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KERNEL PRINCIPAL COMPONENT ANALYSIS OF THE EAR MORPHOLOGY

Reza Zolfaghari, Nicolas Epain, Craig T. Jin, Joan Glaunès, Anthony Tew

ABSTRACT

This paper describes features in the ear shape that change across a

population of ears and explores the corresponding changes in ear

acoustics. The statistical analysis conducted over the space of ear

shapes uses a kernel principal component analysis (KPCA). Further,

it utilizes the framework of large deformation diffeomorphic metric

mapping and the vector space that is constructed over the space of

initial momentums, which describes the diffeomorphic transforma-

tions from the reference template ear shape. The population of ear

shapes examined by the KPCA are 124 left and right ear shapes

from the SYMARE database that were rigidly aligned to the template

(population average) ear. In the work presented here we show the

morphological variations captured by the first two kernel principal

components, and also show the acoustic transfer functions of the ears

which are computed using fast multipole boundary element method

simulations.

Index Terms— Morphoacoustics, LDDMM, Kernel principal

Component Analysis, Ear shape analysis, FM-BEM

1. INTRODUCTION

This paper describes the most important features in the ear shape

that change across a population of ears and explores the correspond-

ing changes in ear acoustics. The work forms part of the study of

morphoacoustics [1, 2, 3, 4], where the goal is to understand the

link between variations in the shape of an ear and their effect on the

corresponding set of 3D audio filter functions, referred to as head

related impulse responses (HRIRs). HRIRs vary for each listener

because each listener has differently shaped ears. There is an HRIR

filter for each ear and each direction in space and these HRIR filters

enable the rendering of binaural 3D audio for a listener. The purpose

of the study is to assist research into the prediction of individualized

3D audio filters for listeners based on the morphology of their ears.

The outer ear is an intricate shape and examining the non-linear

variations in the ear morphology between listeners is a challenging

task. We consider ear shape diffeomorphisms as belonging to a

Riemanian space. In this regard, large deformation diffeomorphic

metric mapping (LDDMM) is a framework to perform non-rigid

diffeomorphic registration and mapping between images, surfaces,

curves and distributions in two and three dimensional space [5, 6,

7, 8, 9, 10]. Diffeomorphic maps provide a smooth, one-to-one

transformation between the source and target shape. In particular,
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considerable work has been undertaken to formulate an algorithm for

mapping 3D triangulated surfaces [11, 12].

In a recent paper [13] we show how LDDMM coupled with

fast multipole boundary element method (FM-BEM) simulations can

assist with the study of morphoacoustics and in [14] we show how

a template or population average ear shape can be estimated using

LDDMM. Furthermore, in [15] we show how a morphable-model for

ear shapes based on the LDDMM framework and the kernel principal

component analysis (KPCA) is constructed. The template ear is a

critical element of the statistical analysis conducted here, but we leave

the description of its calculation to [14, 16] as it is beyond the focus of

this paper. While LDDMM permits a multiscale approach to mapping

ear shapes as discussed in [14], the statistical analysis of ear shapes

presented here is based on single scale LDDMM transformations from

the reference template ear to ear shapes that have been aligned to the

template ear shape via an affine transformation. In this work we use

the LDDMM framework combined with a KPCA technique [16, 17,

18] to perform a statistical analysis of ear morphology. In particular,

the statistical analysis conducted here is performed over the linear

space of initial momentums [19] within the framework of LDDMM.

By utilizing a set of coupled differential equations known as the

“shooting equations” we examine the morphological variations seen

in the ear shape. We use the population of left and right ear shapes

in the SYMARE database [20] to conduct a statistical analysis of

ear shapes. This paper shows the variations in the ear morphology

captured by the first and second kernel principal component and

also shows the associated changes in ear acoustics as determined by

FM-BEM numerical acoustic simulations.

2. METHODS

2.1. LDDMM Framework

LDDMM [21, 10] is a mathematical framework that can be em-

ployed for the registration and morphing of three-dimensional

shapes [12, 11]. It is based on theories from functional analysis, vari-

ational analysis and reproducible kernel Hilbert spaces. We model

a 3D-shape as a mesh with triangular faces, which we refer to as

S(X) where X is the matrix specifying the mesh vertices and S
represents the mesh connectivity (the triangular faces). LDDMM

models the morphing of S1(X) to S2(Y) as a dynamic flow of dif-

feomorphisms of the ambient space, R
3, in which the surfaces are

embedded. This flow of diffeomorphisms, φv(t, ·), is defined via the

partial differential equation:

∂φv(t,X)

∂t
= v(t) ◦ φv(t,X) , (1)

where v(t) is a time-dependent vector field, v(t) : R
3 → R

3 for

t ∈ [0, 1], which models the infinitesimal efforts of the flow, and

◦ denotes function composition. This vector field belongs to a Hilbert

space of regular vector fields equipped with a kernel, kV , and a

norm ‖ · ‖V that models the infinitesimal cost of the flow. In the



LDDMM framework, we determine v(t) by minimizing the cost

function, JS1,S2
:

JS1,S2
(v(t)) = γ

∫ 1

0

‖v(t)‖2V dt+ E (S1(φ
v(1,X)), S2(Y)) ,

(2)

where E is a norm-squared cost measuring the degree of matching

between S1(φ
v(1,X)) and S2(Y). In this work we use the Hilbert

space of currents [6, 12] to compute E because it is easier and more

natural than using landmarks. The parameter γ is a parameter that

sets the relative weight of the two terms in the cost function. In this

work γ = 5× 10−5.

The optimal v(t) can be expressed as a sum of momentum vec-

tors, αn(t), with one momentum vector defined for each of the N
vertices in X:

v(t) =
dx(t)

dt
=

N
∑

n=1

kV (xn(t),x(t))αn(t) , (3)

where in this work we use the Cauchy kernel defined by:

kV (x,y) =
1

1 + ‖x−y‖2

σ2

V

, (4)

for x and y in ∈ R
3. The σV parameter is a scale parameter that

determines through the kernel, kV , the range of influence of the

momentum vectors αn(t). Setting σV to a larger value increases the

coupling in the motion of vertices that are further apart. In this work,

σV = 10 mm.

We now define three fundamental LDDMM operations that are

at the core of this work, 1- LDDMM matching, 2- geodesic shooting

and 3- diffeomorphic flow. The first LDDMM operation denoted by

M refers to the calculation of the momentum vectors that represent

the matching between two shapes S1 and S2:

{αn(t)}
0≤t≤1
1≤n≤N = M (S1, S2) . (5)

The second LDDMM operation denoted by S consists in obtaining

the deformed shape S
′

2 and the time dependent momentum vectors

that completely parametrize the deformation between the shapes S1

to S2 from the initial momentum vectors:

{S
′

2, {αn(t)}
0≤t≤1
1≤n≤N} = S (S1, {αn(0)}1≤n≤N ) . (6)

The operation S is achieved by solving a set of coupled differential

equations know as the shooting equations [15]. The third LDDMM

operation is known as the diffeomoprhic flow operation F and uses

Eq. 3 and the time dependant momentum vectors {αn(t)}
0≤t≤1
1≤n≤N to

morph the shape S1 to shape S2:

S
′

2 = F

(

S1, {αn(t)}
0≤t≤1
1≤n≤N

)

. (7)

In this work, S
′

2 is very close to S2 but not identical depending on

the LDDMM matching process.

2.2. Kernel Based Principal Component Analysis (KPCA)

The previous section shows how a given shape can be represented as

the deformation of another shape through a flow of diffeomorphisms

which is completely parameterized using the initial momentum vec-

tors. In this section, we statistically analyse the deformation from the

template ear shape, E, to all ears in the dataset, taking for granted

that the template shape has already been computed. We use the kernel

principal component analysis (KPCA) to statistically analyse the ini-

tial momentum vector data corresponding to the deformations. KPCA

uses the same inner product as in the computation of the deformation

in the LDDMM cost function. The first step in our analysis is to

calculate the momentum vectors for every ear, Sl, in the population

of L ears, as follows:

{αn

(l)(t)} = M (E,Sl) (8)

In order to calculate the principal components, we calculate the co-

variance matrix, C, which expresses the mutual correlation of the

different ear shapes in the space of deformations. To compute this

matrix we first construct a data matrix A ∈ R
3N×L which contains

the initial momentum vectors for the entire population of ears:

A = [a1, a2, . . . , aL]3N×L
(9)

where al denotes the column vector containing all the initial mo-

mentum vector coefficients for shape Sl. We then center the data by

subtracting the population average momentum vectors. The centred

data matrix, Â, is given by:

Â = [â1, â2, . . . , âL]3N×L
(10)

where âl is the vector of the centered momentum vectors for the l-th
shape:

âl = al − ā with ā =
1

L

L
∑

i=1

ai . (11)

We also form the kernel matrix, K, which contains the values

of the kernel function for every pair of vertex positions, xn, that

comprise the vertices, X, of the template shape E :

K =













K11 K12 . . . K1N

K21 K22

...
...

. . .
...

KN1 . . . . . . KNN













,

Kmn = kV (xm,xn) I3×3 , (12)

where I3×3 denotes the 3× 3 identity matrix.

The correlation between two shapes is calculated as the inner

product of the initial momentum vectors in the Hilbert space of

deformations, V . The correlation between shapes Si and Sj is given

by:

cij =
1

L− 1

〈

{αn

(i)(0)}, {αn

(j)(0)}
〉

V
=

1

L− 1
â
T

i Kâj ,

(13)

where (·)T denotes the transpose of a vector or matrix and 1
L−1

is

a normalization factor. Thus, the covariance matrix for the entire

population of ears, C, is given by:

C =
1

L− 1
Â

T
KÂ (14)

In order to calculate the principal components, as well as the

coordinates of the ears in the basis of the principal components, we

perform the singular value decomposition of the covariance matrix C:

C = VDV
T

. (15)

The matrix of the principal components, U, can be then calculated

as:

U = ÂVD
− 1

2 . (16)



Note that the principal components are orthogonal in the Hilbert space

of deformations, i.e., UTKU = I. It follows from Equation (16) that

Â = UD
1

2VT and therefore D
1

2VT provides the coordinates of the

different ear shapes in the basis of the principal components. Each

ear can thus be reconstructed by: (1) computing al = ā+UD
1

2 vl (

vl is the l-th column of VT); and (2) shooting from the template in

the al direction, i.e., Sl = S (E, {al}).

2.3. Examining the Kernel Principal Components

We now describe how the kernel principal components can be used

to examine important changes in the ear morphology and their corre-

sponding acoustics. Each kernel principal component (KPC) captures

some form of morphological variation seen in the population of

shapes. In mathematical notation the kernel principal components

are denoted by ui, where i signifies the principal component number

and also the column i in the matrix U. In order to examine the mor-

phological variations captured by a single principal component, ui,

two steps are involved. In the first step, ui, is multiplied by a suitable

weight factor that is chosen to be a scalar multiple of the eigenvalue,

mD
1

2

ii , for some real value m ∈ R. Because of the normalization

used in Eq. (13), the eigenvalue Dii is equal to the variance of the

scores (coordinates of the ear shapes) belonging to the ith principal

component. In the second step, the morphological changes with re-

spect to the template shape can be observed by constructing the ear

shape, E(i,m), by using the shooting operation:

{E(i,m), {αn(t, i,m)}} = S (E, ā+mD
1

2

iiui) (17)

In order to obtain the acoustic response for the ear shape, the

FM-BEM simulations need to be conducted on ears that are attached

to the template head and torso shape. However, the template head and

torso shape also has the template ear shape, E, attached. Fig. 1 shows

a picture of the template head and torso shape with the template ear

attached (i.e HTE). In order to appropriately morph the template ear

shape to the modified ear shape, E(i,m), we use the time-dependent

momentum vectors obtained in Eq. 17 to perform a flow operation on

the template shape, HTE, to obtain a template head and torso shape

with the modified ear:

HTE(i,m) = F (HTE, {αn(t, i,m)}) (18)

Fig. 1. The template head, torso, and ear shape, HTE, is shown.

3. EXPERIMENTS

3.1. Experimental setup

We conducted KPCA on ear shapes that were obtained from 62

subjects in the SYMARE database. The right ear shapes of the 62
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Fig. 2. The structure and anatomical names for parts of the external

ear are shown. Adopted from [22].

subjects were reflected to obtain left ear shapes so that we had a

total of 124 left ear shapes. In this work, we exclude any scale,

rotational or translational variations in ear shapes when conducting

the KPCA and thus focus the KPCA solely on structural differences

in ear morphology. The structural differences in ear morphology are

the most difficult to study. Changes in scale, orientation and position

are referred to as affine transformations. Thus, we first optimally

align all of the left ear shapes to the template ear, E, using affine

transformations based on a distribution matching technique described

in [5].

In order to observe structural differences in ear shape, KPCA

was performed on the 124 left ear shapes that were aligned to the

template ear via an affine transformation. The KPCA was performed

as detailed in Section 2.2. New ear shapes were generated by varying

the weights corresponding to the first and second kernel principal

components as described in the previous section. More precisely,

new ear shapes were obtained using Eq. 17 for values of m ∈ B1 =
{±7,±2,±1, 0}. In order to study the acoustics of the new ear

shapes, the template, HTE, was modified according to Eq. 18 to

obtain HTE(i,m) for m ∈ B2 = {±2,±1, 0} and i ∈ {1, 2}.

The only reason for generating ear morphologies at the large and

nonsensical values of m = ±7 was to clearly visualize how the

changes in the kernel principal component weights relate to changes

in the ear morphology.

HRIRs corresponding to the shapes HTE(i,m) were generated

using FM-BEM simulations. For this work the Coustyx software by

Ansol was used [23]. The simulations were performed by the FM-

BEM solver using the Burton-Miller Boundary Integral Equations

(BIE) and the Galerkin implementaion. Using the acoustic reciprocity

principal, a single simulation is used to determine all of the HRIRs in

one go by placing a source on a surface mesh element that forms part

of the blocked ear canal and then setting a uniform normal velocity

boundary condition on this surface element. A post-processing step

was used to refine the meshes prior to the FM-BEM simulation using

the open-source software ACVD [24]. The meshes had a critical

frequency of 26 kHz for six elements per acoustic wavelength and

further, met the FM-BEM mesh criterion detailed in [20, 25].

3.2. Results

Fig. 3 shows the ear shapes that have been generated from the template

ear by changing the weights corresponding to the first and second

principal components. The differences with respect to the template

ear are highlighted in color using a normalized dissimilarity measure

based on currents [15]. By changing the weights corresponding to

the first and second kernel principal components, there are changes

to the size and structure of features in the pinna. Please keep in mind

that the overall size and rotation of the ears in the dataset have been

aligned to the template, so that it is the structural features of the pinna
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Fig. 3. Ear morphologies are shown corresponding to systematic changes in (a) the first and (b) the second kernel principal components. Note

that E(i,m) denotes the template ear, E, modified with the i-th KPC using a weight of m standard deviations. The degree of difference

between the given ear shape and the template ear shape are highlighted in color using a normalized dissimilarity measure based on currents [15].

(The colors have constant luminance and so do not appear in grey-scale, instead please view the online version.)
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Fig. 4. DTFs on the median plane are shown for some of the ear shapes in Fig. 3. The elevation angles are in degrees with positive angles

corresponding to the front and negative angles corresponding to the back. Note that 0◦ corresponds to straight up and 180◦ and −180◦

correspond to straight down.

that are changing. For the ensuing discussion, please refer to both

Fig. 3 and Fig. 2 which shows the names of anatomical features of

the outer ear. For the first KPC, when m = −7 the ear appears

to be wider in width and have a larger Concha and Superior-Crus-

Anti-Helix region. On the other hand, when m = 7 the ear appears

to fold inwards and become narrower. For the second KPC, when

m = −7 the Anti-Helix-Stem has moved outwards (even out of the

ear) and the Superior-Crus-Anti-Helix region is larger. On the other

hand, when m = 7 the opening of the Concha is very wide, making

the Superior-Crus-Anti-Helix region smaller and pushing down the

Anti-Tragus.

Consider now the acoustics of the ears. Fig. 4 shows the log-

magnitude of the Directional Transfer Functions (DTFs) [26] in the

median plane for several of the ear shapes in Fig. 3. In order to

quantitatively evaluate the differences in the median plane DTFs, we

used a measure similar to that described in [26]. Assume the log-

magnitude spectra are given for two DTFs, so that we have D1(f)
and D2(f). We then compute a log-magnitude spectral difference, σ,

as:

σ =

√

√

√

√

1

N

N
∑

n=1

[(

D1(fn)−D1

)

−
(

D2(fn)−D2

)]2
, (19)

where N is the number of frequency bins and D is the mean value

of D(f). The log-magnitude spectral difference between the median

m -2 -1 1 2

i = 1 5.3 4.0 3.1 4.2

i = 2 4.4 3.3 3.3 4.7

Table 1. The average log-magnitude spectral difference for the me-

dian plane DTFs are shown in dB for the first and second KPC.

plane DTFs for E(i,m) and E were computed and then averaged

across all elevations on the median plane (see Table 1). The average

log-magnitude spectral difference for both KPCs is fairly similar and

varies between 3 and 5.3 dB.

4. CONCLUSION

This paper shows variations in ear morphology that commonly oc-

cur across a population of ears and the associated changes in the

ear acoustics. The analysis was performed using KPCA within the

LDDMM framework. The morphological and corresponding acous-

tic variations of the ear shapes within the SYMARE population are

shown for the first and second kernel principal components. The work

detailed in this paper forms part of ongoing morphoacoustics research.

Future studies will further examine the relationship between the ker-

nel principal components for ear shape and the associated changes in

ear acoustics.
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