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Abstract. Existing language workbenches, such as Xtext, support bridg-
ing the gap between the concrete syntax (CS) and abstract syntax (AS)
of textual languages. However, the specification artefacts – i.e. gram-
mars – are not sufficiently expressive to completely model the required
CS-to-AS mapping, when it requires complex name resolution or multi-
way mappings. This paper proposes a new declarative domain specific
transformation language (DSTL) which provides support for complex
CS-to-AS mappings, including features for name resolution and CS dis-
ambiguation. We justify the value of and need for a DSTL, analyse the
challenges for using it to support mappings for complex languages such
as Object Constraint Language, and demonstrate how it addresses these
challenges. We present a comparison between the new DSTL and the
state-of-the-art Gra2Mol, including performance data showing a signifi-
cant improvement in terms of execution time.

Keywords: Concrete Syntax ·Abstract Syntax ·Domain Specific Trans-
formation Language · Xtext · OCL · Gra2Mol

1 Introduction

One of the challenges that Model-Driven Engineering (MDE) tool implementors
face when creating modelling languages is how to effectively bridge the gap be-
tween the concrete syntax (CS) and the abstract syntax (AS) of a language: the
CS must be designed so that end-users have a familiar and accessible syntax,
whereas the AS must be provided behind-the-scenes to enable model manage-
ment and manipulation – and the two artefacts must be related.

Although this is a general challenge addressed by many works in the field,
there are still gaps, particularly for bridging the CS-to-AS (CS2AS) gap for
non-trivial modelling languages like the Object Constraint Language (OCL). To
understand the aims of this research, we introduce its scope and motivation in
the remainder of this section. Section 2 goes deeper into the challenges that arise
when specifying CS2AS bridges for languages like OCL. Section 3 introduces the
proposed solution to overcome these challenges. Section 4 assesses related work,
and we present a more extensive comparative study with Gra2Mol in Sect. 5.
We give final remarks and future work in Sect. 6 and conclude in Sect. 7.



1.1 Scope

Bridging the CS and the AS of a modelling language is a topic with significant
related work (discussed in Sect. 4). We focus on the problem for a subset of
languages:

– Those whose AS is given in the form of an established (possibly standardised)
meta-model. In other words, the end user is interested in editing models
conforming to an already existent meta-model.

– Those whose CS is textual and given in the form of a grammar. Although we
are aware of previous work [1–3] that supports for textual concrete syntaxes
without any grammar provision, they are out of this paper scope.

We use OCL [4] to illustrate the ideas of our approach. OCL has a tex-
tual CS and managing instances of it consists of editing models conforming to
the language AS (meta-model). The grammar and meta-model come from the
specification defined by the Object Management Group (OMG).

1.2 Motivation

To clarify the motivation for our approach, we expose a problem with a specific
language workbench: Xtext [5]. Then, we briefly introduce our solution.

Problem. Xtext grammars provide the means to specify bridges between
the CS and the AS. However, this can only be done easily for simple languages.
Consider the following example of an OCL expression:

1 x.y

Fig. 1 shows a plausible CS definition. It uses a very simplified OCL grammar
and CS with just navigation expressions for ease of presentation.

1 NameExpCS:

2 sName=SimpleNameCS

3 ( navOp=(’.’ | ’->’)

4 navExp=NameExpCS)?;

5 SimpleNameCS:

6 name=(ID | ’self’);

NameExpCS

navOp : EString

SimpleNameCS

name : EString

[0..1] navExp

[1..1] sName

Fig. 1. Example CS definition

In terms of AS (Clause 8 of [4]), we can be sure that ’y’ must be a Proper-

tyCallExp. This means, in terms of evaluation (dynamic semantics), that the ’y’

property must be navigated from the object evaluated from the PropertyCall-

Exp source (i.e. ’x’ ). ’x’ could be a VariableExp, whose evaluation uses the value
of the ’x’ variable (perhaps defined in an outer LetExp). However, in OCL, ’x’
could also be another property navigation using the value of the implicit ’self ’

variable. In other words, the original expression could be shorthand for ’self.x.y’.



This kind of situation cannot be handled by Xtext grammars. Syntactically,
it is unknown whether the name ’x’ that precedes the ’.’ operator is a Variable-

Exp, or a PropertyCallExp. Additional semantic information (static semantics)
is required. Despite enhancing EBNF notation [6] to map the AS from the CS,
Xtext grammars are insufficient to cope with all the required mappings.

Proposed approach. Given such problematic scenarios, we advocate a clear
distinction between the CS specification (i.e a grammar), from which a CS meta-
model can be straightforwardly derived (as Xtext does), and the AS specification
(i.e a meta-model). Transition from the CS to the AS is then a matter of ex-
ercising a model-to-model (M2M) transformation. In particular, we propose a
domain specific transformation language (DSTL); our solution entirely operates
in the modelware technological space [7].

The reader may note that the approach itself is not novel. The convenience
of a CS meta-model has been previously published [8], and, as discussed in our
previous work [9], an OCL based informal description is proposed by the own
OCL specification. Gra2Mol [10] demonstrates the same idea of a DSTL to map
grammars to arbitrary AS meta-models. However, we have identified limitations
that have pushed us to come up with a new DSTL, which combines novel fea-
tures from DSLs like NaBL [11], while offering both declarative capabilities and
significant performance improvement (see Sect. 5).

2 Problem Analysis

In this section, we analyse challenges to be addressed when specifying CS2AS
bridges for languages like OCL that require non-trivial CS2AS mappings.

Challenge 1: Significant gap between CS and AS. Previous work [12,
5] has proposed how meta-models can be mapped from grammars specification.
In OCL, there is an AS meta-model which has been established a priori ; there
are substantial differences between the CS and AS. When the mappings between
CS and AS elements (e.g. between a grammar non-terminal and a meta-class)
are not direct (1-1 mapping), existing approaches cannot easily establish the
desired CS2AS bridges. In general, the possibility to create many AS elements
from many CS elements (M-N mappings) is required.

In our introductory example we required either a 2-1 or 2-2 mapping. A
NameExpCS and a SimpleNameCS corresponding to the ’x’ expression, maps
either to a VariableExp for the ’x’ variable or to a VariableExp for the implicit
’self ’ variable and a PropertyCallExp for the ’x’ property.

Challenge 2: Cross-references resolution. When creating AS models,
graphs are produced rather than trees. This requires a mechanism to set cross-
references at the AS level. For instance, in OCL, the AS elements reference their
type. We must therefore specify the computation of these types that may involve
identification of a common specialization of template types.

Challenge 3: Name resolution. Name resolution is a particular form of
cross-referencing where we use CS information such as a name to locate one AS
named element in the context of another AS element to resolve a cross-reference



between the AS elements. For instance, in our introductory example, ’y’ is used
in the context of the PropertyCallExp to resolve the reference to the Property.

Challenge 4: Disambiguation resolution. In the introductory example,
we explained how ’x’ might map to either a VariableExp for ’x’ or a VariableExp

and PropertyCallExp for ’self.x’. Syntactically, we cannot determine which AS
should be created. Disambiguation rules are therefore required whenever a CS
element is ambiguous. CS2AS bridges can specify these CS disambiguation rules
as computations involving the CS and/or AS model elements.

3 Solution

We now propose our solution to the aforementioned challenges.

3.1 Distinct CS and AS Meta-Models

The overall approach is depicted in Fig. 2. We advocate introducing distinct CS
and AS meta-models. The AS is the established target meta-model ➌. The CS
can be an intermediate meta-model ➋ automatically derived from a grammar
definition ➊. A potentially complex bridge ➍ between the CS and AS of a lan-
guage defines mappings between the concepts of the CS and AS meta-models,
i.e. defining a model-to-model (M2M) transformation. Existing tools can gen-
erate a CS meta-model and the parser ➎ capable of producing the conforming
CS models from a given textual input. In this paper we are concerned with the
CS2AS bridge from which we synthesize the M2M transformation solution ➏

that is responsible for consuming CS models in order to produce the final AS
ones.

Fig. 2. Overall approach

With the proposed approach we operate in the modelware technological
space. The significant parsing concerns do not affect us and so we are not depen-
dent on a particular parser and/or language workbench technology. For example,



Xtext (and ANTLR [13] based parsers) are suitable for this approach. More gen-
erally, any underlying parser produces CS models conforming to a meta-model
could be used. We could therefore use IMP [14] (and LPG [15] based parsers).

3.2 CS2AS External DSTL

We propose a new external DSTL for the CS2AS definition ➍ in Fig. 2. We use
a new DSTL rather than an existing M2M transformation language, to provide
a more concise declarative language in this domain. The DSTL reuses Essential
OCL as the expressions language. The following characteristics led us to define
it as a DSTL:

One input and output domain. The model transformations involves just
one source input domain and one target output domain. Each domain which
may comprise several meta-models. There is no need to support in-place trans-
formations.

Specific name resolution related constructs. We add specific constructs
to define name resolution in a declarative manner.

Specific disambiguation rules. The CS disambiguation concern is sepa-
rated by providing a dedicated declarative section to specify the disambiguation
rules that drive AS element construction.

The DSTL consists of four different sections: helpers, mappings, name reso-

lution and disambiguation. Each addresses a particular concern of the process of
describing CS2AS bridges, and they are introduced below.

Helpers. The helpers section provides reusable functionality in the form of
helper operations. For instance, Listing 1 depicts a declaration of a helper opera-
tion that retrieves the parent element of a NameExpCS as another NameExpCS.
When the parent element is either null or a non-NameExpCS, null is returned.

1 helpers {

2 NameExpCS::parentAsNameExp() : NameExpCS[?] :=

3 let container = self.oclContainer()

4 in if container.oclIsKindOf(NameExpCS)

5 then container.oclAsType(NameExpCS)

6 else null endif }

Listing 1. Helpers section excerpt

Mappings. The mappings section is the main part of the DSTL. The map-
pings declare how AS outputs are created and initialized from CS inputs. The
DSTL includes the basics of declarative M2M transformation languages[16].

Listing 2 depicts an excerpt for our example; we highlight the relevant fea-
tures. Line 3 refers to a disambiguation rule that is specified in the disambigua-

tion section (explained later). Lines 7, 8, 10 and 11 make use of trace expressions,
which let us access the AS domain from CS elements. Lines 7 and 10 make use
of lookup expressions to compute name resolution based cross-references (more
details later).

The mappings section addresses complex CS2AS mappings like that required
by our example. The use of OCL supports complex computation and full navi-
gation of the CS and AS models.



1 mappings {

2 map PropertyCallExp from NameExpCS

3 when nameRefersAProperty {

4 ownedSource := let parent = self.parentAsNameExp()

5 in if parent = null

6 then VariableExp {

7 referredVariable = trace.lookup(Variable, ’self’); }

8 else parent.trace;

9 endif

10 property := trace.lookupFrom(Property, sName, trace.ownedSource.type)

11 type := trace.property.type }}

Listing 2. Mappings section excerpt

Name resolution. The third section of the DSTL specifies how names are
resolved. Explaining the full capabilities of the language would merit its own
paper. We therefore focus on what is required to explain name resolution in our
example: in particular, how a Property might be located to resolve the Proper-

tyCallExp::referredProperty cross-reference.

1 nameresolution {

2 Property {

3 named-element name-property name; }

4 Class {

5 for all-children -- scopes can be configured for all-children elements

6 nested-scope ownedProperties;

7 exports ownedProperties; }}

Listing 3. Basic name resolution declaration for Property elements lookup.

Listing 3 shows the solution for the simple case. We firstly identify Property as
a named element, the target of name-based lookups (lines 2-3). Basic unqualified
named element lookups are based on the concept of lookup environments (scopes)
propagation (Clause 9.4 of [4]). They are detailed in our previous work [9]. In
our example, we declare how Properties are contributed to lookup scopes. In this
case, it is done by the owning Class (Lines 5-6). Since a property name might
occlude others defined in outer scopes, we use the nested-scope keyword.

Named elements might be the target of lookups out of the scope of the
element that performs the lookup. For instance, a PropertyCallExp may refer to
a Property of a Class that is not the Class defining the expression’s scope. Thus,
we also declare that a Class exports its owned Properties (line 7).

Finally, we explain how name-based lookups are linked with the mappings
section. In Listing 2, we remarked on two new expressions that enhance OCL:
lookup expressions (line 7) are used to declare a named element lookup in the
current scope. They require the target element type and additional input infor-
mation (the string ’self ’, in that example); lookupFrom (line 10) expressions
are used to look up exported elements. They require another parameter indi-
cating from which element the lookup is performed (the type of the ownedSource,
in that example).

Disambiguation. The disambiguation section of the DSTL declares CS dis-
ambiguation rules which can be referred to by mappings declared in themappings

section. These disambiguation rules act as a guard for the referring mapping.
Listing 4 shows an example of disambiguation rules required by our introductory
example.



1 disambiguation {

2 NameExpCS {

3 nameRefersAVariable :=

4 let asParent = oclContainer().trace

5 in asParent.lookup(Variable, sName) <> null;

6 nameRefersAProperty :=

7 let csParent = parentAsNameExp(),

8 asParent = oclContainer().trace

9 in if parentNameExpCS = null

10 then asParent.lookup(Property, sName) <> null

11 else asParent.lookupFrom(Property, csParent.trace.type, sName) <> null

12 endif; }}

Listing 4. CS disambiguation rules

Our DSTL separates the disambiguation rules from the mappings section.
This lets us solve a typical issue in declarative transformation languages where
mappings applied to the same input type contain non-exclusive guards (two
guards might evaluate to true). For instance, in our example, ’x’ might be both
a variable to refer in that particular expression scope, and a property of the
’self ’ variable. In order to address this issue and keep the mappings section
declarative, we enhance the semantics of the disambiguation section so that the
order in which the disambiguation rules are defined is significant: the first disam-
biguation rule that applies for a particular CS element is used. In our example,
and providing the mentioned conflict, ’x’ disambiguates to a VariableExp, rather
than a PropertyCallExp, since the nameRefersAVariable disambiguation rule is
defined first.

3.3 Implementation

The DSTL has been prototyped using Xtext. The corresponding Eclipse plugins
are publicly available3. The implementation does not include an M2M transfor-
mation engine capable to execute instances of the DSTL, rather it contains an
Xtend-based [17] code generator4 that generates a set of Complete OCL files
conforming to the OCL-based internal DSL described in our previous work [9].
As explained in [9], the actual CS2AS transformation execution is performed
by a generated Java class that uses the Eclipse Modeling Framework and Ecore
meta-models to transform CS models to AS models.

4 Related Work

We now discuss how our approach relates to previous work. Space constraints
prevent a detailed comparison with the very many tools that provide partial
support to the problems identified in this paper, including TEF[18], Spoofax[19]
and Monticore[20]. The state-of-the-art related to this research is Gra2mol [10]
for which we include a detailed comparative study (Sect. 5). Here, we discuss two
particular language workbenches in more detail: Xtext, because it has motivated
this research and we aim to integrate with it; and Spoofax, whose NaBL[11] sub-
language has been a source of inspiration of a part of our DSTL.

3 https://github.com/adolfosbh/cs2as
4 Implementation details about the generator are not included in this paper



4.1 Xtext

The introduction mentioned some of the limitations of Xtext; we now relate the
challenges from Sect. 2 to Xtext’s capabilities.

Challenge 1. Although Xtext grammars provide mechanisms to bridge the
CS and AS of a language, as soon as we move away from simple DSLs to those
that require M-N mappings, Xtext is insufficient.

Challenge 2. Xtext grammars support name resolution for cross-references
in the AS models. They do not support derived resolution such as the types of
OCL expressions.

Challenge 3. Xtext grammars resolve names using simple implicit scoping
rules. More complex scoping scenarios requires customized code.

Challenge 4. Xtext provides no way to declare CS disambiguation rules.

4.2 Spoofax

Spoofax is a language workbench to give support – e.g parsers, editors – to
textual languages. Although it was not originally intended to create models,
there is work [21] showing that Spoofax can be used for this purpose. We now
relate the challenges from Sect. 2 to Spoofax capabilities.

Challenge 1. Past Spoofax work [21] to generate meta-models from gram-
mars suffers from the same limitations as Xtext (above). However, Stratego/XT
[22] can be used within Spoofax to address this challenge. Building on its foun-
dations, we can define transformations from AST elements (i.e., the CS model)
produced by a parser into an AS model.

Challenge 2. Stratego/XT can resolve cross-references in the AS model.
Challenge 3. Spoofax offers a declarative name resolution language (NaBL

[11]). However, the name resolution descriptions are only aware of the grammar
descriptions (SDF [23]). Cross-references are set when producing the initial AST
obtained from the parser. This inhibits cross-references to external AS models –
e.g. an AS model with no CS. In the case of OCL, many of the external (meta-
)models on which OCL queries operate do not necessarily relate to any textual
CS at all.

Challenge 4. Stratego/XT specifies disambiguation rules using strategy ex-

pressions. There is no convenient way to declare CS disambiguation rules relying
on name resolution.

5 Gra2Mol: Comparative Study

We consider Gra2Mol as the-state-of-the-art related to this work. Although it
was originally intended as a text-to-model tool for software modernization, their
DSTL fits in the same scope and objective we present in this paper. To better
assess how our proposed DSTL contributes to the field, we present a comparative
study with Gra2Mol. The study consists of a qualitative evaluation in terms of
features/capabilities and a quantitative evaluation in terms of performance.



5.1 Qualitative Study

In this section we compare Gra2Mol and our DSTL in terms of their features
and capabilities. Due to restricted space, we focus on relevant differences.

Query language. Gra2Mol is based on a tailored structure-shy (like XPath)
query language, and our DSTL is based on the statically typed OCL. The
Gra2Mol query language is less verbose and more concise than OCL; thus,
Gra2Mol instances tend to be smaller. However, Gra2Mol navigation operators
are based on accessing children elements. This forces5 the declaration of deep
navigations from the root element, whenever the information is not contained
by a given CS element. This leads to performance penalties, because the oper-
ators are not as fast as a simple oclContainer() call. Also, the Gra2Mol query
language is designed to work strictly on CS models. This has some advantages
(e.g., conciseness) compared with our DSTL, because the latter requires usage of
trace expressions to access the AS domain. However, navigating the AS domain
(graphs) from the CS one (trees) provides more concise and/or less expensive
navigations to retrieve some particular AS information (e.g. querying the type
– a cross-reference – of a particular expression). More importantly, focusing on
CS navigations prevents CS2AS transformations from working with external AS
models (e.g. a library model with no CS).

Name resolution. Name-based cross-references are declared in Gra2Mol as
another model query. These queries are described as direct searches that consider
where the target element is located in the model. Model queries get significantly
complicated when simulating lookup scopes. In complex languages like OCL,
the declarative nature of our nameresolution section makes name-based cross-
reference declarations concise.

Disambiguation rules. Separating the disambiguation rules away from the
mapping declarations provides additional semantics and overcomes a Gra2Mol
limitation [10]: “If two or more conforming rules exist, their filter conditions must
be exclusive, since only one of them can be applied”. This limitation prevents a
simple Gra2Mol solution to our introductory ‘x.y’ example.

Front-end coupling. Our DSTL is not coupled to a parser technology or
language workbench. The Gra2Mol transformation interpreter is coupled to a
homogeneous CS meta-model they provide, which is incompatible with Xtext
grammars; more generally, integrating Gra2Mol with a language workbench like
Xtext is impractical.

5.2 Quantitative Study

The quantitative study consists of an experiment based on obtaining execution
time measurements for both Gra2Mol and our prototype when executing CS2AS
transformations. We focus on execution time because we aim to integrate these
CS2AS transformations in textual editors, where too-slow execution time is un-
acceptable.

5 Gra2Mol has a language extension mechanism to introduce new operators, which
could be used to improve the default built-in functionality.



Gra2Mol is publicly available with different ready-to-go examples. Our ex-
periment replicates one of them with our prototype and performs a benchmark
involving models of different size and/or topology.

Example. We have picked one of the published Gra2Mol examples that is
simple enough to fit within our space constraints, that requires cross-references
resolution, and provides models of varied topologies.

1 company :

2 ’company’ STRING ’{’

3 department*
4 ’}’ EOF;

5 department :

6 ’department’ STRING ’{’

7 department_manager

8 department_employees

9 department*
10 ’}’;

11 department_manager :

12 ’manager’ employee;

13 department_employees :

14 (’employee’ employee)*;

15 employee :

16 STRING ’{’

17 ’address’ STRING

18 ’salary’ FLOAT

19 (’mentor’ STRING)?

20 ’}’;

Company

name : EString

Department

name : EString

Employee

name : EString

address : EString

salary : EDouble = 0.0

[0..*] depts

[1..1] manager

[0..*] subdepts

[0..*] employees

[0..1] mentor

Fig. 3. CS (left) and AS (right) of the target 101companies [24] example.

Figure 3 shows the CS (ANTLR grammar) and AS (Ecore meta-model) of
the modelling language, as defined by the target “101 Companies“ example6 [24].
The definition of lexical tokens has been intentionally omitted.

Figure 4 depicts side-by-side excerpts of the artefacts that show how the
CS2AS bridge is specified within both approaches. There are numerous similari-
ties between the CS2AS descriptions, where the main differences are in the model
queries. Our DSTL isolates the name resolution concerns in its own section.

Experiment Setup. We now describe how the experiment is conducted. We
ensure that the CS2AS transformation executions are correct by checking that
the output models produced by both transformations are the same.

We created a tailored model generator for the example, configured by the
following parameters:

Nd : Number of (top level) departments in the company model.

Ns : Number of subdepartments per department/subdepartment.

Ne : Number of employees per department/subdepartment.

Ds : Depth level of (sub)departments.

6 https://github.com/jlcanovas/gra2mol/tree/master/examples/

Grammar2Model.examples.101companies



1 rule ’mapEmployee’

2 from employee e

3 to Employee

4 queries

5 mElem : //#employee{STRING[0].

eq(e.STRING[2])};

6 mappings

7 name = removeQuotes e.STRING

[0];

8 address = removeQuotes e.

STRING[1];

9 salary = e.FLOAT;

10 mentor = mElem;

11 end_rule

1 mappings {

2 map as::Employee from employee {

3 name := name;

4 address := address;

5 salary := salary;

6 mentor := trace.lookup(

Employee, mentor);}}

7 nameresolution {

8 Employee {

9 named-element name-property

name;}

10 Company {

11 nested-scope

12 depts->closure(subdepts)

13 ->collect(employees

14 ->including(manager));}}

Fig. 4. CS2AS specification in Gra2Mol (left) and our DSTL (right).

Element attributes are pseudo-randomly generated, whereas the Employee::

mentor cross-reference is assigned to another random employee with a 0.5 prob-
ability. The input models used in the experiment are characterized by Table 1.

Table 1. Experiment model characterization

Model ID Size (bytes) Elements Nd Ns Ne Ds

M1 1,238 22 3 0 3 1
M2 6,105 97 3 3 4 2
M3 149,951 701 1 1 3 100
M4 42,805 708 1 100 3 2
M5 223,848 3061 4 4 5 4
M6 1,018,254 11901 10 4 10 4
M7 9,794,276 109341 10 5 10 5

The experiment consists of using both technologies to run the corresponding
CS2AS transformation with each model. With the aim of easing repeatability, we
have set up an experiment environment in the SHARE [25] platform7. The reader
just needs to log in platform, and request access to the prepared virtual machine8.
When the access is granted, the user can connect to the remote virtual machine
and access the system using Ubuntu as user name, and reverse as password.
Additional information (README) about how to repeat the experiment, as
well as more details about the environment can be found in the user desktop.

7 http://share20.eu
8 http://is.ieis.tue.nl/staff/pvgorp/share/?page=

ConfigureNewSession&vdi=Ubuntu12LTS_CS2AS-DSTL---Experiments.

vdi



Experiment Results. We now present the results, including observations
and discussion. Figure 5 summarizes the performance results. All the collected
data and graphics are publicly available9.

Fig. 5. Experiment results: execution time.

Overall, Gra2Mol is ten times slower than our prototype with respect to this
example. There is an observed peak in performance when Gra2Mol deals with
M3 (701 model elements). It is unexpected, especially when comparing with M4

(708 model elements) which has a similar number of model elements. If we look
at the model parameters characterization from Table 1, we identify two main
differences: M3 is a deep model, whereas M4 is a wide one; Despite the similar
number of model elements, M3 is bigger in terms of size (149,951 vs 42,805
bytes). This is explained by the logic used by the model generator to assign
names to model elements: the deeper the named element is inside the model,
the longer the string for the corresponding name. These topology differences
between M3 and M4, makes us conclude that model topology seriously impacts
Gra2Mol performance, whereas this is not the case with our prototype.

In terms of scalability, we observe that neither approach adequately scales
(i.e bad performance results with big models). Some more comments about this
limitation are given below.

Limitations. Neither Gra2Mol nor our prototype scaled proportionately; we
repeated the experiment but we removed the computation of Employee::mentor

property from both transformations. For the latter, we also removed the model
query required to compute that property. The results are depicted in Fig. 6.

We get more reasonable results that lead to the same previous conclusions.
Additionally, we conclude that the bad performance results from the original
experiment come from the expensive query to compute the Employee::mentor

property. In our prototype, when compiling to a Complete OCL document-based
specification [9], the name resolution behaviour is translated as a set of OCL op-
erations. Given the name resolution defined for the example, the operational be-

9 https://docs.google.com/spreadsheets/d/16aYZRdKiPOMA_z_

85zfVFNLqPPe1XMvNsSdGIw8j7vw/edit?usp=sharing



Fig. 6. Execution time when Employee::mentor property is not computed.

haviour of these OCL operations implies traversing the whole model every time
name resolution is required. In Gra2Mol the penalty is even worse (transforma-
tion of M7 takes several hours), because the expensive traversal is performed
even though a particular employee is not meant to have a mentor.

Although this an implementation issue, rather than a DSTL one, this is an
important issue to address, and so we aim to address the missing re-computation
cache in the near future.

6 Remarks and future work

In this paper, we have focused on textual CS. However, the proposed solution
works in the modelware technological space. Thus, it might be used, for instance,
with diagrammatic CS, as long as all the corresponding editing facilities produce
a CS model (e.g figures, colours, etc.). This is something we aim to explore in
future work, e.g., on editors for probabilistic state machines or flexible models.

In this paper, our DSTL establishes mappings from the CS towards the AS.
However, many tools need to obtain the corresponding CS representation of an
AS model, for instance, after a model refactoring. Although the traces between
the CS and AS models are retained, the inverse transformation step is not cur-
rently supported. However, we see no immediate impediment to use the same
DSTL to specify the opposite transformation.

In this paper, we focused on the CS-to-AS transformation step. However, to
add more value to the proposed language, additional tooling to better integrate
with modern workbench languages is required. We have created some Xtext
integration support, so that a generated editor benefits from an enhanced content
assist produced from the name resolution description. Also, the generated outline
view is enhanced to show the structure of the AS model rather than the CS model
one. We want to polish and publish this work in the near future.

When comparing with Gra2Mol, we improved the DSTL’s declarative na-
ture by incorporating a NaBL-like sub-language to support name resolution
based cross references. We could improve the DSTL further by incorporating



an XSemantics-like [26] sub-language to support type system resolution based
cross references.

7 Conclusions

We have proposed a new DSTL to bridge the CS and AS of languages, in par-
ticular, those whose CS is textual and specified by a grammar, and whose AS
is specified by an established meta-model. We have justified the need for this
language by showing some specific challenges that arise when the CS and AS
bridge is non-trivial, in particular in OCL. The proposed solution operates in
the modelware technological space, and hence does not commit to a particular
parser technology or language workbench.

After a qualitative comparison with Gra2Mol (state-of-the-art), we showed
an experiment whose results provide evidence that our prototype outperforms –
in terms of execution time – Gra2Mol (in the example, ten times fold).

Although there currently are limitations, the proposed solution makes a sub-
stantial step towards providing the required support for complex textual mod-
elling languages (e.g OCL), by means of specification artefacts such as grammars,
meta-models and domain specific transformations.
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1. Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: A DSL for the Specifi-
cation of Textual Concrete Syntaxes in Model Engineering. In Proc. of the 5th
International conference, pages 249–254, New York, NY, USA, 2006. ACM.

2. Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Model-based language engineering with emftext. In Generative and Trans-
formational Techniques in Software Engineering IV, pages 322–345. Springer, 2011.

3. Markus Voelter. Language and IDE Modularization and Composition with MPS.
In Generative and transformational techniques in software engineering IV, pages
383–430. Springer, 2011.

4. Object Management Group. Object Constraint Language (OCL), V2.4.
formal/2014-02-03 (http://www.omg.org/spec/OCL/2.4), February 2014.

5. Moritz Eysholdt and Heiko Behrens. Xtext: Implement your language faster than
the quick and dirty way. In Proceedings of the ACM International Conference
SPLASH ’10, pages 307–309, New York, NY, USA, 2010. ACM.

6. Niklaus Wirth. Extended backus-naur form (ebnf). ISO/IEC, 14977:2996, 1996.
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10. Javier Luis Cánovas and Jesús Garćıa-Molina. Extracting models from source code
in software modernization. Software & Systems Modeling, 13:1–22, 2012.
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