averaged predictions) = 28 (25 correct); Random Forest classification (majority vote 

predictions) = 29 (26 correct); Probit6PLS = 30 (26 correct); SVM = 31 (28 correct).  The 

different quality scores distributions are annotated according to the different approaches used to 

obtain the underlying descriptor contributions: RF (LG, AP) = Random Forest classification 

(local gradients, averaged predictions); RF (LG, default) = Random Forest classification (local 

gradients, majority votes predictions); RF (K/P, AP) = Random Forest classification 

(Kuz’min/Palczewska, averaged predictions); Probit6PLS (linear coefficients); SVM (linear 

coefficients). The distributions are represented as boxplots, with the bold lines showing the 

medians and the superimposed circle the arithmetic means, with error bars denoting the standard 

errors in the means. 
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������	�� Heat Map (atom coloring & Symmetrized Single Molecule Normalization) analysis of 

binary classification leave6one6out predictions made for molecule “9669961” in the Kazius 

dataset. (A) Molecule with SMARTS matches shown in green for specific aromatic nitro 

toxicophore, derived from the work of Kazius et al.
48

 based on a combination of mechanistic 

reasoning, expert knowledge and data analysis, and experimental Ames test assignment reported 

in the Kazius dataset SDF file.
13

 The SMARTS matches  (B – F) Heat Map images: (B) Random 

Forest classification (Kuz’min/Palczewska, averaged predictions); (C) Random Forest 

classification (local gradients, majority vote predictions); (D) Random Forest (local gradients, 

averaged predictions); (E) Probit6PLS; (F) SVM. Predictions are reported as per ������	+. The 

SMARTS matches show the atoms matched to SMARTS patterns. SMARTS matching and 
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identification of matched atoms were carried out as per ������	�. The automated assessments of 

Heat Map quality are based on the scheme explained in ������	�. Quality scores, not to be 

confused with prediction scores, based on Heat Map correspondence to detoxifying groups were 

not assigned as no detoxifying groups were identified via SMARTS matching. 

*����	��	���������	(�
����	��	��
�	�
�	(�
����	

������	0 (B) and ������	�1 (B) correspond to ������	0 (A) and ������	�1 (A) respectively, 

after removing incorrect predictions. The corresponding average quality scores are summarized 

in Supporting Information tables S7 (corresponding to ������	0 (A) and ������	0 (B)) and S8 

(corresponding to ������	�1 (A) and ������	�1 (B)).  With the exception of SVM toxic 

predictions, there is an increase in the average numeric quality score, based on Heat Map 

correspondence to toxicophores, upon moving from all to correct and all toxic to correct toxic 

predictions. However, especially in the case of toxic predictions, this change is often quite small 

and the numbers of incorrect predictions are rather small, which may mean this finding is not 

robust. Nonetheless, these findings do suggest that in the case of an experimentally confirmed 

prediction, or in light of strong statistical grounds for believing a specific prediction is correct, 

the substructural cause of toxicity suggested by the (atom coloring, Symmetrized Single 

Molecule Normalization) Heat Map interpretation of the predictions may be considered more 

trustworthy. Hence, under these circumstances, the Heat Map image may be considered more 

useful for guiding lead optimization or suggesting the mechanism of toxic action.   
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����������	���'���	2
����	������	���������
����	
����
���	

Our work revealed that different approaches for interpreting Random Forest predictions may 

sometimes yield different interpretations. This can be observed by contrasting the Heat Map 

images (atom coloring, Symmetrized Single Molecule Normalization) corresponding to the same 

Random Forest classification (averaged predictions) prediction using either the 

Kuz’min/Palczewska (sub6figure B) or local gradients approach (sub6figure D) in the following 

figures: ������	+, ������	-, ������	., ������	��. Consideration of ������	�", which presents 

raw atom score estimates corresponding to ������	��, emphasizes that this is not merely an 

artefact of the Symmetrized Single Molecule Normalization scheme: the raw atom scores, 

derived from the different kinds of descriptor contributions, are clearly not identical. 

Consideration of ������	�" shows that the estimated influence of specific atoms on the 

prediction may, indeed, change sign. This could simply reflect the fact that the local gradients 

approach is not as good as the Kuz’min/Palczewska approach for estimating descriptor 

influences on the prediction, as may be indicated by consideration of the somewhat lower 

median Heat Map quality scores shown in ������	/ (A), ������	0, ������	�1. As to why this 

should be the case, we speculate that the manner in which local gradients are estimated in our 

work (see equation (5)) fails to take account of the possibility that switching the value of one 

binary descriptor might affect the manner in which the molecule of interest is passed down the 

trees of the forest. This could affect how other descriptors end up contributing to the prediction. 

This is a potential weakness compared to the Kuz’min/Palczewska approach, which merely takes 

account of the influence of the specific descriptor of interest on the prediction. 

Nonetheless, in spite of these "�������� limitations of the local gradients approach compared to 

the Kuz’min/Palczweska approach, it should be acknowledged that the correlation between 
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estimated raw atom scores was typically higher than observed for the example presented in 

(������	�"). This can be seen by comparing the Pearson’s correlation coefficient (0.74) between 

these two sets of estimated raw atom scores and the distribution of correlation coefficients 

summarized in ������	�) (arithmetic mean = 0.79, median = 0.93). 

 

 

������	�" Comparison between the estimated raw atom scores (2dp), for the molecule “9669961” 

in the Kazius dataset, derived from the descriptor contributions corresponding to a single leave6

one6out prediction made using Random Forest classification (averaged predictions) according to 

the Kuz’min/Palczewska (A) and local gradients (B) approaches. The raw scores were estimated 
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via processing output from the HeatMapWrapper tool
72

 in atom coloring and Symmetrized 

Single Molecule Normalization mode. The correlation between the corresponding raw atom 

score estimates, in terms of the Pearson’s correlation coefficient, is 0.74. The raw atom score 

estimates are used to annotate the corresponding atoms in the Heat Map (atom coloring & 

Symmetrized Single Molecule Normalization) image. N.B. The specific atom IDs, used to 

identify the corresponding atom score estimates, were identified as per ������	�. 

 

������	�) The distribution of pairwise similarities, calculated via the Pearson’s correlation 

coefficient using estimates of the raw atom scores derived from descriptor contributions 

generated via the Kuz’min/Palczewska and local gradients approaches, for all leave6one6out 
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Random Forest classification predictions (averaged predictions approach) made for a subset of 

molecules in the Kazius dataset identified via toxicophore SMARTS pattern matches. (The raw 

atom score estimates were  obtained via processing the output of the HeatMapWrapper 

program
72

 in atom coloring and Symmetrized Single Molecule Normalization mode.) The 

distribution is represented as a boxplot, with the bold line showing the median and the 

superimposed circle the arithmetic mean, with error bars denoting the standard error in the mean. 

CONCLUSIONS 

In this paper, a comparison was presented between the widely used non6linear Random Forest 

algorithm and well6known linear modelling approaches: Probit6PLS, PLS6regression, Support 

Vector Machines and Support Vector Regression, with the latter two approaches yielding linear 

models when employed with a linear kernel function. Specifically, these algorithms were 

compared in terms of their ability to build predictive models, based on commonly employed 

extended connectivity fingerprints, for numerical and categorical measures of biological activity 

on a variety of established benchmark datasets. As well as comparing the predictive performance 

of the models, using external cross6validation, the interpretability of individual predictions was 

also assessed.  

For Random Forest, different approaches for generating binary classification predictions and for 

interpreting individual predictions were investigated. To the best of our knowledge, our work 

represents the first time that methodologically distinct approaches for interpreting predictions 

obtained from a non6linear QSAR model have been compared. Predictions were interpreted via 

converting the corresponding substructural descriptor contributions, obtained via different 

algorithms, into colored Heat Map molecular images, as previously proposed. We demonstrated 
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that different ways of translating descriptor contributions into Heat Map images can yield 

different interpretations and we recommend the use of a novel approach to Heat Map generation: 

atom coloring combined with Symmetrized Single Molecule Normalization.  Another novelty of 

our work is the introduction of systematic assessment schemes for assessing the quality of Heat 

Map molecular images as a means of assessing the extent to which the corresponding predictions 

can be interpreted in a chemically and biologically meaningful fashion. These images are 

ultimately intended to provide information to chemists, hence require manual inspection. 

However, we advocate the use of our automated, numeric scoring scheme for systematic 

evaluation of trends in the degree to which Heat Maps generated according to different protocols 

can be meaningfully interpreted. A manual ranking scheme, applied to an initial set of Heat Map 

prediction interpretations corresponding to models based upon a variety of datasets, was 

determined to be too problematic for systematic evaluation of these images. However, due to 

implementation challenges and the requirement for molecular substructures responsible for 

(attenuating) biological activity to be encoded as SMARTS patterns, it was only practical to 

apply the automated scoring scheme to a subset of leave6one6out binary classification predictions 

obtained for an Ames mutagenicity dataset. 

Random Forest classification was observed to produce better predictive performance, on 

average, for most of the analyzed datasets. The non6default “averaged predictions” approach to 

generating classification predictions was typically observed to produce better predictive 

performance, on average, compared to the default “majority votes” approach. Random Forest 

regression was observed to less consistently outperform the other regression approaches. 

However, differences in performance were sometimes marginal and may not be robust. 
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This work emphasizes that predictions obtained from both the non6linear (Random Forest) and 

linear modelling algorithms considered here ��� be meaningfully interpreted via identifying 

regions of the molecule expected to be responsible for biological activity. A detailed evaluation 

was performed of Heat Map images obtained via a variety of interpretation approaches, each 

interpretation approach corresponding to a different combination of modelling algorithm and, as 

applicable, method for generating predictions and corresponding descriptor contributions from 

the model. Our evaluation was based on the distribution of numeric Heat Map quality scores 

obtained for leave6one6out predictions of Ames mutagenicity, denoting the extent to which those 

images correspond to the known toxicophores. Considering those distributions, the usefulness of 

Heat Map images corresponding to linear SVM predictions appeared somewhat higher on 

average than all other interpretation approaches and the Kuz’min/Palczewska approach to 

calculating descriptor contributions for Random Forest classification predictions (averaged 

predictions) yielded Heat Map images with slightly higher average quality scores than the local 

gradients approach. At least in terms of the median quality scores, a similar pattern was observed 

upon consideration of toxic predictions, for which Heat Map ability to identify toxicophores 

would be useful for medicinal chemists seeking to design out a toxic liability during lead 

optimization. These trends were also observed when only correct, or correct toxic, predictions 

were considered. 

Improved prediction quality seemed to typically correspond to improved interpretability, in terms 

of the correspondence between the Heat Map images and known toxicophores, based upon 

considering the same set of leave6one6out predictions of Ames mutagenicity. However, increases 

in average Heat Map quality scores were typically small, upon moving from all (toxic) to correct 

(toxic) predictions and only a small number of incorrect (toxic) predictions were considered.  
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Nonetheless, these findings suggest that, if the corresponding predictions were experimentally 

verified, there were even stronger grounds for believing the Heat Map images could be trusted to 

offer at least some insight into an unknown mechanism of action or opportunities for lead 

optimization. This also suggests that, where there are statistical grounds for high confidence in 

the prediction of an untested molecule, there are stronger grounds for drawing conclusions from 

the corresponding Heat Map image.  

Overall, we can advocate Random Forest as a suitable option for QSAR modelers interested in 

both accurate and interpretable predictions. In keeping with the literature, our results suggest 

Random Forest may yield better predictive performance than linear methods. They also indicate 

that our Open Source ���  and !�����"#��""�� software tools may allow for chemically and 

biologically meaningful interpretations of Random Forest predictions.  For the purpose of 

generating Heat Map molecular interpretations of those predictions, we advocate the use of atom 

coloring, in combination with our Symmetrized Single Molecule Normalization scheme, and 

tentatively suggest the Kuz’min/Palczewska approach may be preferable to the local gradients 

approach considered in our work. 

Supporting Information 

Supporting Information Available: (1) “SupportingInformation_doc_JCIM_rev.2.ret.pdf” 

contains three sections: (A) describes the methods used and computational analysis in greater 

detail; (B) explains how we generated our results; (C) summarizes additional results, including 

raw results provided in “additional.results.resub.fixed.zip”. (2) 

“FinalImagesAnalysis_withImages_resub.xlsx” presents the full analysis of all Heat Map images 

and corresponding predictions. (3) “repeating_ligand_bioactivity_searches.xlsx” documents how 

Page 63 of 84

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 64

experimental pKi and pIC50 values were obtained to derive the values reported in 

“FinalImagesAnalysis_withImages_resub.xlsx”. (4) “ligands_released.zip” presents copies of the 

ligand files used to generate Heat Map images. (5) “additional.results.resub.fixed.zip” provides 

additional raw results files. (6) “Kazius_2005_SI_SA_SMARTS_subset_v2.xls” provides the 

SMARTS patterns for toxicophores and detoxifying moieties used for automated, numeric 

scoring of Kazius LOO Heat Map images. This material is available free of charge via the 

Internet at http://pubs.acs.org. 
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