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Abstract

In this paper, we describe an unsupervised measure for quantifying the ‘informativeness’
of correlation matrices formed from the pairwise similarities or relationships among data
instances. The measure quantifies the heterogeneity of the correlations and is defined as
the distance between a correlation matrix and the nearest correlation matrix with con-
stant off-diagonal entries. This non-parametric notion generalizes existing test statistics
for equality of correlation coefficients by allowing for alternative distance metrics, such as
the Bures and other distances from quantum information theory. For several distance and
dissimilarity metrics, we derive closed-form expressions of informativeness, which can be
applied as objective functions for machine learning applications. Empirically, we demon-
strate that informativeness is a useful criterion for selecting kernel parameters, choosing
the dimension for kernel-based nonlinear dimensionality reduction, and identifying struc-
tured graphs. We also consider the problem of finding a maximally informative correlation
matrix around a target matrix, and explore parameterizing the optimization in terms of
the coordinates of the sample or through a lower-dimensional embedding. In the latter
case, we find that maximizing the Bures-based informativeness measure, which is maxi-
mal for centered rank-1 correlation matrices, is equivalent to minimizing a specific matrix
norm, and present an algorithm to solve the minimization problem using the norm’s proxi-
mal operator. The proposed correlation denoising algorithm consistently improves spectral
clustering. Overall, we find informativeness to be a novel and useful criterion for identifying
non-trivial correlation structure.
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1. Introduction

Shannon’s entropy measures the dispersion of a sample of objects among the possible el-
ements of a discrete space. A sample consisting solely of repeated instances of the same
element has minimal entropy, and a sample wherein each object is distinct from the rest
has maximum entropy. If these samples correspond to the labels assigned by a clustering
algorithm, then neither the minimal entropy sample corresponding to a single cluster, nor
the maximal entropy sample, where each instance is in its own cluster, is very informative
about any underlying organization within the sample. In this work, we investigate and intro-
duce univariate measures of informativeness that are minimized for both the maximal and
minimal entropy samples. Informativeness is based on the heterogeneity of the similarity
measurements for a sample and is applicable to samples from any space that has a posi-
tive semidefinite correlation measure. The positive definiteness ensures that the similarity
measurements can be represented as inner-products in a Hilbert-space, or more concretely,
that a given sample can be embedded in Euclidean space regardless of the original space.
The restriction to correlation measurements ensures each instance is represented by a vector
with equal magnitude, which distinguishes the effect of differences in similarity from differ-
ences in scale or variance, and ensures that each object is equally represented. Any positive
semidefinite matrix formed from pairwise similarity measurements can be normalized to
obtain a correlation matrix.

The notion of informativeness coincides with hypothesis tests for the homogeneity of cor-
relation coefficients, that is, how uniform the off-diagonal elements of a correlation matrix
are (Bartlett, 1954; Anderson, 1963; Lawley, 1963; Gleser, 1968; Aitkin et al., 1968; Steiger,
1980; Brien et al., 1984). According to this notion, a non-informative correlation matrix has
equal off-diagonal elements, which indicates that no pair of objects is more similar than any
other pair. For example, a constant matrix of all ones implies the objects are indistinguish-
able, and an identity matrix implies the objects are all distinct with no similarity. While
observing an identity correlation matrix may be informative itself, because the objects have
no dependence, no hierarchical grouping or clustering of the objects is appropriate, and any
reordering of the objects yields the same correlation matrix. This last property—invariance
to permutations—provides another definition of a non-informative correlation matrix.

The null hypothesis of the aforementioned tests is that the expected value of the cor-
relation matrix has equal off-diagonal elements, where the parameter of the off-diagonal
elements is left unspecified. Tests of equality of correlation coefficients are a specific case of
hypothesis tests for patterns within sets of correlation coefficients (Steiger, 1980). Instead
of hypothesis testing, we are interested in using informativeness as an objective function
for unsupervised learning and for making relative comparisons between correlation matri-
ces of equal size—in particular, between matrices corresponding to the same sample, e.g.,
kernel matrices formed with different kernel functions, or correlation matrices obtained by
applying different dimensionality reduction techniques. For instance, evaluating a Gaussian
kernel on a sample of distinct points yields a non-informative correlation matrix when the
kernel bandwidth is chosen either too large (resulting in a nearly constant matrix) or too
small (resulting in an identity matrix). These extremes correspond to the minimal and
maximal cases of matrix entropy as defined by von Neumann (1955) for quantum density
matrices. While many heuristics can be used to select an appropriate kernel bandwidth or
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Figure 1: Informativeness versus von Neumann entropy for correlation matrices obtained
from various configurations of four unit vectors. Both measures are minimal
when the vectors are configured in a single cluster. Informativeness is higher
for nontrivial clusterings, whereas entropy is maximized when the vectors are
maximally separated.

the dimension of a lower-rank approximation of a kernel matrix, informativeness provides
an unsupervised objective function for these selections.

Informativeness can be used to rank different samples and identify samples that have
more structure. An example comparing informativeness to entropy for different samples of
two-dimensional vectors is shown in Figure 1. Informativeness can also be applied to graphs,
since the normalized graph Laplacian is a correlation matrix, and informativeness can be
used to identify graphs that exhibit more structure, for example, regularity or clustering.
As an objective function, informativeness can be used for enhancing the observed structure
in a sample by searching for a matrix with more exaggerated differences in correlation
coefficients around a target matrix.

While there are existing statistical tests to measure the heterogeneity of correlation coef-
ficients, we define informativeness based on the distance between a given correlation matrix
and the nearest non-informative matrix. In other words, informativeness is proportional to
the distance between a given correlation matrix and the set of non-informative matrices.
This definition is essential, since defining the distance to a particular non-informative ma-
trix, either the identity matrix or a constant matrix, is insufficient as these distances will be
proportional or inversely proportional to the von Neumann entropy. Even if two equal-sized
correlation matrices are closest to distinct non-informative matrices, the distance to the set
can be used to determine which matrix is more informative.

As defined, informativeness will be dependent upon the choice of the distance metric.
Among other distances, we explore some from quantum information theory (Fuchs and
van de Graaf, 1999; Nielsen and Chuang, 2000). These distances are applicable since any
positive semidefinite matrix can be scaled to be a valid quantum density matrix. In par-
ticular, we find the Bures distance (Bures, 1969; Uhlmann, 1976), which generalizes the
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Hellinger distance to matrices (Nielsen and Chuang, 2000; Koltchinskii and Xia, 2015), to
have useful properties. Unlike many distance or similarity functions that are based on the
Hilbert-Schmidt inner product, the similarity function for the Bures distance (known as
fidelity (Jozsa, 1994)) relies on the trace norm. The Bures distance is both contractive and
locally Riemannian, and can be considered the best-suited distance metric for the space of
quantum density matrices (Bromley et al., 2014).

For several choices of distance metrics or dissimilarity functions, the minimum distance
to the set of non-informative matrices has a closed-form expression, but this is not the case
for the Bures distance. Nonetheless, using the sub-additive property of the trace norm, we
derive a closed-form expression of the lower bound which is tight in most cases. Interest-
ingly, the resulting measure leads to a convex cost function that is inversely proportional
to the informativeness of a correlation matrix in terms of its Euclidean-space embedding.
Besides this unique property, we find the measures of informativeness based on the Bures
distance, and the other quantum distances, to perform better in machine learning applica-
tions than those based on the Hilbert-Schmidt inner product or the existing test statistics
for homogeneous correlation coefficients (Bartlett, 1954; Lawley, 1963).

We organize the exposition of the paper as follows: In Section 2 we introduce some
preliminaries regarding positive semidefinite, correlation, and quantum density matrices.
In Section 3 we introduce the general definition of informativeness and specific measure in-
stances based on various distance and dissimilarity functions. The derivations are included
in Appendix B. We conclude the section with an illustration of the various measures on
patterned correlation matrices corresponding to different partitions. In Section 4 we in-
troduce the problem of finding a maximally informative correlation matrix nearby a target
matrix, a problem we refer to as correlation matrix denoising. We also propose first-order
optimizations of informativeness for a sample’s correlation matrix parameterized in terms
of a kernel function applied to the sample coordinates. For correlation matrix denoising, we
also parameterize the optimization in terms of Euclidean-space embeddings and detail the
cost functions that arise from maximizing the informativeness of the embeddings. Moreover,
we show that the Bures-based informativeness is inversely proportional to a specific matrix
norm. Finally, using the norm’s proximal operator, we propose an algorithm to solve a re-
laxation of the correlation denoising problem. In Section 5 we explore different applications
of informativeness for machine learning algorithms including correlation matrix denoising.
A discussion of the results and general conclusions are given in Section 6.

2. Preliminaries

For a positive integer m, we use [m] to denote the set {1, . . . ,m}. We denote a scalar variable
as x or X, a set as X , a real-valued column vector as x, a matrix as X, and its jth column
as xj . Vectorizing the diagonal of a matrix is denoted by diag (X), and diag (x) denotes
a diagonal matrix with [diag (x)]i,i = xi. Inner-product notation 〈·, ·〉 is used for both
vectors and matrices, according to 〈x,y〉 =

∑
i xiyi and 〈X,Y〉 = tr

(
X>Y

)
=
∑

i,j Xi,jYi,j ,

respectively. The Euclidean norm of a vector is denoted by ‖x‖2, and ‖X‖2F = 〈X,X〉
denotes the square of the Frobenius norm, which is the sum of the squared entries of X and
equals the sum of the squares of its singular values. We denote the trace norm (also called
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the nuclear norm or Schatten 1-norm) by ‖X‖∗, defined as the sum of all the singular values
of X, and by ‖X‖2 the spectral (operator) norm which is the largest singular value of X.

2.1 Similarity, Correlation, and Embedding Matrices

We assume that we are provided with measurements of the similarity between n objects.
This similarity corresponds to either a non-negative symmetric bivariate measure, for which
larger positive values indicate similarity between objects and values near zero indicate weak
relationships, or if the concept of negative correlation is applicable, a symmetric bivariate
measure where negative values indicate inversely correlated objects. The similarity values
are represented by an n × n real symmetric matrix A, where Ai,j denotes the similarity
between objects i and j. Assuming that the similarities of all objects to themselves are
greater than zero, the similarity matrix can be rescaled such that all the self-similarities are
one. That is, any symmetric matrix Ã with Ãi,i > 0 can be symmetrically normalized via

Ai,j =
Ãi,j√
Ãi,iÃj,j

, (1)

such that Ai,i = 1, i ∈ [n], or equivalently as A = DÃD, where D is a diagonal matrix with
entries Di,i = 1√

Ãi,i
. We assume that we have no further information about the objects or

their original representations.
Many similarity measures, such as positive definite kernel functions, will yield a positive

semidefinite similarity matrix. Positive semidefinite matrices can be represented by the
embeddings of the objects in a Hilbert space for which the theory of reproducing kernel
Hilbert spaces (Aronszajn, 1950) applies. That is, if a given similarity matrix is positive
semidefinite, then there exists a set of n points in a Hilbert space H, such that the inner
product between any pair of points quantifies their similarity. Specifically, Ai,j = 〈zi, zj〉
where zi ∈ H with i ∈ [n], denotes the point corresponding to the ith object. For fi-
nite dimensional embeddings in Rb, we refer to the b × n matrix of concatenated vectors
Z = [z1, . . . , zn] as an embedding. This is not unique as any orthogonal transformation in
Rb yields an equally valid representation.

We restrict our attention to correlation matrices,1 which are matrices that are both posi-
tive semidefinite and normalized such that the diagonal elements are equal to one. Applying
the symmetric normalization from Equation 1 to a positive semidefinite similarity matrix
yields a correlation matrix, and in fact, the symmetric normalization yields the closest cor-
relation matrix in terms of the Bures distance, which we show in Lemma 2 in Appendix A.
A correlation matrix can be represented by a Hilbert space embedding where each object is
represented by a point on a unit sphere. The convex set of all the n×n correlation matrices is
known as the elliptope and it is defined as E =

{
X ∈ Rn×n : X = X> < 0, Xi,i = 1, ∀i ∈ [n]

}
.

It contains 2n−1 vertices that have full dimensional normal cones and correspond to rank-1
cut matrices of the form vv> with v ∈ {±1}n (Laurent and Poljak, 1995, 1996). The
convex hull of the cut matrices defines the cut polytope, and a strict subset of correlation
matrices are members of this polytope. This relationship between the elliptope and the

1. Their name is due to the fact they coincide with the set of Pearson correlation matrices for multivariate
samples.
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cut polytope is exploited in semidefinite programming relaxations (Saunderson et al., 2012)
of combinatorial problems associated with dividing objects, such as finding the maximum
cut of a graph (Goemans and Williamson, 1995). The set of embeddings of correlation
matrices is the oblique manifold OB =

{
Z ∈ Rb×n : ‖zi‖2 = 1, ∀i ∈ [n]

}
(Trendafilov and

Lippert, 2002; Absil and Gallivan, 2006), where any correlation matrix can be written as
Z>Z. When b = 1, the oblique manifold is simply the set of vectors with elements ±1.
The elements of a correlation matrix necessarily lie within [−1,+1] since from the Cauchy-
Bunyakovsky-Schwarz inequality we have |〈zi, zj〉| ≤ ‖zi‖ · ‖zj‖.

When the underlying objects are real-valued vectors, similarity measures that yield
correlation matrices include the cosine similarity; various correlation coefficients, such as
Pearson’s, Spearman’s, or Kendall’s; and positive definite shift-invariant kernel functions,
such as the Laplacian or Gaussian kernels. Efficient positive semidefinite kernels, which
can generally be normalized, have also been developed for non-vectorial objects, such as
strings (Lodhi et al., 2002), point sets (Kondor and Jebara, 2003), and the univariate point
sets known in neuroscience as spike trains (Park et al., 2013). Nonetheless, some similar-
ity measures yield normalized but indefinite matrices. To obtain a correlation matrix, one
approach is to apply a non-negative threshold to the eigenvalues by setting any negative
eigenvalues to zero (Higham, 1988) and then apply the symmetric normalization. An alter-
native is to find the nearest, in terms of Euclidean distance, correlation matrix (Higham,
2002; Qi and Sun, 2006). Both of these approaches, however, may distort the measures of
similarity. Another approach is to treat each row of the similarity matrix as a vector-space
representation of each object and compute a second-order similarity matrix using cosine
similarity between these vectors. The result will be a correlation matrix. A final possibility
motivated by spectral graph theory (Chung, 1997), is to treat the similarity matrix as the
weighted affinity matrix of a graph, and then compute the normalized graph Laplacian,
which is always a correlation matrix with non-positive off-diagonal entries.

2.2 Density Matrices

Quantum density matrices represent the probabilities associated with the outcomes of mea-
surements on quantum states (Nielsen and Chuang, 2000; Hayashi, 2006). Ignoring their
physical interpretations, density matrices are trace-normalized positive semidefinite Her-
mitian matrices. This means that statistical tools developed to analyze quantum density
matrices can be applied to positive semidefinite matrices, including correlation matrices,
after rescaling them by their trace.

Quantum information theory is based on the fact that a quantum density matrix is it-
self a non-commutative generalization of a probability mass function (Nielsen and Chuang,
2000). The positive semidefiniteness and unit-trace restrictions ensure that a matrix’s
eigenvalues are strictly positive and sum to 1; these are the same properties that a prob-
ability mass function has. This allows extensions of information theoretic quantities, such
as entropy and mutual information to be defined for density matrices, and subsequently,
trace-normalized positive semidefinite matrices (Sanchez Giraldo et al., 2015).

Our motivation for introducing density matrices is to leverage quantum information-
based distance measures, which have unique properties compared to more familiar measures.
Any correlation matrix can be converted to a density matrix by dividing by n. The set of
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rescaled correlation matrices forms a subset of symmetric density matrices with constant
diagonals. In the next section, we introduce our distance-based framework for measures of
informativeness that can use the quantum distance measures.

3. Defining and Measuring Informativeness

In this section, we propose a univariate measure of how informative a given correlation
matrix is, based on its distance from the nearest non-informative correlation matrix. This
distance can be measured using various distance/dissimilarity measures and for some of
these measures we show that we can obtain closed-form expressions of informativeness.

3.1 Non-informative Correlation Matrices

A set of pairwise correlation coefficients is non-informative if it indicates that no pair of
objects is any more similar than any other pair, i.e., there are no groups of more (or less)
related objects. Two exemplary cases of non-informativeness correspond to

1. all objects being indistinguishable, and

2. all objects being distinct and equally dissimilar.

By utilizing correlation matrices, these cases can be represented by the constant matrix
J = 11> and the identity matrix I, respectively. In general, any correlation matrix with
constant off-diagonal elements is non-informative. Reordering the objects, i.e., simultane-
ously permuting the rows and columns of the correlation matrix, will not change a non-
informative matrix. The set of non-informative matrices forms the null hypothesis for tests
of homogeneous correlation coefficients (Bartlett, 1954; Lawley, 1963). Like these test statis-
tics, informativeness essentially measures how heterogeneous the off-diagonal entries of the
correlation matrix are.

If we let ρ be the value of the off-diagonal elements, correlation matrices with constant
off-diagonal elements can be expressed as Aρ = ρJ + (1− ρ)I, where the range of ρ must be
restricted to ensure Aρ is a valid n× n correlation matrix. Specifically, since J1 = n1, the
spectrum of Aρ is {ρn+ 1− ρ, 1− ρ}. For both eigenvalues to be non-negative, we must
have −1

n−1 ≤ ρ ≤ 1.
It it more convenient, however, to substitute ρ with a variable a ∈ [0, 1], so that it

parameterizes the expression of a non-informative matrix as a convex combination of two

other non-informative matrices. Linearly mapping ρ ∈
[
−1
n−1 , 1

]
to a, gives a = ρ(n−1)+1

n or

equivalently ρ = an−1
n−1 . Substituting the latter within the expression for Aρ gives na−1

n−1 J +
n(1−a)
n−1 I, which is also equal to the expression aJ + (1 − a) n

n−1H, where H = I − 1
nJ is

the centering matrix. The parameter a is the mean of the non-informative matrix since

a =
1>Aρ1
n2 , whereas ρ =

1>(Aρ−I)1
n(n−1) is the mean of its off-diagonal elements.

In this work, we define the set of non-informative matrices to be

N ≡
{

Na = aJ + (1− a)
n

n− 1
H : 0 ≤ a ≤ 1

}
. (2)

Under this parameterization, N1 = J is the rank-1 constant matrix, N 1
n

= I is the identity

matrix, and N0 = n
n−1H is a scaled version of the centering matrix with rank n − 1.
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Geometrically, J is a vertex of the elliptope corresponding to the cut matrix 11>, I is the
barycenter, n

n−1H is an extreme point with a one-dimensional normal cone, and all the
non-informative matrices lie along the line connecting them.

From the characteristic polynomial of Na, it can be seen that it has one simple eigen-
value λ1 = an and one semisimple (due to the symmetry and, thus, diagonalizability of Na)

eigenvalue λ2 = (1−a)n
n−1 of multiplicity n−1. The corresponding eigenspaces Null(Na − λ1I)

and Null(Na−λ2I) are orthogonal complementary subspaces and, since (λ1,1) is an eigen-
pair, they are common to the entire family of Na. Any vector within the eigenspace of λ2 is
an eigenvector. The existence of common eigenvectors is also supported by the fact that N
is a commuting matrix family, which follows from the facts that JH = 0, and 1

nJ and H are
symmetric and idempotent. Furthermore, for any given a, Na can be expressed in terms of
its eigenvalues as λ1

n J + λ2H, and since it is diagonalizable, for any function f defined at

each λi, we have f(Na) = f(λ1)
n J + f(λ2)H. A particular instance of this, which we will use

in the subsequent section, is the matrix square root given by
√

Na =
√

a
nJ +

√
(1−a)n
n−1 H.

3.2 Measuring the Distance Between Correlation Matrices

We propose to quantify the informativeness of a given correlation matrix K by its distance
to the nearest non-informative correlation matrix. This measure of informativeness can be
defined as

dN (K) ≡ min
N∈N

d(K,N) = min
0≤a≤1

d(K,Na), (3)

and can rely on various distance or dissimilarity measures applicable to matrices. To ensure
informativeness is invariant to the ordering of the objects, the distance metric must be
invariant to symmetric permutations of both arguments: d(A,B) = d(ΠAΠ>,ΠBΠ>),
where Π is a permutation matrix. For any non-informative matrix N, we have N = ΠNΠ>.
To ensure the informativeness measures can all be bounded between 0 and 1, we restrict
our attention to bounded distance/dissimilarity measures.2

Table 1 contains distance metrics and dissimilarity functions—along with any under-
lying similarity measure—that are applicable to positive semidefinite matrices and can be
used in the definition of dN . The table includes measures that have been widely applied
in kernel-based machine learning, such as kernel alignment (Cristianini et al., 2002), which
corresponds to the cosine similarity between the vectorized forms of matrices, the Hilbert-
Schmidt independence criterion (Gretton et al., 2005), and the centered kernel alignment
(Cortes et al., 2012), also known as distance correlation (Székely et al., 2007; Sejdinovic
et al., 2013). The table also includes distances/dissimilarities used in quantum information
theory, such as the trace distance, which is a matrix version of the Kolmogorov or total
variation distance (Fuchs and van de Graaf, 1999); the quantum Jensen-Shannon divergence
(Majtey et al., 2005); a distance based on the quantum Chernoff bound (Audenaert et al.,

2. This restriction excludes the family of log-determinant divergences (Lee and Lim, 2008; Cherian et al.,
2011; Chebbi and Moakher, 2012; Cichocki et al., 2015) defined on the set of symmetric positive definite
matrices, e.g., the affine invariant Reimannian metric (AIRM) and other symmetric log-det divergences.
In preliminary experiments, we found these metrics to have unique behavior; however, they do not
perform consistently as measures of informativeness, primarily because they are unbounded and the
input matrix needs to be regularized to ensure it is strictly positive definite.
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Table 1: Possible distance metrics/dissimilarity functions for the realization of dN (·) in
Equation 3. The first five are applicable to any conformable symmetric matrices
A and B, whereas the second five additionally assume positive semidefiniteness
and unity trace.

Distance metric/dissimilarity function d(A,B): Underlying similarity function:

Euclidean distance Matrix dot-product
‖A−B‖F 〈A,B〉
Cosine distance Cosine similarity, or kernel alignment√

2− 2 〈A,B〉
‖A‖F ‖B‖F

〈A,B〉
‖A‖F ‖B‖F

Hilbert-Schmidt independence criterion (HSIC)
‖HAH−HBH‖F 〈HAH,HBH〉
Centered kernel alignment (CKA)√

2− 2 〈HAH,HBH〉
‖HAH‖F ‖HBH‖F

〈HAH,HBH〉
‖HAH‖F ‖HBH‖F

Trace distance
1
2tr
√

(A−B)2 = 1
2‖A−B‖∗

Quantum Jensen-Shannon (QJS) divergence

H(A+B
2 )− 1

2H(A)− 1
2H(B), where H(A) , −〈A, ln A〉 is the von Neumann entropy

Chernoff bound√
2− 2 min

0≤s≤1
〈As,B1−s〉 min

0≤s≤1
〈As,B1−s〉

Quantum Hellinger (QH) distance Affinity

‖
√

A−
√

B‖F =
√

2− 2〈
√

A,
√

B〉 〈
√

A,
√

B〉
Bures distance (dB) Fidelity√

2− 2‖
√

A
√

B‖∗ ‖
√

A
√

B‖2∗
Sub-Bures dissimilarity Super-fidelity√

2− 2

√
〈A,B〉+

√
(1− ‖A‖2F )(1− ‖B‖2F ) 〈A,B〉+

√
(1− ‖A‖2F )(1− ‖B‖2F )

2007); the quantum Hellinger divergence (Luo and Zhang, 2004); the Bures distance (Bu-
res, 1969; Uhlmann, 1976; Braunstein and Caves, 1994); and the sub-Bures dissimilarity3

measure, which is a lower bound on the Bures distance (Mendonça et al., 2008; Miszczak
et al., 2009).

Of the quantum information theoretic distances, the Bures distance can be considered
the natural metric between trace-normalized positive semidefinite matrices (Bromley et al.,
2014). It is contractive, locally Riemannian, invariant to the choice of embedding coordi-
nates (Uhlmann, 1976), and in its infinitesimal form it coincides with the quantum Fisher
information metric for quantum densities (Braunstein and Caves, 1994). Various elements

3. The corresponding similarity measure, super-fidelity, can be used to define a metric distance, but it is
not a lower bound on the Bures distance. The dissimilarity measure violates the triangle inequality for
certain cases (Mendonça et al., 2008).

9



Brockmeier, Mu, Ananiadou, and Goulermas

C C

C

3 2

1

Bures distance

0.7

0.8

0.9

1

1.1

C C

C

3 2

1

Euclidean distance

0.6

0.8

1

C C

C

3 2

1

Cosine distance

0.8

0.9

1

1.1

1.2

C C

C

3 2

1

HSIC dissimlarity

0.4

0.5

0.6

0.7

0.8

C C

C

3 2

1

CKA dissimilarity

0.2

0.4

0.6

0.8

1

1.2

C C

C

3 2

1

Trace distance

0.5

0.6

0.7

0.8

C C

C

3 2

1

QJS divergence

0.3

0.4

0.5

0.6

0.7

C C

C

3 2

1

Chernoff distance

0.7

0.8

0.9

1

1.1

C C

C

3 2

1

QH distance

0.7

0.8

0.9

1

1.1

C C

C

3 2

1

Sub-Bures dissimilarity

0.7

0.8

0.9

1

Figure 2: Equidistant contour lines for the measures in the marginal simplex of cut matrices.
The Bures distance is the only distance invariant to the relative proportion of C1

and C2, which are not in the convex basis of the target matrix.
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Figure 3: Equidistant contour lines for distances between points on the marginal simplex
defined by [β1, β2, β3, 0] to the target point [0, 0, 0.5, 0.5]. The shape of the con-
tours illustrates that most measures, besides the Euclidean and cosine distances,
are invariant to the relative proportion of β1 and β2.

of the formulation and computation of the Bures distance and the associated fidelity simi-
larity measure, which are relevant to the study of correlation matrices and informativeness,
are presented in Appendix A.

Example 1 (Comparison of Distance/Dissimilarity Measures) We compare the dis-
tance measures from Table 1 on correlation matrices with n = 3.

In particular, we consider the set of correlation matrices Xβ = β1C1 + β2C2 + β3C3 + β4J
that can be represented as the convex combination of the elliptope vertices Ci = viv

>
i and

J = 11>, with v1 = [−1, 1, 1]>, v2 = [1,−1, 1]> and v3 = [1, 1,−1]>. Since
∑

i βi = 1,
each 3× 3 matrix Xβ corresponds to a point of a 3-simplex. For visualization purposes, we
calculate the distance between sets of correlation matrices Xβ and a target matrix A. As
an example, we set A to have as its convex basis (Brøndsted, 2012) the vertices C3 and J,
according to A = 0.5 C3 + 0.5 J, and restrict Xβ to lie on one face of the tetrahedron by
fixing β4 = 0. Figure 2 shows the equidistant contours for various measures.

The key distinction is how convex combinations of C1 and C2 affect the calculated
distances d(Xβ,A). We can observe that the Bures distance is only a function of β3, or
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equivalently of β1 + β2. That is, the Bures distance is invariant to the relative proportion
of β1 and β2, since along lines where β3 is fixed, every correlation matrix is equidistant
from the target matrix A. This invariance is desirable since neither C1 nor C2 is in the
convex basis of the A. An equivalent invariance occurs when the corresponding vector-based
distances4 are computed between the vector of coefficients β = [β1, β2, β3, 0], which defines a
discrete probability distribution, and the target [0, 0, 0.5, 0.5]. Figure 3 shows the equidistant
contours for various measures. Except for the Euclidean and cosine distances, the distance
metrics are invariant to the relative proportion of β1 and β2, since these coefficients are
not in the support of the target. In comparison, this behavior is not exhibited by any of
the other matrix measures as evidenced by the nonlinear contours. For example, for fixed
β3 values, the Euclidean distance yields shorter distances to A when β1 = β2. The same
applies to the other measures, although the effect is less obvious for the Chernoff-based
measure, which behaves similar to the Bures distance for larger distances, but for shorter
distances it is also susceptible to the same issue.

3.3 Derivation of Measures of Informativeness

We proceed to analytically derive closed-form expressions of informativeness for a subset of
the distance/dissimilarity measures from Table 1. In the derivations we use the parametric
form of the nearest non-informative matrix Na? , where a? = arg min0≤a≤1 d(K,Na) and
K ∈ E is the input correlation matrix. Given the non-informative matrix Na? , we define
the informativeness measures as dN (K) = d(K,Na?) or 1

2d
2
N (K) = 1

2d
2(K,Na?) for chordal

distances defined on a unit sphere whose range is intrinsically [0,
√

2]; this ensures the
informativeness measures all range between 0 and 1. The analytic expressions for a? and
dN (K) are derived in Appendix B, and the expressions of informativeness are in Table 2.

These expressions assume the input matrix is a correlation matrix K ∈ E . If K /∈ E
then the Euclidean, cosine, HSIC, and CKA measures compute the distance/dissimilarity
between K and the set of matrices with a diagonal of all ones and constant off-diagonal
elements, i.e., the set {Na}, where a is unconstrained. In this case, the nearest matrix Na?

is not necessarily a correlation matrix, e.g., a? < 0 or a? > 1.

We note that for the Chernoff bound the expression for informativeness does not have
a closed form, but only requires the same computational complexity as a single evaluation
of the Chernoff bound. Also, the sub-Bures informativeness is not strictly closed form,
requiring the maximum of two algebraic expressions. We did not find a closed-form ex-
pression of informativeness for neither the trace distance nor the quantum Jensen-Shannon
divergence. Consequently, computing these measures requires a search over the family of
non-informative matrices, which is costly since each search iteration requires computing
either the singular values or the eigenvalues of an n× n matrix.

Each measure in Table 2 is bounded between 0 and 1, and will necessarily reach the
lower bound of 0 for non-informative matrices. However, the upper limit of 1 is a loose
upper bound and may not be attainable. Because of this and the fact there are no units
associated with informativeness;5 the nominal value of informativeness is not meaningful for

4. The Hellinger distance is the vector equivalent of the Bures and QH distances, and the Kolmogorov
distance is the vector equivalent of the trace distance.

5. In comparison, the units of entropy (bit, nat, or hartley) are gauged to the probability of an event.
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Table 2: Informativeness measures based on the distance and dissimilarity measures from
Table 1. All measures, apart from the Bures-based one, are derived in Appendix B.
K ∈ E is a correlation matrix and k̄ = 1

n2 1>K1 is the average of its entries. All
measures are bounded within the range [0, 1].

Measure: Informativeness:
Simplified expression (=),
or bound (≥):

Relevant equations:

Euclidean dN (K) = min
0≤a≤1

1
n‖K−Na‖F =

√
1
n2 ‖K‖2F −

nk̄2−2k̄+1
n−1 (B.1),(B.2)

Cosine 1
2d

2
N (K) = 1− max

0≤a≤1

〈K,Na〉
‖K‖F ‖Na‖F = 1− n

‖K‖F

√
nk̄2−2k̄+1

n−1 (B.3),(B.4)

HSIC dN (K) = min
0≤a≤1

1
n‖HKH−HNaH‖F =

√
1
n2 ‖HKH‖2F −

(1−k̄)2

n−1 (B.5),(B.6)

CKA 1
2d

2
N (K) = 1− max

0≤a≤1

〈HKH,HNaH〉
‖HKH‖F ‖HNaH‖F = 1− n(1−k̄)

‖HKH‖F
√
n−1

(B.7)

Chernoff dN (K) = 1− max
0≤a≤1

min
0≤s≤1

1
n〈K

s,N1−s
a 〉 = 1− q(K) (B.8–B.11)

QH 1
2d

2
N (K) = 1− max

0≤a≤1

1
n〈
√

K,
√

Na〉 = 1−
√

(1>
√
K1)2

n3 + tr2(H
√
K)

n(n−1) (B.12),(B.13)

Bures 1
2d

2
N (K) = 1− max

0≤a≤1

1
n‖
√

K
√

Na‖∗ ≥ i(K) = 1−
√
k̄ + tr2

√
HKH

n(n−1) (B.16),(B.17)

Sub-Bures 1
2d

2
N (K) = 1− max

0≤a≤1

√
G( 1

nK, 1
nNa) = 1−

√
g(K) (B.21–B.24)

comparing differently-sized correlation matrices; nonetheless, informativeness can be used
for relative comparisons between correlation matrices of equal size, even if they are closest
to different non-informative matrices.

For comparison, the test statistics for equality of correlation coefficients proposed by
Bartlett (1954) and Lawley (1963) are included in Appendix C. The null hypothesis for these
tests is that the multivariate sample, corresponding to the observed correlation matrix, is
drawn from a distribution whose true correlation structure is a non-informative matrix. The
main benefit of using Lawley’s test statistic is that, asymptotically, its distribution under
the null hypothesis has a χ2 distribution regardless of which particular non-informative
matrix corresponds to the true correlation matrix. The null distribution for the other
measures (including Bartlett’s) depends on the underlying non-informative matrix, which
is in practice unknown.

Example 2 (Informativeness for 3× 3 Correlation Matrices) To gain a perspective
of informativeness measures, we evaluate them for 3× 3 correlations matrices.

Since the Bures-based informativeness is a convex function (Theorem 4 in Appendix B.7),
it is necessarily maximized at the elliptope’s extreme points, which are correlation matrices
with rank-r where r(r + 1) ≤ 2n (Li and Tam, 1994). Figure 4 shows the Bures informa-
tiveness i(K) across the parametric surface representing the surface of the elliptope. The
measure is maximized at the three rank-1 correlation matrices besides J. In general, the
Bures-based informativeness is maximal for centered, rank-1 correlation matrices, as noted
in Theorem 5 in Appendix B.7.

To compare the informativeness measures, we consider the subset of 3 × 3 correlation
matrices Xβ = β1C1 + β2J + β3

C2+C3
2 with

∑
i βi = 1, which are convex combinations
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Cut matrix J

Cut matrix
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0.2
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Figure 4: The Bures-based informativeness measure evaluated on the boundary of the el-
liptope. For n = 3, each correlation matrix K can be represented by a three-
dimensional point that defines the three lower-triangular elements K2,1, K3,1,
and K3,2. (Left:) The family of non-informative matrices N is shown as a line
across the elliptope passing through N1 = J and N1/n = I (discussed in Sec-
tion 3.1). The outline of the cut polytope is shown as the wireframe connecting
the four vertices. (Center, Right:) Informativeness peaks at the three extremal
points corresponding to the three cut matrices.

of the elliptope vertices Ci = viv
>
i and J = 11>, with v1 = [−1, 1, 1]>, v2 = [1,−1, 1]>

and v3 = [1, 1,−1]>. Figure 5 illustrates the measures, along with Bartlett’s and Lawley’s
test statistics, evaluated for each Xβ across the 2-simplex defined by β. All measures are
maximized when Xβ = C1, but the shape of the level sets highlights the differences among
the distance/dissimilarity measures underlying the informativeness measures.

Example 3 (Patterned Correlation Matrices) We use 16× 16 rank-1 and block diag-
onal correlation matrices to compare the measures of informativeness.

The value of the informativeness measures for different partition sizes are shown in Figure 6.
For binary partitions, the HSIC and Bures measures are uniquely maximized by balanced
rank-1 matrices, and the measures—excepting the Euclidean, trace, and CKA measures—
are maximized by balanced block-diagonal when there are two blocks. In general, balanced
rank-1 matrices have higher informativeness than any of the block diagonal matrices (ex-
cept for the CKA measure). For block-diagonal matrices, the Euclidean, HSIC, CKA, and
sub-Bures measures are maximal for two equal-sized blocks, but the other measures (ex-
cepting the trace distance) are maximized when there are

√
n equal-sized blocks. This latter

disparity means that these two groups of measures will behave differently when evaluating
correlation matrices with cluster structure.

On these patterned correlation matrices, we see that the Bures-based measure is a tight
bound on the exact Bures informativeness measure. Additionally, the quantum Hellinger-
based measure is a tight upper bound on the exact Bures measure except in the rank-1
case. The cosine-based measure also tracks the QH measure on these patterned matrices.
The sub-Bures bound appears to be quite loose, except in the rank-1 case for which it is
equal to the exact Bures measure.
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Figure 5: Equidistant contour lines for the measures on a 2-simplex of correlation matrices.
The dotted line represents the non-informative matrix family N . Informativeness
is maximal at extremal points of the elliptope for convex distance metrics, but
the choice of distance/dissimilarity measure affects the geometry of the level sets.
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Figure 6: Comparison of informativeness measures for 16 × 16 correlation matrices with
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matrices with two blocks (C, D); and block diagonal with increasing number of
blocks (D, E, F) as indicated by the von Neumann entropy. (Note: The curves
for the QH and cosine measures overlap on all plots, and the Bures curve covers
the QH curve in the block diagonal plots.)
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4. Optimization of Informativeness

In this section, we investigate constrained optimization problems based on finding a maxi-
mally informative correlation matrix close to a target matrix. We cover two types of cases;
those optimizations parameterized in terms of a correlation matrix, and those in terms of
a Euclidean embedding. In the latter case, we derive the analytic forms of cost functions
for some measures of informativeness that can be applied directly to an embedding without
requiring the explicit calculation of a correlation matrix. In particular, we show that when
applied to an embedding, the Bures-based cost function is convex and corresponds to a novel
matrix norm, which is a combination of trace seminorms on orthogonal subspaces. As this
norm is non-differentiable, we describe its proximal operator, which requires the definition
of the proximal operator for the squared trace norm. Using the Bures-based measure of
informativeness as a cost function, we detail the optimization problem of finding a maxi-
mally informative correlation matrix nearby a target matrix, where nearness is assessed via
the Euclidean distance between the embeddings. Although constraining the embedding to
ensure it corresponds to a correlation matrix is non-convex, we relax this constraint to yield
a completely convex optimization problem, the solutions of which can satisfy the original
constraint. We propose an alternating direction method of multiplier (ADMM) algorithm
that uses the proximal operator for the Bures-based cost function to solve this problem.

4.1 Maximally Informative Correlation Matrices

Firstly, we consider finding a maximally informative matrix that lies within an ε-radius ball
of an arbitrary target matrix A. This optimization can be written as

arg max
K∈E

dN (K) (4)

s.t. ‖A−K‖F ≤ ε,

where dN (K) is the distance to closest member of the family of Na of non-informative
matrices (or a lower bound on this distance in the case of the Bures distance). As noted
in Theorem 4, the Bures-based informativeness is a convex function, as are the Euclidean
and HSIC-based measures (their convexity can be verified by the properties of the Frobe-
nius norm). Consequently, for these measures maximizing the informativeness is a convex
maximization problem with multiple optima necessarily occurring at the extreme points
of the elliptope, as evidenced by Figures 4. In particular, as stated in Theorem 5 in Ap-
pendix B.7, the Bures-based informativeness is maximized by the vertices of the elliptope
corresponding to centered, rank-1 correlation matrices. Although there is multiple maxima,
for appropriate choices of ε there may be a unique maximum within the local neighborhood.

For convenience, we instead define a minimization problem—replacing the ε-ball con-
straint with a penalty term scaled by ρ (where a large ρ corresponds to a small ε)—as

arg min
K∈E

ρ ‖A−K‖2F + F (dN (K)) , (5)

where F is a monotonically decreasing function of the form F : d 7→ 1− νd2 with ν ∈
{1

2 , 1} (ν = 1
2 for chordal distances in order to restrict the range of F to [0, 1]). The
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Table 3: Expressions for finding the most informative correlation matrices via cost functions
of the form Jρ(K) = ρ ‖A−K‖2F + F (dN (K)). The forms are applicable to all
positive semidefinite measures, even though informativeness is only defined for
correlation matrices. Because of this generality, the Euclidean and cosine measures
are written in terms of Na? = a?J + (1− a?) n

n−1H.

Measure: F (d): F (dN (K)): Jρ(K) convex?

Euclidean 1− d2 1− 1
n2 ‖K−Na?‖2F , a? = 1

n2 〈K,J− I〉+ 1
n ρ ≥ 1

n2

Cosine 1− 1
2d

2 〈K,Na? 〉
‖K‖F ‖Na?‖F

, a? = 1
n
〈K,J〉
〈K,I〉 —

HSIC 1− d2 1 + 1
n2(n−1)

〈K,H〉2 − 1
n2 ‖HKH‖2F ρ ≥ 1

n2

CKA 1− 1
2d

2 〈K,H〉
‖HKH‖F

√
n−1

—

QH 1− 1
2d

2
√

1
n3 〈
√

K,J〉2 + 1
n(n−1)〈

√
K,H〉2 no

Bures-based 1− 1
2d

2
√

1
n2 〈K,J〉+ 1

n(n−1)‖
√

KH‖2∗ no

function F (dN (K)) simplifies for the measures of informativeness in Table 2 with closed-
form expressions. The choice of F and the resulting expressions of F (dN (K)) are listed in
Table 3.

Since 1 − νd2 is concave and nonincreasing with respect to d2, when d2
N (K) is con-

vex, ρ ‖A−K‖2F + F (dN (K)) is a difference of convex functions. By inspection we see
that the cost functions for the Euclidean and HSIC-based measures of informativeness are
quadratic functions of K and convex6 when ρ ≥ 1

n2 , i.e., this choice of ρ corresponds to a
sufficiently small ε-radius ball, such that it contains a unique maximally informative corre-
lation matrix. In contrast, the convexity of the cost function for the cosine and CKA-based
measures depends on both the target matrix A and the regularization ρ; in certain cases
the cost function may be convex. Due to the matrix square root, neither the QH nor the
Bures-based measures are convex. In particular, 1

n2 〈K,J〉 + 1
n(n−1)‖

√
KH‖2∗ is concave,

as ‖
√

KH‖2∗ is proportional to the squared fidelity between 1
n−1H and 1

trKK and squared
fidelity is a concave function (Uhlmann, 1976) as noted in Theorem 3 in Appendix A. The
function 〈

√
K,C〉 is also concave for any positive semidefinite C, as the function −〈

√
K,C〉

is convex (Borwein and Lewis, 2010, Section 3.1, Exercise 25c).

First-order gradient approaches may be applied to the expressions in Table 3 with some
adjustments to ensure they are well-defined and smooth. Firstly, the cost functions cor-
responding to chordal distances (cosine, CKA, QH, and Bures) are squared to remove the
scalar square roots from the expressions. Secondly, since the CKA measure is undefined
at K = J, a log barrier of the form − log(1 − k̄) should be added to the cost function to
prevent this case. Thirdly, for the QH measure to be differentiable, K must be strictly

6. Letting x = vec(K), these two cost functions can be written as x>Mx + x>u + c, which is a convex
function if M is positive semidefinite. For the Euclidean measure, M = (ρ− 1

n2 )I + 1
n3(n−1)

vv> where

v = vec(J− I). For the HSIC measure, M = ρI− 1
n2H⊗H, where ⊗ indicates the Kronecker product.

In both cases, M is positive semidefinite if ρ ≥ 1
n2 .
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Table 4: Gradients of cost functions derived from the closed-form informativeness measures
with respect to K, where K ∈ E is a correlation matrix and k̄ = 1

n2 1>K1 is the
average of its entries. The gradient for the QH measure is only valid if K is positive
definite, which ensures

√
K and −

√
K have disjoint eigenvalues—guaranteeing a

unique solution to the Sylvester equations (Bartels and Stewart, 1972).

Measure: F̃ (K): ∇KF̃ (K) :

Euclidean 1
2

(
1− dN (K)2

)
1
n2

(
nk̄−1
n−1 J−K

)
Cosine 1

2

(
1− 1

2dN (K)2
)2 1

‖K‖2F

(
nk̄−1
n2 J− nk̄2−2k̄+1

‖K‖2F
K
)

HSIC 1
2

(
1− dN (K)2

)
1
n2

(
−HKH− 1−k̄

n−1J
)

CKA 1
2

(
1− 1

2dN (K)2
)2 〈K,H〉

‖HKH‖2F
√
n−1

(
H− 〈K,H〉

‖HKH‖2F
HKH

)
QH 1

2

(
1− 1

2dN (K)2
)2 〈

√
K,J〉
n3 S1 + 〈

√
K,H〉

n(n−1) S2, where
√

KS1 + S1

√
K = J,

√
KS2 + S2

√
K = H

Bures-based
(

1− 1
2 d̃N (K)2

)2
1
n2 J +

Sγ(HKH)
n(n−1) S′γ(HKH)

1
2 d̃N (K)2 = 1−

√
1
n2 〈K,J〉+ 1

n(n−1)S
2
γ(HKH) ≈ i(K)

Sγ(X) =
∑n

i=1 sγ (λi), where λ1, . . . , λn are eigenvalues of X

sγ(x) =

{ √
x x > γ

1
4γ
− 3

2x2 + 3
√
γ x ≤ γ

S′γ(X) =
∑n

i=1 s
′
γ(λi)uiu

>
i , where X =

∑n
i=1 λiuiu

>
i

positive definite. Finally, although the Bures-based measure is not differentiable, a smooth
function operating on the eigenvalues of HKH, i.e., a spectral function (Lewis, 1996), can
be used as an approximation to replace the trace of the matrix square root, which is not
differentiable for any K since HKH has an eigenvalue of 0 corresponding to the constant
eigenvector. For the smoothing function, we use a Huber-type approximation (Huber, 1964;
Hintermüller and Wu, 2014) of the square root. Using standard identities for the differenti-
ation of scalar-matrix functions (Lewis, 1996; Olsen et al., 2012), we derive the gradients of
cost functions proportional to those in Table 3. The simplified expressions of the gradients
are given in Table 4.

As informativeness is only meaningful for correlation matrices, the optimization vari-
able must be constrained to lie within the elliptope. Restriction to correlation matrices can
be enforced via a combination of a linear constraint (for the diagonal) and a semidefinite
constraint. Finding the maximally informative correlation matrix is a type of semidefinite
optimization (convex for the Euclidean and HSIC measures and appropriate choice of ρ).
For the convex cases, the unique optimum can be sought using either a projected-gradient
or a conditional gradient (Frank-Wolfe) algorithm. In the former case, the Euclidean pro-
jection to the elliptope can be used, but is non-trivial (Higham, 2002; Malick, 2004). The
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latter case requires solving a semidefinite program for the approximation step at each itera-
tion. Furthermore, both cases require an order of n2 variables. An alternative is to factorize
the correlation matrix into a lower-dimensional Euclidean embedding (Journée et al., 2010).
Factorizations have been used for solving the nearest correlation matrix problem (Grubǐsić
and Pietersz, 2007) and other semidefinite programs (Burer and Monteiro, 2003). In Sec-
tion 4.2, we pursue this factorization approach and express the cost functions corresponding
to the measures of informativeness in terms of a Euclidean embedding.

When the correlation matrix is a function of parameters, informativeness can be used as
an objective for optimizing these parameters. For instance, the correlation matrix can be
defined parametrically in terms of the squared distances among a sample of points, passed
through a differentiable function κ,

Ki,j = κ
(

(xi − xj)
>U>U(xi − xj)

)
,

where U>U defines a Mahalanobis distance metric as d2
U>U

(xi,xj) = ‖Uxi −Uxj‖2 and

X = [x1, . . . ,xn] ∈ Rd×n is the sample of points. If κ(|x− y|2) = k(x, y) ∀x, y ∈ R, where
k is a positive semidefinite kernel function and κ(0) = k(x, x) = 1 ∀x, then K is always a
correlation matrix. Using this form, optimization of either U or X can be performed without
additional constraints to ensure K is a correlation matrix. Optimizing informativeness with
respect to X will shift the points in order to increase the informativeness, and optimization
in terms of U corresponds to an unsupervised form of metric learning: a task that is typically
supervised (Lowe, 1995; Xing et al., 2003; Fukumizu et al., 2004).

The gradient in terms of the coordinates of the sample X is

∇XF̃ (K) = −4U>UX (B− diag (B1)) ,

where B = K′ ◦
[
∇KF̃ (K)

]
, ◦ denotes the Hadamard product, K ′i,j = κ′i,j

(
d2
U>U

(xi,xj)
)
,

and κ′ is the derivative of the scalar kernel function, e.g., for the Gaussian kernel, k(x, y) =

κ
(
|x− y|2

)
= exp

(
− |x− y|2

)
and κ′

(
|x− y|2

)
= −κ

(
|x− y|2

)
. Similarly, the gradient

with respect to U is ∇UF̃ (K) = −4UX (B− diag (B1)) X>.

4.2 Maximally Informative Embeddings

When the corresponding embeddings are available and in cases when the dimensionality is
lower than the number of objects, the informativeness can be evaluated with lower storage
and computational requirements without unnecessarily forming the full correlation matrix.
This can be realized as follows. Let Z ∈ Rb×n be a Euclidean space embedding, such
that Z>Z = K ∈ E . Since we assume K is a correlation matrix, then Z belongs to the
oblique manifold OB. For each expression in Table 3, an equivalent expression of the cost
function F

(
dN (Z>Z)

)
is listed in Table 5. It is noteworthy that the Bures-based measure

yields a convex cost function, which we investigate in the next section. Empirically, the
quantum Hellinger-based cost function appears convex, but we have not been able to prove
its convexity. Besides these two, the other cost functions are not convex.
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Table 5: Cost functions for finding a maximally informative Euclidean embedding Z ∈ Rb×n
of the form F

(
dN (Z>Z)

)
, where F is a monotonically decreasing function of the

form F : d 7→ 1− νd2 with ν ∈ {1
2 , 1}, and dN (Z>Z) is the distance or dissimilarity

between the matrix Z>Z and the family of non-informative matrices.

Measure: F
(
dN (Z>Z)

)
: Convexity:

Euclidean 1− 1
n2

∥∥Z>Z−Na

∥∥2

F
, a = 1

n2 (‖Z1‖22 − ‖Z‖22 + n) no

Cosine 〈Z>Z,Na〉
‖Z>Z‖F ‖Na‖F

, a = 1
n‖Z1‖22/‖Z‖2F no

HSIC 1 + 1
n2(n−1)

‖ZH‖4F −
1
n2 ‖ZHZ>‖2F no

CKA
‖ZH‖2F

‖ZHZ>‖F
√
n−1

no

QH
√

1
n3 〈J,

√
Z>Z〉2 + 1

n(n−1)〈H,
√

Z>Z〉2 —

Bures-based
√

1
n2 ‖Z1‖22 + 1

n(n−1)‖ZH‖2∗ yes

Given these cost functions, we can now pose the problem of finding a maximally infor-
mative embedding Z that lies within an ε-radius ball of a target embedding T, as

min
Z∈OB

F
(
dN (Z>Z)

)
(6)

s.t. ‖T− Z‖F ≤ ε.

The target embedding could arise from a low-rank approximation T>T ≈ A of a target
similarity matrix A. In general, this optimization is non-convex because of the constraint
that Z ∈ OB. In Section 4.2.2 we present a convex relaxation and optimization algorithm
for the Bures-based measure of informativeness. The optimization uses properties of the
Bures-based measure explored in Section 4.2.1.

4.2.1 Optimizing the Bures-based Measure of Informativeness for
Embeddings

Due to its convexity, we concentrate on the Bures-based informativeness measure for em-
beddings and define

h(Z) ≡ F 2
(
dN (Z>Z)

)
=
(

1− i(Z>Z)
)2

= 1
n2 ‖Z1‖22 +

1

n(n− 1)
‖ZH‖2∗, (7)

where dN (Z>Z) =
√

2i(Z>Z) is the lower-bound on the Bures distance to the nearest
non-informative matrix as defined in Equation B.17. The cost function h(·) has some
interesting properties. Firstly, it is well-defined for an arbitrary matrix X ∈ Rb×n, not
necessarily on the oblique manifold. Secondly, it is convex, since it is the sum of two squared
seminorms. Used as a penalty function, the two seminorms simultaneously penalize high-
rank embeddings and embeddings which have a large mean, i.e., h(·) is minimal for rank-1,
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centered embeddings. Furthermore, since ‖X1‖22 = 1
n‖X11>‖2F = n‖X 1

nJ‖2F = n‖X 1
nJ‖2∗

both seminorms correspond to trace norms on the orthogonal subspaces defined by the

projections H and 1
nJ. We provide a proof that

√
h(X) =

√
1
n‖X

1
nJ‖2∗ + 1

n(n−1)‖XH‖2∗ is

itself a matrix norm in Appendix D.
Due to the underlying trace norm, h(·) is not differentiable everywhere. Therefore, to

enable the optimization we consider its proximal operator (Moreau, 1965)

proxλh(Z) ≡ arg min
X

1

2
‖Z−X‖2F + λh(X) (8)

with λ ≥ 0. Proximal operators enable first-order optimization involving non-smooth
penalty functions (Nesterov, 2007; Wright et al., 2009; Beck and Teboulle, 2009; Com-
bettes and Pesquet, 2011; Parikh and Boyd, 2014). To derive the proximal operator of h(·),
we use the fact that both h(·) and the squared Frobenius norm (and Euclidean distance)
can both be decomposed into the orthogonal subspaces defined by H and 1

nJ, as

h(X) = 1
n‖X

1
nJ‖2∗ + 1

n(n−1)‖XH‖2∗ = 1
n‖X̄‖

2
∗ + 1

n(n−1)‖X̃‖
2
∗

= ‖x̄‖22 + 1
n(n−1)‖X̃‖

2
∗, (9)

and
‖X‖2F =

∥∥X( 1
nJ + H)

∥∥2

F
=
∥∥X̄∥∥2

F
+ ‖X̃‖2F = n‖x̄‖22 + ‖X̃‖2F ,

where X̃ = XH is a centered version of X, X̄ = x̄1>, x̄ is the average of the columns of
X, and ‖X̄‖∗ = ‖X̄‖F =

√
n‖x̄‖2 since X̄ is rank-1. Thus, the proximal solution can be

written as the sum of the terms Ỹ and Ȳ, each computed independently as

proxλh(Z) = Ȳ + Ỹ, (10)

with the two terms calculated as

Ȳ = arg min
X

1

2

∥∥Z̄−X
∥∥2

F
+
λ

n
‖X‖2F =

n

n+ 2λ
Z̄,

Ỹ = arg min
X

1

2

∥∥∥Z̃−X
∥∥∥2

F
+

λ

n(n− 1)
‖X‖2∗ = Zβ(Z̃),

where β = 2λ
n(n−1) and Zβ(·) is the proximal operator of the squared trace norm β

2 ‖·‖
2
∗,

which we define in Equation E.1 in Appendix E along with a proof of its optimality.

4.2.2 Correlation Matrix Denoising

Given the proximal operator for the Bures-based informativeness, we proceed to solve the
maximally informative embedding problem of Equation 6. We employ the optimization
problem

min
Z∈OB

1
2 ‖T− Z‖2F + λh(Z), (11)

where the ε-radius constraint is replaced with the penalty term 1
2 ‖T− Z‖2F and the in-

formativeness is scaled by λ. The minimization’s cost function is convex, but the oblique
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manifold is not a convex set. We propose to relax the oblique manifold constraint, by re-
placing it with the constraint that each point in the embedding Z lies within the unit-sphere
‖zi‖2 ≤ 1, ∀i ∈ [n], rather than on it. The relaxed constraint corresponds to the convex hull
of the oblique manifold, denoted by conv(OB). We then add the penalty term −µ

2 ‖Z‖
2
F

to ensure the norm of each column is maximized, which pushes the solution closer to the
oblique manifold. The relaxed optimization is written as

min
Z∈conv(OB)

1
2 ‖T− Z‖2F −

µ
2 ‖Z‖

2
F + λh(Z).

This is a convex optimization problem for µ ≤ 1. We choose the largest possible penalty µ =
1 to satisfy convexity and approach feasibility, leading to the cost function 〈Z,−T〉+λh(Z).

To isolate the non-smooth term, we write an equivalent composite form of the optimiza-
tion problem, using an auxiliary variable X as

min
X∈Rb×n

Z∈conv(OB)

〈Z,−T〉+ λh(X) (12)

s.t. X = Z.

An approximate solution to the composite optimization can be found by removing the
equality constraint and adding the penalty term ρ

2 ‖Z−X‖2F and using alternating opti-
mization to find a solution to the relaxed problem. The optimization of Z, for fixed X, can
be performed on each column independently, and amounts to a Euclidean projection to the
unit-ball. Likewise, the optimization X, for fixed Z, is also convex with an analytic solution
given by application of the proximal operator proxλ

ρ
h(Z).

Because the aforementioned alternating optimization procedure is limited by slow con-
vergence and sensitivity to the penalty, we instead conduct an optimization through an aug-
mented Lagrangian formulation. Specifically, we employ the alternating direction method of
multipliers algorithms (ADMM) (Gabay and Mercier, 1976; Eckstein and Bertsekas, 1992;
Combettes and Pesquet, 2011; Boyd et al., 2011) to find a fixed point of the augmented
Lagrangian

Lρ(Z,X,M) = I(Z) + 〈Z,−T〉+ λh(X) + ρ
2 ‖Z−X‖2F + 〈M,Z−X〉, (13)

where I is the indicator function for conv(OB): f(Z) = 0 for Z ∈ conv(OB) and f(Z) = +∞
otherwise. This leads to a minimization that alternates between two minimization steps on
each non-fixed variables Z and X. Using scaled dual variables U = 1

ρM, the steps are

min
Z∈conv(OB)

∥∥∥Z−X + U− 1
ρT
∥∥∥2

F
,

min
X∈Rb×n

ρ
2 ‖Z−X + U‖2F + λh(X),

and are followed by an update of the dual variables U with the residuals Z−X. The proposed
optimization procedure is summarized in Algorithm 1. The computational complexity of
each iteration is O(b2n), which corresponds to the singular value decomposition of the
embedding matrix required by the proximal operator of h.
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Algorithm 1: Correlation Matrix Denoising

input : Initial embedding T of size b× n, and parameters λ > 0, ρ > 0, and η = λ
ρ

X← T, U← 0
while not converged do

W← X−U + 1
ρT

zi ← wi
max(1,‖wi‖2) , to project each column to unit-ball

X← proxηh(Z+U) = X̄ + X̃, as defined in Equation 10 with

X̄ = n
n+2η (Z+U) 1

nJ,

X̃ = Zβ (ZH+UH), where β = 2η
n(n−1) and Zβ defined in Equation E.1.

U← U + Z−X, for the dual update

end
output: A denoised embedding Z

In practice, we use ρ = 1, and find that if λ is chosen appropriately, the solution at
convergence lies on the oblique manifold, i.e., Z ∈ OB. This means that the solution to the
relaxed problem (12) satisfies the constraint of the original problem (11). To understand
why the convex relaxation yields solutions to the original problem, we note that for any λ,
the relaxed problem can be written as a linear program over the convex set defined by the
intersection of conv(OB) and Ic = {X :

√
h(X) ≤ c}, where small values of c correspond

to large values of λ, and Ic corresponds to the set embeddings with informativeness above
1− c. As any linear program is optimized at extremal points of a convex set, an optimizing
point of the relaxed solution will either lie on the oblique manifold and within the interior
of Ic, or if λ is too large, on the boundary of Ic and in the interior of conv(OB).

The convergence of the ADMM algorithm can be proven under mild conditions (Boyd
et al., 2011), which are met for Algorithm 1. The conditions require the objective functions
to be closed, proper, and convex; and the existence of a saddle point (Z?,X?,M?) of
the unaugmented Lagrangian function L0(Z,X,M), i.e., Equation 13 with ρ = 0, such
that L0(Z?,X?,M) ≤ L0(Z?,X?,M?) ≤ L0(Z,X,M?) for all Z,X,M. The saddle point
(Z?,X?,0) corresponds to the solution (Z?,X?) of the relaxed optimization problem (12).
This solution necessarily exists, since as mentioned, the relaxed problem is equivalent to a
linear objective optimized over the convex set defined by the intersection of conv(OB) and
Ic. Furthermore, the convergence rate of the ADMM algorithm for convex objectives is
O(1/t), where t is the number of iterations (He and Yuan, 2015).

To obtain embeddings which are progressively more informative (low-rank and nearly
centered), the algorithm can be ran with increasing values of λ and warm restarts. We start
with λ = 1, increase it by 125% at each restart, and stop the sequence of warm restarts
if the solution at convergence no longer lies on the boundary of the convex hull, that is,
Z /∈ OB. The main computational burden of the algorithm is the singular value decompo-
sition required in computing the proximal operator of h(·). This burden can somewhat be
alleviated by using lower dimensional embeddings (i.e., a smaller b). Rather than choosing
a small initial b, which cannot preserve as much information about the target matrix, we
use an adaptive truncation heuristic. Specifically, we note that h(·) is invariant to unitary
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transformations of the embedding coordinates. Thus, we can use a singular value decompo-
sition of the solution Z = ΨΣΥ> and transform Z and T with the left singular vectors, and
then remove embedding dimensions (rows) from both Ψ>Z = ΣΥ> and Ψ>T, when the
corresponding singular values of Z are less than σ1

100 , with σ1 = ‖Z‖2 being the maximum
singular value. While truncation does distort the target matrix, this approach lowers the
dimensions and decreases the processing requirements for the subsequent warm restarts.

5. Experiments

In this section we highlight example applications of the measures of informativeness7 and
compare the different measures listed in Table 2. Applications include selecting an appro-
priate kernel bandwidth, selecting the dimension of a low-rank kernel approximation, and
detecting clustered graphs. We also demonstrate the correlation matrix denoising algorithm
as a preprocessor for spectral clustering.

5.1 Kernel Bandwidth Selection

Gaussian kernel functions of the form kσ(x,y) = exp
( −1

2σ2 ‖x− y‖22
)

are widely used for
kernel-based clustering and classification of vectors in Euclidean space, but an appropriate
kernel bandwidth σ needs to be selected. For any choice of σ, evaluating the kernel function
for a set of vectors yields a correlation matrix with entries Ki,j = kσ(xi,xj). If all of
the vectors are distinct, the limit σ → 0 yields the identity matrix I, and the limit σ →
∞ results in the constant matrix J. Essentially, the kernel bandwidth parameterizes a
curve within the elliptope that begins and finishes at non-informative correlation matrices.
Since informativeness is a function of the distance to the set of non-informative correlation
matrices, choosing the kernel bandwidth that maximizes the informativeness corresponds
to finding an extremal point of this curve as illustrated in Figure 7. The example shows
informativeness can be used to select a kernel bandwidth appropriate for the scale of the
data. In comparison, measures such as the von Neumann entropy or distance from the
identity matrix are maximized by the smallest and largest kernel bandwidths, respectively.

We compare the different informativeness measures on four synthetic examples in Fig-
ure 8. In these examples, the measures are maximized by kernel bandwidths dependent
on the scale of the data. This holds for all measures except CKA, which is maximized by
large kernel bandwidths that yield nearly constant matrices. We quantify the appropriate-
ness of informativeness-based bandwidth selection for spectral clustering—specifically, the
algorithm by Ng et al. (2002)—by using the normalized mutual information8 between the
labels corresponding to the true grouping and the clusters found when using different kernel
bandwidths. For each example, 10 random instances are tested with the correct number of
groups provided to the clustering algorithm. On the first example, each group is a convex
shape and a large kernel bandwidth performs well. On the remaining examples, there is an
intermediate kernel bandwidth that maximizes the normalized mutual information.

7. MATLAB code that implements the informativeness measures and reproduces the figures and tables is
available at http://pcwww.liv.ac.uk/~goulerma/software/brockmeier17a-code.zip.

8. Normalized mutual information is the mutual information between two variables divided by the maximum
entropy of the two (Kv̊alseth, 1987).
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Figure 7: Informativeness versus von Neumann entropy for correlation matrices obtained
from applying a Gaussian kernel with varying bandwidths to a sample drawn
from a univariate mixture of two normal distributions separated by a distance of
4. (The Bures-based informativeness is used in this example.)

For each measure of informativeness and for Bartlett’s and Lawley’s test statistics, we
collect the values of normalized mutual information corresponding to the bandwidths that
maximize the measures. The results are reported as box and whisker plots in Figure 8. From
the results, there appear to be four subsets of measures that select similar bandwidths:
the cosine measure, which chooses the smallest kernel bandwidth, has the worst median
performance on the first data set, but performs the best on the remaining; the Chernoff,
QH, and Bures-based measures select a larger bandwidth, tie for the best performance on
the first data set, achieve the second-best performance across the remaining; the Euclidean,
HSIC, and sub-Bures measures select larger bandwidths and perform worse; and the CKA
measure along with Bartlett’s and Lawley’s test statistics are maximized by the largest
kernel bandwidth within the range, which yields a poor clustering on three of the four data
sets. This example shows that the informativeness measures (except CKA) can adaptively
select kernel bandwidths appropriate for the structure of the data.

5.2 Selecting an Embedding Dimension

Kernel principal component analysis (Schölkopf et al., 1998) approximates a kernel matrix
using a lower-dimensional embedding obtained by truncating the eigenvalue decomposition
of the centered kernel matrix. Choosing the embedding dimension (how many eigenvec-
tors to retain) requires a criterion. We show that choosing the dimension that maximizes
informativeness is an effective approach.

Specifically, kernel principal component analysis uses the top-k eigenvectors of the cen-
tered kernel matrix K̃ = HKH. Let denote K̃(k) the rank-k approximation of K̃. In general
K̃(k) is positive definite but not a correlation matrix, and requires symmetric normalization
as defined in Equation 1. However, if the original kernel matrix is far from being centered
then applying normalization after centering and truncation can introduce severe distortion.
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Figure 8: Selecting a Gaussian kernel bandwidth for spectral clustering by maximizing in-
formativeness. (A) Samples are drawn from two-dimensional distributions with
distinct groups. (B) Informativeness is plotted versus the kernel bandwidth.
(C) For each kernel bandwidth, spectral clustering is applied with the correct
number of clusters and the normalized mutual information (NMI) between the
cluster label and the true label is recorded (crosses indicate values across 10 ran-
dom samples; solid curve for the median). (D) Box and whisker plots of the
NMI values for the clusterings obtained when the kernel bandwidth is selected by
informativeness or by Lawley’s and Bartlett’s test statistics.

As an alternative, we truncate the original, uncentered correlation matrix and then perform
renormalization.

We test the dimensionality selection method on a set of UCI data sets (Lichman, 2013).
A Gaussian kernel function with a heuristic bandwidth is used for all cases. Specifically,
the bandwidth is a linear combination of the minimum and maximum Euclidean distances
σ = 2dmin+ 2

9(dmax−2dmin), where dmin and dmax are the minimum and maximum pairwise
distances (a similar heuristic was used by Shi and Malik, 2000).
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Table 6: Nearest neighbor classification performance for kernel-based dimensionality re-
duction across 7 UCI data sets. Each entry lists the classification accuracy as a
percentage, followed by the average dimensionality in parentheses. The last two
rows list the average difference in performance versus using the original space and
the average loss margin (absolute difference to the best method on the run) across
20 Monte Carlo runs and data sets (standard deviation across data sets).

Original CKA1 CKA2 Euclid. Cosine QH Bures

breast cancer 95 (569) 90 (2.0) 87 (1.0) 91 (3) 95 (328) 95 (52) 95 (41)
sonar 83 (208) 83 (126.3) 82 (130.1) 62 (3) 83 (113) 83 (28) 83 (26)
ionosphere 85 (351) 74 (1.0) 88 (69.5) 84 (2) 78 (176) 94 (38) 94 (33)
parkinson 92 (195) 84 (21.4) 80 (39.5) 82 (2) 93 (100) 91 (19) 91 (19)
iris 94 (150) 85 (3.0) 84 (2.2) 80 (2) 94 (21) 93 (10) 94 (11)
glass 68 (214) 65 (181.0) 68 (211.6) 60 (3) 68 (112) 68 (20) 68 (19)
ecoli 80 (336) 78 (31.6) 77 (48.2) 80 (6) 80 (158) 80 (24) 80 (24)

vs. original — 5.5±4 4.9±6 8.4±7 0.9±2 -0.9±4 -1.1±4
Loss margin 2.2±3 7.7±6 7.1±4 10.6±7 3.2±6 1.3±0.6 1.2±0.5
1 Centered kernel alignment using the training portion of the uncentered kernel matrix
2 Centered kernel alignment using the training portion of the centered kernel matrix

HSIC CKA Chernoff Sub-Bures Bartlett Lawley

breast cancer 90 (2) 70 (1) 95 (33) 91 (3) 70 (1) 70 (1)
sonar 62 (3) 53 (1) 84 (30) 62 (3) 57 (2) 57 (2)
ionosphere 84 (2) 74 (1) 94 (38) 84 (2) 84 (2) 84 (2)
parkinson 82 (2) 67 (1) 91 (15) 82 (2) 82 (2) 82 (2)
iris 80 (2) 66 (1) 93 (10) 80 (2) 80 (2) 80 (2)
glass 60 (3) 38 (1) 68 (18) 60 (3) 38 (1) 38 (1)
ecoli 74 (3) 40 (1) 80 (18) 80 (6) 66 (2) 66 (2)

vs. original 9.5±6 27.2±9 -1.0±4 8.4±7 17.3±10 17.3±10
Loss margin 11.8±6 29.4±7 1.3±0.3 10.6±7 19.5±9 19.5±9

For comparison, we use supervised selection of the dimensionality based on centered
kernel alignment (Cortes et al., 2012). We test both the centered and uncentered trunca-
tions, and select the dimension that maximizes the centered kernel alignment to a target
matrix obtained from the classification labels in the training set. In all cases, we use a first
nearest neighbor classifier with half of the instances for training; the average classification
accuracy is recorded in Table 6.

Across these data sets, the Bures, Chernoff, and QH-based informativeness measures
perform the best. They select a lower dimensional embedding and improve the classification
performance versus using the original distances. The cosine-based informativeness measure
also outperforms using centered kernel alignment with training labels. In comparison, the
Euclidean and HSIC-based informativeness measures select very low-dimensional embed-
dings that do not perform well, and the CKA-based informativeness and Bartlett’s and
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Lawley’s test statistics are inappropriate for this task as they often select one-dimensional
embeddings, which is an inadequate representation for a nearest neighbor classifier.

5.3 Informativeness as an Indicator of Structure in Graphs

We show that informativeness is indicative of structure in undirected graphs. We consider
binary graphs whose edges are defined by a symmetric adjacency matrix G ∈ {0, 1}n×n,
where Gi,j = 1 indicates an edge between vertices i and j. To enable informativeness to be
applied directly, we represent a graph by its normalized graph Laplacian matrix L, which
is a correlation matrix under the following definition

Li,j =


1 i = j,
−1√
didj

Gi,j = 1,

0 otherwise,

where di is the degree of the ith vertex. When the graph has unconnected vertices, the
corresponding rows and columns of the normalized graph Laplacian are all zeros except at
the diagonal entry. This is different than the standard convention (Chung, 1997), where
the diagonal entry for an unconnected vertex would be zero.

Informativeness can be used to make relative comparisons between graphs with the same
number of vertices. In particular, informativeness can be used to rank graphs and identify
graphs that are more informative than a regular graph with the same number of edges.
Firstly, we consider the informativeness for small graphs, n = 5, for which we evaluate all
34 non-isomorphic graphs. Figure 9 shows the Bures-based informativeness for each graph
plotted against the number of edges; there is a clear separation of the values for the three
most informative graphs, which correspond to clustered graphs. Of the remaining graphs,
the path graph (a tree with maximum degree of 2) has the next highest informativeness.
This ordering held for all informativeness measures. We then test the set of non-isomorphic
trees for n = 6. The trees are shown in Figure 10 ordered by their informativeness. Once
again, the path graph has the highest informativeness of all trees; the ordering is consistent
for all informativeness measures.

For larger graphs, it becomes infeasible to enumerate all of the non-isomorphic graphs.
As a baseline we consider regular graphs, which are defined as graphs whose vertices have
the same degree. To further sample from the universe of possible graphs with n = 100
vertices, we consider the following random graph models:

• Erdős-Rényi model described by an edge-link probability (Erdős and Rényi, 1959),

• Barabási-Albert scale-free model with a power law degree distribution (Barabási and
Albert, 1999),

• Watts and Strogatz small-world model (Watts and Strogatz, 1998), which randomly
rewires each edge of a regular graphs with a certain probability (we use 5%),

• a clustered regular graph model, generated by removing all edges between vertices
assigned to different clusters (the number of clusters is varied between 2 and 20).

27



Brockmeier, Mu, Ananiadou, and Goulermas

A

0.143

B

0.144

C

0.1360 1 2 3 4 5 6 7 8 9 10
Number of edges

0

0.05

0.1

0.15

In
fo

rm
a
ti
v
e
n
e
s
s A B C

Figure 9: Bures-based informativeness of non-isomorphic graphs with n = 5 vertices. The
three graphs (labeled A, B, C) with highest informativeness correspond to graphs
with two or three clusters.
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Figure 10: Non-isomorphic trees with 6 vertices sorted by Bures-based informativeness.

Erdős-Rényi graphs and Barabási-Albert scale-free graphs are both unstructured graph
models that differ in their degree distributions. The degree distribution of the former is a
Poisson distribution, whereas the scale-free graphs have a long-tailed degree distribution,
meaning that a small number of vertices have a large number of edges.

We evaluate the informativeness of regular graphs and realizations of each random graph
model, scanning any free parameters to vary the number of edges. Example graphs and the
Bures-based informativeness as a function of the average degree9 are shown in Figure 11.
For any given number of edges, the informativeness is maximized by clustered graphs, and
minimized by the Erdős-Rényi graphs and Barabási-Albert scale-free graphs. The random
rewiring involved with the Watts and Strogatz small-world model does not drastically change
the informativeness from that of regular graphs.

We compare informativeness to two existing test statistics for clustering in graphs: the
modularity of two-way partitions identified using an eigenvector-based method (Newman,
2006) and the statistic defined by Bickel and Sarkar (2016) on the adjacency matrix. The
latter statistic is used for testing the hypothesis that the graph is drawn from an Erdős-
Rényi model; the test statistic is based on the largest eigenvalue of the difference between the
adjacency matrix and the expectation over adjacency matrices under an Erdős-Rényi model,
where the normalized graph Laplacian of this expectation is a non-informative correlation
matrix. Bickel and Sarkar (2016) used the test statistic to identify cluster structure. Bickel
and Sarkar’s statistic is normalized, such that its distribution for Erdős-Rényi graphs is
invariant to the number of edges. Figure 11 also shows the values obtained from these test

9. The average degree is given as d̄ = 2e
n

, where e is the number of edges.
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Figure 11: Comparison of informativeness and other statistics on different types of ran-
dom graphs. Bures-based informativeness and Lawley’s test statistic for ho-
mogeneous correlation coefficients are applied to the normalized graph Lapla-
cians, and compared to the graph-clustering test statistics proposed by Bickel
and Sarkar (2016) and Newman (2006). The random graphs were drawn from
Erdős-Rényi (E. & R.), Barabási-Albert scale-free (B. & A.), Watts-Strogatz
small-world (W. & S.), and clustered regular models.
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Table 7: Proportion of graphs with informativeness, or other measure, greater than a
threshold set as the value of a nearly-regular graph with the same number of
edges. Graphs have 100 vertices. The random graphs were drawn from Erdős-
Rényi (E. & R.), Barabási-Albert scale-free (B. & A.), Watts-Strogatz small-world
(W. & S.), and clustered regular models.

E. & R. B. & A. W. & S. Clustered regular
Number of graphs: 200 200 990 1200

Euclidean 0.241 0.195 0.986 0.968
Sub-Bures 0.241 0.195 0.986 0.968
Cosine 0.241 0.195 0.987 0.968
HSIC 0.134 0 0.969 0.957
CKA 0.134 0 0.974 0.957
Chernoff 0.053 0 0.550 1
QH 0.053 0 0.558 1
Bures 0.118 0 0.553 1

Bartlett 0.016 0 0.974 0.957
Lawley 0.364 0.340 1 0.996

Bickel and Sarkar 0.460 0.700 0.232 0.962
Newman 0.102 0 0.099 0.601

statistics on the various graphs. The test statistics have a different range as compared to the
measures of informativeness; nonetheless, for a given statistic or measure of informativeness,
the values can be used to make relative comparisons between the different graphs.

The value of informativeness is dependent on the number of edges, with graphs with
fewer edges being more informative. As a threshold for identifying structure, we use the
informativeness of a nearly-regular graph10 with the same number of edges. The thresholds
for the other statistics are formed in the same way. Ideally, the value of a clustered graph will
be above the threshold, and the value will be below the threshold for an unstructured graph.
Table 7 details the proportion of random graphs above the threshold for each measure.

The QH, Chernoff, and Bures-based measures appear to be the best measures to dis-
tinguish clustered graphs from unstructured graphs. The HSIC and CKA-based measures
and Bartlett’s statistic perform nearly as well. The Euclidean, sub-Bures, and cosine-based
measures are not as specific—a larger proportion of unstructured graphs are evaluated above
the threshold. Bickel and Sarkar’s and Lawley’s statistics are even less specific. Newman’s
modularity index (designed to detect binary clustering) evaluates fewer clustered graphs
above the threshold; but, it identifies the lowest proportion of Watts-Strogatz small-world
model, which are not clustered. To summarize, a subset of the informativeness measures
and Bartlett’s statistic are specific indicators of regular structure and clustering in graphs,
and Newman’s modularity is useful for identifying clustered graphs specifically.

10. A graph is regular if the number of edges is divisible by the number of vertices, otherwise a nearly-
regular graph is constructed by adding edges to a regular graph, where the additional edges are evenly
distributed, such that the degrees of any two vertices differ by at most 1.
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Euclidean Cosine HSIC CKA QH BuresOriginal

Figure 12: Sample denoising based on optimizing the informativeness of a Gaussian ker-
nel matrix with respect to the sample’s two-dimensional coordinates. Each row
shows the original Gaussian kernel matrix (n = 25), the kernel matrices corre-
sponding to the optimized coordinates, the location of the optimized coordinates,
denoted as x’s, and the original coordinates, denoted as o’s.

5.4 Sample Denoising via Informativeness

To illustrate that informativeness can be used as an unsupervised objective function, we ex-
plore first-order optimization of informativeness with respect to a sample of points {xi}ni=1,
defining a correlation matrix through a Gaussian function as Ki,j = κ(‖xi − xj‖22) =
exp

(
− 1

2σ2 ‖xi − xj‖22
)
. We first find the bandwidth σ that maximizes the informativeness

using a golden search over θ ∈ [−5, 5], where 2σ2 = 10−θ. Then, we optimize the sample
coordinates using the conjugate gradient method implemented in minFunc (Schmidt, 2012)
with the gradients given in Section 4.1. For all methods, the optimization is performed in
terms of Ḱ = (1 − η)K + ηI, where η = 10−6, to ensure the correlation matrix is positive
definite. A log-barrier term of − log(1− 1

n2 1>K1) is added to the cost function for the CKA
measure. For the Bures-based measure, a smoothing parameter of γ = 10−9 is used.

We apply the first-order optimization on five synthetic data sets consisting of n = 25
two-dimensional points. As shown in Figure 12, the optimization exhibits mode-seeking—
i.e., groups of nearby points cluster together, which enhances the cluster structure seen in
the correlation matrices.

We then apply the denoising process to a set of grayscale images of handwritten digits
in the USPS data set (Hull, 1994).11 Taking a random set of 40 images for each digit yields
a sample with n = 400. The resulting correlation matrices and the images corresponding
to the optimized point locations are shown in Figure 13. There is a clear difference in
the results for the different measures: With the Euclidean measure, different digits are

11. The USPS handwritten digits data set (Hull, 1994) is available from http://web.stanford.edu/

~hastie/ElemStatLearn/data.html, where it is labeled ‘ZIP code’.
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Original Euclidean Cosine HSIC CKA QH Bures

Figure 13: Sample denoising on 200 images from the USPS handwritten digits data set.
The correlation matrix is formed from the Gaussian kernel applied to vectors of
the pixel values. The first row shows the correlation matrices and the second
row shows the corresponding images based on the optimized pixel values.

grouped together into indistinct images, while the remaining images remain unchanged.
The cosine measure only slightly modifies the images. The HSIC and CKA measures seem
to map most of the digits to a subset of stereotyped digits, but besides 0’s, 1’s, and 7’s/9’s
the correspondence to the original digits is lost. On the other hand, the QH and Bures
measures produce correlation matrices that correspond much more closely to the true class
structure. Furthermore, the images appear to be denoised with the majority of the digits
mapped to stereotyped versions of the original digits. To quantify the enhanced class
structure, we compute the centered kernel alignment between the correlation matrix for the
ground-truth labels and the optimized correlation matrix, and record the values in Table 8.
As a baseline, we use the original coordinates (that is the original images) for the sample
and select a kernel bandwidth that maximizes the centered kernel alignment. Only the
Bures measure yields a correlation matrix with higher centered kernel alignment than this
baseline.

The QH and Bures measures are also distinguished by their computation time as shown
in Table 8, as the gradient calculations for these two measures have higher computational
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Table 8: Performance results for sample denoising on the subset of 200 USPS digit images
shown in Figure 13. The centered kernel alignment (CA) is calculated between the
ground-truth label matrix (a binary correlation matrix) and the correlation matrix
for the original sample and the denoised sample for each measure. Computation
time logged in MATLAB R2015b on a 2.8 GHz Intel Core i7 with 16 GB RAM.

Original Euclidean Cosine HSIC CKA QH Bures

CA to labels: 0.53 0.11 0.45 0.27 0.28 0.47 0.55
Time (s): — 0.99 0.17 1.56 1.10 503.85 37.13

complexity O(n3) versus O(n2) for the other measures. The QH measure requires solving
two Sylvester equations, and the Bures measure requires a single eigendecomposition. This
makes the running time with the QH measure much longer in practice.

5.5 Correlation Matrix Denoising

We now demonstrate Algorithm 1 for correlation matrix denoising. The algorithm finds
an embedding that maximizes the Bures-based informativeness within a neighborhood of a
target embedding. The algorithm is completely unsupervised and can be used to obtain an
arbitrary rank embedding. We use it to reduce the rank of an n× n kernel matrix to b

√
nc

as a preprocessing for clustering.

The initial correlation matrix is formed by using a Gaussian kernel between images for
five thumbnail image data sets: ORL, MNIST, UMIST, USPS, and COIL-20.12 The kernel
bandwidth heuristic described in Section 5.2 is again used to select this parameter. The
initial target embedding was given as T =

√
ΣU>, where UΣU> = K is the eigendecompo-

sition of the Gaussian kernel matrix. Figure 14 shows a visualization of the various matrices
and also plots the informativeness and centered kernel alignment to the label matrix as a
function of rank. As designed, the denoised matrices are more informative than the original
matrix and more informative than truncated and renormalized kernel matrices (centered or
uncentered) of equal rank. Additionally, except on the ORL data set, the denoised matrices
have higher centered kernel alignment.

To demonstrate that the denoising preserves and enhances task-relevant structure, we
perform spectral clustering with and without denoising. Starting from an embedding of the
original correlation matrix, we obtain a denoised embedding Z with a rank of b

√
nc. Since

spectral clustering methods assume a non-negative affinity matrix as input, we apply non-
negative thresholding on the entries of the denoised correlation matrix K? = Z>Z and treat
the resulting non-negative, symmetric matrix [K?]+ as the input for Ng et al.’s normalized

12. The Olivetti Research Laboratory’s (ORL) face image data set was previously hosted by AT&T Cam-
bridge and is now hosted by Cambridge University Computer Laboratory: http://www.cl.cam.ac.

uk/research/dtg/attarchive/facedatabase.html. The MNIST handwritten digits test set is avail-
able from http://yann.lecun.com/exdb/mnist/. The UMIST data set (Graham and Allinson, 1998)
is now the Sheffield Face Database https://www.sheffield.ac.uk/eee/research/iel/research/face.
The COIL-20 data set consists of images of rotated objects (Nene et al., 1996), available at http:

//www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
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Figure 14: Examples of correlation matrix denoising on Gaussian kernel matrices obtained
from samples of the ORL, MNIST, COIL-20, UMIST, and USPS data sets. Each
sample contains three different classes. Each row shows the kernel matrix for
the ground truth labels, the original Gaussian kernel matrix, the truncated and
renormalized matrices corresponding to the uncentered kernel matrix (KEIG)
and centered kernel matrix (KPCA), and the denoised correlation matrix. The
latter three matrices have rank b

√
nc and the symmetric normalization described

in Equation 1 is applied to ensure they are correlation matrices. To the right
of the matrices, the centered kernel alignment (CKA) to the ground-truth label
matrix and the Bures-based informativeness is shown as a function of rank.

spectral clustering algorithm (Ng et al., 2002). For comparison we also use the spectral
clustering method by Shi and Malik (2000) without denoising.

We compare clustering performance on the 20 Newsgroup text data set13 and the five
image data sets used in the previous example. Random subsets of different number of
classes (2, 3, 4, and 5) are drawn with 200 samples in each Monte Carlo draw. For the
text data set, each document is represented as a bag-of-words vector (a sparse vector of
word counts for each document), and in each Monte Carlo division, words that are used
in less than 4 documents are dropped. The remaining word counts are multiplied by the

13. A MATLAB/Octave version is provided by Jason Rennie http://qwone.com/~jason/20Newsgroups/.
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Table 9: Clustering performance using normalized spectral clustering (NCut), the algorithm
by Ng, Jordan, and Weiss (NJW), and the NJW algorithm after denoising the
correlation matrix. In each case, k-means with correct number of classes is used to
determine the cluster assignment from the spectral embedding. Values correspond
to average accuracy (higher is better) or variation in information (lower is better)
across 20 Monte Carlo runs; the average loss margin to the best performing method
is shown parenthesized. Boldfaced entries indicate significantly better median
performance (Wilcoxon signed-rank test with a significance threshold of 0.05).

Accuracy (after mapping clusters to classes)

k NCut NJW denoise+NJW

20 News 2 0.64 (0.29) 0.92 (0.01) 0.93 (0.01)
3 0.60 (0.22) 0.73 (0.09) 0.79 (0.03)
4 0.54 (0.21) 0.68 (0.07) 0.75 (0.01)
5 0.53 (0.17) 0.62 (0.08) 0.69 (0.01)

COIL-20 2 0.70 (0.26) 0.91 (0.05) 0.96 (0.00)
3 0.64 (0.26) 0.86 (0.04) 0.88 (0.02)
4 0.60 (0.27) 0.77 (0.10) 0.87 (0.00)
5 0.58 (0.20) 0.72 (0.06) 0.76 (0.02)

MNIST 2 0.78 (0.16) 0.92 (0.02) 0.94 (0.00)
3 0.77 (0.09) 0.78 (0.08) 0.85 (0.01)
4 0.70 (0.07) 0.71 (0.06) 0.75 (0.01)
5 0.64 (0.07) 0.66 (0.05) 0.69 (0.02)

USPS 2 0.85 (0.09) 0.91 (0.03) 0.93 (0.01)
3 0.75 (0.10) 0.76 (0.09) 0.80 (0.05)
4 0.66 (0.13) 0.74 (0.05) 0.76 (0.03)
5 0.66 (0.09) 0.71 (0.04) 0.73 (0.02)

UMIST 2 0.75 (0.15) 0.72 (0.18) 0.87 (0.03)
3 0.64 (0.20) 0.67 (0.17) 0.81 (0.03)
4 0.59 (0.15) 0.63 (0.11) 0.69 (0.05)
5 0.54 (0.11) 0.59 (0.06) 0.61 (0.04)

ORL 2 0.78 (0.22) 0.98 (0.02) 1.00 (0.00)
3 0.81 (0.17) 0.97 (0.01) 0.97 (0.01)
4 0.77 (0.20) 0.92 (0.04) 0.95 (0.02)
5 0.81 (0.16) 0.94 (0.03) 0.94 (0.03)

Variation in information

NCut NJW denoise+NJW

1.09 (0.46) 0.67 (0.04) 0.68 (0.06)
1.70 (0.29) 1.64 (0.24) 1.51 (0.11)
2.17 (0.42) 1.99 (0.25) 1.82 (0.08)
2.34 (0.30) 2.30 (0.25) 2.16 (0.11)

1.20 (1.00) 0.50 (0.29) 0.22 (0.01)
1.27 (0.77) 0.65 (0.15) 0.60 (0.11)
1.50 (0.80) 0.94 (0.25) 0.70 (0.01)
1.79 (0.66) 1.37 (0.24) 1.23 (0.10)

1.17 (0.63) 0.70 (0.16) 0.56 (0.01)
1.43 (0.35) 1.47 (0.40) 1.14 (0.06)
1.89 (0.23) 1.86 (0.21) 1.71 (0.05)
2.30 (0.20) 2.32 (0.22) 2.14 (0.04)

0.88 (0.37) 0.67 (0.16) 0.61 (0.10)
1.33 (0.33) 1.30 (0.29) 1.13 (0.13)
1.81 (0.57) 1.39 (0.15) 1.32 (0.08)
1.93 (0.28) 1.77 (0.11) 1.79 (0.13)

1.17 (0.62) 1.34 (0.80) 0.66 (0.11)
1.40 (0.65) 1.31 (0.56) 0.92 (0.17)
1.56 (0.42) 1.52 (0.38) 1.37 (0.23)
1.81 (0.32) 1.82 (0.33) 1.69 (0.20)

1.00 (1.00) 0.11 (0.11) 0.00 (0.00)
0.66 (0.54) 0.18 (0.06) 0.15 (0.04)
0.84 (0.64) 0.41 (0.21) 0.29 (0.09)
0.75 (0.56) 0.31 (0.12) 0.31 (0.12)

logarithm of the inverse of each word’s document frequency (this is the standard TF-IDF
weighting), and cosine similarity is used to compute the correlation matrix. For the image
data sets, the Gaussian kernel (the kernel bandwidth heuristic described in Section 5.2 is
used once again). We fix the number of clusters to the number of classes. The results in
terms of accuracy and variation of information (Meilă, 2003) are recorded in Table 9. The
clustering obtained when using the denoised and thresholded matrix better matches the
ground truth (in terms of both performance metrics) than the clustering obtained using the
original kernel matrix across almost every data set and number of classes.
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6. Discussion

We have introduced a framework for identifying nontrivial structure in correlation matrices
using informativeness, which is a distance-based framework we have proposed for measur-
ing the equality of correlation coefficients (Bartlett, 1954; Anderson, 1963; Lawley, 1963;
Gleser, 1968; Aitkin et al., 1968; Steiger, 1980; Brien et al., 1984). Correlation matrices ap-
pear in various contexts within machine learning and statistical analysis. Measures which
yield correlation matrices include the normalized inner product; Pearson’s, Spearman’s,
and Kendall’s correlation coefficients between sets of vectors; kernel matrices formed from
non-linear kernel functions on data of various types (since any positive semidefinite kernel
function can be normalized); and the normalized graph Laplacian, which can represent any
set of non-negative similarity measurements on an undirected graph.

We defined the informativeness of a correlation matrix to be proportional to the dis-
tance between it and the closest correlation matrix whose off-diagonal entries are all equal.
Motivated by the fact that a scaled correlation matrix is a valid quantum density matrix,
we explored quantum distance metrics, including the Bures distance. For specific distance
metrics, we derived closed-form expressions of the minimal distance, and a lower-bound for
the Bures distance. In particular, we proved the lower-bound, referred to as the Bures-
based informativeness, is maximized by centered, rank-1 correlation matrices, which means
a maximally informative matrix corresponds to a balanced cut.

The measures of informativeness are unsupervised and can be used as objective functions
for machine learning applications. In particular, informativeness can be used for selecting
kernel parameters or the embedding dimension for kernel-based dimensionality reduction,
testing for structure in graphs, and first-order optimizations of correlation matrices. In
the first case, we explored informativeness as a criterion for automatically selecting an
appropriate kernel bandwidth for spectral clustering. For this task, the proposed informa-
tiveness measures (except the CKA-based measure) consistently outperform Bartlett’s and
Lawley’s test statistics for equality of correlation coefficients, which like the CKA measure
always select the largest possible kernel bandwidth. The results also indicate that there is a
clear grouping of the different informativeness measures that behave similarly. The cosine
measure performs best on three data sets, and the three measures applicable to quantum
density matrices—Chernoff bound, QH, and Bures—have the second best performance on
three data sets.

In Section 5.2, we investigated using informativeness to select the dimensionality of a
kernel-based embedding in a semi-supervised case, where the kernel matrix is formed from
both labeled and unlabeled samples, and the performance is assessed by the first nearest-
neighbor classification error rates in the reduced dimension space. On this task, Bartlett’s
and Lawley’s test statistics fail to select a meaningful dimensionality (selecting one or two
dimensions), which yields an average classification error rate 17.3 percentage points (ppts)
higher than the original, as detailed in Table 6. In comparison, the Chernoff, QH, and Bures-
based measures have the best average performance with an error rate >0.9 ppts lower than
using the distances in the original space. Furthermore, these measures of informativeness
outperform centered kernel alignment (Cortes et al., 2012) on this task, which has an error
rate of 4.9 ppts higher than the original, even though centered kernel alignment uses the
training set labels.
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Informativeness is also useful for quantifying the amount of structure in undirected
graphs via their normalized graph Laplacian representation, as discussed in Section 5.3.
Empirically, the measures of informativeness are all able to distinguish regular and clustered
graphs from unstructured graphs. The quantum-based distances (Chernoff bound, QH, and
Bures) perform well in distinguishing structured graphs from random graphs (identifying
<15% of random graphs as structured and 100% of clustered regular graphs). These in-
formativeness measures are better at identifying structured graphs than the test statistic
for determining if the graph is a realization of an Erdős-Rényi graph (Bickel and Sarkar,
2016), which identifies 46% of random graphs and 96.2% of clustered regular graphs. For
this task, Bartlett’s test statistic also performs well (identifying >2% of random graphs as
structured and 95.7% of clustered regular graphs), but Lawley’s test statistics evaluates a
larger proportion of random graphs higher than the regular graphs (36.4%).

Across these experiments, the three quantum-based distances (Chernoff bound, QH,
and Bures) perform consistently well in identifying correlation matrices that are structured
and more suitable for clustering or classification. One drawback of these measures is that
their evaluations have a higher computation cost than the other measures of informativeness
that are based on the Frobenius norm, e.g., the Euclidean distance, cosine similarity, HSIC,
and CKA. Specifically, the Bures-based measure requires all of the eigenvalues of an n× n
positive semidefinite matrix, the Chernoff-bound requires a full eigendecomposition, and
the QH measures requires the matrix square root—a complexity of O(n3) in each case. In
comparison, the measures based on the Frobenius norm can be computed directly from the
elements of the correlation matrix (or its centered version), with a complexity of O(n2).

Closed-form measures of informativeness can also be used as optimization criteria for
applications like sample denoising and metric learning through positive definite kernel func-
tions. Using the gradients of smooth cost functions derived from the informativeness mea-
sures, we discussed first-order optimizations in Section 4.1. The experimental results for
sample denoising in Section 5.4 show that when the coordinates of a sample of points are
updated the points form local clusters to maximize informativeness. In this way, informa-
tiveness functions as an objective for finding local modes in a sample. This behavior is
scale-invariant, since when a Gaussian or other applicable kernel is used, the scale can be
automatically set by choosing the bandwidth that maximizes the informativeness. When
the informativeness-based optimizations are applied to a thumbnail image data set, the
optimization based on the Bures measures enhances the class structure, yielding a higher
centered kernel alignment than the correlation matrix for the original sample.

Along similar lines, we investigated the optimization problem of finding maximally in-
formative correlation matrices in terms of their lower-dimensional embeddings (Section 4.2).
We proved that the Bures-based measure is especially suited for this task since it corresponds
to a convex cost function on Euclidean embeddings. This cost function is a novel matrix
norm, which can be used to simultaneously penalize high-rank and uncentered embeddings.
Based on the proximal operator of this norm (Appendix E), we proposed a correlation ma-
trix denoising algorithm using an ADMM scheme. In Section 5.5, we tested the proposed
correlation matrix denoising algorithm on data sets with known cluster structure. On
thumbnail image data sets, the denoising method is able to preserve information relevant
to ground-truth classes. Furthermore, it consistently increases the clustering performance
when used as a preprocessing for spectral clustering (Ng et al., 2002).
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In conclusion, informativeness appears to be a well-suited criterion for a variety of
unsupervised data analysis tasks that can be formulated in terms of correlation matrices,
and offers a unique measure for assessing the organizational properties of a sample based
on pairwise similarity measurements.
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Appendix A. Bures Distance

Bures (1969) defined a distance metric between two non-commutative, positive semidefinite
Hermitian matrices that generalizes the Hellinger-Kakutani probability distance to non-
commuting spaces. The Bures distance is a measure of the statistical distance between two
quantum states, i.e., a symmetric measure of how likely it is for one state to transition to
the other (Uhlmann, 1976). In particular, as shown later, when two matrices commute the
Bures distance corresponds to the Hellinger-Kakutani distance between the eigenvalues.

Let A,B denote two positive-semidefinite matrices, which are trace-normalized so that
trA = trB = 1. The squared Bures distance between them can be computed (Uhlmann,

1976) as d2
B(A,B) = 2 − 2tr

√
A

1
2 BA

1
2 , where all square roots denote matrix roots. The

Bures distance is a chordal distance on the space of positive semidefinite matrices with trace
one. The trace term in the previous expression, denoted here as C(A,B), is equal to the

trace norm of the matrix A
1
2 B

1
2 , that is

C(A,B) = tr

√
A

1
2 BA

1
2 =

∥∥∥A 1
2 B

1
2

∥∥∥
∗
.

This quantity is a symmetric similarity measure between positive definite matrices. From
the properties of trace-normalized positive semidefinite matrices, we have 0 ≤ C(A,B) ≤ 1;

C(A,B) = 0 iff 〈A,B〉 = 0 (since AB and A
1
2 BA

1
2 have the same eigenvalues), and

C(A,B) = 1 iff A = B. In quantum information theory, the quantity C(A,B), or the
concave quantity C2(A,B) as originally defined, is known as fidelity (Jozsa, 1994). Fidelity
is a measure of how well A preserves the information of B. It can also be used to directly
define a geodesic distance, which is known as the statistical distance or quantum angle, and
can be computed using the standard chordal to geodesic conversion, as arccos (C(A,B)) =
arccos

(
1− 1

2d
2
B(A,B)

)
.

If A and B commute, then they are simultaneously diagonalizable by an orthogonal
matrix M, that is MΛAM> = A and MΛBM> = B, with ΛA and ΛB being the corre-

sponding spectral matrices. Therefore, tr
√

A
1
2 BA

1
2 = tr

(
M
√

ΛAΛBM>) = tr(
√

ΛA

√
ΛB)

and tr
(
M
√

ΛAΛBM>) = 〈
√

A,
√

B〉, which makes the fidelity C(A,B) equal to the affin-
ity measure in Table 1, or equivalently, the Bures and the quantum Hellinger distance to
coincide because d2

B(A,B) = ‖
√

A −
√

B‖2F . In this case, by using pA = diag (ΛA) and
pB = diag (ΛB) to denote vectors containing the eigenvalues, C(A,B) is also equal to
〈√pA,

√
pB〉. This last quantity is the Bhattacharyya coefficient between the eigenspectra
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of A and B, and hence, d2
B(A,B) = ‖√pA −

√
pB‖22 is the squared Euclidean distance

between them.

A further point to note about the Bures distance is that it serves as a lower bound
for the trace distance. Specifically, as shown by Fuchs and van de Graaf (1999), we have
1
2d

2
B(A,B) = 1 − C(A,B) ≤ 1

2‖A − B‖∗. It is also a lower bound on quantum Hellinger
distance (Luo and Zhang, 2004). This can also be directly seen from the fact that for a
given matrix Q, we have tr(Q) ≤ max‖U‖2≤1 tr

(
U>Q

)
= ‖Q‖∗ from the duality of the

trace and spectral norms. By setting Q =
√

A
√

B, we have the fidelity measure C(A,B)
dominating the affinity measure, 〈

√
A,
√

B〉.
For the context of this work, we will show that a useful property of the Bures distance is

that in its computation, the matrix square roots
√

A and
√

B can be substituted with any
arbitrary embeddings in a Hilbert space that represent the correlation structure. Assume
we have two arbitrary embeddings ZA ∈ RbA×n and ZB ∈ RbB×n such that Z>AZA = A and

Z>BZB = B. Since ‖Q‖∗ =
∥∥Q>∥∥∗ = tr

√
Q>Q, we have∥∥∥ZAZ>B

∥∥∥
∗

= tr
√

ZAZ>BZBZ>A = tr
√

ZABZ>A =
∥∥∥ZAB

1
2

∥∥∥
∗

= tr

√
B

1
2 Z>AZAB

1
2 = tr

√
B

1
2 AB

1
2 =

∥∥∥A 1
2 B

1
2

∥∥∥
∗
.

(A.1)

A critical conclusion from these equations, is that the fidelity ‖A
1
2 B

1
2 ‖∗ and the Bures dis-

tance dB can potentially use any of the forms in Equation A.1 for calculating the constituent
trace norm, according to computational convenience and embeddings dimensionality, even
though the embeddings ZA and ZB are not unique representations of

√
A and

√
B. For

instance, the constraint Z>AZA = A cannot imply a unique ZA, as a row permutation, sign
change, or any orthogonal transformation of the rows of ZA would not alter the underlying
similarity matrix. Furthermore, one can choose a transformation matrix UA, which is not
necessarily square, with orthonormal columns (and, by definition, orthonormal rows if UA

is square) that introduces the embedding into a higher dimensional space. For example,
if UA ∈ Rq×bA , the projection UAZA is equivalent to applying an orthogonal transforma-
tion to

(
ZA
0

)
∈ Rq×n. These invariances lead to an alternative formulation of fidelity via

the following theorem, which is known as Uhlmann’s theorem in the more general case for
quantum density matrices (Uhlmann, 1976; Jozsa, 1994; Nielsen and Chuang, 2000).

Theorem 1 For positive semidefinite matrices A ∈ Rn×n and B ∈ Rn×n,

C(A,B) =
∥∥∥A 1

2 B
1
2

∥∥∥
∗

= max
ZA,ZB

Z>AZA=A

Z>BZB=B

〈ZA,ZB〉.

Proof Let Z̄A ∈ RbA×n and Z̄B ∈ RbB×n be arbitrary embeddings such that Z̄>AZ̄A = A and
Z̄>BZ̄B = B (without loss of generality, we assume bA ≤ bB). The set of valid embeddings
for A and B can then be expressed as transformations of Z̄A and Z̄B, i.e.,{

(ZA,ZB) : Z>AZA=A, Z>BZB=B
}

=
{

(UAZ̄A,UBZ̄B) : U>AUA=I, U>BUB = I
}
,
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where UA ∈ Rq×bA and UB ∈ Rq×bA are matrices with orthonormal columns and the
same number of rows. From the equivalence of these two sets, we pose the equivalent
maximization problem

max
UA,UB

U>AUA=I

U>BUB=I

{〈
UAZ̄A,UBZ̄B

〉
= tr

(
Z̄>AU>AUBZ̄B

)
= tr

(
U>BUAZ̄AZ̄>B

)}
.

Since UA and UB are semi-orthogonal, they both have all their non-zero singular values
equal to one, and from the sub-multiplicative property it follows that

‖U>BUA‖2 ≤ ‖UA‖2 · ‖UB‖2 = 1,

and furthermore, the set of pairs of semi-orthogonal matrices is a strict subset of the set of
pairs with product within the spectral norm unit ball:{

(UA,UB) : U>AUA = I, U>BUB = I
}
⊂
{

(UA,UB) : ‖U>BUA‖2 ≤ 1
}
.

Letting U> = U>BUA, we have

max
UA,UB

U>AUA=I

U>BUB=I

tr
(
U>BUAZ̄AZ̄>B

)
≤ max

U
‖U‖2≤1

tr
(
U>Z̄AZ̄>B

)
= ‖Z̄AZ̄>B‖∗,

where the equality follows from the duality of the trace and spectral norms. Furthermore,
the optimization in terms of UA,UB achieves the maximum when UA = [R, 0bA×(bB−bA)]

>

and UB = V, where RSV> is a singular value decomposition of Z̄AZ̄>B, since in this case14

tr
(
U>BUAZ̄AZ̄>B

)
= tr

(
U>BUARSV>

)
= tr

(
V>U>BUARS

)
= tr

(
V>V

[
R>R, 0bA×(bB−bA)

]>
S

)
= tr

([
IbA×bA , 0bA×(bB−bA)

]>
S
)

= ‖Z̄AZ̄>B‖∗.

By the properties of the trace norm (A.1), ‖Z̄AZ̄>B‖∗ = ‖A
1
2 B

1
2 ‖∗, which completes the

proof.

It is a significant consequence of this theorem that dB(A,B) corresponds to the minimal
distance ‖ZA−ZB‖F between all possible embeddings represented by A and B. This is very
desirable, as it makes dB independent to the choice of their embeddings used to measure it
with any of the forms in Equation A.1.

We note that Theorem 1 can also be used to show that the symmetric normalization
in Equation 1, discussed in Section 2.1, which transforms a positive semidefinite matrix
to a correlation matrix, corresponds to finding the closest elliptope element in the Bures
distance sense.

14. Letting Q = V>U>BUAR = (UBV)>UAR we have tr
(
U>BUAZ̄AZ̄

>
B

)
= tr (QS). We note that no

element of Q can exceed unity by the Cauchy-Bunyakovsky-Schwarz inequality since UAR and UBV
have orthonormal columns. From this, it follows that tr

(
U>BUAZ̄AZ̄

>
B

)
= tr (QS) ≤ tr(S) = ‖Z̄AZ̄>B‖∗.
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Lemma 2 For a positive semidefinite matrix K̃ ∈ Rn×n with tr(K̃) = n,

arg min
K∈E

dB

(
1
nK, 1

nK̃
)

= DK̃D,

where D is a diagonal matrix with entries Di,i = 1√
K̃i,i

. Furthermore,

min
K∈E

dB

(
1
nK, 1

nK̃
)

=

√√√√ 2

n

∑
i∈[n]

(
1− (K̃i,i)

1
2

)
,

i.e., the distance depends on how far the roots of the diagonal entries of K̃ are from unity.

Proof Let Z̃ be an embedding of K̃ such that Z̃>Z̃ = K̃. Then for any choice of Z̃,

min
K∈E

dB

(
1
nK, 1

nK̃
)

= min
Z∈OB

∥∥∥ 1√
n
Z− 1√

n
Z̃
∥∥∥
F

=

√√√√ 1

n

∑
i∈[n]

min
x:‖x‖2=1

‖x− z̃i‖22 ,

where the second equality follows from the fact that both the oblique manifold constraint
and the Frobenius norm are amenable to column-wise separation. The solution for the ith
column is zi = z̃i

‖z̃i‖2 , which corresponds to finding the point on the unit sphere closest to

the vector z̃i. This is equivalent to setting Z = [z1, . . . , zn] = Z̃D, where D is a diagonal
matrix with entries Di,i = 1

‖z̃i‖2 = 1√
K̃i,i

, which yields the closest matrix in the elliptope as

DZ̃>Z̃D = DK̃D ∈ E .
The distance itself is given as

dB

(
1
nDK̃D, 1

nK̃
)

=

√
2− 2

∥∥∥ 1
n Z̃DZ̃>

∥∥∥
∗

=

√
2− 2

n
tr
(
DZ̃>Z̃

)
=

√√√√2− 2

n

∑
i∈[n]

‖z̃i‖2 =

√√√√ 2

n

∑
i∈[n]

(
1− (K̃i,i)

1
2

)
.

This simple normalization can be contrasted with the alternating projection algorithm re-
quired to find the closest correlation matrix in terms of the Euclidean distance (Higham,
2002). The latter could be considered more general, since it can be applied to any square
matrix, whereas the Bures distance is only applicable to positive semidefinite matrices.
Nonetheless, the symmetric normalization can be applied after first finding the nearest
positive semidefinite matrix (Higham, 1988).

Another property of the Bures distance, is that its square is a convex function, which
follows from the following theorem for real-valued positive-semidefinite matrices, which is
a special case of the proof by Uhlmann (1976).

Theorem 3 The squared fidelity measure C2(A,B) = ‖A
1
2 B

1
2 ‖2∗ is concave for positive-

semidefinite matrices.
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Proof Let X,Y,Z ∈ Rn×n be three positive-semidefinite matrices. Let ΨZ =
⊕n

i=1 ψzi ∈
HX and ΨX =

⊕n
i=1 ψxi ∈ HX denote Hilbert-space embeddings defined via the direct

sum HX = Hx ⊕ · · · ⊕ Hx =
⊕n

i=1Hx such that Zi,j = 〈ψzi , ψzj 〉, Xi,j = 〈ψxi , ψxj 〉, and

‖Z
1
2 X

1
2 ‖∗ = 〈ΨZ ,ΨX〉. Likewise, let ΦZ =

⊕n
i=1 φzi ∈ HY and ΨY =

⊕n
i=1 φyi ∈ HY de-

note Hilbert-space embeddings such that Zi,j = 〈φzi , φzj 〉, Yi,j = 〈φyi , φyj 〉, and ‖Z
1
2 Y

1
2 ‖∗ =

〈ΦZ ,ΦY 〉.
For any λX , λY such that λ2

X + λ2
Y = 1, define

ΩZ =
n⊕
i=1

ωzi = (λXΨZ)⊕ (λY ΦZ) ∈ HX ⊕HY ≡ HW .

Then Zi,j = 〈ωzi , ωzj 〉 = λ2
X〈ψzi , ψzj 〉+λ2

Y 〈φzi , φzj 〉. Let W = αX+(1−α)Y denote a con-
vex combination, where 0 ≤ α ≤ 1. Then ΩW = (

√
αΨX)⊕(

√
1− αΦY ) ∈ HW is a Hilbert-

space embedding of W. Consequently, 〈ΩZ ,ΩW 〉 = λX
√
α〈ΨZ ,ΨX〉+ λY

√
1− α〈ΦZ ,ΦY 〉.

From Theorem 1 it follows that

‖Z
1
2 W

1
2 ‖2∗ ≥ |〈ΩZ ,ΩW 〉|2 =

∣∣λX√α〈ΨZ ,ΨX〉+ λY
√

1− α〈ΦZ ,ΦY 〉
∣∣2 .

Maximizing over λX , λY on the right hand side (which corresponds to an optimization along
the positive quadrant of the circle parametrically defined by coordinates λX and λY ) we
obtain

‖Z
1
2 W

1
2 ‖2∗ ≥

∣∣√α〈ΨZ ,ΨX〉
∣∣2 +

∣∣√1− α〈ΦZ ,ΦY 〉
∣∣2 = α‖Z

1
2 X

1
2 ‖2∗ + (1− α)‖Z

1
2 Y

1
2 ‖2∗.

Appendix B. Derivation of Informativeness Measures

In this appendix, we detail the derivation of the analytic expression of each measure of
informativeness found in Table 2.

B.1 Euclidean Distance

We define the measure of informativeness for any correlation matrix K ∈ E using the
Euclidean distance as dN (K) = 1

n minNa∈N ‖K − Na‖F . Expanding the Frobenius norm
term yields

‖K−Na‖2F = ‖K‖2F + ‖Na‖2F − 2〈K,Na〉,

‖Na‖2F = (an)2 + (1− a)2 n2

n− 1
,

〈K,Na〉 = a1>K1 + (1− a)
n

n− 1
tr(HK) = ak̄n2 + (1− a)(1− k̄)

n2

n− 1
,

since tr(HK) = n − 1
ntr(JK) = n(1 − k̄), where k̄ = 1

n2 1>K1. Taking the derivative with
respect to a yields a linear function of a whose root is k̄. That is, the value of the parameter
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a that defines the closest non-informative matrix Na? is

a? = arg min
0≤a≤1

‖K−Na‖2F = k̄, (B.1)

and

‖K−Nk̄‖
2
F = ‖K‖2F − (nk̄)2 − (1− k̄)2 n2

n− 1
= ‖K‖2F −

n2

n− 1
(nk̄2 − 2k̄ + 1).

The informativeness measure is

dN (K) =

√
1

n2
‖K‖2F −

1

n− 1
(nk̄2 − 2k̄ + 1). (B.2)

This expression is a specific case of the formula for the Euclidean distance of an arbitrary
matrix to the closest correlation matrix with uniform off-diagonal elements (Borsdorf et al.,
2010).

B.2 Cosine Distance

Using the cosine similarity, one can define a chordal distance, which amounts to Eu-
clidean distance after normalizing the matrices by their Frobenius norm. By squaring
the chordal distance and dividing by two, we obtain a measure of informativeness as
1−max0≤a≤1

〈K,Na〉
‖K‖F ‖Na‖F . For a specific value of a and K ∈ E we have

〈K,Na〉
‖K‖F ‖Na‖F

=
a1>K1 + (1− a) n

n−1tr(HK)

‖K‖F
√

(an)2 + (1− a)2 n2

n−1

=
ak̄n+ (1− a)(1− k̄) n

n−1

‖K‖F
√

(a2n− 2a+ 1) 1
n−1

.

Taking the derivative of this expression and solving for its root, yields

a? = arg max
0≤a≤1

〈K,Na〉
‖K‖F ‖Na‖F

= k̄. (B.3)

Substituting a? back into the cosine similarity, leads to

max
0≤a≤1

〈K,Na〉
‖K‖F ‖Na‖F

=
〈K,Na?〉

‖K‖F ‖Na?‖F
=

nk̄2 + (1− k̄)2 n
n−1

‖K‖F
√

(k̄2n− 2k̄ + 1) 1
n−1

=
n

‖K‖F

√
nk̄2 − 2k̄ + 1

n− 1
.

The measure of informativeness based on the chordal distance is

1

2
d2
N (K) = 1− n

‖K‖F

√
nk̄2 − 2k̄ + 1

n− 1
. (B.4)

B.3 Hilbert-Schmidt Independence Criterion (HSIC)

The use of HSIC as a measure of similarity between a correlation matrix and the closest
non-informative one leads to a trivial function. Specifically, for any a we have

HSIC(K,Na) = 〈HKH,Na〉 = tr(HKHNa) =
(1− a)n

n− 1
tr(HK).
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This similarity is maximized for a = 0 and the informativeness would be inversely propor-
tional to tr(HK) = n(1− k̄) for K ∈ E , where k̄ is as defined previously to be the average
of the entries of K.

A more meaningful measure of informativeness, however, is based on the Euclidean
distance after centering (see Table 1). This is defined as

dN (K) =
1

n
min
Na∈N

‖HKH−HNaH‖F =
1

n
min
Na∈N

∥∥∥∥HKH− (1− a)n

n− 1
H

∥∥∥∥
F

.

Expanding the norm we have∥∥∥∥HKH− (1− a)n

n− 1
H

∥∥∥∥2

F

= ‖HKH‖2F +
(1− a)2n2

n− 1
− 2

(1− a)n

n− 1
tr(HK).

Taking the derivative of this expression and solving for its root yields

a? = arg min
0≤a≤1

‖HKH−HNaH‖2F = k̄, (B.5)

and the measure of informativeness is

dN (K) =

√
1

n2
‖HKH‖2F −

1

n− 1
(1− k̄)2. (B.6)

B.4 Centered Kernel Alignment (CKA)

The CKA similarity measurement between kernel matrices can be used to define a chordal
distance between centered kernel matrices. By squaring the chordal distance and dividing
by two, we define the measure of informativeness as

1

2
d2
N (K) = 1− max

0≤a≤1

〈HKH,Na〉
‖HKH‖F ‖HNaH‖F

= 1− max
0≤a≤1

(1−a)n
n−1 tr(HK)

‖HKH‖F (1−a)n
n−1 ‖H‖F

= 1− tr(HK)

‖HKH‖F
√
n− 1

= 1− n(1− k̄)

‖HKH‖F
√
n− 1

, (B.7)

where k̄ is as defined before, and tr(HK) = n(1−k̄) for K ∈ E . The measure is undefined for
the constant matrix K = N1 = J, because ‖HKH‖F = 0, but since J is non-informative,
the informativeness measure in this case should be defined to be zero. Furthermore, for a
rank-1 matrix K = vv>, this measure is constant with value of 1− 1√

n−1
, since tr(HK) =

v>Hv =
√

tr(v>Hvv>Hv) = ‖Hvv>H‖F = ‖HKH‖F .

B.5 Chernoff Bound

The quantum Chernoff bound is a lower bound on both the affinity and fidelity, and it can
thus be used to define an upper bound on a function of the quantum Hellinger and Bures
distances (Audenaert et al., 2007). We define a measure of informativeness based on the
Chernoff bound Q( 1

nK, 1
nNa) = min0≤s≤1

1
n〈K

s,N1−s
a 〉, for K ∈ E as

dN (K) = 1− max
0≤a≤1

Q( 1
nK, 1

nNa) = 1− max
0≤a≤1

min
0≤s≤1

f(K, a, s),
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where

f(K, a, s) ≡ (an)1−s

n
tr(KsJ) +

(
(1− a)n

n− 1

)1−s
tr(KsH). (B.8)

For a fixed s, the value of a that maximizes f(K, a, s) can be found analytically. When
tr(KJ) = 0, letting a = 0 maximizes the quantity f(K, a, s). Otherwise, taking the deriva-
tive with respect to a, yields

∂f(K, s, a)

∂a
=

1− s
ns+1

a−str(KsJ)− 1− s
n− 1

(
(1− a)n

n− 1

)−s
tr(KsH).

Equating this quantity to zero, rearranging, and taking the sth root of both sides, gives the
maximizing value defined as

a∗s ≡

(
1 + s

√
tr(KsH)

tr(KsJ)

n

(n− 1)1−s

)−1

, (B.9)

for tr(KsJ) > 0. Now defining

q(K) ≡ min
0≤s≤1

f(K, s, a∗s) = min
0≤s≤1

max
0≤a≤1

〈Ks,N1−s
a 〉, (B.10)

the measure of informativeness using the Chernoff bound is

dN (K) = 1− q(K). (B.11)

By precomputing the eigenvalue decomposition of K = UΛU>, each evaluation of f(K, s, a∗s)
requires computations on the order of O(n) (Mendonça et al., 2008). Specifically, tr(KsJ) =
tr(ΛsU>11>U) =

∑
i λ

s
i 〈ui,1〉2, and tr(KsH) =

∑
i λ

s
i (1− 1

n〈ui,1〉
2). By consequence, the

complexity of computing q(K) via a line search on s, is the same as computing the Chernoff
bound.

B.6 Quantum Hellinger (QH)

The quantum version of Hellinger distance shares some of the same properties as the Bures
distance (Luo and Zhang, 2004). Squaring the quantum Hellinger distance (a chordal dis-
tance on the space of trace-normalized positive semidefinite matrices) and dividing by two
yields a measure of informativeness for correlation matrices K ∈ E as

1

2
d2
N (K) = min

0≤a≤1
1− 1

n
〈
√

K,
√

Na〉.

Firstly, we expand the affinity term as

1√
n
〈
√

K,
√

Na〉 = 〈
√

K,
√
a
n J〉+ 〈

√
K,
√

1−a
n−1H〉 =

√
a

n
1>
√

K1 +

√
1− a√
n− 1

tr(H
√

K).

Maximizing the latter, corresponds to an optimization along the positive quadrant of the
circle parametrically defined by coordinates

√
a and

√
1− a. The maximizing value is

a? = arg max
0≤a≤1

〈
√

K,
√

Na〉 =

(
1
n1>
√

K1
)2

(
1
n1>
√

K1
)2

+ 1
n−1tr2(H

√
K)

. (B.12)
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Substituting a? back into the expression of affinity leads to

max
0≤a≤1

〈
√

K,
√

Na〉 = 〈
√

K,
√

Na?〉 =

√(
1
n1>
√

K1
)2

+ 1
n−1tr2(H

√
K),

and the measure of informativeness is

1

2
d2
N (K) = 1−

√
1
n3 (1>

√
K1)2 + 1

n(n−1)tr2(H
√

K). (B.13)

B.7 Bures

By employing the Bures distance dB for trace-normalized matrices in Equation 3, we can
define a measure of informativeness of an arbitrary correlation matrix K ∈ E as

1

2
d2
N (K) =

1

2
min
N∈N

d2
B

(
1
nK, 1

nN
)

= 1− 1 max
0≤a≤1

1
n

∥∥∥√K
√

Na

∥∥∥
∗
. (B.14)

Since 0 ≤ 1
n

∥∥∥√K
√

Na

∥∥∥
∗
≤ 1 (discussed in Appendix A), this distance is bounded as

0 ≤ d2
N (K) ≤ 2, with dN (K) = 0 when K ∈ N .

We now define for convenience the function

f(K, a) ≡ 1√
n

∥∥∥√K
√

Na

∥∥∥
∗

=

∥∥∥∥√an √KJ +
√

1−a
n−1

√
KH

∥∥∥∥
∗
,

where the right hand side is obtained by using the equation
√

Na =
√

a
nJ +

√
(1−a)n
n−1 H

introduced in Section 3.1. We note that 1
nf

2(K, a) = C2( 1
nK, 1

nNa), where C2(·, ·) is the
concave fidelity measure (Jozsa, 1994) discussed in Appendix A. The function simplifies for
a = 0 and a = 1, yielding the following two quantities that will be useful for subsequent
calculations

f2(K, 1) =
1

n2

∥∥∥√KJ
∥∥∥2

∗
=

1

n2
tr2
√

JKJ =
1

n
1>K1 ,

f2(K, 0) =
1

n− 1

∥∥∥√KH
∥∥∥2

∗
=

1

n− 1
tr2
√

HKH .

For general correlation matrices K, exact computation of the informativeness dN (K)
requires finding the value of a that maximizes f(K, a), or equivalently f2(K, a). Since
the latter expression is concave, this concave maximization is tractable and can be done
using line search. However, each evaluation of f(K, a) requires the calculation of a trace
norm, and therefore the singular values of an n × n matrix; for large matrices, this would
be a costly search. Consequently, as a surrogate, we seek a lower bound on dN (K), or
equivalently an upper bound on maxa‖

√
K
√

Na‖∗. One such useful bound can be found by
simply employing the sub-additive property ‖A + B‖∗ ≤ ‖A‖∗ + ‖B‖∗ for matrices A and
B of equal size. Thus, for any a ∈ [0, 1], we have

f(K, a) ≤
√
a

n

∥∥∥√KJ
∥∥∥
∗

+

√
1− a
n− 1

∥∥∥√KH
∥∥∥
∗

=

√
a

n
1>K1 +

√
1− a
n− 1

∥∥∥√KH
∥∥∥
∗

=
√
a f(K, 1) +

√
1− a f(K, 0) ≡ f(K, a). (B.15)
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Additionally, we have maxa f(K, a) ≤ maxa f(K, a). As the maximization of f(K, a) cor-
responds to a linear program constrained to a circle parameterized by coordinates

√
a and√

1− a, the unique optimizing value of a is given as

a∗ = arg max
0≤a≤1

f(K, a) =
f2(K, 1)

f2(K, 1) + f2(K, 0)
=

1>K1

1>K1 + n
n−1tr2

√
HKH

. (B.16)

Substituting a∗ into Equation B.15 yields f(K, a∗) =
√
f2(K, 1) + f2(K, 0). This finally

provides a lower bound for d2
N (K) as

1

2
d2
N (K) ≥ 1− 1√

n

√
f2(K, 1) + f2(K, 0)

= 1−
√

1
n2 1>K1 + 1

n(n−1)tr2
√

HKH ≡ i(K).

(B.17)

We refer to i(K) as the Bures-based informativeness, since
√

2i(K) is a lower bound on the
Bures distance between K and the closest member in the set of non-informative correlation
matrices N .

Theorem 4 The Bures-based informativeness i(K) is convex. For K1,K0 ∈ E and 0 ≤
α ≤ 1, i(αK1 + (1− α)K0) ≤ αi(K1) + (1− α)i(K0).

Proof We write the Bures-based informativeness as the composition i(K) = g(f(K))
where f(K) = 1

n2 1>K1 + 1
n(n−1)tr2

√
HKH and g(u) = 1 −

√
u, 0 ≤ u. The function

f(K) = 〈K, 1
n2 J〉 + 1

n(n−1)‖
√

K
√

H‖2∗ is concave as it is the sum of a linear function and

the concave function 1
n(n−1)‖

√
K
√

H‖2∗, which is itself proportional to the concave fidelity

function (Uhlmann, 1976; Jozsa, 1994) (see Theorem 3 in Appendix A). Furthermore, the
function g is convex and nonincreasing. From these properties, it follows that

i(αK1 + (1− α)K0) = g(f(αK1 + (1− α)K0)) ≤ g(αf(K1) + (1− α)f(K0))

≤ αg(f(K1)) + (1− α)g(f(K0))

= αi(K1) + (1− α)i(K0),

where the first inequality follows from the concavity of f and the monotonicity of g, and
the second inequality follows from the convexity of g.

Special case 1: If K is centered, that is K1 = 0, we have
√

K1 = 0 and f(K, a) =√
1−a
n−1tr

√
K. Therefore, in this case we obtain a closed-form for Equation B.14, given as

1

2
d2
N (K) = 1− 1√

n(n− 1)
tr
√

K. (B.18)

Thus, Equation B.17 yields an equality with 1
2d

2
N (K) = i(K). Centered correlation matrices

have zero-mean embeddings, that is, Z1 = 0, for any Z such that Z>Z = K.
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Special case 2: If K is a rank-1, then
∥∥∥√K

√
Na

∥∥∥
∗

=
∥∥∥√K

√
Na

∥∥∥
F

=
√

tr(NaK). In

this case, we have

f2(K, a) =
a

n
1>K1 +

1− a
n− 1

tr(HK) =
an2(k̄ − 1

n)

n− 1
+
n(1− k̄)

n− 1
,

where k̄ = 1
n2 1>K1 is the average of all the entries of K, and tr(HK) = n(1 − k̄). This

shows that f2(K, a) is linear with respect to a, and will be maximized by the extreme values
1 or 0 of a (depending on whether or not, k̄ is greater than 1

n). Substituting the expression
of f(K, a) into Equation B.14 and simplifying yields

1

2
d2
N (K) = 1−

√
max

(
k̄,

1− k̄
n− 1

)
. (B.19)

Similarly, when K is rank-1, then tr2
√

HKH = tr(HKH) = n(1 − k̄), and Equation B.17
becomes

i(K) = 1−

√
k̄ +

1− k̄
n− 1

= 1−

√
k̄(n− 2) + 1

n− 1
. (B.20)

Rank-1 correlation matrices K = vv> with v ∈ {±1}n correspond to vertices of the elliptope
(discussed in Section 2.1). Using the cut vector v, it is easy to see that 1>K1 = (v>1)2 =
(2c− n)2 = 4(c− n

2 )2, where c is the number of positive entries of v. Thus, Equation B.19
can be directly expressed in terms of c as

1

2
d2
N (K) =

{
1− 2

n

√
c(n−c)
n−1 , if c ∈

[
n−
√
n

2 , n+
√
n

2

]
,

1− 2
n

∣∣c− n
2

∣∣ , otherwise,

and likewise Equation B.20 can be expressed as

i(K) = 1− 2

n

√(
c− n

2

)2 n− 2

n− 1
+

n2

4(n− 1)
.

Figure 15 compares
√

2i(K) and dN (K) for rank-1 matrices. For this case, i(K) provides
a tight lower bound except near the balanced cut.

Finally, we note the following result for the Bures-based informativeness.

Theorem 5 For n > 2 and even, the Bures-based informativeness is maximized by rank-1
correlation matrices that are centered. That is, if K? ∈ Rn×n is a rank-1 correlation matrix
with k̄? = 1

n2 1>K?1 = 0, then i(K?) = maxK∈E i(K).

Proof From Equation B.20, it follows that i(K?) = 1 −
√

1
n−1 . Maximizing i(K) over

K ∈ E corresponds to minimizing the expression k̄ + 1
n(n−1)‖H

√
K‖2∗. Using the matrix

norm inequality ‖A‖∗ ≥ ‖A‖F , it follows that

1

n(n− 1)

∥∥∥H√K
∥∥∥2

∗
≥ 1

n(n− 1)

∥∥∥H√K
∥∥∥2

F
=

1

n(n− 1)
tr (HK) =

1− k̄
n− 1

.
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Figure 15: Comparison of the distance to the non-informative matrix family dN (K) using
the exact Bures distance dB versus the lower bound

√
2i(K) for rank-1 matrices

K = vv>, where c is the number of positive elements in the cut vector v. The
plot on the right magnifies the area around a balanced cut.

Substituting this expression back into the informativeness measure and maximizing over
the possible values of k̄, it follows that

i(K) ≤ 1−

√
k̄ +

1− k̄
n− 1

≤ 1−
√

1

n− 1
= i(K?).

B.8 Sub-Bures Dissimilarity via Super-Fidelity

The modified fidelity or super-fidelity provides an upper bound of fidelity used in the Bures
distance, and its computation has a lower complexity (Mendonça et al., 2008; Miszczak
et al., 2009). Using super-fidelity, a lower bound on the Bures distance can be formed,
which we refer to as the sub-Bures dissimilarity. (We use the term dissimilarity since it is
not a metric, although a distance metric version can be obtained by removing the square root
in the corresponding expression.) Using the sub-Bures dissimilarity, the informativeness is

1

2
d2
N (K) = 1− max

0≤a≤1

√
G( 1

nK, 1
nNa).

The super-fidelity between K and a non-informative matrix Na is given by

G( 1
nK, 1

nNa) =
1

n2
〈K,Na〉+

√(
1−

∥∥ 1
nK
∥∥2

F

)(
1−

∥∥ 1
nNa

∥∥2

F

)
(B.21)

=
a(nk̄ − 1) + 1− k̄

n− 1
+

√
n(1−a2)+2(1−a)

n−1

(
1−

∥∥ 1
nK
∥∥2

F

)
,

49



Brockmeier, Mu, Ananiadou, and Goulermas

where k̄ is as defined before, and
∥∥ 1
nNa

∥∥2

F
= a2 + (1−a)2

n−1 was used to simplify the right hand
side.

If K is rank-1, then ‖ 1
nK‖F = 1 and the super-fidelity is proportional to 〈K,Na〉. The

inner product is maximized for a = 1 if k̄ > 1
n , and a = 0 otherwise. In these two cases,

super-fidelity obtains the values of k̄ and 1−k̄
n−1 , respectively. For more general cases, the

maximizing value of a can be found using the derivative of super-fidelity given by

∂G( 1
nK, 1

nNa)

∂a
=
k̄n− 1

n− 1
+

1− an√
n(1− a2) + 2(1− a)

√
1− ‖ 1

nK‖2F
n− 1

,

which vanishes when

k̄n− 1

n− 1
=

an− 1√
n(1− a2) + 2(1− a)

√
1− ‖ 1

nK‖2F
n− 1

.

Squaring both sides yields a quadratic expression whose roots are given by

a± =
b+ cn±

√
(cn+ b)2 − (cn2 + bn)(c+ b(2− n))

cn2 + bn
,

where b = (k̄n−1)2

(n−1)2
and c =

1−‖ 1
n
K‖2

F
n−1 .

The super-fidelity is maximized when a is at one of its limits or by the root that satisfies
sign(k̄− 1

n) = sign(a− 1
n). Now, if we define a1 ≡ min(1, a+) and a0 ≡ max(0, a−), we have

a? = arg max
0≤a≤1

G( 1
nK, 1

nNa) =

{
a1 if G( 1

nK, 1
nNa1) ≥ G( 1

nK, 1
nNa0)

a0 otherwise.
(B.22)

The maximal super-fidelity is

max
0≤a≤1

G( 1
nK, 1

nNa) = max
(
G( 1

nK, 1
nNa1), G( 1

nK, 1
nNa0)

)
≡ g(K), (B.23)

and, hence, the sub-Bures measure of informativeness is

1

2
d2
N (K) = 1−

√
g(K). (B.24)

Although this closed-form expression seems algebraically complex, it only depends on k̄ and
the norm of K.

Appendix C. Statistics for Equality of Correlation Coefficients

In this appendix, we present Bartlett’s and Lawley’s test statistics for equality of corre-
lation coefficients (Lawley, 1963) using notation consistent with the proposed measures of
informativeness.
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C.1 Lawley’s Test Statistic

Lawley proposed a test statistic for equality of correlation coefficients (Lawley, 1963), which
is a function of the Frobenius norm, element-wise mean, and variance of the row sums
of a correlation matrix K. The test assumes the correlation matrix is estimated from m
observations of n-dimensional vectors. Under the null hypothesis the true correlation matrix
is Na∗ for some value 0 ≤ a∗ ≤ 1. Letting λ = n(1−a∗)

n−1 and k̄ = 1
n2 1>K1, the test statistic

can be written as

T1(K) =
m

λ2

(
1

2
‖K−Nk̄‖

2
F −

1− λ2

n− λ2(n− 2)
‖K1−Nk̄1‖

2
2

)
=
m

λ2

(
1

2

(
‖K‖2F −

n2

n− 1
(k̄2n− 2k̄ + 1)

)
− 1− λ2

n− λ2(n− 2)

∥∥K1− nk̄1
∥∥2

2

)
, (C.1)

where the simplification comes from ‖K−Nk̄‖
2
F = ‖K‖2F − (nk̄)2− (1− k̄)2 n2

n−1 = ‖K‖2F −
n2

n−1(nk̄2 − 2k̄ + 1).

Asymptotically (as m → ∞), the test statistic under the null hypothesis has a χ2

distribution with 1
2(n+1)(n−2) degrees of freedom. In practice, a∗ is unknown, but k̄ can be

used with λ = n(1−k̄)
n−1 . This substitution does not affect the χ2 limiting distribution (Lawley,

1963). Given only K, m is unknown, and while it must be equal or greater than the rank
of K, we use the quantity 1

mT1(K) for comparisons.

C.2 Bartlett’s Asymptotic Test Statistic

Similarly, Bartlett’s asymptotic test statistic (Lawley, 1963) is also a function of the Frobe-
nius norm, element-wise mean, and variance of the rows sum of the given correlation matrix.
Letting k̄ and λ be defined as before, this test statistic is

T2(K) =
m

λ2

(
1

2
‖K−Nk̄‖

2
F −

1

n
‖K1−Nk̄1‖

2
2

)
=
m

λ2

(
1

2

(
‖K‖2F −

n2

n− 1
(k̄2n− 2k̄ + 1)

)
− 1

n

∥∥K1− k̄n1
∥∥2

2

)
. (C.2)

For n = 3 the asymptotic distribution of the test statistic under the null hypothesis is a
scaled χ2 distribution with two degrees of freedom (Anderson, 1963). For n > 3 the test
statistic under the null hypothesis has a distribution described by the conic combination
of two χ2 distributions; however, this combination depends on the unknown value of a∗

in terms of λ (Lawley, 1963). Again, we use the quantity 1
mT2(K) since we assume m is

unknown.

Appendix D. Matrix Norm Properties of
√
h(·)

Theorem 6 The cost function
√
h(X) =

√
1
n‖X

1
nJ‖2∗ + 1

n(n−1)‖XH‖2∗, derived from the

Bures-based informativeness measure, is a matrix norm for X ∈ Rb×n that satisfies the
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following properties: √
h(X) ≥ 0, (D.1)√
h(cX) = |c|

√
h(X) ∀c, (D.2)√

h(X + Y) ≤
√
h(X) +

√
h(Y), (D.3)√

h(X) = 0 iff X = 0. (D.4)

Furthermore,
√
h(·) is convex.

Proof The first two properties of non-negativity and scalability are readily apparent. We
proceed to show that

√
h(·) satisfies the triangle inequality (D.3). For compactness, we set

α1 = 1
n , α2 = 1

n(n−1) , and J́ = 1
nJ. For all conformable matrices X and Y, we have

h(X+Y) = α1‖(X + Y)J́‖2∗ + α2‖(X + Y)H‖2∗
≤ α1(‖XJ́‖∗ + ‖YJ́‖∗)2 + α2(‖XH‖∗ + ‖YH‖∗)2

= h(X) + h(Y) + 2

√(
α1‖XJ́‖∗‖YJ́‖∗ + α2‖XH‖∗‖YH‖∗

)2

= h(X) + h(Y)

+ 2

√
α2

1‖XJ́‖2∗‖YJ́‖2∗ + α2
2‖XH‖2∗‖YH‖2∗ + 2α1α2‖XJ́‖∗‖YJ́‖∗‖XH‖∗‖YH‖∗

≤ h(X) + h(Y)

+ 2

√
α2

1‖XJ́‖2∗‖YJ́‖2∗ + α2
2‖XH‖2∗‖YH‖2∗ + α1α2

(
‖XJ́‖2∗‖YH‖2∗ + ‖YJ́‖2∗‖XH‖2∗

)
= h(X) + h(Y) + 2

√
h(X)h(Y) =

(√
h(X) +

√
h(Y)

)2
,

where the first inequality follows from the sub-additivity and non-negativity of the trace
norm, and the second one from the arithmetic and geometric means inequality. Therefore,
taking the square root yields

√
h(X + Y) ≤

√
h(X) +

√
h(Y).

To ensure that
√
h(X) is a norm, rather than a seminorm, we now show that property

(D.4) holds. Firstly, if X = 0, then h(X) = α1‖0J́‖2∗ + α2‖0H‖2∗ = 0. We prove the
converse by contradiction for any α1, α2 > 0. Suppose that h(X) = 0 and X 6= 0. For the
trace norm, ‖XJ́‖2∗ = 0 iff XJ́ = 0, and ‖XH‖2∗ = 0 iff XH = 0. Since the trace-norm
is non-negative and α1, α2 > 0, h(X) = 0 implies that XJ́ = 0 and XH = 0. Summing
these yields XJ́ + XH = 0, which, since J́ + H = I, yields X = 0, but this contradicts the
assumption that X 6= 0.

The convexity of
√
h(·) follows from the norm properties. For X1,X0 and 0 ≤ α ≤ 1,√

h(αX1 + (1− α)X0) ≤
√
h(αX1) +

√
h((1− α)X0) = α

√
h(X1) + (1− α)

√
h(X0).

Appendix E. Second-Order Spectral Soft-Thresholding Operator

The trace norm is well known as the tightest convex surrogate for the rank of a matrix (Fazel
et al., 2001; Recht et al., 2010) and its proximal operator, the spectral soft-thresholding
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operator, has been used in the context of matrix completion (Cai et al., 2010; Mazumder
et al., 2010; Ma et al., 2011). The generalization of proximal operators on vectors to matrices
holds for any vector functional that is absolutely symmetric (invariant to permutation and
change of sign), or equivalently any matrix functional that is unitarily invariant, since
in these cases Lewis (1995) proved that the subdifferential of the matrix functional can be
written as a composition of the subdifferential of the vector functional and the singular value
functional (Lewis’s result generalizes the classical theorem by von Neumann (1937) relating
symmetric gauge functions to unitary invariant norms). For example, the trace norm can
be written as the `1-norm of the singular values of a matrix, and thus, the spectral soft-
thresholding operator is the matrix analog of the soft-thresholding operator Donoho et al.
(1995), which is the proximal operator of the `1-norm (Wright et al., 2009).

By the same reasoning, the squared trace-norm is the matrix analog to the squared
`1-norm. The squared `1-norm has been used in the context of multiple kernel learn-
ing (Lanckriet et al., 2004; Bach, 2008; Kowalski and Torrésani, 2009; Martins et al., 2011),
and its proximal operator uses the soft-thresholding operator (Donoho et al., 1995) with a
data-dependent penalty (Bach, 2008; Kowalski and Torrésani, 2009; Martins et al., 2011).
Since the squared `1-norm is absolutely symmetric, the subdifferential of the squared trace
norm is found by composition of the subdifferential of the squared `1-norm and the singular
value functional (Lewis, 1995). The proximal operator for the squared trace norm applies
the proximal operator of the squared `1-norm to the singular values of the target matrix.

Let X ∈ Rm×n denote an arbitrary matrix (without loss of generality we assume m ≤ n),
and let UΣV> denote the singular value decomposition of X, such that U,V are unitary
and Σ is a diagonal matrix with its first m entries σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 and any
remaining entries being 0. The spectral soft-thresholding operator is defined as

Sτ (X) = arg min
Y

1

2
‖X−Y‖2F + τ‖Y‖∗ = U[Σ− τI]+V>,

where [·]+ denotes the element-wise non-negative thresholding operation that sets any neg-
ative values to zero. Using the proximal operator for the squared `1-norm (Kowalski and
Torrésani, 2009; Martins et al., 2011), we define the second-order spectral soft-thresholding
operator Zβ(·) as

Zβ(X) = Sτ?(X), (E.1)

τ? = β
1+k?β‖X‖k? ,

k? = max{k ∈ [m] : σk − β
1+kβ‖X‖k > 0},

‖X‖k = σ1 + · · ·+ σk (Ky-Fan k-norm).

Theorem 7 Zβ(·) is the proximal operator of the function β
2 ‖·‖

2
∗ such that

Zβ(X) = arg min
Y

1
2 ‖X−Y‖2F + β

2 ‖Y‖
2
∗.

Proof
Since 1

2 ‖X−Y‖2F + β
2 ‖Y‖

2
∗ is convex, to prove the optimality of the second-order spec-

tral thresholding operator it is sufficient to show that

0 ∈ ∂ 1
2 ‖X−Zβ(X)‖2F + ∂ β2 ‖Zβ(X)‖2∗,
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where ∂f(X) denotes the subdifferential of the function f at X, defined as

∂f(X) = {G : ∀Y ∈ Rm×n, f(Y) ≥ f(X) + 〈Y −X,G〉}.

To do this we use the optimality of the spectral thresholding operator (Cai et al., 2010;
Mazumder et al., 2010; Ma et al., 2011), which implies that for any τ ≥ 0

0 ∈ ∂ 1
2 ‖X− Sτ (X)‖2F + ∂τ‖Sτ (X)‖∗,

where the subdifferential of the trace norm (Watson, 1992) is

∂‖X‖∗ = {U1V
>
1 + M : U>1 M = 0,MV1 = 0, ‖M‖2 ≤ 1},

where the columns of U1 and V1 are the left and right singular vectors associated to non-
zero singular values.

We note that any subgradient of squared trace-norm is a scaled version of the subgradient
of the trace-norm with location-dependent scaling, i.e., (2‖X‖∗)G ∈ ∂‖X‖2∗ iff G ∈ ∂‖X‖∗.

Given Zβ(X) = Sτ?(X), τ? = β
1+k?β‖X‖k? , and ‖Zβ(X)‖∗ = ‖X‖k? − k?τ? = τ?

β , it
follows that

∂ β2 ‖Zβ(X)‖2∗ = β
2 (2‖Zβ(X)‖∗)∂‖Zβ(X)‖∗ = τ?∂‖Sτ?(X)‖∗.

Thus, ∂ 1
2 ‖X−Zβ(X)‖2F + ∂ β2 ‖Zβ(X)‖2∗ = ∂ 1

2 ‖X− Sτ?(X)‖2F + ∂τ?‖Sτ?(X)‖∗.

References

P.-A. Absil and K. A. Gallivan. Joint diagonalization on the oblique manifold for indepen-
dent component analysis. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages V–945–V–948, 2006.

M. A. Aitkin, W. C. Nelson, and Karen H. Reinfurt. Tests for correlation matrices.
Biometrika, 55(2):327–334, 1968.

T. W. Anderson. Asymptotic theory for principal component analysis. The Annals of
Mathematical Statistics, 34(1):122–148, 1963.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, 1950.

K. M. R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E. Bagan, Ll. Masanes, A. Acin,
and F. Verstraete. Discriminating states: the quantum Chernoff bound. Physical Review
Letters, 98(16):160501, 2007.

Francis R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9:1179–1225, 2008.
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Jérôme Malick. A dual approach to semidefinite least-squares problems. SIAM Journal on
Matrix Analysis and Applications, 26(1):272–284, 2004.
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