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Optimal Power Allocation Scheme for

Non-Orthogonal Multiple Access

with α-Fairness
Peng Xu and Kanapathippillai Cumanan, Member, IEEE

Abstract—This paper investigates the optimal power allocation
scheme for sum throughput maximization of non-orthogonal
multiple access (NOMA) system with α-fairness. In contrast to
the existing fairness NOMA models, α-fairness can only utilize
a single scalar to achieve different user fairness levels. Two
different channel state information at the transmitter (CSIT)
assumptions are considered, namely, statistical and perfect CSIT.
For statistical CSIT, fixed target data rates are predefined, and
the power allocation problem is solved for sum throughput
maximization with α-fairness, through characterizing several
properties of the optimal power allocation solution. For perfect
CSIT, the optimal power allocation is determined to maximize
the instantaneous sum rate with α-fairness, where user rates are
adapted according to the instantaneous channel state information
(CSI). In particular, a simple alternate optimization (AO) algo-
rithm is proposed, which is demonstrated to yield the optimal
solution. Numerical results reveal that, at the same fairness level,
NOMA significantly outperforms the conventional orthogonal
multiple access (MA) for both the scenarios with statistical and
perfect CSIT.

Index Terms—Non-orthogonal multiple access, α-fairness, out-
age probability, ergodic rate, power allocation.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) enables to real-

ize a balanced tradeoff between spectral efficiency and user

fairness, which has been recognized as a promising multi-

ple access (MA) technique for future fifth generation (5G)

networks [1]–[18]. In contrast to the conventional MA (e.g.,

time-division multiple access (TDMA), etc.), NOMA exploits

power domain to simultaneously serves multiple users at dif-

ferent power levels, where power allocation at the base station

plays a key role in determining the overall performance of the

system. Downlink NOMA combines superposition coding at

the transmitter and successive interference cancellation (SIC)

decoding at each receiver, which can be considered as a special

case of the conventional broadcast channel (BC) [19]. To

maintain user fairness, NOMA always allocates more power

to the users with weaker channel gains.

Based on the superposition coding, the works in [20] and

[21] explored the capacity region of the degraded discrete
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memoryless BC and the Gaussian BC with single-antenna

terminals, respectively. On the other hand, the ergodic ca-

pacity and the outage capacity/probability of the fading BC

with perfect channel state information at the transmitter (CSIT)

were established in [22] and [23], respectively. For the concept

of ergodic capacity, user rates can be adapted according to

the instantaneous channel state information (CSI); while the

concept of outage is more appropriate for applications with

stringent delay constraints as a predefined rate is assumed

for each transmission. In [24], the performance of outage

capacity was analyzed without CSIT. However, these works

for conventional BCs have not taken into account the issue

of user fairness, which is different from NOMA with fairness

constraints.

Recently, the issue of user fairness has received considerable

attention in a series of NOMA systems [11]–[18]. The

works in [11]–[14], [25]–[28] adopted fixed power allocation

approaches to guarantee user fairness, which can only ensure

that the users with weaker channel gains are allocated with

more power and might suffer from poor user fairness when

some users have very poor channel conditions. In order to

enhance user fairness, an appropriate power allocation should

be adopted at the base station for each user message in the

superposition coding, similar to the works in [15]–[18]. In

[15], the max-min and min-max power allocation schemes

are proposed to maximize the ergodic rate and minimize the

outage probability, respectively, whereas the common outage

probability of NOMA with one-bit feedback is minimized in

[16]. A throughput maximization scheme for a multiple-

input multiple-output (MIMO) NOMA system is presented

in [17] by solving the max-min fairness problem. However,

the schemes proposed in [15]–[17] can only achieve absolute

fairness1, where the system throughput is limited by the user

with the worst channel gain. In [18], the power allocation

approach has been proposed to maximize the minimum

weighted success probability, where a weighting vector is

exploited to adjust fairness levels. However, the design of

the optimal weighting vector is a challenging issue, which

has not been addressed in [18]. Most recently, a proportional

fairness over a time-domain window size has been presented

for NOMA in [29].

The main objective of this paper is to investigate the optimal

power allocation scheme for sum throughput maximization of

the NOMA system with α-fairness constraints. In existing

fairness models in [15]–[17], only absolute fairness can be

1The term “absolute fairness” means that all users have the same perfor-
mance (e.g., the same outage probability or the same ergodic rate).
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achieved; while in [18], a weighting vector are exploited to

adjust the fairness level. However, α-fairness only utilizes a

single scalar, denoted as α, to achieve different user fairness

levels and well-known efficiency-fairness tradeoffs [30]. The

concept of α-fairness was first introduced in [31] for a fair end-

to-end congestion control, which generalizes proportional and

max-min fairness approaches. Since then, α-fairness has been

widely incorporated in a series of fairness optimization models

for resource allocation and congestion control (e.g., [32]–[34]).

More details on fairness in wireless networks can be found in

[30] and the references therein. In general, increasing α results

in higher user fairness [32]. For instance, maximum efficiency

can be achieved by setting α = 0, whereas proportional and

max-min fairness can be achieved by setting α = 1 [35], [36],

and α → ∞ [31], respectively.

In this paper, a downlink NOMA system with two different

CSIT assumptions are considered: statistical and perfect CSIT.

For statistical CSIT, fixed target data rates should be predefined

for all users, for which, we first analyze the outage probability

of each user, and then formulate the power allocation opti-

mization framework for sum throughput maximization with α-

fairness. However, this optimization problem is not convex in

nature due to the non-convex objective function. To circumvent

this non-convex issue, we reformulate the original problem

into an equivalent problem with a simple expression. Analysis

reveals that the equivalent transformed problem is convex

for the case of α ≥ 1 and still non-convex for the case of

α < 1. However, for the case α < 1, the structure of the

optimal solution is characterized based on some properties of

the optimal power allocation solution, which demonstrates that

the problem turns out to be convex if we fix the first power

parameter and the number of power parameters that are below

(1− α)/2.

For perfect CSIT, the power allocation problem is formu-

lated to maximize the instantaneous sum rate with α-fairness,

where user rates are adapted according to instantaneous CSI.

We first transform this optimization problem into an equivalent

problem by setting a series of parameters to denote the sum

power allocated to a group of users. Then, we demonstrate

that there exists only one solution to satisfy the Karush-Kuhn

Tucker (KKT) conditions. Furthermore, a simple alternate

optimization (AO) algorithm is proposed to yield the optimal

solution through solving KKT conditions. The algorithm is

developed based on the idea of AO approach, where each

KKT condition is solved by fixing the other corresponding

parameters. In addition, it is shown that each variable is

monotonically increasing in each iteration of the algorithm

and therefore it converges.

Numerical results reveal that parameter α can adjust the

fairness level in terms of fairness index [37] for both NOMA

and TDMA. In addition, for the same required fairness index ,

NOMA outperforms TDMA in terms of both the sum through-

put with statistical CSIT and ergodic sum rate with perfect

CSIT. Moreover, the proposed algorithm for ergodic rate

maximization converges with less number of iterations than

the conventional interior point algorithm in most scenarios.

Throughout this paper, P(·) and E(·) are used to denote

the probability of an event and the expectation of a random

variable. Moreover, [1 : K] represents the set {1, · · · ,K}, and

{xi} indicates the sequence formed by all the possible xi’s.

Furthermore, log(·) and ln(·) stands for the logarithm with

base 2 and the natural logarithm, whereas exp(·) denotes the

exponential function.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

A downlink NOMA system is considered with one single-

antenna base station and K single-antenna users. For this

network setup, quasi-static block fading is assumed, where the

channel gains from the base station to all users are constant

during one fading block, but change independently from

one fading block to the next fading block. The base station

transmits K messages to the users using the NOMA scheme,

i.e., it sends a superposition codeword x =
∑K

k=1

√

P̃ksk
during each fading block, where sk is the signal intended for

user k with E[|sk|2] = 1 and P̃k is the power allocated to user

k, which satisfies
∑K

k=1 P̃k ≤ P . The received signal at user

k can be expressed as

yk = hk

K
∑

i=1

√

P̃isi + nk, k ∈ [1 : K], (1)

where the noise nk at user k is assumed to be an additive

white Gaussian noise with zero mean and unit variance, and

hk denotes the channel gain from the base station to user

k. Specifically, hk = d
−β/2
k gk, where gk is a normalized

Rayleigh fading channel gain with unit variance, dk is the

distance between the base station and user k, and β is the

path loss exponent. Without loss of generality, it is assumed

that d1 > d2 > · · · > dK . In addition, it is also assumed that

noises and channel gains associated with all users are mutually

independent from each other. In this paper, we consider the

case where each superposition codeword spans only a single

fading block.

The users employ SIC to decode their messages, where the

user order (or equivalently, decoding order) is determined by

the base station according to the CSIT assumption discussed

later in this section. It can be assumed without loss of

generality that user k is allocated with index k. In the SIC

process, user k will sequentially decode the messages of users

l, l ∈ [1 : k] and then successively remove these messages

from its received signal. When user k decodes the message of

user l, the signal-to-interference-plus-noise ratio (SINR) can

be written as

γ
(k)
l =

P̃lHk

Hk

∑K
m=l+1 P̃m + 1

, l ∈ [1 : k], (2)

where we define Hk = |hk|2, ∀k ∈ [1 : K], for simplicity;

obviously, Hk follows an exponential distribution with a mean

d−β
k .

Next, we will investigate optimal power allocation from

a fairness perspective, under two main CSI assumptions of

statistical and perfect CSIT. To model fairness, we adopt α-

fair utility function [37]

uα(x) ,

{

ln(x), if α = 1,
x1−α

1−α , if α ̸= 1, α ≥ 0.
, x > 0, (3)



3

where x could be throughput or instantaneous rate shown later

in this section, and different values of α represents different

fairness levels. Note that the choices of α = 0 and α →
∞ represent no fairness and absolute fairness requirements,

respectively.

A. NOMA with Statistical CSIT

For the statistical CSIT scenario, only statistics of fading

channels (including channel distributions, means and vari-

ances) are available at the transmitter, and hence fixed target

data rates should be predefined for all users. The overhead

cost in this scenario would be low as the variation of channel

statistics is much more slower than that of instantaneous CSI.

Moreover, the user order is determined based on the distance

from the base station to each user, where a user with a larger

distance is assigned with a smaller order index. Since it is

assumed that d1 > d2 · · · > dK previously in this section,

user k is always allocated with order index k. Assume that the

base station transmits one message to each user in each block

with the same fixed target rate r0 bits per channel use (BPCU).
2 For this transmission scenario, the outage probability needs

to be evaluated, and the outage probability for user k can be

expressed as

Pk = P

{

γ
(k)
l < r̂0, for some l ∈ [1 : k]

}

= P

{

Hk < max

{

r̂0

P̂1

, · · · , r̂0
P̂k

}}

= 1− exp

(

−max

{

r̂0d
β
k

P̂1

, · · · , r̂0d
β
k

P̂k

})

, (4)

where r̂0 , 2r0 − 1, P̂k , P̃k − r̂0
∑K

m=k+1 P̃m which can

be considered as an equivalent power for user k. Note that in

(4), it is implicitly assumed that

P̃k ≥ r̂0

K
∑

m=k+1

P̃m, ∀k ∈ [1 : K − 1]. (5)

This power constraint is widely incorporated in general for

NOMA systems as in [11], [13], [15], [18], where more power

is allocated to a user with weak channel gains to guarantee user

fairness.

The power constraint can be rewritten as [15], [16]

K
∑

k=1

(r̂0 + 1)k−1r̂0P̂k ≤ P. (6)

Furthermore, the throughput of user k is denoted as

Fk({P̂k}) , r0(1− Pk)

= r0 exp

(

−max

{

r̂0d
β
k

P̂1

, · · · , r̂0d
β
k

P̂k

})

. (7)

2Note that setting different fixed target rates for different users can improve
the sum throughput. However, user fairness will be affected by such a
different-rate scheme. For instance, absolute fairness is difficult to be achieved
if the data rates of the users are not the same. Motivated by this, the same
fixed rate r0 for each user is assumed in this paper.

To investigate the sum throughput maximization with α-

fairness, we formulate the following optimization problem:

(F.P1) max
{P̂k}

K
∑

k=1

uα

(

Fk({P̂k})
)

(8a)

s.t. (6), P̂k ≥ 0, k ∈ [1 : K]. (8b)

B. NOMA with Perfect CSIT

In the scenario of perfect CSIT in each block, user’s data

rates can be adapted according to the channel conditions with-

out any outage. However, the base station needs to estimate

each channel gain based on pilot symbols transmitted by

the users, which is different from the scenario of statistical

CSIT assumption in the previous subsection. The user order

is determined based on instantaneous CSI at the beginning of

each fading block. It is assumed without loss of generality that

H1 ≤ H2 ≤ · · · ≤ HK . The instantaneous rate for user k can

be expressed as [21]

Rk({P̃i}) = ln

(

1 +Hk

∑K
i=k P̃i

1 +Hk

∑K
i=k+1 P̃i

)

, k ∈ [1 : K], (9)

where the rate is measured in nats per channel user (NPCU).

Note that NPCU has been adopted here for mathematical

brevity, however, it can be easily converted into BPCU. The

ergodic sum rate can be expressed as E

[

∑K
k=1 Rk

]

.

To determine the optimal power allocation to maximize

the instantaneous sum rate with α-fairness, we formulate the

following optimization problem:

(R.P1) max
{P̃i}

K
∑

k=1

uα(Rk({P̃i})) (10a)

s.t.
∑

i=1

P̃i ≤ P, (10b)

P̃i ≥ 0, i ∈ [1 : K]. (10c)

Remark 1: Although the Rayleigh fading channel model is

considered in this paper, the formed optimization problems can

be easily extended to more practical channel models, such as

the widely used Saleh-Valenzuela multi-path model [38]. In

particular, the extensions of problem (R.P1) to the other chan-

nel models are straightforward as the instantaneous rates in (9)

are also valid for any other channel distributions; whereas the

outage probabilities in (4) as well as problem (F.P1) should

be modified according to the channel distribution. The study

of the other multi-path channel models is out of the scope of

this paper.

Remark 2: Note that the power allocation problems with α-

fairness will be more complicated for the scenario of multiple

antennas at the base station, where the optimal user ordering

scheme in the SIC process is still an open problem for MIMO-

NOMA [7]–[9]. Thus, for MIMO-NOMA with α-fairness, a

possible solution approach is to utilize the sub-optimal user

ordering schemes in [7]–[9], and then form the precoding

optimization problems at the base station. More details of

MIMO-NOMA with α-fairness are out of the scope of this

paper, which would be an interesting future direction.



4

III. OPTIMAL POWER ALLOCATION WITH

STATISTICAL CSIT

In this section, we solve problem (F.P1) to obtain the

optimal power allocation scheme for sum throughput maxi-

mization with α-fairness.

A. Problem Transformation

In this subsection, we first convert the problem (F.P1) into

a more simple tractable optimization framework. As the first

step in this transformation, we can prove the following in-

equality condition on the optimal power allocation of problem

(F.P1) [15], [16]:

P̂1 ≥ P̂2 ≥ · · · ≥ P̂K . (11)

The details of the proof are omitted here for simplicity. In

addition, Fk in (7) can be simplified as

Fk(P̂k) = r0 exp

(

− r̂0d
β
k

P̂k

)

. (12)

By denoting Pk , P̂k/(r̂0d
β
k), Fk in (12) can be represented

as

Fk(Pk) = r0 exp

(

− 1

Pk

)

. (13)

On the other hand, the constraints in (6) and (11) can be

rewritten as

r̂20

K
∑

k=1

ΓkPk ≤ P, where Γk , (r̂0 + 1)k−1dβk , (14)

dβ1P1 ≥ dβ2P2 ≥ · · · ≥ dβKPK , (15)

respectively. Now, problem (F.P1) can be reformulated as

(F.P2) max
{Pk}

K
∑

k=1

uα(Fk(Pk)) (16a)

s.t. (14) and (15), Pk ≥ 0, k ∈ [1 : K]. (16b)

B. Optimal Power Allocation

In this subsection, we solve the power allocation problem

(F.P2) for different cases with the corresponding values of α.

Note that it is assumed that the distances of the users are

significantly different from each other, such that3

dβi

dβj
>

(r̂0 + 1)j−1

(r̂0 + 1)i−1
, i.e., Γi > Γj , ∀i < j. (17)

3The assumption on the distances in (17) is reasonable in practical
NOMA systems. For example, multiuser superposition transmission (MUST),
a downlink two-user version of NOMA, has been included in 3rd generation
partnership project long-term evolution advanced (3GPP-LTE-A) networks
[39]. For MUST, the base station selects two users, which are far from and near
to the base station, respectively. Obviously, the distance difference between
these two selected users is significantly large.

1) Case 0 ≤ α < 1: In this case, based on (3) and (13),

problem (F.P2) can be expressed as

(F.P3) f(F.P3) , max
{Pk}

K
∑

k=1

exp

(

−1− α

Pk

)

(18a)

s.t. (14) and (15), Pk ≥ 0, k ∈ [1 : K]. (18b)

Problem (F.P3) is challenging to solve due to the non-convex

objective function. To tackle this issue, we first present the fol-

lowing propositions on the objective function and the optimal

solution.

Proposition 1: When 0 ≤ α ≤ 1, the function G(x) ,

exp
(

− 1−α
x

)

is convex for x ∈ [0, 1−α
2 ), and concave for

x ∈ [ 1−α
2 ,∞).

Proof: The second derivative of G(x) can be derived as

G′′(x) =− 2(1− α)

x3
exp

(

−1− α

x

)

+
(1− α)2

x4
exp

(

−1− α

x

)

. (19)

Thus, one can observe that G′′(x) > 0 if x ∈ [0, 1−α
2 ),

G′′(x) = 0 if x = 1−α
2 , and G′′(x) < 0 if x ∈ [ 1−α

2 ,∞).

Proposition 2: At the optimal solution of problem (F.P3),

P ∗
k ≥ P ∗

k−1, ∀k ∈ [2 : K].

Proof: This proposition can be proven by reduction

to absurdity. Suppose that for the optimal power {P ∗
k } of

problem (F.P3), there exist i and j, i, j ∈ [1 : K], such

that i < j and P ∗
i > P ∗

j . Now, consider another power pair

(Pi, Pj) , (P ∗
j , P

∗
i + ϵ), where we define

ϵ , (P ∗
i − P ∗

j )

(

Γi

Γj
− 1

)

, (20)

such that

PiΓi + PjΓj = P ∗
i Γi + P ∗

j Γj . (21)

From (17), one can observe that ϵ > 0. Furthermore, it can be

obtained that

G(P ∗
i ) +G(P ∗

j ) < G(Pi) +G(Pj), (22)

since ϵ > 0 and G(x) is a monotonically increasing func-

tion, which contradicts with the optimality of (P ∗
i , P

∗
j ). This

completes the proof of this proposition.

Proposition 3: For the optimal solution of problem (F.P3),

if there are k0 power values, P ∗
k ’s, that are below α−1

2 , then

the constraint in (15) is binding for these power values, i.e.,

dβi P
∗
i = dβj P

∗
j , ∀i, j ∈ [1 : k0].

Proof: Please refer to Appendix A.

Remark 3: Based on Propositions 3, it follows that the

optimal solution of problem (F.P3) should have the fol-

lowing structure: there are k0 power values, (P1, · · · , Pk0
),

satisfying Pk < α−1
2 and Pk =

dβ
1

dβ

k

P1, ∀k ∈ [1 :

k0], and the rest of (K − k0) power values satisfying

Pk ≥ α−1
2 , ∀k ∈ [k0 + 1,K]. Therefore, the max-

imum value of the objective function can be expressed

as f∗
(F.P3) = maxk0,P1,{Pk0+1,··· ,PK}

∑k0

k=1 G
(

dβ
1

dβ

k

P1

)

+
∑K

k=k0+1 G(Pk).
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From problem (F.P3) and Remark 3, one can observe that if

(k0, P1) is fixed, the optimal values of (Pk0+1, · · · , PK) can

be obtained by solving the following optimization problem:

(F.P4) f(F.P4)(k0, P1) , max
{Pk0+1,··· ,PK}

K
∑

k=k0+1

G(Pk)

(23a)

s.t. r̂20

K
∑

k=k0+1

ΓkPk ≤ P − r̂0P1d
β
1 ((r̂0 + 1)k0 − 1),

(23b)

dβk0+1Pk0+1 ≥ · · · ≥ dβKPK , (23c)

Pk ≥ α− 1

2
, k ∈ [k0 + 1 : K]. (23d)

where (k0, P1) ∈ S , and S is defined as

S ,

{

(k0, P1) : k0 ∈ [0 : K], 0 ≤ P1 ≤
(α− 1)dβk0

2dβ1
,

r̂0P1d
β
1 ((r̂0 + 1)k0 − 1) +

r̂20(α− 1)

2

K
∑

k=k0+1

Γk ≤ P
}

,

(24)

such that constraints (23b) and (23d) can be satisfied.

Closed-form solution to problem (F.P4) is in general not

possible. However, it can be easily shown that problem (F.P4)

is convex since G(x) is concave when x ∈
[

1−α
2 ,∞

)

as

presented in Proposition 1. Thus, for a fixed pair (k0, P1),
problem (F.P4) will be solved later in Section VI with the

help of corresponding numerical solvers.

The following work is to find optimal values of k0 and P1,

denoted as as (k∗0 , P
∗
1 ), which can be expressed as

(k∗0 , P
∗
1 ) = arg max

(k0,P1)∈S

k0
∑

k=1

G

(

dβ1

dβk
P1

)

+ f∗
(F.P4)(k0, P1),

(25)

where f∗
(F.P4)(k0, P1) is the maximum value of the objec-

tive function in problem (F.P4) for a fixed pair (k0, P1).
Specifically, in order to find (k∗0 , P

∗
1 ), a two-dimensional

exhaustive search over k0 and P1 should be carried out.

Since k0 is an integer in [0 : K] as shown in (24), the

computational complexity of this two-dimensional exhaustive

search is O((K+1)δ), where δ is the step size when searching

P ∗
1 (i.e., δ denotes the searching accuracy of P ∗

1 ).

2) Case α = 1: In this case, based on (3) and (13), problem

(F.P2) can be expressed as

(F.P5) min
{Pk}

K
∑

k=1

1

Pk
(26a)

s.t. (14) and (15), Pk ≥ 0, k ∈ [1 : K]. (26b)

The following lemma provides the closed-form expression for

the optimal solution of the problem.

Lemma 1: The optimal solution for problem (F.P5) is given

by

Pk =
1

r̂0
√
ωΓk

, where ω =

(

r̂0
P

K
∑

k=1

√

Γk

)2

. (27)

Proof: Please refer to Appendix B.

3) Case α > 1: In this case, based on (3) and (13), problem

(F.P2) can be expressed as

(F.P7) min
{Pk}

K
∑

k=1

exp

(

α− 1

Pk

)

(28a)

s.t. (14) and (15), Pk ≥ 0, k ∈ [1 : K]. (28b)

The convexity of this problem can be verified through deriving

the Hessian matrix of the objective function. Obviously a

closed-form expression for the optimal solution of problem

(F.P7) is difficult to obtain, however, this problem will be

solved later in Section VI using corresponding numerical

solvers. On the other hand, we can verify that, when α → ∞,

absolute user fairness in terms of throughput can be obtained

in the following Lemma.

Lemma 2: When α → ∞, Fi(P
∗
i ) = Fj(P

∗
j ), ∀i, j ∈ [1 :

K], where (P ∗
1 , · · · , P ∗

K) is the optimal solution of problem

(F.P7).

Proof: Please refer to Appendix C.

IV. OPTIMAL POWER ALLOCATION WITH PERFECT CSIT

In this section, we determine the optimal power allocation

to maximize the instantaneous sum rate with α-fairness by

solving problem (R.P1).

A. Problem Transformation

By denoting K variables as: bk ,
∑K

i=k P̃i, k ∈ [1 : K],
from (9), the instantaneous rate of user k can be expressed as

Rk(bk, bk+1) = ln

(

1 +Hkbk
1 +Hkbk+1

)

, k ∈ [1 : K], (29)

where it is defined bK+1 , 0 for the sake of brevity.

In addition, the power constraint in (10b) is obviously

binding at the optimal solution of problem (R.P1), i.e.,
∑K

i=1 P̃i = P and b1 = P . Thus, problem (R.P1) can be

reformulated into the following optimization framework:

(R.P2) max
{b2,··· ,bK}

K
∑

k=1

uα(Rk(bk, bk+1)) (30a)

s.t. bk ≥ bk+1, ∀k ∈ [1 : K], (30b)

b1 = P, bK+1 = 0. (30c)

The following lemma is required to represent the KKT

conditions of problem (R.P2).

Lemma 3: The KKT conditions of problem (R.P2) can be
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transformed into the following K equations:

f1,k(bk, bk+1, bk+2) ,
Rk+1 (bk+1, bk+2)

Rk (bk, bk+1)

−
(

bk+1 +
1
Hk

bk+1 +
1

Hk+1

)1/α

= 0,

bk+2 < bk+1 < bk, ∀k ∈ [1 : K − 1], (31)

Proof: Please refer to Appendix D.

Remark 4: From Lemma 3, it can be observed that absolute

user fairness in terms of instantaneous rate can be obtained

when α → ∞. Specifically, Rk+1 = Rk holds in (31), ∀k ∈
[1 : K − 1], as long as α → ∞.

To obtain the solution through the KKT conditions of

problem (R.P2), the following theorem is presented.

Theorem 1: There is only a unique solution for the K−1
equations in (31), denoted as (b̂2, · · · , b̂K).

Proof: Please refer to Appendix E.

Remark 5: Theorem 1 shows that the KKT conditions of

problem (R.P2) are sufficient to determine the optimal so-

lution, i.e., (b̂2, · · · , b̂K) is the optimal solution of problem

(R.P2). Thus, the conventional interior point algorithm can

be utilized to solve problem (R.P2). Alternatively, a simple

algorithm can be developed to solve the K − 1 equations in

(31), as provided in the next subsection.

B. Proposed Algorithm

In this subsection, a simple algorithm is developed to solve

K − 1 equations in (31), which yields the optimal solution of

the original problem in (30).

Lemma 4: For a fixed pair (bk, bk+2), k ∈ [1 : K−1], only

a unique bk+1 satisfies the k-th equation in (31), which is the

unique root of the following function:

f̃1,k(x) ,
ln
(

1+Hk+1x
1+Hk+1bk+2

)

ln
(

1+Hkbk
1+Hkx

) −
(

x+ 1
Hk

x+ 1
Hk+1

)1/α

, bk+2 < x < bk,

(32)

where function f̃1,k is defined as the same as f1,k in (31),

except that f̃1,k is a single-variable function whereas f1,k is a

multi-variable function.

Proof: We will show that function f̃1,k(x) is monotoni-

cally increasing when bk+2 < x < bk, and f̃1,k(x) = 0 has

only a unique root over (bk+1, bk). Specifically,
x+ 1

Hk

x+ 1
Hk+1

=

1 +
1

Hk
− 1

Hk+1

x+ 1
Hk+1

, which decreases with x for x > 0. Recalling

(32), f̃1,k(x) is obviously a monotonically increasing function

when bk+2 ≤ x ≤ bk. Furthermore, f̃1,k(x) < 0 as x → bk+2;

f̃1,k(x) → +∞ as x → bk. Therefore, equation f̃1,k(x) = 0
has only a unique root, which is denoted as b∗k+1. Based on

the definitions of f̃1,k and f1,k, b∗k+1 is the unique value that

satisfies the k-th equation in (31) for a fixed pair (bk, bk+2).

Remark 6: As discussed in the proof of Lemma 4, f̃1,k(x)
is a monotonically increasing function, hence a simple bisec-

Algorithm I: Root Search for Fixed (bk, bk+2) in (32)

1: Initialize blb = bk+2, bub = bk;

2: while (|f̃1,k(bk+1)| > ϵ1) do

3: Set bk+1 = (blb + bub)/2, and calculate f̃1,k(bk+1);
4: if f̃1,k(bk+1) > ϵ1 then bub = bk+1;

5: else blb = bk+1;

6: until |f̃1,k(bk+1)| < ϵ1;

Algorithm II: Proposed Alternate Algorithm for Problem

(R.P2)

1) Initialize t = 1, b
(0)
k = 0, ∀k ∈ [2 : K];

2) The t-th iteration:

Set k = 1, b
(t)
1 = P , and b

(t−1)
K+1 = 0;

Repeat

a) Fix (b
(t)
k , b

(t−1)
k+2 ), then find the root of the k-th equation

in (31), i.e., b∗k+1, using Algorithm I.

b) Set b
(t)
k+1 = b∗k+1;

c) Update k = k + 1.

Until k = K − 1;

3) Update t = t+1 and repeat Step 2) until Norm
[

f
(t)
1

]

≤
ϵ2;

tion method can be utilized to determine the root of equation

(32), which is summarized in Algorithm I.

Motivated by Lemma 4, a simple AO algorithm is sum-

marized in Algorithm II, where b
(t)
k denotes the value of bk

in the t-th iteration. The basic idea is to alternately solve

the k-th equation in (31) by fixing the other corresponding

variables. Specifically, in each iteration t, the root of the k-th

equation in (31) is determined using Algorithm I for a fixed

pair (b
(t)
k , b

(t−1)
k+2 ), ∀k ∈ [1 : K − 1]. By denoting such a

root as b∗k+1, the value of bk+1 in iteration t is updated as

b
(t)
k+1 = b∗k+1, until the required accuracy is achieved. Note

that Norm
[

f
(t)
1

]

≤ ϵ2 is utilized as the stopping criterion,

where

f
(t)
1 ,

(

f1,1

(

b
(t)
1 , b

(t)
2 , b

(t)
3

)

, · · · , f1,K−1

(

b
(t)
K−1, b

(t)
K , b

(t)
K+1

))

,

(33)

and Norm [·] is the Euclidean distance of a vector. In ad-

dition, the KKT conditions can be obviously satisfied as

Norm
[

f
(t)
1

]

→ 0, as provided in Lemma 3.

Next, we analyze the convergence and optimality of the pro-

posed algorithm. To verify the convergence of the algorithm,

the following theorem is required.

Theorem 2: For Algorithm II, b
(t)
k is monotonically in-

creasing with t, ∀k ∈ [2 : K].
Proof: Please refer to Appendix F.

Lemma 5: The proposed AO algorithm in Algorithm II

converges.

Proof: From Theorem 2, it can be seen that b
(t)
k increases

with t and its upper bound can be defined by b
(t)
1 = P .

Therefore, limt→∞ b
(t)
k exists, ∀k ∈ [2 : K], and the proposed

algorithm in Algorithm II converges.



7

To validate the optimality of Algorithm II, the following

lemma is provided.

Lemma 6: The proposed algorithm achieves the optimal

solution for problem (R.P2).

Proof: Since Algorithm II converges as shown in Theo-

rem 2 and Lemma 5, limit b̄k = limt→∞ b
(t)
k exists, k ∈ [2 :

K], and f̃1,k(b̄k+1) = 0 for the given pair (b̄k, b̄k+2) in (32),

∀k ∈ [1 : K−1]. Thus, from Lemma 3, it can be observed that

solution (b̄2, · · · , b̄K) satisfies the KKT conditions of problem

(R.P2). Furthermore, we know from Theorem 1 that solution

(b̄2, · · · , b̄K) is the unique solution of the KKT functions in

(31), i.e., Algorithm II yields the optimal solution for problem

(R.P2).

C. Complexity of Algorithm II

The complexity of Algorithm II is mainly determined by

two crucial parameters: the number of arithmetic operations

in each iteration and the speed of convergence.

For each iteration, the number of arithmetic operations

involved in the proposed algorithm is O((K − 1) log(1/ϵ1))
since K − 1 bisection searches are required with ϵ1 solution

accuracy in Algorithm I. In contrary, the conventional interior

point algorithm requires O((K − 1)3) arithmetic operations

for each iteration [40], which does not have any impact by ϵ1,

however significantly increases with K.

The convergence speed of Algorithm II is difficult to esti-

mate due to the very complicated expression of the functions in

(31). However, we demonstrate the speed of the convergence

with the help of numerical results later in Section VI, which

reveals that the proposed algorithm converges faster than the

interior point algorithm in most scenarios.

V. DISCUSSION

In this section, we discuss an appropriate evaluation cri-

terion of the proposed α-fairness scheme. The α-fairness

is a qualitative fairness measure of user throughput or in-

stantaneous rate [30]. To evaluate quantitative fairness, there

is a widely used measurement, known as “Jain’s Index” or

“Fairness Index” (FI), which is defined as [37]

FI({xk}) ,
(

K
∑

k=1

xk

)2
/

(

K

K
∑

k=1

x2
k

)

, (34)

where xk could be either Fk or Rk, and FI could take any

value over [1/K, 1]. A larger FI generally represents a higher

fairness level; the case FI=1 corresponds to absolute fairness.

Moreover, for statistical CSIT, FI turns out to be long-term

fairness within a large number of blocks; while for perfect

CSIT, FI represents short-term fairness within each block.

In general, different values of FI can be achieved by

adjusting α [32]. For instance, as shown in Lemma 2 and

Remark 4, FI({Fk}) = FI({Rk}) = 1 as α → ∞. Therefore,

we can appropriately choose α to achieve the fairness index

requirement (FIr), where FIr∈ [1/K, 1]. The corresponding

optimization problem can be defined as follows:

max
0≤α≤1

K
∑

k=1

x∗
k (35a)

s.t. FI({x∗
k}) ≥ FIr, α ≥ 0, (35b)

where for a given α, x∗
k = Fk(P

∗
k ) in the case of statistical

CSIT and x∗
k = Rk(b

∗
k, b

∗
k+1) in the case of perfect CSI. Note

that the optimal solutions of problem (F.P2) and (R.P2) are

denoted as {P ∗
k } and {b∗k}, respectively.

Note that increasing α does not necessarily increase FI as

shown in [41]. Thus, in general, a one-dimensional search is

required to find the optimal value of α, denoted as α∗, for the

problem defined in (35). However, in most scenarios,
∑K

k=1 x
∗
k

and FI decreases and increases with α, respectively, as shown

in many existing works (e.g., [32], [34], [42]). Thus, a simple

bisection method will be utilized to find α∗ in most scenarios

later in Section VI.

VI. NUMERICAL RESULTS

In this section, computer simulation results are provided

to evaluate the sum throughput and the ergodic sum rate of

NOMA with α-fairness. In these simulations, some parameters

for the considered NOMA system are set as follows. The small

scale fading gain is Rayleigh distributed, i.e., gi ∼ CN (0, 1).
Furthermore, the noise at each user is assumed to be an

additive white Gaussian variable with zero mean and unit

variance. In addition, the distance between the base station and

user k is defined as dk = 1.5K−k, and the path loss exponent

is chosen as 2 to reflect a favorable propagation condition. 4

Since the variance of noise power is unity, the transmit signal-

to-noise-ratio (SNR) is equivalent to the transmit power P .

A. Benchmark Schemes

Two benchmark transmission schemes of TDMA and

NOMA with fixed power allocation (i.e., fixed NOMA) are

considered as explained in the following.

1) TDMA Scheme: The TDMA transmission method is

chosen as one of the benchmark schemes in this evaluation, as

it is equivalent to any orthogonal MA scheme [43, Sec. 6.1.3].

For TDMA transmission, each fading block is assumed to be

equally divided into K time slots, where user k occupies the k-

th time slot. By defining the power allocated to user k as PT
k ,

the power constraint for the TDMA scheme can be expressed

as

1

K

K
∑

k=1

PT
k ≤ P.

Now, similar to the problems (F.P1) an (R.P1) in Section

II, one can formulate two power allocation problems for the

TDMA scheme with statistical and perfect CSIT, respectively.

Furthermore, these two new TDMA power allocation problems

can be solved using similar approaches as in Section III and

IV. The details of these approaches are omitted here due to

space limitations.

4The parameter settings dk = 1.5(K−k) and β = 2 show that the
assumption in (17) is valid even when the distance-ratio dk+1/dk and the
path loss exponent β are small or moderate. Due to space limitation, the other
choices of parameters have not been considered in this paper.
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Fig. 1. Sum throughput and fairness index (FI) vs the transmission rate r0 in
BPCU, where SNR = 20 dB, K = 6, α = 100, 1, 0.1; MMF and PF denotes
max-min fairness and proportional fairness, respectively.

2) Fixed NOMA: In order to demonstrate the benefits

of power allocation, NOMA with fixed power allocation is

used as another benchmark scheme. In particular, the NOMA

transmission scheme in Section II is also utilized, but the

power allocation scheme is fixed as

P̃k =
2K−kP

2K − 1
, k ∈ [1 : K],

for both statistical and perfect CSIT. Note that this fixed power

allocation scheme is similar to the one in [14] with a slight

modification.

B. Statistical CSIT

This subsection focuses on the sum throughput performance

of NOMA with α-fairness and statistical CSIT. Figs. 1(a)

and 1(b) compare the sum throughput and FI of NOMA

employing optimal power allocation proposed in Section III

with the benchmark schemes as a function of the transmission

rate r0, where we set K = 6, SNR = 20 dB, and α =

100, 1, 0.1. 5 As seen in these two sub-figures, NOMA with

5Note that max-min fairness (MMF) and proportional fairness (PF) can be
achieved when α = 100 (i.e., α is sufficiently large) and α = 1, respectively
[30].
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Fig. 3. Sum throughput vs the fairness index requirement (FIr), where r0 =

0.9 BPCU, SNR = 20 dB. K = 5, 6.

optimal power allocation enjoys both larger sum throughput

and FI than the fixed NOMA scheme and the TDMA scheme

with optimal power allocation, for α = 100 or 1. Moreover,

increasing α decreases sum throughput and increases FI for

NOMA, and absolute fairness can be achieved with α = 100,

which supports the discussions in Lemma 2. For α = 0.1,

although TDMA with optimal power allocation has a larger

sum throughout when r0 = 0.9 BPCU as shown in Fig. 1(a),

its FI (0.48) is lower than the one achieved by NOMA (0.65).

This is due to the fact that an additional power constraint

is imposed on NOMA in (5), which might reduce the sum

throughput with small values of α, however, it can guarantee

the fairness level of NOMA. From Fig. 1(b), one can observe

that decreasing α from 1 to 0.1 results in the improvement

of FI for TDMA when r0 ≥ 0.6, which is consistent with the

conclusion made in [41] that increasing α does not necessarily

increase FI.

For a fair comparison between NOMA and TDMA schemes,

the same FI is required in Figs. 2 and 3. Specifically, we

utilize α to adjust the value of FI as shown in problem (35),

where a bisection search is adopted by NOMA, whereas an

exhaustive search needs to be adopted by TDMA since its FI

does not necessarily increase with α as shown in Fig. 1(b).

In Fig. 2, the sum throughput is depicted as a function of
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Fig. 4. Ergodic sum rate and average FI vs SNR in dB, where K = 5, α =
100, 1, 0.5.

SNR, where r0 = 0.9 BPCU, K = 6, and the required FI

is set as FIr = 0.5 or 1. In Fig. 3, the sum throughput is

presented as a function of FIr, where r0 = 0.9 BPCU, SNR

= 20 dB, K = 5 or 6. From these two figures, one can

observe that moderate or high FIr significantly decreases the

sum throughput of TDMA, however, it has less impact on

NOMA, i.e., NOMA provides a significant performance gain

compared to TDMA with moderate or high FIr.

C. Perfect CSIT

This subsection focuses on the ergodic rate performance of

NOMA with α-fairness and perfect CSIT. Figs. 4(a) and 4(b)

compare the sum throughput and FI of NOMA employing

optimal AO power allocation algorithm proposed in Section

IV with the benchmark schemes as a function of SNR, where

the parameters are set as K = 5 and α = 100, 1, 0.5. As seen

in these two sub-figures, the fixed NOMA has a large ergodic

sum rate but a very poor average FI when SNR = 30 dB. On

the other hand, NOMA with optimal power allocation has a

larger ergodic sum rate with a low average FI compared to

the TDMA scheme. For both NOMA and TDMA, increasing

α decreases ergodic sum rate, however increases average FI.

The absolute fairness can be achieved with α = 100, which
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Fig. 5. Ergodic sum rate vs SNR in dB, where K = 5, SNR = 20 dB, FIr
= 0.6, 1.
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Fig. 6. Ergodic sum rate vs FIr, where SNR = 20 dB, and K = 4, 5, 6.

validates the discussions in Remark 4.

In order to make a fair comparison between NOMA and

TDMA schemes, the same FI is required in Figs. 5 and 6.

Specifically, we utilize α to adjust the value of FI as shown

in problem (35), where a bisection search is adopted by both

NOMA and TDMA schemes. In Fig. 2, the ergodic sum rate

is depicted as a function of SNR, where K = 5, and FIr

= 0.6 or 1. In Fig. 3, the ergodic sum rate is depicted as a

function of FIr, with SNR = 20 dB, K = 4, 5 or 6. As seen

in these two figures, one can observe that NOMA provides

a significant performance gain than the TDMA scheme in

terms of ergodic sum rate at the same required fairness level.

Moreover, the proposed power allocation algorithm achieves

the same ergodic sum rate as the conventional interior point

algorithm, as shown in Fig. 5.

Figs. 7(a) and 7(b) compare convergence speeds of the

proposed algorithm in Section IV (i.e., Algorithm II) and

the conventional interior point algorithm with K = 4 and

8, respectively. Since Norm
[

f
(t)
1

]

is utilized as the stopping

criterion for each fading block, we depict its average value

as a function of the number of iterations, where the required

accuracy of Algorithm I (involved in Algorithm II) is set as

ϵ1 = 10−5, and α = 5, 2, 1. As evidenced by these two
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Fig. 7. The average value of Norm
[

f
(t)
1

]

vs the number of iterations, where

SNR = 20 dB; K = 4, 8; α = 5, 2, 1.

sub-figures, one can observe that the proposed algorithm

converges more faster than the interior point algorithm in most

scenarios, except with K = 8, α = 2 and the number of

iterations is larger than 20.

VII. CONCLUSIONS

This paper investigated α-fairness based power allocation

schemes for sum throughput and ergodic rate maximization

problems in a downlink NOMA system with statistical and

perfect CSIT. For statistical CSIT, the outage probability of

each user was analyzed, and the power allocation strategy was

developed for sum throughput maximization with α-fairness.

Specifically, the original non-convex sum throughput maxi-

mization problem was converted into an equivalent problem

and demonstrated that the transformed equivalent problem is

convex for the case of α ≥ 1. In addition, it was shown

that the problem turns out to be convex for α < 1 by

fixing the first power parameter and the number of power

parameters that are below 1−α
2 . Next, the instantaneous sum

rate maximization with α-fairness was solved for perfect CSIT,

for which it was proven that there exists only one solution to

satisfy the corresponding KKT conditions. Then, a simple AO

algorithm was developed to solve these KKT equations. As this

work only considered single antenna NOMA, an interesting

future work is to extend to MIMO NOMA with fairness

constrains. Moreover, considering user fairness for the other

more practical channel model (e.g., Saleh-Valenzuela multi-

path model [38]) or considering user fairness over a time-

domain window would be also one of the possible future

directions.
APPENDIX A

PROOF OF PROPOSITION 3

This proposition can be proven by reduction to absurdity.

Denote the optimal power of problem (F.P3) as {P ∗
k }. Without

loss of generality, it can be assumed that there exist i < j,

i, j ∈ [1 : k0], such that the constraint in (15) is not

binding, i.e., dβi P
∗
i > dβj P

∗
j . From Proposition 2 and the

definition of k0, 0 < P ∗
i < P ∗

j < 1−α
2 can be obtained.

Now, consider another power pair
(

P ∗
i − ϵ1, P

∗
j + ϵ2

)

, where

(ϵ1, ϵ2) ,
(

ϵ
Γi
, ϵ
Γj

)

, and ϵ satisfies

0 < ϵ < min

{

ΓiP
∗
i ,Γj

(

1− α

2
− P ∗

j

)

,
dβi P

∗
i − dβj P

∗
j

dβi /Γi + dβj /Γj

}

.

(36)

Obviously we have

0 ≤ P ∗
i − ϵ1 < P ∗

j + ϵ2 <
1− α

2
, (37)

dβi (P
∗
i − ϵ1) ≥ dβj (P

∗
j + ϵ2), (38)

Γi(P
∗
i − ϵ1) + Γj(P

∗
j + ϵ2) = ΓiP

∗
i + ΓjP

∗
j , (39)

where (37) implies that the value of k0 will remain the same

by replacing the power pair (P ∗
i , P

∗
j ) by (P ∗

i − ϵ1, P
∗
j + ϵ2);

(38) and (39) ensure that (P ∗
i −ϵ1, P

∗
j +ϵ2) satisfies the power

constraints in (14) and (15), respectively. Next, we need to

verify that G(P ∗
i − ϵ1) + G(P ∗

i + ϵ2) > G(P ∗
i ) + G(P ∗

j ),
where G(x) is defined in Proposition 1.

Based on Lagrange mean value theorem, there exists some

ε1 ∈ (P ∗
i − ϵ1, P

∗
i ) and ε2 ∈ (P ∗

j , P
∗
j + ϵ2) such that

G(P ∗
i )−G(P ∗

i − ϵ1) = ϵ1G
′(ε1), (40)

G(P ∗
j + ϵ2)−G(P ∗

j ) = ϵ2G
′(ε2). (41)

Note that since ε1 < ε2 and G′′(x) > 0 if x ∈ [0, 1−α
2 ), as

shown in Proposition 1, G′(ε1) < G′(ε2) holds; furthermore,

since G′(x) = 1−α
x2 exp

(

− 1−α
x

)

, x ≥ 0, 0 < G′(ε1) <
G′(ε2) can be obtained. In addition, ϵ1 < ϵ2 holds since

Γi > Γj shown in (17). Thus, from (40) and (41), one can

observe that G(P ∗
i )−G(P ∗

i − ϵ1) < G(P ∗
j + ϵ2)−G(P ∗

j ).
In summary, power pair

(

P ∗
i − ϵ1, P

∗
j + ϵ2

)

yields a larger

value of the objective function in problem (F.P3), which

contradicts with the optimality of
(

P ∗
i , P

∗
j

)

. Therefore, the

case dβi P
∗
i > dβj P

∗
j is not optimal, and dβi P

∗
i = dβj P

∗
j holds

at the optimal solution of problem (F.P3).
APPENDIX B

PROOF OF LEMMA 1

To solve problem (F.P5), we first consider the following

problem by relaxing the constraint in (15) of problem (F.P5):

(F.P6) min
{Pk}

K
∑

k=1

1

Pk
(42a)

s.t. (14), Pk ≥ 0, k ∈ [1 : K]. (42b)
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The Lagrangian function for this problem is defined as:

L({Pk}, ω, {λk}) ,
K
∑

k=1

1

Pk
+ ω

[

r̂20

K
∑

k=1

ΓkPk − P

]

−
K
∑

k=1

λkPk, (43)

where ω, λk ≥ 0 are Lagrange multipliers. The KKT condi-

tions are given by

∂L
∂Pk

= − 1

P 2
k

+ r̂20ωΓk − λk = 0. (44)

In addition, from the complementary slackness conditions

(omitted here for simplicity), obviously we have λk = 0 and

ω > 0, and the power constraint in (14) is binding. Therefore,

from (14) and (44), the optimal solution of problem (F.P6) can

be obtained as shown in (27).

From (27), one can observe that dβkPk decreases with k,

which means that the constraint in (15) is satisfied. Thus,

problems (F.P5) and (F.P6) have the same optimal solution.

APPENDIX C

PROOF OF LEMMA 2

Lemma 2 can also be proven by reduction to absurdity.

Denote the optimal power of problem (F.P7) as {P ∗
k }; based

on Proposition 2, it holds that P ∗
i ≤ P ∗

j , ∀i < j, i, j ∈ [1 : K].
Assume without loss of generality that there exist i and j
satisfying i < j, i, j ∈ [1 : K], such that 0 < P ∗

i < P ∗
j .

Consider another power pair
(

P ∗
i + ϵ1, P

∗
j − ϵ2

)

, where ϵ1 +

ϵ2 < P ∗
j − P ∗

i and (ϵ1, ϵ2) ,
(

ϵ
Γi
, ϵ
Γj

)

for ϵ > 0. Obviously

we have

P ∗
i + ϵ1 < P ∗

j − ϵ2, (45)

dβi (P
∗
i + ϵ1) ≥ dβj (P

∗
j − ϵ2), (46)

Γi(P
∗
i + ϵ1) + Γj(P

∗
j − ϵ2) = ΓiP

∗
i + ΓjP

∗
j , (47)

where (46) and (47) ensure that
(

P ∗
i + ϵ1, P

∗
j − ϵ2

)

satisfies

the power constraints in (14) and (15), respectively. Denote the

function G1(x) , exp
(

α−1
x

)

, where x > 0, so the objective

function in problem (F.P7) can be expressed as
∑K

k=1 G1(Pk).
Next, we will verify that G1(P

∗
i + ϵ1) + G1(P

∗
i − ϵ2) >

G1(P
∗
i ) +G1(P

∗
j ).

Based on Lagrange mean value theorem, there exists some

ε1 ∈ (P ∗
i , P

∗
i + ϵ1) and ε2 ∈ (P ∗

j − ϵ2, P
∗
j ) such that

G1(P
∗
i + ϵ1)−G1(P

∗
i ) = ϵ1G

′
1(ε1), (48)

G1(P
∗
j )−G1(P

∗
i − ϵ2) = ϵ2G

′
1(ε2). (49)

Since the derivative of G1(x) is

G′
1(x) = −α− 1

x2
exp

(

α− 1

x

)

= −(α− 1) exp

(

−2 ln(x) +
α− 1

x

)

,

we have

ϵ1G
′
1(ε1)

α− 1
= − exp

(

ln(ϵ1)− 2 ln(ε1) +
α− 1

ε1

)

, (50)

ϵ2G
′
1(ε2)

α− 1
= − exp

(

ln(ϵ2)− 2 ln(ε2) +
α− 1

ε2

)

. (51)

Furthermore, from (45), one can easily obtain that ε1 < ε2.

Thus, from (50) and (51), we have

ϵ1G
′
1(ε1) < ϵ2G

′
2(ε2) < 0 as α → ∞. (52)

Now, combing (48), (49) with (52), G1(P
∗
i +ϵ1)+G1(P

∗
i −

ϵ2) > G1(P
∗
i ) + G1(P

∗
j ) holds when α → ∞. In summary,

power pair
(

P ∗
i + ϵ1, P

∗
j − ϵ2

)

yields a smaller value of the

objective function for problem (F.P7), which contradicts with

the optimality of
(

P ∗
i , P

∗
j

)

for problem (F.P7). Therefore,

when α → ∞, the inequality P ∗
i < P ∗

j does not hold, i.e.,

P ∗
i ≥ P ∗

j . Based on Proposition 2, P ∗
i = P ∗

j can be obtained.

APPENDIX D

PROOF OF LEMMA 3

The Lagrangian function of problem (R.P2) is first ex-

pressed as

L({bi}, {λi}) ,
K
∑

i=1

uα(Ri(bi, bi+1))−
K
∑

i=1

λi(bi+1 − bi)

(53)

where we define {bi} , {b2, · · · , bK} and {λi} ,

{λ1, · · · , λK}, λi ≥ 0, are Lagrange multipliers. Based on

the definition of µα(x) in (3), the KKT conditions are given

by

∂L
∂bk+1

=− (Rk(bk, bk+1))
−α

bk+1 +
1
Hk

+
(Rk+1(bk+1, bk+2))

−α

bk+1 +
1

Hk+1

− λk + λk+1 = 0, ∀k ∈ [1 : K − 1]. (54)

The complementary slackness conditions can be written as

λk+1(bk+1 − bk+2) = 0, (55)

λk(bk+1 − bk) = 0. (56)

Note that Rk+1 (bk+1, bk+2) = 0 if bk+1 = bk+2, and

Rk (bk, bk+1) = 0 if bk = bk+1. However, from (54),

Rk+1 (bk+1, bk+2) , Rk (bk, bk+1) > 0 needs to be satisfied,

so we have bk+2 < bk+1 < bk at the optimal solution, and

hence λk = λk+1 = 0. Thus, from (54),

− (Rk(bk, bk+1))
−α

bk+1 +
1
Hk

+
(Rk+1(bk+1, bk+2))

−α

bk+1 +
1

Hk+1

= 0,

∀k ∈ [1 : K − 1]. (57)

The above equation can be equivalently transformed to

f1,k(bk, bk+1, bk+2) = 0 as defined in (31), which completes

the proof of this lemma.

APPENDIX E

PROOF OF THEOREM 1

Denote (b̂2, · · · , b̂K) as a solution of the KKT functions

in (31). Now, we verify that (b̂2, · · · , b̂K) is the unique



12

solution of these functions. To prove this theorem, reduction

to absurdity is adopted. In particular, we assume that, beyond

(b̂2, · · · , b̂K), there also exists another solution (
ˆ̂
b2, · · · , ˆ̂bK)

satisfying the KKT conditions in (31). Assume without loss

of generality that
ˆ̂
bK > b̂K . Let k = K − 1 in (31), then we

have

ln
(

1 + b̂K−1HK−1

)

= ln
(

1 + b̂KHK−1

)

+ f2,K−1

(

b̂K

)

ln
(

1 + b̂KHK

)

, (58)

ln
(

1 +
ˆ̂
bK−1HK−1

)

= ln
(

1 +
ˆ̂
bKHK−1

)

+ f2,K−1

(

ˆ̂
bK

)

ln
(

1 +
ˆ̂
bKHK

)

, (59)

where function f2,K−1(x) is defined as

f2,k(x) ,

(

x+ 1
Hk+1

x+ 1
Hk

)1/α

=

(

1−
1
Hk

− 1
Hk+1

x+ 1
Hk

)1/α

,

k ∈ [1 : K − 1]. (60)

Since f2,K−1(x) increases with x when x > 0, we can obtain

ˆ̂
bK−1 > b̂K−1,

and ln

(

1 +
ˆ̂
bK−1HK−1

1 +
ˆ̂
bKHK−1

)

> ln

(

1 + b̂K−1HK−1

1 + b̂KHK−1

)

.

(61)

Now, let k = K − 2 in (31), we have

ln
(

1 + b̂K−2HK−2

)

= ln
(

1 + b̂K−1HK−2

)

+ f2,K−2

(

b̂K−1

)

ln

(

1 + b̂K−1HK−1

1 + b̂KHK−1

)

, (62)

ln
(

1 +
ˆ̂
bK−2HK−2

)

= ln
(

1 +
ˆ̂
bK−1HK−2

)

+ f2,K−2

(

ˆ̂
bK−1

)

ln

(

1 +
ˆ̂
bK−1HK−1

1 +
ˆ̂
bKHK−1

)

. (63)

Based on (61), (62) and (63), we have

ˆ̂
bK−2 > b̂K−2,

and ln

(

1 +
ˆ̂
bK−2HK−2

1 +
ˆ̂
bK−1HK−2

)

> ln

(

1 + b̂K−2HK−2

1 + b̂K−1HK−2

)

.

(64)

By analogy,
ˆ̂
bk > b̂k can be verified from k = K − 3 to

k = 1, i.e., ∀k ∈ [1 : K − 3]. However,
ˆ̂
bK−1 = b̂K−1 = P

holds for problem (R.P2), which contradicts with the result

that
ˆ̂
bk > b̂k, ∀k ∈ [1 : K − 3]. Therefore, only a unique

solution (b̂2, · · · , b̂K) of problem (R.P2) exists to satisfy the

KKT conditions in (31).

APPENDIX F

PROOF OF THEOREM 2

This theorem is proven based on the inductive method.

Specifically, for a given t0 ≥ 1, we assume that b
(t0)
k >

b
(t0−1)
k , ∀k ∈ [2 : K], and then we prove that b

(t0+1)
k > b

(t0)
k ,

∀k ∈ [2 : K]. First, recall that function f2,K−1(x) is defined

(60), which increases with x. Next, three different cases are

considered.

A. Case k = 1

In the t-th iteration, from Algorithm II and Lemma 4, we

have

ln
(

c̃
(t)
1

)

= f2,1

(

b
(t)
2

)

ln
(

˜̃c
(t)
2

)

, (65)

when k = 1, where we define

c̃
(t)
k ,

1 +Hkb
(t)
k

1 +Hkb
(t)
k+1

, ˜̃c
(t)
k+1 ,

1 +Hk+1b
(t)
k+1

1 +Hk+1b
(t−1)
k+2

,

∀k ∈ [1 : K − 1]. (66)

Next, we consider two cases: ˜̃c
(t0+1)
2 ≥ ˜̃c

(t0)
2 and ˜̃c

(t0+1)
2 <

˜̃c
(t0)
2 .

If ˜̃c
(t0+1)
2 ≥ ˜̃c

(t0)
2 , since we have assumed that b

(t0)
3 >

b
(t0−1)
3 , obviously b

(t0+1)
2 > b

(t0)
2 holds based on (66).

If ˜̃c
(t0+1)
2 < ˜̃c

(t0)
2 , we adopt reduction to absurdity to

prove that b
(t0+1)
2 > b

(t0)
2 . Specifically, we assume that

b
(t0+1)
2 ≤ b

(t0)
2 , so we have f2,1

(

b
(t0+1)
2

)

≤ f2,1

(

b
(t0)
2

)

.

Thus, f2,1

(

b
(t0+1)
2

)

ln(˜̃c
(t0+1)
2 ) < f2,1

(

b
(t0)
2

)

ln
(

˜̃c
(t0)
2

)

can

be obtained. From (65), ln
(

c̃
(t0+1)
1

)

< ln
(

c̃
(t0)
1

)

holds.

However, from (66), ln
(

c̃
(t0+1)
1

)

≥ ln
(

c̃
(t0)
1

)

under the

assumption that b
(t0+1)
2 ≤ b

(t0)
2 , since b

(t0+1)
1 = b

(t0)
1 = P .

This implies that the assumption b
(t0+1)
2 ≤ b

(t0)
2 does not hold,

and thus b
(t0+1)
2 > b

(t0)
2 .

B. Case k ∈ [2 : K − 2]

Similarly, in the t-th iteration, from Algorithm II and

Lemma 4, we have

ln
(

c̃
(t)
2

)

= f2,2

(

b
(t)
3

)

ln
(

˜̃c
(t)
3

)

, (67)

when k = 2. As in the previous case, b
(t0+1)
2 > b

(t0)
2 if

˜̃c
(t0+1)
3 ≥ ˜̃c

(t0)
3 .

Now, reduction to absurdity is also adopted if ˜̃c
(t0+1)
3 <

˜̃c
(t0)
3 . Specifically, similar to the previous case k − 1,

ln
(

c̃
(t0+1)
2

)

< ln
(

c̃
(t0)
2

)

can be obtained, if we assume that

b
(t0+1)
2 ≤ b

(t0)
2 in (67). However, from (66), ln

(

c̃
(t0+1)
2

)

≥
ln
(

c̃
(t0)
2

)

under the assumption that b
(t0+1)
3 ≤ b

(t0)
3 , since

b
(t0+1)
2 > b

(t0)
2 as verified in the previous case. This implies

that the assumption b
(t0+1)
3 ≤ b

(t0)
3 does not hold, and thus

b
(t0+1)
3 > b

(t0)
3 .

Similarly, b
(t0+1)
k > b

(t0)
k can be proven iteratively, for k ∈

[3 : K − 2].

C. Case k = K − 1

From Algorithm II and Lemma 4, we have

ln
(

c̃
(t)
K−1

)

= f2,K−1

(

b
(t)
K

)

ln
(

˜̃c
(t)
K

)

, (68)
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when k = K − 1. Note that b
(t0+1)
K > b

(t0)
K can be proven

using almost the same steps to the previous two cases. There

is only a slight difference that is bt0K+1 = b
(t0−1)
K+1 = 0. In

order to show that b
(t0+1)
K > b

(t0)
K if ˜̃c

(t0+1)
2 ≥ ˜̃c

(t0)
2 , we only

need to verify that ˜̃c
(t0+1)
2 ̸= ˜̃c

(t0)
2 . Specifically, from (66),

b
(t0+1)
K = b

(t0)
K if ˜̃c

(t0+1)
2 = ˜̃c

(t0)
2 , so c̃

(t0+1)
2 = c̃

(t0)
2 from (68)

and b
(t0)
K−1 = b

(t0−1)
K−1 can be obtained from (66). However,

b
(t0+1)
K−1 > b

(t0)
K−1 as verified in the previous case, which means

that ˜̃c
(t0+1)
2 = ˜̃c

(t0)
2 does not hold, i.e., ˜̃c

(t0+1)
2 ̸= ˜̃c

(t0)
2 .
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