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Skeletal	muscle	oxidative	capacity	is	highly	plastic,	strongly	associated	with	whole-body	aerobic	21	

capacity	 (16,18)	 and	 state	 of	 health.	 Loss	 of	 muscle	 oxidative	 capacity	 is	 associated	 with	 physical	22	

inactivity,	aging	and	chronic	disease	(17),	and	has	been	implicated	in	the	pathophysiology	of	obesity	and	23	

diabetes	(21).	Evaluating	these	changes	has	traditionally	been	limited	to	invasive	or	costly	assessments	24	

(biopsy	 or	
31

P	 MRS).	 To	 address	 this,	 Hamaoka	 and	 colleagues	 developed	 an	 innovative,	 non-invasive	25	

approach	 using	 near-infrared	 spectroscopy	 (NIRS)	 to	 quantitatively	 measure	 muscle	 oxygen	26	

consumption	(mV̇O2;12)	and	use	this	to	infer	muscle	oxidative	capacity	based	on	the	mV̇O2	recovery	rate	27	

constant	 (k)	 (23;	 later	 modified	 26).	 This	 technique	 has	 been	 subsequently	 used	 to	 interpret	 relative	28	

differences	in	oxidative	capacity	across	a	wide	range	of	muscles,	ages	and	disease	states	(Figure	1C).	The	29	

purpose	of	this	Viewpoint	is	to	open	a	discussion	on	the	principles,	insights	and	potential	pitfalls	of	using	30	

NIRS	to	measure	k	and	infer	muscle	oxidative	capacity.	31	

	32	

Principles	33	

First	 order	 Michaelis-Menten	 enzyme	 kinetics	 dictates	 that	 mV̇O2	 kinetics	 are	 directly	34	

proportional	to	muscle	oxidative	capacity	(6,20,22).	This	concept	is	broadly	supported	when	comparing	35	

across	species	during	whole-body	exercise	(24);	and	was	specifically	identified	in	the	recovery	k	of	single	36	

frog	muscle	fibers	(r
2
=0.77;	33)	(20).	Such	observations	form	the	basis	to	infer	muscle	oxidative	capacity	37	

from	 k	 in	 humans.	 Of	 note,	 this	 is	 distinct	 from	 the	 recovery	 k	 of	 pulmonary	 V̇O2	 following	 exercise,	38	

which	 is	 dependent	 on	 both	 muscle	 and	 circulatory	 function.	 Isolated	 muscle	 cellular	 V̇O2	 can	 be	39	

measured	 by	 NIRS	 during	 arterial	 occlusion	 from	 the	 changes	 in	 concentration	 of	 oxy-	 and	 deoxy-	40	

hemoglobin	and	myoglobin	(10,13)	i.e.	in	the	absence	of	blood	flow,	muscle	deoxygenation	occurs	solely	41	

by	 O2	 consumption.	 For	 this	 method,	 brief	 light-intensity	 muscle	 contractions	 are	 used	 to	 elicit	 an	42	

increase	 in	 mV̇O2,	 after	 which	 recovery	k	 is	 assessed	 using	 a	 series	 of	 intermittent	 arterial	 occlusions	43	

(each	 5-10	 s,	 separated	 by	 5-20	 s	 of	 reperfusion;	 Figure	 1A,	 1B).	 Recovery	 k	 by	 NIRS	 has	 been	44	

experimentally	validated	against	
31

P	MRS	(r
2
=0.77-0.90;	29)	and	muscle	biopsy	(r

2
=0.46;	25);	 the	 ‘gold-45	

standard’	techniques	for	muscle	oxidative	capacity	measurement.		46	

	47	

Insights	48	

The	major	advantage	of	NIRS-based	muscle	oxidative	capacity	estimation	 is	 its	relative	ease	of	49	

application	 compared	 with	 muscle	 biopsy	 or	
31

P	 MRS.	 It	 is	 non-invasive,	 relatively	 inexpensive,	 short	50	

duration	 and	 well	 tolerated.	 The	 isolated	 nature	 of	 the	 brief	 muscle	 contractions	 allows	 even	51	

functionally	limited	patients	to	perform	the	test.	Assessment	of	different	superficial	limb	muscle	groups	52	
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(plantar	 flexors,	 knee	 extenders,	 wrist	 flexors),	 or	 between	 limbs	 (e.g.	 for	 unilateral	 impairments),	 is	53	

highly	 feasible.	 The	 technique	 is	 particularly	 useful	 for	 assessing	 longitudinal	 change	 or	 interventional	54	

efficacy,	such	as	following	the	response	to	training	(7,28,30).	55	

In	 the	 past	 five	 years	 the	 technique	 has	 found	 wide	 application	 in	 health	 (5,28)	 and	 clinical	56	

populations	(1-4,8,9,27,30,34).	Figure	1C	shows	k	values	across	a	wide	range	of	muscle	groups,	age	and	57	

health	status.	These	data	reveal	the	extreme	plasticity	of	relative	muscle	oxidative	capacity	(c.f.	16),	with	58	

a	 ~5-fold	 difference	 between	 muscles	 in	 motor-complete	 spinal	 cord	 injured	 patients	 and	 endurance	59	

athletes.	 Evidence	 of	 the	 well-established	 age-associated	 decline	 in	 muscle	 oxidative	 capacity	 is	 seen	60	

among	 these	 cross-sectional	 studies	 in	 both	 upper	 and	 lower	 limb	 muscles.	 Also	 observed	 is	 the	61	

somewhat	 lower	 oxidative	 capacity	 of	 the	 wrist	 flexors	 compared	 with	 the	 vastus	 lateralis	 or	62	

gastrocnemius	 muscles	 across	 comparable	 groups,	 presumably	 reflecting	 the	 lower	 expression	 of	63	

oxidative	type	I	muscle	fibers	in	the	forearm.	Loss	of	muscle	oxidative	capacity	(~25-45%	vs.	similar	aged	64	

controls)	 is	 seen	 in	 COPD	 (GOLD	 class	 3-4)	 and	 CHF	 (NYHA	 class	 I-III),	 a	 loss	 that	 appears	 consistent	65	

between	upper	and	lower	limbs.	66	

	67	

Potential	Pitfalls	68	

As	 a	 major	 advantage	 of	 the	 NIRS	 approach	 is	 that	 it	 relies	 on	 mV̇O2	 kinetics	 to	 estimate	69	

oxidative	 capacity,	 quantification	 of	 absolute	 mV̇O2	 (which	 is	 complex	 by	 NIRS)	 is	 not	 necessary;	 only	70	

relative	 change	 in	 mV̇O2	 over	 time	 is	 required.	 However,	 method	 relies	 on	 at	 least	 two	 competing	71	

assumptions	and	some	technical	limitations.		72	

Two	key	assumptions	are:	1)	 that	mitochondrial	oxidative	enzymes	are	maximally	activated	by	73	

the	brief	contractions,	 ratifying	 the	assumption	of	 ‘functionally’	 first	order	enzyme	kinetics	 (21,32,33);	74	

and	2)	that	O2	concentration	is	not	limiting	to	k	(15,33).	Recent	studies	suggest	that	control	of	oxidative	75	

phosphorylation	 in	 human	 muscle	 is	 not	 first	 order	 (19).	 However,	 exercise	 rapidly	 activates	76	

mitochondrial	enzymes	(11,19)	and	the	recovery	of	this	activation	process	 is	slow	in	relation	to	k	(19).	77	

The	NIRS	approach	relies	upon	brief	contractions	to	release	inhibition	of	mitochondrial	enzyme	activity	78	

such	 that	 linear	 proportionality	 exists	 between	 cellular	 oxidative	 capacity	 and	 k	 (33).	 An	 insufficient	79	

contraction-related	stimulus	could	result	in	a	low	k	that	misrepresents	the	‘true’	oxidative	capacity.	Low	80	

activation	may	also	reduce	the	confidence	of	the	fitted	curve	and	the	modeled	k.	While	there	appears	to	81	

be	no	ordering	effect	of	repeated	measurements	made	during	the	same	visit	 (1,9,27),	we	caution	that	82	

poor	test-retest	reproducibility	of	k	 is	 found	 in	participants	with	a	 low	contraction-induced	 increase	 in	83	

mV̇O2	(1).	84	
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Recovery	 k	 only	 reflects	 oxidative	 capacity	 when	 [O2]	 is	 abundant	 (33).	 As	 exercise	 and	 the	85	

imposed	arterial	occlusions	required	by	the	method	reduce	muscle	PO2,	care	is	required	that	[O2]	does	86	

not	become	limiting.	Haseler	et	al.	(15)	showed	that	PCr	recovery	was	slowed	during	hypoxia	compared	87	

with	 normoxia.	 For	 this	 reason	 it	 is	 recommended	 that	 NIRS	 estimation	 of	 oxidative	 capacity	 be	88	

preceded	by	a	~5	min	arterial	occlusion,	to	 identify	the	functional	range	of	tissue	O2	saturation	(StO2).	89	

Subsequently,	brief	contractions	and	occlusions	are	metered	such	that	StO2	remains	high	(1).	Little	data	90	

exists	to	determine	whether	or	not	this	‘ischemic	preconditioning’	acutely	alters	mitochondrial	function	91	

or	recovery	k.	Nevertheless,	as	StO2	is	measured	by	NIRS	itself,	the	assessor	can	administer	the	test	so	as	92	

to	ensure	that	recovery	k	remains	a	reflection	of	the	intrinsic	intramuscular	capacity	for	oxidation,	and	93	

independent	of	vascular	function.		94	

There	exist	technical	challenges	with	the	NIRS	assessment	that	also	require	consideration.	Early	95	

attempts	 at	 NIRS-based	 mV̇O2	 measurement	 identified	 that	 tissue	 hemoglobin	 often	 varies	 during	96	

arterial	 occlusion.	 This	 was	 attributed	 to	 residual	 pressure	 gradients	 causing	 movement	 of	 heme	97	

chromophores	in	and/or	out	of	the	NIRS	field	of	view,	even	during	arterial	occlusion	(26).	Thus,	if	total	98	

hemoglobin	 is	not	constant,	changes	 in	deoxy-hemoglobin	and	myoglobin	may	result	from	not	only	O2	99	

consumption	 but	 also	 hemo-concentration/dilution.	 To	 address	 this,	 Ryan	 et	 al.	 (26)	 developed	 a	100	

correction	 method	 for	 hemoglobin	 volume	 change,	 based	 on	 the	 instantaneous	 relative	 oxygenation.	101	

Other	studies	have	used	spatially	resolved	spectroscopy	(10)	to	estimate	StO2,	producing	similar	results	102	

(1).	 Nevertheless,	 failure	 to	 adequately	 control	 for	 hemoglobin	 changes	 during	 the	 brief	 arterial	103	

occlusions	will	influence	the	measured	k.	104	

The	technique	relies	upon	complete	occlusion	of	blood	flow,	such	that	changes	in	oxygenation	105	

reflect	only	mV̇O2:	 should	partial	occlusion	occur	 (particularly	 relevant	 to	measurements	of	 the	vastus	106	

lateralis	 in	 well-muscled	 or	 obese	 individuals),	 the	 result	 becomes	 misleading.	 This	 requirement	107	

effectively	limits	the	application	to	limb	muscles,	as	respiratory	or	abdominal	muscles	cannot	be	easily	108	

subject	to	arterial	occlusion.	109	

Other	 considerations	 for	 valid	 and	 reproducible	 application	 of	 the	 technique	 include	 that	 the	110	

skin	 and	 adipose	 tissue	 thickness	 be	 low	 enough	 that	 the	 diffused	 NIRS	 light	 can	 reach	 muscle,	 and	111	

sufficient	intensity	of	light	is	received	at	the	NIRS	detector.	Poor	probe	placement,	large	skinfold	or	high	112	

skin	melanin	content	can	obfuscate	these	requirements.		113	

Overall,	the	test-retest	reliability	of	k	assessment	by	NIRS	is	good	(coefficient	of	variation,	~10%;	114	

intraclass	correlation	coefficient	range,	0.26-0.93;	1,26,31),	and	is	typically	non-inferior	to	biopsy	or	
31

P	115	

MRS	methods.	Both	NIRS	and	
31

P	MRS	have	the	added	advantage	that	they	sample	a	 larger	volume	of	116	
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(albeit	 superficially-weighted)	 muscle	 than	 biopsy.	 But	 test-retest	 variability	 is	 somewhat	 large	117	

compared	 to	 the	 typical	 effect	 size	 of	 oxidative	 capacity	 loss	 observed	 in	 disease	 (Figure	 1C).	 For	 this	118	

reason	 it	 is	 recommended	 to	 average	 2-3	 repeat	k	 measurements	 in	 the	 same	 individual	 to	 minimize	119	

variability	and	increase	sensitivity	(1,9,27).	120	

By	meeting	each	of	 these	conditions,	a	 reliable	estimate	of	 relative	muscle	oxidative	capacity,	121	

independent	of	macro-	or	microvascular	(dys)function,	can	be	inferred	from	k.	122	

	123	

Conclusion	124	

Test-retest	 reliability	 is	 sufficient	 across	 several	 labs	 for	 muscle	k	 assessment	 to	 be	 used	 as	 a	125	

non-invasive	 tool	 to	 assess	 the	 efficacy	 of	 interventions	 designed	 to	 ameliorate	 muscle	 mitochondrial	126	

impairment	in	patients	with	chronic	disease.	The	ease	of	application	of	the	method	is	a	major	benefit,	127	

but	 quality	 control	 procedures	 are	 needed	 to	 ensure	 measurement	 validity	 and	 to	 minimize	 error.	128	

Overall,	the	NIRS-based	assessment	of	muscle	k,	originally	developed	by	Hamaoka	and	colleagues,	offers	129	

promise	to	simplify	 identification	of	relative	changes	in	muscle	oxidative	capacity	in	both	research	and	130	

clinical	settings.	131	

132	
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FIGURE		225	

	226	

Figure	 1.	 Muscle	 oxygen	 consumption	 (mV̇O2)	 recovery	 rate	 constant	 (!)	 by	 near-infrared	227	

spectroscopy.	 Panels	 A	 and	 B	 show	 an	 example	 of	 the	 oxidative	 capacity	 test	 by	 NIRS	 in	 the	 medial	228	

gastrocnemius	of	a	54	year-old	 female.	Panel	A	shows	the	changes	 in	 the	tissue	saturation	 index	 (TSI)	229	

during	dynamic	exercise	(EX,	grey	area)	and	subsequent	intermittent	arterial	occlusions	at	rest.	Panel	B	230	

shows	 the	 mV̇O2	 recovery	 kinetics	 derived	 from	 the	 rate	 of	 change	 of	 TSI	 during	 intermittent	 arterial	231	

occlusions	measured	 from	panel	A.	The	mV̇O2	 recovery	data	are	 fit	 to	an	exponential	 (dashed	 line)	 to	232	

estimate	the	recovery	k.	The	time	constant	(τ)	is	the	reciprocal	of	the	rate	constant	k	(τ	=	1/k).	Panel	C	233	

summaries	 current	 reports	 of	 the	 mV̇O2	 recovery	 rate	 constant	 (k),	 which	 is	 proportional	 to	 oxidative	234	

capacity,	 in	 upper	 and	 lower	 limbs	 of	 adults	 in	 health	 and	 disease.	 Panel	 A	 and	 B	 are	 redrawn	 with	235	

permission	from	(1).	236	
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Data	are	mean	±	SD.	

Muscles:	FDS,	!lexor	digitorum	super!icialis	(dominant	arm);	MF,	medial	forearm	(non-dominant	arm);	MG,	medial	gastrocnemius;	TS,	triceps	surae;	WF,	

wrist-≅lexors	(non-dominant	arm);	VL,	vastus	lateralis.

Abbreviations:	 CHF,	 chronic	 heart	 failure;	 COPD,	 chronic	 obstructive	 pulmonary	 disease;	 GOLD,	 Global	 Initiative	 for	 Obstructive	 Lung	 Disease	

functional	class;	k,	mVO
2
	rate	constant;	mVO

2
,	muscle	oxygen	consumption;	NYHA,	New	York	Heart	Association	functional	class;	Ref.,	reference	list	

number.

Ref. Age Muscle Health Status

(5) 25 ± 3 VL Endurance athletes

(29) 23 ± 3 MG Healthy

(25) 26 ± 2 VL Healthy

(9) 20 ± 11 VL Cystic fibrosis

(4) 31 ± 12 MF Healthy

(4) 32 ± 13 MF Friedreich ataxia

(3) 61 ± 9 MG Smokers with normal spirometry

(27) 46 ± 13 TS Healthy

(30) 61 ± 5 WF Healthy

(3) 67 ± 10 MG COPD GOLD 1-2

(30) 65 ± 7 WF CHF NYHA II-III

(2) 62 ± 7 MF Smokers with normal spirometry

(27) 48 ± 9 TS Amyotrophyc lateral sclerosis

(3) 66 ± 10 MG COPD GOLD 3-4

(14) 49 ± 10 MG Multiple Sclerosis

(2) 64 ± 9 MF COPD GOLD 2-4

(34) 65 ± 9 FDS CHF NYHA I-III

(8) 43 ± 11 VL Spinal cord injury

(7) 45 ± 11 VL Motor-complete spinal cord injury
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