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Abstract—Tracking of arbitrarily shaped extended objects is
a complex task due to the intractable analytical expression of
measurement to object associations. The presence of sensor noise
and clutter worsens the situation. Although a significant work has
been done on the extended object tracking (EOT) problems, most
of the developed methods are restricted by assumptions on the
shape of the object such as stick, circle, or other axis-symmetric
properties etc. This paper proposes a novel Gaussian process
approach for tracking an extended object using a convolution
particle filter (CPF). The new approach is shown to track
irregularly shaped objects efficiently in presence of measurement
noise and clutter. The mean recall and precision values for the
shape, calculated by the proposed method on simulated data are
around 0.9, respectively, by using 1000 particles.

I. INTRODUCTION

Tracking extended objects aims to estimate the kinematic

states and shape parameters of an object of interest using

measurements reported by a sensor. Objects can be categorised

based on the number of object measurements generated by

the sensor per sample time i.e. when multiple or a single

measurement is observed, the object is referred to as an

extended object or a point object, respectively [1]. A large

group of point objects moving in a coordinated fashion may

also be modelled as an extended object [2].

The problem of tracking large groups is modelled in a

similar way to extended object tracking (EOT) problems [2].

In [3] a Poisson likelihood model is used. In this case the

measurement associations are resolved using Poisson models.

In [4] the random matrix approach is used to model the

extent as a random matrix. In [5] random finite sets methods

are shown to track extended objects by modelling the target

state and extent using finite set statistics (FISST). In all of

the above mentioned approaches and mostly in general, the

object shape is modelled using basic geometrical shapes e.g.

stick [6] , circle [7], rectangle [8], ellipse [4], [9]. The tracking

performance can be improved by considering a more detailed

shape model, as in [10], [11] and the proposed approach.

The analytical form of likelihood cannot be derived for

the EOT problem, as the measurements relate to the states

non-linearly. The method proposed in this paper does not

require explicit likelihood function for estimation. In [10] a

Gaussian Process (GP) based extended Kalman filter (EKF) is

proposed. The EKF tracks the object kinematics and states

for both target contour and surface scenarios, however the

performance degrades with increasing levels of non-linearity

In [12], a Rao-Blackwellised particle filter (RBPF) based

approach is used to sample the kinematics states of object and

a GP regression based Kalman filter is used to track extent.

This approach provides improved efficiency compared to [10],

however in both the approaches the data association is not

resolved. In [11], a star-convex random hypersurface model

(RHM) is proposed to track star convex shapes. In surface

models of GP-EKF, GP-RBPF and RHM, a distribution of

measurements is required. The performance degrades when

the statistical properties of actual measurements, which are not

known in real world problems, are different from the modelled

distribution. The data association is resolved in [13], where

EKF is used in labelled multi-Bernoulli (LMB) framework

and multiple extended objects are tracked. In the proposed

approach highly non-linear target kinematics model is consid-

ered along with sensor clutter. The measurements are assumed

to be coming from surface, however the statistical properties

of the measurements are not required by the filter. In [8],

[9] the convolution particle filter (CPF) is used to track an

extended object but the object shape is assumed to be basic

i.e. rectangular and ellipse. In the proposed approach the CPF

is used to track a more complex shaped object.

In this paper a novel method for EOT is proposed. A CPF

samples both the kinematics and extent states. As many GPs,

as the number of particles, are trained on the extent samples.

The GP is used to define the CPF kernel by estimating a

hypersphere in measurement space. The CPF then resolves

the data association in presence of sensor noise and clutter

using the hypersphere and updates the particle weights to give

an output estimate.

The rest of the paper is organized as follows. Section II

describes the GP framework, Section III presents the convo-

lution PF and Section IV formulates the problem using GP in

CPF framework. The performance validation of the approach

is done in Section V followed by conclusion in Section VI.

II. GAUSSIAN PROCESS

A GP is defined by a mean function and a covariance

kernel. It is a stochastic process which maps an input to

an output space. The covariance kernel is characterised by

hyperparameters. An elaborate insight into different aspects

of GPs and kernel design is given in [14]. Let the input and

output spaces be represented by the random vectors θ and

r, respectively. A GP GP (µ(θ),C(θ,θ′)) is described by a



non-linear function f

r = f(θ). (1)

The GP learns the hyperparameters from a given set of

training data, denoted as D. When trained on N input-output

pairs, D = {(r1,θ1), · · · (rN ,θN )}, the function values are

normally distributed with the modelled GP mean and covari-

ance i.e.

[f(θ1)
Tf(θ2)

T · · ·f(θN )T ]T = N (µ(θ),C(θ,θ′)), (2)

µ(θ) = E[f(θ)], (3)

C(θ,θ′) = Cθθ = E[(f(θ)− µ(θ))(f(θ′)− µ(θ′))T ], (4)

C(θ,θ′) =











k(θ1, θ1) k(θ1, θ2) ... k(θ1, θN )
k(θ2, θ1) k(θ2, θ2) ... k(θ2, θN )

...
...

...
...

k(θN , θ1) k(θN , θ2) ... k(θN , θN )











, (5)

where E[.] is the mathematical expectation operation. For each

matrix element the first parameter of the kernel k is from θ and

the second parameter is from θ′. Each element of the matrix is

found by evaluating the values using a kernel. The parameters

of the kernel are called hyperparameters e.g. the hyperparame-

ters of the kernel given in (16) are σ2
f and σ2

a. To determine the

optimum value of hyperparameters for the functional mapping,

the likelihood p(f(θ)|θ,D) = N (µ(θ),Cθθ′ + σ2IN ) is

maximised over the hyperparameters. A trained GP, having

learned the hyperparameters, can then predict the output vector

at new locations given by θ⋆. Assume the new locations

to be normally distributed as N (µ(θ⋆),C(θ⋆,θ⋆′

)) and let

the sensor measurement noise is σ2IN , where IN is an N-

dimensional identity matrix. The joint distribution of already

given input locations and predictive locations is given by
[

f(θ)
f(θ⋆)

]

∼ N
(

[

µ(θ)
µ(θ⋆)

]

,

[

Cθθ + σ2IN Cθθ⋆

Cθ⋆θ Cθ⋆θ⋆

]

)

. (6)

Using (6) the predictive distribution can be written as

p(f(θ⋆)|θ⋆,D) = N (Cθ⋆θ(Cθθ + σ2IN )−1f(θ),Cθ⋆θ⋆

−Cθ⋆θ(Cθθ + σ2IN )−1Cθθ⋆). (7)

III. CONVOLUTION PARTICLE FILTER

The CPF was first proposed in [15]. Consider the following

model:

xk = fk(xk−1,wk), (8)

zk = gk(xk−1,νk), (9)

where xk is the state vector, fk is the time update function for

state with wk process noise, zk is the vector of measurements

which is related to the state and the sensor error νk through

a function gk. The subscript k represents a discrete time step.

The aim is to estimate the posterior density of the state given

all measurements up to the current time step k as given below

p(xk|z1:k) =
p(xk, z1:k)

p(z1:k)
. (10)

A discrete set of points x̃k, z̃1:k can be simulated by updating

the initial particle set x̃0 with the time update in (8) and by

simulating measurements with (9). The empirical estimates

from these point estimates are given below

µN
k =

1

N

N
∑

n=1

δ(x̃k,z̃1:k), ν
N
k =

1

N

N
∑

n=1

δz̃1:k
, (11)

where δ(·) is Dirac measure. The estimates of the posterior

distribution can be obtained by the convolution of empirical

measures with a kernel (Kh) where h is kernel bandwidth.

pN (xk, z1:k) = K
(x̃,z̃1:k)
h ∗ µN

k

=
1

N

N
∑

n=1

Kx̃
h (x̃− x̃(n))K z̃

h (z̃1:k − z̃
(n)
1:k ), (12)

pN (z1:k) = K z̃1:k

h ∗ νNk =
1

N

N
∑

n=1

K z̃
h (z̃1:k − z̃

(n)
1:k ), (13)

K z̃
h (z̃1:k − z̃

(n)
1:k ) =

k
∏

l=1

Kz
h(zl − z̃

(n)
l ), (14)

where Kx̃
h and K z̃

h are Parzen-Rozenblatt kernels of appro-

priate dimensions. The posterior, also called CPF density

estimator, can be estimated using (10) and (12) - (14) as given

below

pN (xk|z1:k) =

∑N
n=1 K

x̃
h (x̃− x̃(n))K z̃

h (z̃1:k − z̃
(n)
1:k )

∑N
n=1 K

z̃
h (z̃1:k − z̃

(n)
1:k )

. (15)

IV. GP-CPF APPROACH

In order to solve the EOT problem, the centre of the

object (COO) is tracked simultaneously with its extent, where

the extent is modelled as a function of angles respect to

COO. Modelling in this way converts the complex problem of

associating the measurements to the respective point objects

to a relatively simple problem.

A. Covariance Kernel

The covariance kernel is the core of GP based predictive

models. The kernel is designed to predict radial values at input

angles other than θb. The kernel is required to be periodic in

the θ domain. The predicted values are required to be smooth

between the two neighbouring angles, and uncorrelated with

all other angles, in order to allow the output shape to be

irregular. This can be achieved by determining pre-hand a set

of hyperparameters that allow this behaviour. As a result there

is no need to optimise the hyperparameters online and the

processing complexity is reduced. A periodic kernel, inspired

from the Von Mises distribution, is designed

kvm(θi, θj) = σ2
fe

σ2

acos(θi−θj), (16)

where σ2
f , σ

2
a control the variance of the kernel amplitude.

B. Crowd Extent Model

The shape of the crowd is assumed to be star convex and

is modelled using a GP similar to [10]. The crowd extent is

modelled as a function of angle from COO i.e.

r = f(θ), (17)

where θ can vary from 0 to 2π. The extended object can take

any arbitrary shape as given in Fig. 1a. Two coordinate frames,

namely global and local, along with their relationship are also

shown in Fig. 1a. The radial function is modelled in local

frame. The function f can be visualized by looking at Fig.

1b. The GP is used to map this function. The measurement

vector zk observed by sensor at time k for l = 1, 2, ..., L
measurements can be written as

zk = [xz
k,1, y

z
k,1, x

z
k,2, y

z
k,2, · · · , x

z
k,L, y

z
k,L]

T , (18)



x(Global)

y(Global)

x(Local)

y(Local)

xL

yL

⊗

xp

yp Point p

θp

(xp, yp)

(xL, yL)

(0, 0)

r = f(θ) = xp−xL

cos(θ)

Origin

rp

(a) Crowd Extent Model

⊗

Point p

0 2π

rp

θp
θ

r

r = f(θ)

(b) Radial Function

Fig. 1: (a) Two coordinate systems are depicted namely Global

and Local. Sensor measurements and filter output are given in

the Global whereas the GP is modelled in Local coordinates.

The origin of Local is at the centre of the extended object.

(b) This figure visualizes the radial function r of Fig 1a (Not

scaled). The point P is shown in cartesian frame in Fig. 1a.

where xz
k,l, y

z
k,l are cartesian coordinates of the ith mea-

surement. Let (rzk,l, θ
z
k,l) be respective polar coordinates and

(xc
k, y

c
k) be origin of local frame then,

xz
k,l = xc

k + rzk,lcos(θ
z
k,l) + νxk , νxk ∼ N (0, σ2

x), (19)

yzk,l = yck + rzk,lsin(θ
z
k,l) + νyk , νyk ∼ N (0, σ2

y). (20)

Substituting (17) in (19,20)

xz
k,l = xc

k + f(θzk,l)cos(θ
z
k,l) + νxk , (21)

yzk,l = yck + f(θzk,l)sin(θ
z
k,l) + νyk . (22)

The function f is modelled as a GP i.e. f(θ) ∼
GP (µ(θ),C(θ,θ′)). The mean is modelled to be unknown

and constant, µ(θ) = r. As given in [10], the unknown

constant mean is included in the model by setting prior on

the unknown mean r = N (0, σ2
r). The GP model is then zero

mean i.e. f(θ) ∼ GP (0,C(θ,θ′)). The covariance kernel

(16) is modified as given below.

k(θi, θj) = kvm(θi, θj) + σ2
r (23)

Use (23) and (5) to determine C(θ,θ′).

C. State Vector

The states inferred at each time step k are assumed to be

in 2D and are represented by state vector xk:

xk = [xK
k ,xE

k ]
T , (24)

where xK
k represent kinematics of COO and xE

k denotes extent

states at B input locations,

xK
k = [xc

k, ẋ
c
k, y

c
k, ẏ

c
k]

T ,xE
k = [r1k, r

2
k, ..., r

B
k ]T . (25)

where xc
k, y

c
k and ẋc

k, ẏ
c
k are position and velocity of COO.

rik are the radial values of the object corresponding to input

vector θb

θb = [θ1, θ2, · · · , θB ]T , θi = (i− 1)
2π

B
. (26)

D. State Sampling

The kinematics of the crowd centre is modelled as a

correlated velocity model [8] using the following time update;

xK
k = FKxK

k−1 +wK
k , (27)

where wK
k is the model process noise, (.)K represents that

the vector / matrix corresponds to evolution of the kinematic

state of the crowd. The state transition matrix FK is

FK =









1 1
α
(1− e−α∆T ) 0 0

0 e−α∆T 0 0
0 0 1 1

α
(1− e−α∆T )

0 0 0 e−α∆T









, (28)

where α is the correlation constant for velocity. The system

process noise is defined as,

QK
k = 2α









σ2
vx
q11 σ2

vx
q12 0 0

σ2
vx
q21 σ2

vx
q22 0 0

0 0 σ2
vy
q11 σ2

vy
q12

0 0 σ2
vy
q21 σ2

vy
q22









, (29)

where σ2
vx

and σ2
vy

are variances of the crowd centre velocities

in respective coordinates and;

q11 =
1

2α3
(4e−α∆T − 3− e−2α∆T + 2α∆T ), (30)

q12 = q21 =
1

2α2
(e−2α∆T + 1− 2e−α∆T ), (31)

q22 =
1

2α
(1− e−2α∆T ). (32)

The state sampling equation for crowd extent is performed as

a random walk around the state at the previous scan as

xE
k = xE

k−1 +wE
k , wE

k ∼ N (0,QE
k = σ2

eIB×B). (33)

The QE
k is a diagonal matrix with variance σ2

e at the main

diagonal. The object can have any shape, which in other words

means that all the radial values can be uncorrelated. Smaller

variance means the filter takes more time to lock the extent

parameters. The number of particles for filter convergence will

increase if variance is large.

E. Measurement Simulation and Weight Update

For each sampled state, simulate the measurements as

Γ
n
k = IB×B ⊗ ([xc

k, y
c
k]

T )n + Jn
k (x

E
k )

n + νk, (34)

νk ∼ N
(

0, IB×B ⊗

[

σ2
x 0
0 σ2

y

]

)

Jn
k = IB×B ⊗

[

cos(θb) sin(θb)
]T

, θb ∈ θb (35)

where ⊗ denotes kronecker product, Γn
k represents a hyper-

sphere in measurement space for nth particle at time k. All

measurements within this hypersphere are considered gated

with the nth particle. This hypersphere lies in 2D so it can be

referred as a polygon Pn
k . The GP associated with each particle

is trained on Γ
n
k . Let rn

Γk
represent that radial values of nth

particle with respect to center ([xc
k, y

c
k]

T )n, yn
k represent the

radial values of sampled measurement polygon (Pn
k ) at time

k for particle n. Then using (7) we can write

[θn
Γk

, rn
Γk

] = cart2pol(Γn
k − IB×B ⊗ ([xc

k, y
c
k]

T )n) (36)

yn
k = Cθyθb(Cθbθb)−1rn

Γk
. (37)

where θy = [θ1, θ2, · · · , θY ]T represents the input angles

of sampled polygon Pn
k and cart2pol is a function which

converts coordinates from cartesian to polar frame. The size of

θy effects the CPF kernel performance and is modelled large

compared to the θb. For gating the measurements with nth

particle, find bearing θn
kL of all the measurements with respect

to the particle n. The bearing calculation for lth measurement

with nth particle is given below

[θnkl , r
n
kl ]

T = cart2pol([xz
k,l, y

z
k,l]

T − ([xc
k, y

c
k]

T )n). (38)

The radial extent of nth particle at these measurements is



rnzk
= Cn

θL
k
θb(Cθbθb)−1yn

k . (39)

The measurements with radial values less than rnzk
are

gated with that particle. Define a uniform kernel with interval

support at Pn
k or λ for observation and clutter, respectively.

K
yn
k

h (z) =

{

UPn
k
(z), if z ∈ Pn

k

Uλ(z), otherwise
(40)

where UPn
k
(z) is a uniform kernel with support defined over

polygon Pn
k and Uλ(z) is a uniform kernel with support

defined over complete surveillance area and it represents

clutter measurements. Also

UPn
k
(z) =

1

Polygon Pn
k Area

,Uλ(z) =
1

Surveillance Area
. (41)

The kernel function returns different values for different parti-

cles based on the area of polygon i.e. adaptive CPF [8]. Using

(18), the weight update at scan k for a given particle n is

w
(n)
k = w

(n)
k−1

L
∏

l=1

K
yn
k

h (zl
k). (42)

F. Estimation

The conditional state density for CPF can be written as:

p(xk|z1:k) =
p(xk, z1:k)

∫

p(xk, z1:k)dxk

(43)

Along the lines of adaptive CPF modelled in [9], the kinematic

and extent states are sampled separately. The estimate equation

is given below;

pNk (xk|z1:k) =

∑N
i=1 K

x
h (xk − xi

k)K
ȳn
k

h (z1:k)
∑N

i=1 K
ȳn
k

h (z1:k)
, (44)

Kx
h (xk − xi

k) = KxK

h (xK
k − (xK

k )i)KxE

h (xE
k − (xE

k )
i), (45)

K
ȳn
k

h (z1:k) =
K
∏

j=1

K
yn
k

h (zj), (46)

where KxK

h , KxE

h and K
yn
k

h are Parzen-Rosenblatt kernels.

The state estimate is given below

x̂K
k =

∑N
i=1 w

(i)
k (xK

k )(i)
∑N

i=1 w
(i)
k

, x̂E
k =

∑N
i=1 w

(i)
k (xE

k )
(i)

∑N
i=1 w

(i)
k

. (47)

Choose number of output extent states, Bo, greater than num-

ber of basis , B. Use (39) to predict the output extent estimate

x̂E
k,o for Bo basis. The output state is then x̂k,o = [x̂K

k , x̂E
k,o]

T .

The GP-CPF recursion is summarized in Table I.

V. PERFORMANCE VALIDATION

Simulation. The simulations are performed on large group

of point objects inside an irregular pentagon. The mean

number of measurement sources are Poisson distributed with

mean λ = 420, the total number of scans K = 100 and

sampling time is ∆T = 0.125s. The initial state for centre

of motion is [100m, 0m/s, 50m, 0m/s]T . The velocity corre-

lation time constant and standard deviation are Tcv = 15s,

σv,x = σv,y = 10m/s and extent radial dynamics parameters

are σr = 0.1m per time step. The sensor measurement error is

σx = σy = 0.1m. The clutter density is ρ = 1× 10−3 within

a circular surveillance region of radius 100m.

GP-CPF Parameters. The kinematic parameters

are matched to simulation. The initial states are

normally distributed around initial state xK
0 =

TABLE I: GP-CPF Recursion

1 for k ≤ 2, θB = 0 : 360/B : 360 find x0 as given in subsection V

2 for k = 3 find x̃
n
0
= N (x0, σ2

x0
), wn

0
= 1

N

3 for k > 3 Re-sample : Residual Re-sampling as in [16].

4 for k ≥ 3

4a State Sample: for n = 1, 2, ...N determine

(x̃K
k )n ∼ fK

k
((x̃K

k−1
)n, (wK

k−1
)n)

(x̃E
k )n ∼ fE

k
((x̃E

k−1
)n, (wE

k−1
)n)

4b Measurement Simulation : Add measurement noise using (34)

4c Measurement Gating : Find θ
n
kl and rn

kl using (38). Use (39) to

find rn
Pk

. Gate = success, if rn
Pk

≥ rn
kl

4d Weight Update : for n = 1, 2, ...N use (40) to find

wn
k
=

∏L
l=1

K
y
n
k

h
(zk,l)× wn

k−1

4e Normalize Weight : for n = 1, 2, ...N determine wn
k
=

wn
k∑

N
n=1

wn
k

4f Estimation : pn
k
(xk|z1:K) =

∑N
n=1

wn
k
Kx

h
(xk − x̃

n
k )

4g Output : For θo = 0 : 360/Bo : 360, use (39) to predict x̂E
k,o.

Output estimate is x̂k,o = [x̂K
k , x̂E

k,o]
T

N ([xc
2, ẋ0, y

c
2, ẏ0]

T , [.25m, 1m/s, .25m, 1m/s]T ) and

xE
0 = N ([R2, · · ·R2]

T , [1e−6m, · · · 1e−6m]T ) where (xc
i , y

c
i )

are coordinates of COO at k = i, ẋ0 =
xc
2
−xc

1

∆T
, ẏ0 =

yc
2
−yc

1

∆T

and R2 is maximum radial value at scan 2. All the particles

are initialized to equal weights. The COO is determined using

k-means clustering during initialization i.e. when k = 1, 2.

The extent process noise standard deviation is σ2
e = 10

3 ,

hyperparameters values are σ2
a = 1

40 , σ2
r = 1 and σ2

f = 30.

The number of particles is N = 1000, number of basis is

B = 16, number of points of polygon Pn
k is Y = 1440, and

number of output basis is Bo = 1440.

Results. The results are compiled for 50 Monte Carlo

runs. The evaluation of COO estimates is done using root

mean square errors (RMSE) over a number of Monte Carlo

simulation runs (NMC)

RMSEq =

√

√

√

√

1

NMC

NMC
∑

i=1

K
∑

k=1

(qk − q̂k)2, (48)

where qk represents the ground truth for each of the four kine-

matic states at time k and q̂k corresponds to their respective

estimates. The mean Precision (Pµ) and Recall (Rµ) graphs are

produced for evaluating the shape estimates. This scheme has

been used in computer vision for evaluating rectangular objects

detection performance [17]. The Rµ describes the ground truth

area that has been correctly recalled by the algorithm whereas

the Pµ illustrates incorrectly detected area. If E represents

the estimated shape and T represents ground truth then the

formulae for NMC Monte Carlo runs are given below

Rµ =
1

NMC

NMC
∑

i=1

K
∑

k=1

Area(Tk ∩ Ek)

Area(Tk)
, (49)

Pµ =
1

NMC

NMC
∑

i=1

K
∑

k=1

Area(Tk ∩ Ek)

Area(Ek)
. (50)

The results from the above simulation are shown in Fig. 2.

The CPF kernel is uniform and it weighs the particles based

on overlap with measurements. Hence sometimes the COO

estimates are slightly away from true COO whereas the shape
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Fig. 2: Results of 50 Monte Carlo Runs. The average positional

RMSE is around 1m and velocity RMSE is around 2m/sec.
The Pµ is around 0.87 most of the time which means almost

13% of the estimated shape is different from the ground truth.

The Rµ is around 0.96 which means that almost 96% of

ground truth shape has been recalled.

estimate remains good at the same time. The figure 3 shows

snapshots of simulated and estimated objects at time steps

k = 2, 30, 63 and 96. The estimate of the path and the shape

of extended object is close to ground truth in all steps given

that the shape was initialized as a circle (at k = 2). To

increase comprehensiveness of the figure the shapes have been

displayed at chosen time steps. The filter runs in real-time

and the mean simulation time is 49s for 100 time steps. The

program was run on MATLAB R2016b on a Windows 10 (64

bit) Desktop computer installed with an intel(R) Core(TM)

i5-6500 CPU @ 3.20GHz(4 CPUs) and 8GB RAM.

VI. CONCLUSIONS

This paper proposes a GP based approach in a CPF frame-

work to track an extended object with arbitrary shape using

data from a noisy sensor with clutter. The GP keeps track

of the object extent using state samples and measurement

simulations of CPF. As a result the filter is able to work in real

time when the extended object is described by a highly non-

linear kinematic model with a positional accuracy of around

1m. The shape precision and recall estimates are around 0.9.

Future work will be focused on real-time tracking of multiple

extended objects.
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