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Abstract

Interleukin-6 (IL-6) has been recently shown to play a central role in glucose homeostasis,

since it stimulates the production and secretion of Glucagon-like Peptide-1 (GLP-1) from

intestinal L-cells and pancreas, leading to an enhanced insulin response. In resting condi-

tions, IL-6 is mainly produced by the adipose tissue whereas, during exercise, skeletal mus-

cle contractions stimulate a marked IL-6 secretion as well. Available mathematical models

describing the effects of exercise on glucose homeostasis, however, do not account for this

IL-6 contribution. This study aimed at developing and validating a system model of exer-

cise’s effects on plasma IL-6 dynamics in healthy humans, combining the contributions of

both adipose tissue and skeletal muscle. A two-compartment description was adopted to

model plasma IL-6 changes in response to oxygen uptake’s variation during an exercise

bout. The free parameters of the model were estimated by means of a cross-validation pro-

cedure performed on four different datasets. A low coefficient of variation (<10%) was found

for each parameter and the physiologically meaningful parameters were all consistent with

literature data. Moreover, plasma IL-6 dynamics during exercise and post-exercise were

consistent with literature data from exercise protocols differing in intensity, duration and

modality. The model successfully emulated the physiological effects of exercise on plasma

IL-6 levels and provided a reliable description of the role of skeletal muscle and adipose tis-

sue on the dynamics of plasma IL-6. The system model here proposed is suitable to simu-

late IL-6 response to different exercise modalities. Its future integration with existing models

of GLP-1-induced insulin secretion might provide a more reliable description of exercise’s

effects on glucose homeostasis and hence support the definition of more tailored interven-

tions for the treatment of type 2 diabetes.
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Introduction

The cytokine Interleukin-6 (IL-6) has a central role in glucose homeostasis; however, the evi-

dence of its dual nature of as an adipokine (i.e., adipose tissue-derived cytokine) and as a myo-

kine (i.e., muscle-derived cytokine) has been a matter of scientific debate [1]. Experimental

and clinical evidences suggest that an altered secretion of adipokines by the adipose tissue

determines a condition of “chronic low-grade inflammation”, correlated to insulin resistance

and IL-6 as one of the adipokines involved in this process [2–5]. It has also been shown that

IL-6 is secreted by skeletal muscles during exercise [6], in an amount that has proven to be

considerable and depending on the intensity and duration of the exercise [7–9]. IL-6 has been

shown to trigger the secretion of anti-inflammatory cytokines [10,11] and to contribute to an

improvement of insulin-stimulated glucose disposal [12].

The dual nature of IL-6 has been unveiled by the recent observation that, as a response to

changes in insulin demand, it mediates the crosstalk between insulin-sensitive tissues (muscle

ad adipose tissue), intestinal L-cells, and pancreatic islets [13]. IL-6 release, either from the

contraction of skeletal muscle or from white adipose tissue, stimulates the production and

secretion of Glucagon-like Peptide-1 (GLP-1) from intestinal L-cells and pancreas. This leads

to an enhanced insulin response and, thus, to improved glycemic levels [14]. As a consequence,

increased levels of circulating IL-6 observed in chronic low-grade inflammation, may repre-

sent a compensatory mechanism to maintain glucose homeostasis in insulin resistant condi-

tions [15].

Only a few mathematical models describing the effects of an exercise bout on hormones

and metabolites involved in glucose homeostasis have been developed to date [16–22] but

none of them accounts for IL-6 contribution. This might indeed limit the scope of applicability

of these models. Thus, the aim of this study was to design a system model of the effects of phys-

ical exercise on plasma IL-6 dynamics, able to account for both the adipose tissue and the skel-

etal muscle release.

Materials and methods

Model formulation

When at rest, subcutaneous and visceral adipose tissues are the principal responsibles for IL-6

production [23,24]. During physical exercise, on the contrary, IL-6 production is sustained by

the skeletal muscle through intracellular signaling pathways. Depending on the duration and

intensity of exercise [7], plasmatic IL-6 concentration increases exponentially [8] and then, as

a result of this increase, the hepatosplanchnic viscera remove IL-6 from plasmatic circulation

[25]. Consistently, it was postulated here that the IL-6 dynamics can be described by the model

reported in Fig 1. Oxygen consumption provides a measure of exercise intensity and is usually

quantified as percentage of the maximal oxygen uptake (VO2max, [26]). In this study it was

hypothesized that oxygen consumption increases at the onset of exercise, reaches its target

value within 5–6 minutes and then remains constant during the exercise; at the end of exercise,

it is assumed to return to its basal value within 5–6 minutes, following the first order dynamics

described in Roy [18].

The overall model is described by the following ordinary differential equations:

dPVO2maxðtÞ
dt

¼ � 0:8 � PVO2max tð Þ þ 0:8 � u tð Þ PVO2max 0ð Þ ¼ 0 ð1Þ

dIL6mðtÞ
dt

¼ SRex � PVO2max tð Þ � km � IL6m tð Þ IL6m 0ð Þ ¼ 0 ð2Þ
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dIL6pðtÞ
dt

¼ km � IL6m tð Þ � ke � IL6p tð Þ þ
RaIL6

V
IL6p 0ð Þ ¼ IL6b ð3Þ

Eq (1) is taken from Roy et al. [18] and describes the dynamics of oxygen consumption for

the whole exercise duration and the recovery as a linear first-order differential equation. PVO2-

max(t) represents the suprabasal oxygen consumption, expressed as percentage of VO2max. u(t)
is the model input, representing the target value of the exercise intensity above the basal level:

uðtÞ ¼

0 0 < t < tstart
ex

Tv tstart
ex � t � tend

ex

0 t > tend
ex

ð4Þ

8
><

>:

The target value Tv ranges from 0 to 92%, considering a basal consumption equal to 8% of

the maximum value [27]. The coefficient 0.8 min-1 is chosen to allow PVO2max(t) to reach the

target value Tv in 5–6 minutes. In Eq (2), IL6m(t) represents the IL-6 concentration in the mus-

cle compartment. The first term on the right-hand side of Eq (2) accounts for muscle IL-6

increase from stationary conditions in response to muscle contraction during exercise, which

is described as linearly dependent on PVO2max(t) through SRex, representing the muscular IL-6

secretion rate. In Eq (3), IL6p(t) represents the IL-6 concentration in the plasma compartment.

The first term of the right-hand side of Eq (3) accounts for the increase in the plasma IL-6

from its basal value (IL6b) due to IL-6 released from the skeletal muscle. The second term of

Eq (3) represents the IL-6 removal from circulation after exercise operated by the hepatos-

planchnic viscera. Lastly, the third term accounts for the IL-6 production rate during non-per-

turbed conditions, which is represented by the adipose tissue contribution (RaIL6) normalized

to the distribution volume V. For given values of ke, V and IL6b, the value of RaIL6 was deter-

mined by imposing the steady-state condition (dIL6p(t)/dt = 0) representing the equilibrium of

Fig 1. Two-compartment description of the IL-6 dynamics during exercise. Skeletal muscle secretes IL-

6 in the local (muscle) blood flow (IL6m(t)) in response to change in oxygen consumption (PVO2max) with a

secretion rate equal to SRex. Plasma IL-6 (IL6p(t)) is the result of adipose tissue secretion (RaIL6),

hepatosplanchnic viscera removal (ke) and contribution coming from muscle compartment (through km).

https://doi.org/10.1371/journal.pone.0181224.g001
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the dynamic system described by Eqs (1–3):

RaIL6 ¼ ke � IL6b � V ð5Þ

The initial value of IL6b in Eq (3) was set to the fasting pre-exercise value. The parameter V
was assumed as fixed and assigned a numerical value taken from the literature [28]. The free

model parameters SRex, km and ke were identified by fitting the IL-6 plasma concentration data

during and after an exercise session as described in Parameter estimation.

Datasets

Four experimental studies and relevant datasets were used to build and validate the model, dif-

fering from each other in terms of implemented exercise protocol and hence allowing to inves-

tigate the ability of the model to predict changes in IL-6 response due to changes in exercise

intensity and duration.

• Dataset 1 (D1): Ostrowski et al. [29]. Venous blood was sampled in ten endurance-trained

male athletes before, during and after (6 h recovery period) 2.5 h of treadmill running at 75%

of their VO2max;

• Dataset 2 (D2): Fischer et al. [30]. Seven young healthy physically active non-athletes men

performed three hours of a dynamic two-legged knee-extensor exercise at 50% of their indi-

vidual maximal power output. Systemic arterial plasma IL-6 concentration was measured at

0, 30, 60, 120, 180, 210, 240, 300, 360 and 1380 minutes after the beginning of exercise;

• Dataset 3 (D3): Steensberg et al. [8]. Six young healthy not regularly training males per-

formed five hours of a dynamic one-legged knee-extensor exercise at 40% of their individual

maximal power output, and ~ 20% of their VO2max. Systemic arterial plasma IL-6 concentra-

tion was measured every hour during the exercise session;

• Dataset 4 (D4): Febbraio et al. [25]. Six healthy male subjects performed 120 min of semi-

recumbent cycling at 62% of their VO2max. Systemic arterial plasma IL-6 concentration was

measured immediately before exercise and at 30-min intervals during exercise.

In D1, D3 and D4 the target value for the exercise intensity was already expressed in terms

of %VO2max, thus allowing to exactly set the model input Tv. Conversely, an approximation

was required for D2 to convert exercise intensity from percentage of maximal power output to

%VO2max. The target value for exercise intensity Tv was set considering the conversion

reported in [31]. The values of Tv, IL6b and exercise duration for simulating the exercise proto-

cols are summarized in Table 1.

Parameter estimation

The estimation of the model parameters SRex, km and ke was performed by fitting literature

mean values of plasma IL-6 concentration, using a weighted non-linear least squares approach.

Table 1. Values of IL6b, Tv and exercise duration.

Study IL6b Tv Exercise duration

pg�ml-1 % min

D1: Ostrowski et al. [29] 1.7 67 150

D2: Fischer et al. [30] 1.7 47 180

D3: Steensberg et al. [8] 0.9 12 300

D4: Febbraio et al. [25] 1.8 54 120

https://doi.org/10.1371/journal.pone.0181224.t001
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The weighted residual sum minimization procedure was performed by using the Levenberg–

Marquardt algorithm implemented in the lsqnonlin Matlab1 (The MathWorks, Natick, MA,

USA) function. Each element of the diagonal of the weight matrix was set to be equal to the

reciprocal of the error variance of the IL-6 measurement. The errors in IL-6 measurements

were assumed to be normally distributed random variables, with zero mean and a constant

percent coefficient of variation (assumed equal to 6.9%, obtained by averaging the IL-6 intra-

assay coefficients of variation reported in the considered datasets). The precision of the esti-

mate of each parameter was expressed using the percent coefficient of variation, CV% = (SDpi

/ pi), where the standard deviation SDpi was derived from the inverse of the Fisher information

matrix and pi is the corresponding parameter estimate [32].

Cross-validation for parameters selection

The ideal set of parameters would be the one maximizing the ability of the model to reproduce

a dataset that is independent of the data that have been used to originally train it. A K-fold

cross-validation procedure was used to determine which, among the K considered datasets,

provides the “best” set of estimated parameters according to this criterion.

The K-fold cross-validation procedure included four stages, one per dataset Dk (with

k = 1,. . .,4). At each stage of the procedure, the investigated Dk was used as the training dataset

to estimate SRex, km and ke (as described in Parameter estimation), while the remaining three

datasets were used for the validation. The model predictions used for the validation were calcu-

lated using these estimated parameters, together with the IL6b value and model input (duration

and intensity of the exercise) from the corresponding protocol (Table 1). The total number of

observations available was N ¼
PK

k¼1
nk where nk is the number of observations in each Dk.

At each stage, the Mean Squared Prediction Error (MSPE) for each dataset was computed

as:

MSPEk ¼
1

nk

Pnk
j¼1
ðyj � y�j Þ ð6Þ

where yj is j-th experimental observation and yj

�

is the j-th model prediction. The Cross-Vali-

dation Prediction Error Estimate (CVPEE) for each stage of the procedure was then computed

as:

CVPEE ¼
1

N
PK

k¼1
nk �MSPEk: ð7Þ

The “best set” of estimated parameters was chosen as the one providing the lowest CVPEE.

Results

Results of the cross-validation are reported in Table 2. In all four stages, the value of V (IL-6

distribution volume) was set to 14 l according to reported experimental data [28]. The half-life

duration corresponding to the turnover rate ke was 13 min for D1, 56 min for D2, 147 min for

D3 and 51 min for D4.

According to the results reported in Table 2, the lowest CVPEE was obtained at Stage 1,

using dataset D1 as estimation set. Stage 1 was also characterized by having the lowest sum of

CV% associated to the estimations of SRex, km and ke. Accordingly, the data from Ostrowski

et al. [29] were selected as the one to be used for the parameter estimation. The mean of experi-

mental IL-6, together with the IL-6 model prediction as fitted applying Eqs (1–3), are shown in

Fig 2. The time course of the weighted residuals is shown in Fig 3.
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After the fitting with D1, the model was validated against the other three datasets. Figs 4A,

5A and 6A show the model predictions of the oxygen consumption kinetics. Figs 4B, 5B and

6B show the IL-6 concentrations obtained from the model validation, plotted alongside the

experimental data. The simulations of the IL-6 dynamics, ran imposing the initial conditions

used in [30], [8], [25] (IL6b values summarized in Table 1), led to computed values for RaIL6 of

1,252 pg/min, 809 pg/min and 1,335 pg/min, respectively.

Discussion

This study aimed at proposing and validating a system model describing the IL-6 dynamics

during an exercise bout. A preliminary single-compartment description has been proposed in

[33], however the novel two-compartment formulation here reported provides a more detailed

and physiologically sound description of the IL-6 dynamics within the skeletal muscle.

Although it’s typically assumed that both the exercise modality and the associated number

of engaged muscles play a role in determining IL-6 response [8,34,35], recent studies showed

that different exercise modalities with the same relative intensity (i.e. same %VO2max), may

result in similar absolute IL-6 releases [36]. For this reason, none of the model parameters

were designed to account for differences in the amount of muscles engaged in the exercise. As

a result, the model requires as an input only one target value of maximum oxygen consump-

tion, i.e., one value of %VO2max. This notably simplifies the mathematical description of the

exercise and, without a significant loss of precision, allows flexibility in predicting the IL-6

response to different kind of exercise (running, cycling, etc.). This is a notable advantage with

respect to the single-compartment formulation [33], which requires a continuous measure-

ment of the heart rate.

Table 2. Results of the cross-validation procedure.

Stage Estimation set Estimated parameters Sum of CV% CVPEE

SRex (CV%) km (CV%) ke (CV%) RaIL6

pg�ml-1�min-1 min-1 min-1 pg�min-1

1 D1 0.045 (7) 0.004 (10) 0.053 (<1) <18 17.5 1,261

2 D2 0.014 (9) 0.002 (<1) 0.012 (11) <21 48.6 296

3 D3 0.038 (171) 0.0002 (189) 0.0047 (92) 452 107 58

4 D4 0.637 (<1) 0.00008 (23) 0.013 (74) <98 86.2 340

https://doi.org/10.1371/journal.pone.0181224.t002

Fig 2. Model fit results. (A) PVO2max model prediction (B) Mean model fit (solid line) for IL-6. Measured IL-6

concentrations (means ± SEM) from Ostrowski et al. [29] are shown, along with the model fit.

https://doi.org/10.1371/journal.pone.0181224.g002
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The model-fit results, reported in Fig 2B, showed that the model is able to capture well the

experimental plasma IL-6 time course, although its peak value was slightly underestimated.

This is probably due to the chosen definition of the dynamics of the oxygen consumption,

which was simplistically represented as a first-order differential equation (Eq (1)), even though

the data used for the parameter estimation come from athletes performing a heavy-intensity

exercise. As suggested in the literature [37], in fact, at least two kinetic components should be

used to characterize the oxygen uptake response dynamics to a heavy-intensity exercise. None-

theless, this choice did not seem to affect the model credibility, as inferred from the fact that

the weighted residuals reported in Fig 3 were substantially randomly distributed.

The selected set of parameters represents the “best set” according to the cross-validation

procedure and provided plausible estimates, as confirmed by comparison with previously pub-

lished data. In fact, the IL-6 half-life has been previously found to range between 5 to 11 min

[28,38] and a turnover rate ke of 0.053 min-1, corresponding to a half-life of 13 min when

Fig 3. IL-6 weighted residuals.

https://doi.org/10.1371/journal.pone.0181224.g003

Fig 4. Model validation results obtained using the conditions reported in the study by Fischer et al.

(A) PVO2max model prediction (B) Measured IL-6 concentrations (means ± SEM) from Fischer et al. [30],

shown along with the model prediction (solid line).

https://doi.org/10.1371/journal.pone.0181224.g004
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considering a distribution volume of 14 l, was here estimated. Subcutaneous abdominal adi-

pose tissue IL-6 release in resting conditions has been previously reported to be 3.84 pg/100 g

adipose tissue/min [24]. Assuming that subcutaneous and visceral adipose tissue masses

release IL-6 at the same rate, for a non-obese individual, an IL-6 production rate for the whole

body adipose tissue mass (subcutaneous and visceral) of about 1 ng/min can be extrapolated

[24]. This latter value is consistent with the range of RaIL6 (0.8�1.3 ng/min) values obtained

in the present study. The RaIL6 values remained physiologically meaningful (ranging from

1,080 to 1,450 pg/min) even when accounting for IL6b variability (expressed as mean ± SEM)

in the dataset selected for parameter estimation. The estimates of RaIL6 and ke provided by the

other three datasets, conversely, were not physiologically meaningful.

The IL-6 secretion rate from adipose tissue increases at the end of a moderate exercise bout

and then remains higher for a prolonged post-exercise period [23]. The fact that this value was

set as constant within the model here investigated, should not have affected its accuracy, since

the relative contribution to systemic IL-6 level from organs other than the contracting skeletal

muscles is negligible during and after exercise [28]. Further studies are needed to fully corrob-

orate this hypothesis.

Fig 5. Model validation results obtained using the conditions reported in the study by Steensberg

et al. (A) PVO2max model prediction (B) Measured IL-6 concentrations (medians and quartiles) from

Steensberg et al. [8], shown together with the model prediction (solid line).

https://doi.org/10.1371/journal.pone.0181224.g005

Fig 6. Model validation results obtained using the conditions reported in the study by Febbraio et al.

(A) PVO2max model prediction (B) Measured IL-6 concentrations (means ± SEM) from Febbraio et al. [25],

shown together with the model prediction (solid line).

https://doi.org/10.1371/journal.pone.0181224.g006
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The model reproduced well the effects on plasma IL-6 concentration due to changes in the

exercise duration and intensity. Its predictions were less accurate for low- than for high-inten-

sity exercise protocols (Fig 5 vs. Figs 4 and 6), for which the predicted peak value fell outside

the range of experimental values. The model prediction, however, might still be considered as

acceptable in light of the fact that previous studies on IL-6 response to low-intensity exercise

reported no increase during exercise [10,39]. Notably, the deviation of the model output from

the experimental data at the beginning of the exercise (Fig 4 and Fig 6) does not affect the over-

all IL-6 dynamics and the extent of the IL-6 increase. Such deviation could be ascribed to dif-

ferences among the subjects considered in the three chosen validation studies and, more

specifically, to the effect that the training status and the relevant muscular glycogen content

might have had on the IL-6 dynamics [34,35].

GLP-1-based clinical therapies have firmly established their importance among the thera-

peutical approaches available for the treatment of type 2 diabetes [40–42]; their action is

exerted by potentiating glucose-stimulated insulin secretion. Interestingly, GLP-1 secretion

increases in an IL-6-dependent manner [14], but also as a function of glucose transit into the

gastrointestinal tract [43]. Whereas mechanistic models enabling the quantitation of insulin

response to GLP-1, as well as models of GLP-1-mediated insulin response to glucose transit

into the gastrointestinal tract [44–49] have been previously proposed, the GLP-1 response to

IL-6 has never been modeled. The system model here proposed could be seen as an important

step toward the modeling of this response, and as such as a step toward the improvement of

GLP-1-based clinical therapy. An integrated description of the GLP-1-induced insulin secre-

tion, accounting for the contribution of exercise-induced IL-6 and of the meal-induced glucose

transit into the gastrointestinal tract could allow to reliably describe the response to exercise in

real-life situations. More importantly, this approach could be used to quantify the combined

effects of exercise and meal on glucose homeostasis regulation, hence favoring the definition

of a tailored exercise-based intervention in the control of insulin secretion for the treatment of

type 2 diabetes. Future research is recommended in this direction.

In conclusion, this study proposes an innovative two-compartment system model of the

effects of an exercise bout on IL-6 dynamics. The model is able to describe data from various

exercises, it is precise in the parameter estimation, and it is in good agreement with published

values of various experimentally measured physiological quantities.
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21. Švitra D, Basov I, Vilkyte R. Modelling of glycaemia dynamics: impact of physical exercises. Nonlinear

Anal Model Control. 2010; 15: 213–232.

22. Singh S, Kumar D. A Mathematical model on glucose-insulin regulatory system with the impact of physi-

cal activities. Computational and Mathematical Biology 2016; 5: 5–8.
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