
 
 
 
   

 
 
 
 
MULTI-STAGE EVOLUTIONARY DESIGN 
A METHOD AND SYSTEM FOR GENERATING AND ADAPTIVELY EVOLVING BUILDING DESIGNS 

 
 

David Ryan Cook 
May 2013 
 

Submitted towards the fulfillment of the requirements for the Doctor of Architecture Degree 

 

 

 

School of Architecture 
University of Hawaiʻi 
 
Doctorate Project Committee 
David Rockwood, Chairperson 
Lance Walters 
David Garmire 
Kostas Terzidis 



 
 
 
   

MULTI-STAGE EVOLUTIONARY DESIGN 
A METHOD AND SYSTEM FOR GENERATING AND ADAPTIVELY EVOLVING BUILDING DESIGNS 

 

David Ryan Cook 
May 2013 

____________________________________________________ 

 

We certify that we have read this Doctorate Project and that, in our opinion, it is 
satisfactory in scope and quality in fulfillment as a Doctorate Project for the degree 
of Doctor of Architecture in the School of Architecture, University of Hawaiʻi at 
Mānoa.  

 

Doctorate Project Committee 

 

 

_____________________________________________________ 

  David Rockwood, Chairperson 
 

 

_____________________________________________________ 

  Lance Walters 
 

 

_____________________________________________________ 

  David Garmire 
 

 

_____________________________________________________ 

  Kostas Terzidis  



 
 
 
   
 

Abstract   

More than three decades of interdisciplinary research have laid the foundations for a new breed 

of computational design tool that has the potential transform the practice of architecture.  

Described as evolutionary design systems (EDSs), the new tools are based on the evolutionary 

process in nature, and can not only analyze and evaluate, but also automatically generate and 

explore whole populations of alternative design proposals.  A number of EDSs have been 

developed, implemented and tested with varying degrees of success, but there are still 

obstacles standing in the way of their practical application in architecture.  Over the past 

decade, the focus of research has shifted to a large extent away from tackling these obstacles.  

Instead, recent research has focused on developing systems that employ more generic 

representations in order to generate a wider variety of forms, and more complex generative 

processes that pursue a closer analogy to developmental processes in nature in order to 

generate intricate forms from small amounts of input information.  In opposition to this trend, 

and in support of the goal of extending the functionality of EDSs in order that they may be 

quickly made available as tools for architects to use in mainstream practice, this thesis takes 

the following steps: 

• It argues that pursuing more generic generative representations or more complex 

generative processes beyond a certain point becomes purely academic, because 

highly generic or complex systems either produce forms that cannot be understood as 

building designs or else they lack evolvability.  Consequently, such systems appear, at 

the moment, to be incapable of affecting the practice of architecture, at least in the 

short term.  If, on the other hand, efforts are refocused on developing EDSs that employ 

generative systems constrained by architectural concepts, that path could quickly lead 

to the development of powerful tools that offer architects a range of potential benefits, 

including enhanced productivity and the ability to evolve designs for buildings that out-

perform buildings designed in a conventional manner in key areas such as energy 

consumption. 

• Drawing upon the literature as well as new research on current mainstream design 

methods, it analyzes challenges to the practical application of EDSs in architecture. 



 
 
 
   

• Informed by this analysis, it develops the concept of a multi-stage EDS (MSEDS), an 

associated design methodology, and a system architecture.  The MSEDS is a novel 

variety of EDS in which different parts of a design are generated and evolved separately 

in a series of stages according to an organizational scheme developed earlier in the 

design process.   

• Within the framework of the MSEDS design methodology and system architecture, it 

develops an MDEDS design for adaptively evolving solutions to particular category of 

design problem - the skyscraper. 

• Based on the MSEDS design, it develops a fully functioning MSEDS implementation for 

adaptively evolving skyscraper designs. 

• Finally, it evaluates the performance of the MSEDS design and implementation by 

comparing the simulated performance of a design evolved by the MSEDS and the 

designs of three internationally renowned architects/firms.  This verifies that the MSEDS 

design and implementation work as intended and further helps to validate the overall 

proposed multi-stage evolutionary design approach. 

 

 

  



 
 
 
   

Contents 
 

PART 1:  INTRODUCTION 

1.1  BACKGROUND .................................................................................................. 10 

1.1.1  Overview ........................................................................................................................ 10 

1.1.2  Evolution in Nature ........................................................................................................ 11 

1.1.3  Evolutionary Algorithms  ................................................................................................ 12 

1.1.4  Evolutionary Design  ...................................................................................................... 14 

1.2  PROBLEM  ......................................................................................................... 19 

1.2.1  Problem Overview ......................................................................................................... 19 

1.2.2  Problem Statement ........................................................................................................ 21 

1.3  RESEARCH  ....................................................................................................... 22 

1.3.1  Research Objectives ..................................................................................................... 22 

1.3.2  Research Methodology ................................................................................................. 22 

1.3.3  Research Scope ............................................................................................................ 23 

1.4  THESIS  .............................................................................................................. 25 

1.4.1  Thesis Organization .......................................................................................................... 25 

 

PART 2:  LITERATURE REVIEW 

2.1  DESIGN PROCESS  ........................................................................................... 27 

2.1.1  Introduction ................................................................................................................... 27 

2.1.2  Conventional Skyscraper Design Process .................................................................... 27 

2.1.3  Conventional Performance-Based Design .................................................................... 30 

2.2  GENERATIVE DESIGN  ...................................................................................... 32 

2.2.1  Introduction ................................................................................................................... 32 



 
 
 
   

2.2.2  Parametric Techniques .................................................................................................. 33 

2.2.3  Combinatorial Techniques ............................................................................................ 33 

2.2.4  Replacement Techniques .............................................................................................. 33 

2.2.5  Agent-Based Techniques .............................................................................................. 38 

2.3  EVOLUTIONARY DESIGN .................................................................................. 40 

2.3.1  Introduction ................................................................................................................... 40 

2.3.1.1  Evolution in Nature ................................................................................................. 41 

2.3.1.3  Evolutionary Algorithms .......................................................................................... 43 

2.3.1.4  Evolutionary Design ................................................................................................ 45 

2.3.2  Evolutionary Design Systems ........................................................................................ 48 

2.3.2.1  Overview ................................................................................................................. 48 

2.3.2.2  GENE_ARCH .......................................................................................................... 48 

2.3.2.3  eifForm ................................................................................................................... 49 

2.3.2.4  Schema-Based Approach ...................................................................................... 50 

2.3.2.5  P0L-Systems .......................................................................................................... 52 

2.3.2.6  GADES ................................................................................................................... 53 

2.3.2.7  HEAD ...................................................................................................................... 54 

2.3.3  Experimental Design Projects ....................................................................................... 56 

 

PART 3: RESEARCH DOCUMENTATION 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN ......................................................... 61 

3.1.1  Introduction ................................................................................................................... 61 

3.1.2  Multi-Stage Evolutionary Design Systems ..................................................................... 62 

3.1.3  System Design .............................................................................................................. 64 

3.1.3.1  Problem Deconstruction ......................................................................................... 64 

3.1.3.2  Sub-System Design ................................................................................................ 65 



 
 
 
   
3.2  SKYSCRAPER MSEDS DESIGN  ....................................................................... 69 

3.2.1  Introduction ................................................................................................................... 69 

3.2.2  Design Problem ............................................................................................................. 69 

3.2.3  Skyscraper MSEDS Design ........................................................................................... 69 

3.2.3.1  Problem Deconstruction ......................................................................................... 70 

3.2.3.2  General Massing Sub-System ................................................................................ 76 

3.2.3.3  Floor-plate Sub-System .......................................................................................... 78 

3.2.3.4  Building Envelope Sub-System .............................................................................. 84 

3.2.3.5  Building Skin Sub-System ...................................................................................... 86 

3.3  SKYSCRAPER MSEDS CASE STUDY ............................................................... 89 

3.3.1  Introduction ................................................................................................................... 89 

3.3.2  Design Problem ............................................................................................................. 89 

3.3.3  Skyscraper MSEDS Design ........................................................................................... 90 

3.3.3.1  Problem Deconstruction ......................................................................................... 90 

3.3.3.2  General Massing Sub-System ................................................................................ 93 

3.3.3.3  Floor-plate Sub-System .......................................................................................... 97 

3.3.3.4  Envelope Sub-System .......................................................................................... 114 

3.3.3.5  Skin Sub-System .................................................................................................. 122 

3.4  PERFORMANCE EVALUATION ....................................................................... 132 

3.4.1  Introduction ................................................................................................................. 132 

3.4.2  Evaluation Setup ......................................................................................................... 132 

3.4.2.1  Evolved Design .................................................................................................... 132 

3.4.2.2  Competition Designs ............................................................................................ 132 

3.4.2.3  Evaluation Criteria ................................................................................................ 133 

3.4.2.4  Evaluation Procedures ......................................................................................... 133 

3.4.2.5  Controls ................................................................................................................ 134 



 
 
 
   

3.4.3  Evaluation Results ....................................................................................................... 134 

3.5  DISCUSSION ................................................................................................... 140 

3.5.1  Review ......................................................................................................................... 140 

3.5.2  Outcomes .................................................................................................................... 141 

3.5.2.1  System Design ..................................................................................................... 141 

3.5.2.2  System Implementation ........................................................................................ 143 

3.5.2.3  Performance Evaluation ....................................................................................... 144 

3.5.3  Human-Computer Synergy ......................................................................................... 145 

3.5.4  Future Work ................................................................................................................. 146 

 

 

  



 
 
 
   

 

 

 

 

 

 
PART 1 

INTRODUCTION



 
 

 

1.1  BACKGROUND   P a g e  | 10 
 

1.1.1  Overview 

Conventional computer-aided design (CAD) tools boost productivity by automating tasks in the 

design process that would otherwise be carried out by hand.  They also enable the designer to 

explore more of the design space through their ability to handle complex geometry, they 

enhance design communication with rotatable 3-dimensional models, physics-based 

photorealistic renderings and fly-though animations, and they even enable the designer to 

evaluate design ideas through a variety of performance simulation and analysis functions.  

However, conventional CAD tools do not play an active role in cognitive design; they leave the 

imagining of new designs up to the human designer.   

Generative design systems, on the other hand, support the cognitive design process by 

generating form using rule-based procedures prescribed by the designer.  They enable the 

designer to explore unimagined regions of the design space, supplementing his own creativity 

and freeing him from 'design fixation' and the limits of conventional wisdom.1

Evolutionary design systems (EDSs) offer a way of overcoming the drawbacks of simple 

generative design systems.  Loosely based on the neo-Darwinian model of evolution through 

natural selection, EDSs generate and evaluate not only one or several design proposals, but 

entire populations of alternative design proposals, and some are able to gradually hone in on 

better designs by replacing old populations of designs with new populations genetically bred 

from the fittest parent designs.  EDSs have benefitted from a large amount of interest and 

research.

  However, simple 

generative design systems, that is, generative design systems that consist only of an algorithm 

for generating form, are restricted to exploring the design space one design proposal at a time, 

and they lack any means of evaluating alternative design proposals in order to guide the 

exploratory process. 

2 3 4

The purpose of creating such systems is not only to enhance productivity by further automating 

the design process.  Just as conventional CAD tools provide a number of other benefits over 

   

                                                     
1 P.J. Bentley, “An Introduction to Evolutionary Design by Computers,” in Evolutionary Design by Computers, ed. P. 
Bentley. (San Francisco: Morgan Kaufman Publishers, 1999), 1-73. 
2 J.H. Frazer, An Evolutionary Architecture (London: AA Publications, 1995) 
3 P.J. Bentley, ed., Evolutionary Design by Computers (San Francisco: Morgan Kaufmann Publishers, 1999) 
4 P.J. Bentley and D.W. Corne, eds., Creative Evolutionary Systems (London: Academic Press, 2002) 



 
 

 

1.1  BACKGROUND   P a g e  | 11 
 
manual design processes, EDSs offer a number of other potential benefits over conventional 

cognitive design approaches.  These include encouraging experimentation and innovation in 

the design process, facilitating the consideration of a wide range of design alternatives, flexibly 

accommodating changes, allowing the client more control over the design process, and 

enabling the evolution of designs for buildings that out-perform buildings designed in a 

conventional manner in key areas such as energy consumption.5

1.1.2  Evolution in Nature  

 

In nature, evolution is the process by which all living organisms change and adapt to their 

environment over generations.  The evolution of a population of organisms is driven by the 

continuous cycle of life and death of individual organisms in the population.  This cycle can be 

broken down into 3 steps: reproduction, development, and natural selection.   

• In reproduction, new organisms are conceived.  Each new organism inherits from its 

parents a unique set of genes that encodes information about various biological traits - 

the genotype.  In the case of sexual reproduction, new child genotypes are created by 

reshuffling the genes of the parents in a process called crossover, and by altering 

existing genes to create new genes through random accidental copying errors called 

mutations. 

• In development, each new organism grows from a seed or egg into a fully developed 

organism - the phenotype.  This takes place gradually as a result of processes of cell 

growth, differentiation and morphogenesis, which are triggered by genes in the 

genotype under suitable environmental conditions. 

• In natural selection, the organism must successfully compete with others for limited 

resources in the environment, and the longer it survives, the more likely it is to 

reproduce.  Some organisms possess traits or adaptations that help them to survive 

longer and/or to reproduce more.  These organisms are more likely to pass on their 

genes each generation, causing those genes and adaptations to become more 

common in the population as a whole over time.   

                                                     
5 Patrick H.J. Janssen, “A Design Method and Computational Architecture for Generating and Evolving Building Designs” 
(PhD diss., Hong Kong Polytechnic University, 2004) 



 
 

 

1.1  BACKGROUND   P a g e  | 12 
 
Not all biological organisms have evolvability - the capacity to acquire useful adaptations 

through genetic changes in reproduction.  Populations of organisms that lack evolvability may 

still be capable generating genetic diversity, but the developmental processes that produce the 

phenotype are unable to produce useful adaptations.  As a result, such organisms do not 

become better adapted to their environment through natural selection.     

1.1.3  Evolutionary Algorithms 

Universal Darwinism is the theory that evolution by natural selection is substrate-independent, 

meaning that processes analogous to evolution in nature can emerge in systems outside the 

realm of biology.6  This thinking has led to the successful application of evolutionary models to 

explain phenomena in a wide range of domains, including economics, psychology, medicine, 

computer science and physics.7

Evolutionary algorithms encode some of the underlying principals and mechanisms of evolution 

in algorithmic form so that they can be implemented as computer programs.  When executed 

by a computer, they result in a computational process that is loosely analogous to evolution in 

nature.  A population of individual entities is created and selectively bred over generations so 

that the entire population gradually evolves in a desired direction.  Each individual entity in the 

population can represent an alternative solution to some type of problem, such as a parameter 

of an equation or even a complete building design.  Thus, evolutionary algorithms are capable 

of evolving solutions to a wide variety of problems.

   

8 9

As in natural evolution, the solution being evolved has both a genotype representation and a 

phenotype representation.  The genotype representation is an encoded version of the solution 

and the phenotype representation is the decoded genotype representation.  The computational 

process can be broken down into an initialization step of randomly generating a starting 

  

                                                     
6 R. Dawkins, “Universal Darwinism,” in Evolution from Molecules to Men, ed. D.S. Bendall. (Cambridge: University Press, 
1983) 
7 Wikipedia contributors, "Universal Darwinism," Wikipedia, The Free Encyclopedia  
http://en.wikipedia.org/w/index.php?title=Universal_Darwinism&oldid=540271232 (accessed 3 Mar. 2013) 
8 M. Mitchell, An Introduction to Genetic Algorithms (Cambridge: MIT Press, 1999), 15-16. 
9 D. Beasley, “Possible Applications of Evolutionary Computation,” in Evolutionary Computation 1: Basic Algorithms and 
Operators, ed. T. Bäck et al. (Philadelphia: Institute of Physics Publishing, 2000) 

http://en.wikipedia.org/w/index.php?title=Universal_Darwinism&oldid=540271232�


 
 

 

1.1  BACKGROUND   P a g e  | 13 
 
population of genotype representations, and an evolutionary cycle comprising four steps: 

reproduction, development, evaluation, and selection.   

• In reproduction, a new population of genotype representations are created by 

transforming parent genotypes into new child genotypes using genetic operators such 

as crossover and mutation, according to predetermined reproduction rules.   

• In development, the new population of genotype representations are transformed into 

phenotype representations by applying predetermined developmental rules.   

• In evaluation, the performance of each phenotype representation is evaluated with 

respect to one or more objectives.  For each objective, an evaluation score is 

calculated using a mathematical function called the objective function and stored 

together with the solution.   

• In selection, the evaluation scores of each alternative solution are summarized in a 

single figure indicating the merit of the solution - its fitness.  Here, the mathematical 

function used to calculate fitness is called the fitness function.  Solutions that rank 

higher in fitness are selected for reproduction and those not selected are deleted.   

Many aspects of evolutionary algorithms depend upon the details of the problem to which they 

are applied.  The evolutionary algorithm and the problem to be solved together make up an 

evolutionary system with variables, including the types of genotype and phenotype 

representations, the reproduction and developmental rules, the type of evaluation performed in 

the evaluation step, the form of the objective function, and the form of the fitness function.  In 

order for the evolutionary algorithm to evolve solutions to the problem, these variables all have 

to be specified.  

Evolvability of evolutionary systems is analogous to evolvability of biological organisms.  

Evolutionary systems that lack evolvability are able to generate diverse population of solutions, 

but they do not tend to increase in fitness over generations.  As in natural evolution, evolvability 

is related to the nature of the developmental process used to generate phenotype 

representations from genotype representations.  



 
 

 

1.1  BACKGROUND   P a g e  | 14 
 
A wide range of evolutionary algorithms exist that differ in implementation details and the type 

of problems they are designed to tackle.  The four main types are genetic algorithms, 10 11 

genetic programming, 12  evolutionary programming, 13  and evolution strategies. 14

1.1.4  Evolutionary Design     

  Of these, 

genetic algorithms are the best known and most commonly used. 

In the design domain, evolutionary algorithms are used to evolve populations of alternative 

designs.15 16 17

There are two main approaches to evolutionary design: evolutionary design optimization and 

evolutionary design exploration.

  In an evolutionary design system, each genotype representation is encoded 

information that can be used to construct a model of a design, and the corresponding 

phenotype representation is the fully constructed design model.  The reproduction rules can be 

the typical rules for applying genetic operators used by the evolutionary algorithm, and the 

developmental rules are the generative or transformational modeling procedures used to 

produce the design model from the information encoded in the genotype representation.  The 

evaluation step may consist of performing one or more measurements or simulations on the 

design model, which may incorporate information on the environment in which the design is to 

be realized, and the objective functions and fitness function are formulated to convert the 

evaluation scores into a single figure measuring how close the design comes to fulfilling certain 

design objectives.       

18

                                                     
10 J.H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: University of Michigan Press, 1975) 

  Evolutionary design optimization uses evolutionary algorithms 

to optimize existing designs.  In a typical evolutionary design optimization process, parts of an 

existing design that the designer wants to improve are parameterized, and the system evolves 

the parameter values.  In this case, the developmental rules (modeling procedures) specifying 

11 D.G.. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Reading: Addison-Wesley, 1989) 
12 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (Cambridge: MIT 
Press, 1992) 
13 D.B. Fogel, Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. (IEEE Press, 1995) 
14 T. Bäck, Evolutionary Algorithms in Theory and Practice. (New York: Oxford University Press, 1996) 
15 J.H. Frazer, An Evolutionary Architecture (London: AA Publications, 1995) 
16 P.J. Bentley, ed., Evolutionary Design by Computers (San Francisco: Morgan Kaufmann Publishers, 1999) 
17 P.J. Bentley and D.W. Corne, eds., Creative Evolutionary Systems (London: Academic Press, 2002) 
18 Patrick H.J. Janssen, “A Design Method and Computational Architecture for Generating and Evolving Building Designs” 
(PhD diss., Hong Kong Polytechnic University, 2004) 



 
 

 

1.1  BACKGROUND   P a g e  | 15 
 
how to construct the phenotype representation (parametric design) from the genotype 

representation (parameter values) are linear maps.  Evolutionary design optimization systems 

are typically convergent, meaning that the entire population of alternative designs gradually 

adapt and improve in fitness until they all eventually resemble a single design that has the 

highest fitness.  Numerous examples of evolutionary design optimization systems can be found 

in the literature.19 20 21

Evolutionary design exploration, on the other hand, uses evolutionary algorithms to generate 

and explore new designs, without any ambition to optimize them.  In a typical evolutionary 

design exploration process, information encoded in the genotype representation is used to 

guide some kind of generative growth process that results in a new design.  Often, this involves 

starting with a collection of components, such as geometric objects, and then, according to the 

information encoded in the genotype, selecting certain components and arranging them in a 

certain way to generate a design.  In this case, the developmental rules specifying how to 

construct the phenotype representation from the genotype representation are non-linear maps.  

Evolutionary design exploration systems are typically divergent, meaning that the population of 

alternative designs does not adapt and improve in fitness but retains a certain level of diversity 

throughout evolution.  Another way to put this is that evolutionary design exploration systems 

lack evolvability.  Numerous examples of evolutionary design exploration systems can be found 

in the literature.

 

22 23

These two approaches have different limitations with regard to the types of designs they are 

able to evolve.  Evolutionary design optimization is capable of adaptively evolving designs that 

have some optimized features, but the number and overall configuration of parts in the design 

are typically determined in advance and do not change during the evolution process.  

Accordingly, there is nothing really surprising or creative about designs evolved through this 

approach.  The evolved designs can be said to lack novelty.  Evolutionary design exploration, 

on the other hand, is capable of evolving a wide variety of different designs, but none of them 

 

                                                     
19 D. Dasgupta and Z. Michalewicz, eds., Evolutionary Algorithms in Engineering Applications. (Dusseldorf: Springer-
Verlag, 1997) 
20 L. Caldas, “An Evolution-based Generative Design System: Using Adaptation to Shape Architectural Form” (Doctoral 
dissertation, Massachusetts Institute of Technology, 2001) 
21 L. Caldas, “Generation of Energy-efficient Architecture Solutions Applying GENE_ARCH: An Evolution-based 
Generative Design System,” Advanced Engineering Informatics, Vol.22 (2008), http://www.sciencedirect.com. 
22 Frazer, Evolutionary Architecture 
23 Bentley, Evolutionary Design by Computers 

http://www.sciencedirect.com/�


 
 

 

1.1  BACKGROUND   P a g e  | 16 
 
can claim to be optimal or well adapted solutions to the design problem because the system 

lacks evolvability and the evolutionary process is divergent.  The evolved designs can 

characterized as lacking optimality. 

These limitations are a consequence of the development process employed to build the 

phenotype representation (design model) from the information encoded in the genotype 

representation.  In the case of evolutionary design optimization, the development process is 

nothing but a linear mapping process, wherein each gene undergoes a simple linear 

transformation into a corresponding parameter of a pre-constructed parametric model.  This 

simple linear mapping process is the reason why the evolutionary process is convergent and 

optimization is possible, however it is also the reason why designs evolved by this approach 

vary in predictable ways from the pre-constructed parametric model.  Meanwhile, in the case of 

evolutionary design exploration, the development process is a non-linear generative process, 

wherein the genotype specifies a set of rules and procedures that are performed to grow a new 

design from scratch.  Such generative processes can produce novel and sophisticated designs, 

but they tend to have certain properties that seriously hinder adaptive evolution.   

One of these properties is epistasis, which means the degree of dependency between multiple 

genes in a genotype.  If a generative system has high epistasis, and they usually do, there may 

be many genes in the genotype representation whose effect on development of the phenotype 

representation relies to a large degree on other genes.  For example, in a generative system 

where genes in the genotype representation specify geometric transformations, such as 'scale,' 

'rotate', 'mirror,' etc., which are applied in succession to generate a design from some initial 

object, the transformation specified by each and every gene will have a very different effect on 

the resulting design, depending on which other transformations precede and succeed it.  In 

such systems, individual genes effectively become elements of a single gene, in the same way 

that individual binary digits are elements of a single binary number.  Changing any individual 

gene in an attempt to improve just one small part of the design will inevitably change the 

phenotypic effect of the entire genotype representation to yield an entirely different design.  

Under these circumstances, there can be no incremental improvement, making convergent 

evolution to optimal designs impossible.24

                                                     
24 Peter Bentley, “Aspects of Evolutionary Design by Computers,” in Proceedings of the 3rd On-Line World Conference 
on Soft Computing:WSC3 (1998): 10-11, 

 

http://arxiv.org/html/cs/9809049/dss5.html. 

http://arxiv.org/html/cs/9809049/dss5.html�


 
 

 

1.1  BACKGROUND   P a g e  | 17 
 
Another problematic property of some generative processes is interdependent elements, which 

are elements of a generated design whose proper functioning relies to a large degree on other 

elements.    Interdependent elements of generated designs (phenotype representations) are in 

some ways analogous to interdependent genes of epistatic genotype representations.  If a 

generative system works with many interdependent elements, as is generally required to evolve 

sophisticated building designs, variation in the overall configuration of elements is highly 

restricted by numerous constraints on the relationships between interdependent elements that 

must be adhered to, in order for the design to work as a whole.  For example, in a generative 

system where genes in the genotype representation specify rules for picking and arranging 

elements of a high-level design representation, such as floors, walls, doors, and staircases, it is 

difficult to design rules to prevent misplaced doors and staircases that lead to nowhere, etc. 

without overly restricting variation.  Relaxing the rules a little allows more variation, but this can 

result in large numbers of local optima, which are designs that are better than most in the 

population but still lack all the adaptations of the best or globally optimal design.  In complex 

systems with many interdependent elements, local optima usually include designs that are not 

even functional.  Under these circumstances, it becomes difficult for the system to generate 

enough functional designs to provide the level of adaptive genetic diversity needed for evolution 

to progress from local to global optima.  Evolution may thus commit itself too early to sub-

optimal approximations of the best design, some of which are not even functional.25

Some researchers have pursued a third approach to evolutionary design that effectively tries to 

combine optimization with exploration: integral evolutionary design.

   

26   Integral evolutionary 

design uses evolutionary algorithms to create new designs from scratch and optimize them.  

The main strategy explored thus far is to employ low-level generic representations to overcome 

the problems associated with epistasis and interrelated elements. 27  28  29

                                                     
25 Bentley, “Aspects of Evolutionary Design by Computers,” 13-14, 

  Generic 

representations are phenotype representations (design models) based on low-level geometric 

http://arxiv.org/html/cs/9809049/dss5.html 
26 Bentley, “Aspects of Evolutionary Design by Computers,” 9, http://arxiv.org/html/cs/9809049/dss5.html 
27 P.J. Bentley, “Generic Evolutionary Design of Solid Objects using a Genetic Algorithm” (Doctoral dissertation, Division 
of Computing and Control Systems, Department of Engineering, University of Hudersfield. 1996). 
28 P. Baron et al., “A Voxel-based Representation for the Evolutionary Shape Optimization of a Simplified Beam: A Case-
study of a Problem-centered Approach Genetic Operator Design,” in 2nd On-line World Conference on Soft Computing in 
Engineering Design and Manufacturing (WSC2), 1997. 
29 P. Baron et al., “A Voxel-based Representation for Evolutionary Shape Optimization,” AI EDAM Special Issue: 
Evolutionary Design, Vol.13, Nr. 3 (1999). 

http://arxiv.org/html/cs/9809049/dss5.html�
http://arxiv.org/html/cs/9809049/dss5.html�


 
 

 

1.1  BACKGROUND   P a g e  | 18 
 
primitives, such as small cubes or voxels, arranged in highly unrestricted ways according to 

information encoded in the genotype representation.  Such representations are 'generic' 

because they are flexibly capable of representing a wide variety of different forms. 

Evolutionary design systems employing generic representations have had some success at 

evolving new designs for a variety of different tasks and simultaneously optimizing them with 

respect to certain functional criteria, however they are limited in other ways.  The main difficulty 

with generic representations is that they are too generic for producing designs as complex as 

buildings.  Evolutionary design systems working with generic representations are not 

constrained in a way that ensures that the forms evolved can be understood as building 

designs.  Though there are a number of different ways of implementing constraints within an 

evolutionary design system, some of which are discussed in Chapter 2.2, the only way to 

ensure that the system will evolve forms that resemble building designs and fulfill at least some 

minimal functional requirements is to partially design the phenotype representation. 30

 

  This 

might mean designing an architectural kit of parts to be manipulated in a generative process 

that transforms the genotype representation into the phenotype representation, and/or 

encoding complex constraints into the rules of such a generative process.  However it is done, 

care should be taken not to overdesign the phenotype representation and block off potentially 

interesting areas of the design space.     

 

 

                                                     
30 Bentley, “Aspects of Evolutionary Design by Computers,” 11-13, http://arxiv.org/html/cs/9809049/dss5.html 
 

http://arxiv.org/html/cs/9809049/dss5.html�


 
 

 

1.2  PROBLEM    P a g e  | 19 
 

1.2.1  Problem Overview 

In the domain of architecture, the application of evolutionary design could be highly beneficial.  

In the past, evolutionary design optimization has been successfully used to fine-tune one or 

more parts of a design, usually in a later stage of the design process.31 32 33  Evolutionary 

design exploration of overall building designs early on the design process has proven to be 

somewhat more difficult, but methods have been successfully developed.34

• To evolve new building designs and not just parameters of an existing design, a 

generative process would be needed.   

  However, being 

able to adaptively evolve overall building designs that converge on optimal performance with 

regard to predefined functional requirements would result in greater potential benefits than 

either evolutionary exploration or optimization alone.  For this to be possible, an evolutionary 

design system would have to meet the following three requirements: 

• To ensure that functional building designs are evolved, phenotype representations 

would have to be partially designed.   

• To ensure that the evolved designs can converge on optimal performance, epistasis 

and interdependent elements would have to be minimized. 

A number of generative evolutionary design systems have been developed, implemented and 

tested with varying degrees of success.  They use a variety of generative techniques to create 

designs, such as cellular automata, L-systems,  shape grammars, and generative algorithms.  

These techniques will be discussed in Chapter 2.2.  Examples of generative evolutionary design 

systems include the following: 

• Baron et al. have developed systems that employ a matrix of voxels to evolve a variety 

of forms.35 36

                                                     
31 Dasgupta, Evolutionary Algorithms in Engineering Applications 

 

32 Caldas, “Evolution-based Generative Design System” 
33 Caldas, “Generation of Energy-efficient Architecture Solutions” 
34 Janssen, “Design Method and Computational Architecture.” 
35 Baron et al., “A Voxel-based Representation” (1997) 
36 Baron et al., “A Voxel-based Representation” (1999) 



 
 

 

1.2  PROBLEM    P a g e  | 20 
 

• Shea has developed a system for generating space frame structures using a shape 

grammar and optimizing them using simulating annealing.37 38 39

• Bentley has developed a system for adaptively evolving solid objects using a 

representation scheme based on non-overlapping solid primitives and a set of 

evaluation routines. 

 

40 41

• Hornby has developed a system using a parametric context-free L-system as a 

generative process, and turtle graphics that activate voxels in a matrix as a 

representation scheme, to evolve a variety of table designs based on functional 

criteria.

 

42 43 44

• Janssen has developed a system for exploring building designs based on a 

combination of parametric and combinatorial generative modeling techniques.

 

45 46 47 48

Many of these systems are capable of evolving complex forms that possess novelty.  A few can 

even evolve novel three-dimensional forms that resemble building designs.  However, none are 

capable of adaptively evolving novel three-dimensional forms resembling building designs in a 

convergent process that optimizes design performance. 

 

                                                     
37 K. Shea, “Essays of Discrete Structures: Purposeful Design of Grammatical Structures by Directed Stochastic Search” 
(Doctoral dissertation, Carnegie Mellon University, 1997). 
38 K. Shea. “An Approach to Multiobjective Optimization for Parametric Synthesis,” in 13th International Conference on 
Engineering Design (ICED 01) – Design Methods for Performance and Sustainability, WDK 28 (2001). 
39 K. Shea, “Directed Randomness,” in Digital Tectonics, eds. N. Leach et al. (London: Academic Press, 2004). 
40 Bentley, “Generic Evolutionary Design.” 
41 Bentley, Evolutionary Design by Computers 
42 Gregory S. Hornby, “Functional Scalability through Generative Representations: the Evolution of Table Designs,” 
Environment and Planning B: Planning and Design, Vol.31 (2004). 
43 Gregory S. Hornby, “Generative Representations for Computer-Automated Evolutionary Design” (paper presented at 
2006 ERCOFTAG Design Optimization: Methods and Applications. Las Palmas, Spain, Apr. 5-7, 2006). 
44 Gregory S. Hornby and Jordan B. Pollack “The Advantages of Generative Encoding for Physical Design” (paper 
presented at 2001 IEEE Congress on Evolutionary Computation. Seoul, Korea, May 27-30, 2011). 
45 Janssen, “Design Method and Computational Architecture.” 
46 Patrick Janssen, “A Generative Evolutionary Design Method,” Digital Creativity, Vol.17, Nr.1 (2006) 
47 Patrick Janssen, John Frazer, and Ming-Xi Tang, “A Computational System for Generating and Evolving Building 
Designs,” in Digital Opportunities: Proceedings of the 10th International Conference on Computer-Aided Architectural 
Design Research in Asia (2005) 
48 Patrick H.T. Janssen, John H. Frazer, and Ming-Xi Tang, “A Framework for Generating and Evolving Building Designs,” 
International Journal of Architectural Computing, Vol.3, Nr.4 (2005) 



 
 

 

1.2  PROBLEM    P a g e  | 21 
 
The forms evolved by these systems suffer from at least one of two problems:  they are not 

building designs and/or they are not optimal.  Forms of the first kind result from using 

generative rules and representations that are either too generic or otherwise ill-suited for 

architecture, while forms of the second kind are produced by divergent evolutionary processes 

in evolutionary design systems that lack evolvability due to excessively high degrees of 

epistasis and/or too many interdependent elements. 

1.2.2  Problem Statement 

The main problem is to find a way to reduce epistasis and interdependent elements enough to 

allow convergent adaptive evolution of novel designs, without resorting to representations that 

are too generic to convey important building design information.  This problem is referred to as 

the integration problem. 

 

 

 

 

 

 

 

 

 

 



 
 

 

1.3  RESEARCH    P a g e  | 22 
 

1.3.1  Research Objectives 

The overall goal of this research is to contribute to the development of a practical evolutionary 

design approach that would enable designers to design and implement computational systems 

to adaptively evolve novel building designs based on performance criteria.   

In order to achieve this goal, the main objective is to develop a framework for applying the 

evolutionary design approach that can overcome the integration problem.  This framework is 

referred to as the multi-stage evolutionary design framework.  The framework comprises two 

parts: a system design methodology and a system architecture. 

• The design methodology broadly defines a set of procedures for designing multi-stage 

evolutionary design systems (MSEDSs) and using them to evolve design solutions. 

• The system architecture specifies the general configuration of software and hardware 

components for an MSEDS. 

A second objective is to design an MSEDS to evolve solutions to a particular class of design 

problem - the skyscraper.  A third objective is to build a prototype implementation of the 

skyscraper MSEDS.  And a fourth objective is to evaluate the performance of the prototype by 

simulating and comparing the energy performance of an evolved design alongside 

conventional designs.   

1.3.2  Research Methodology    

This research fits comfortably into the category of systems development research in the applied 

sciences.49

• The first stage is the construction of a conceptual framework.  This involves stating a 

meaningful research question to pursue, ideally one that is new, creative and important 

in the field.  The researcher should investigate the functionalities and requirements of 

  The systems development research process consists of five stages: 

                                                     
49 J. F. Nunamaker, M. Chen, and T.D.M. Purdin, “Systems Development in Information Systems Research,” Journal of 
Management Information Systems,  Vol.7, Issue 3, (1991) 
 



 
 

 

1.3  RESEARCH    P a g e  | 23 
 

the system, understand how it is built, and look to other relevant disciplines for new 

approaches and ideas.   

• The second stage is the development of a system architecture.  The developed 

architecture should be unique, extensible, modular, etc.  The researcher should specify 

the functionalities of the system, and define the structural configuration and 

interrelationships among system components.  

• The third stage is the analysis and design of the system.  This involves the design of 

databases, knowledge bases and processes for carrying out system functions.  The 

researcher should consider alternative approaches and choose one as a blueprint for 

system implementation. 

• The fourth stage is the building of the (prototype) system.  In this process, the 

researcher should gain a deeper understanding of the conceptual framework and any 

problems or complexities associated with the system design.  The implementation 

process can provide valuable insights into potentially better system designs.   

• The fifth stage is the observation and evaluation of the system.  This involves testing the 

performance and usability of the system through case studies and experiments, 

developing new theories or models by interpreting observations and evaluations, and 

consolidating all experience gained.     

System development research is typically carried out according to a long-term research 

program that divides the work up into a series of research projects.  Each project focuses on 

one of the above five stages and provides foundations for the next project. 

1.3.2  Research Scope 

The scope of the present research encompasses all five stages of the system development 

research process, from constructing a conceptual framework and developing a system 

architecture, through designing, implementing and evaluating the system.  For the first stage, a 

design methodology is developed that broadly defines a set of procedures for designing multi-

stage evolutionary design systems and using them to evolve design solutions.  For the second 

stage, a multi-stage evolutionary design system architecture is developed.  For the third stage, 



 
 

 

1.3  RESEARCH    P a g e  | 24 
 
a multi-stage evolutionary design system adapted for skyscrapers is designed.  For the fourth 

stage, the skyscraper MSEDS is implemented.  For the fifth stage, the performance of the 

skyscraper MSEDS is tested.        



 
 

 

1.4  THESIS    P a g e  | 25 
 

1.4.1  Thesis Organization    

This thesis is organized into three parts: 

• Part one consists of this introduction. 

• Part two reviews current design practices and literature related to this research in three 

chapters.  Chapter 2.1 is describes research on conventional performance-based 

design approaches, and in particular, performance-based skyscraper design 

approaches.  Chapter 2.2 reviews generative design techniques and some example 

projects.  Chapter 2.3 takes up the topic of evolutionary design, first reviewing its 

theoretical foundations, then exploring some evolutionary design systems, and lastly 

taking a look at some evolutionary design experiments described in the design 

literature.   

• Part three documents the main body of research carried out for this thesis in five 

chapters.  Chapter 3.1 introduces the multi-stage evolutionary design framework and 

explains how it works.  Chapter 3.2 describes how to design an MSEDS to evolve 

skyscraper designs.  Chapter 3.3 documents the design and implementation of an 

MSEDS to evolve solutions to the a particular skyscraper design problem.  Chapter 3.4 

documents an evaluation of the system's performance through a comparative 

performance evaluation of a design evolved by the system alongside three 

conventional designs.  Chapter 3.5 reviews the research objectives and outcomes, 

draws important conclusions and discusses future research activities.  

 

 



 
 
 
  

 

 

 

 

 

 
PART 2 

LITERATURE REVIEW



 
 

 

2.1  DESIGN PROCESS     P a g e  | 27 
 

2.1.1  Introduction 

This chapter discusses some of the methods and procedures employed in mainstream 

architectural design practice to develop schematic building designs.  In particular, it focuses on 

a process for developing schematic designs for tall buildings based on performance criteria.   

2.1.2  Conventional Skyscraper Design Process 

The following paragraphs describe a skyscraper design process.  It is suggested that the 

described process can be regarded as typical of how many mainstream architectural design 

firms approach the design of tall buildings in a large number of cases.  This is supported by 

practice-based research conducted during employment at a large global design firm engaged 

in the design of skyscrapers for growing Asian metropolises.  Skyscrapers are defined here as 

multi-storey structures having a single independent load-bearing structure consisting of a steel 

framework, and a minimum total height of 100 m (330 ft).  It is of course recognized that there 

may be other equally valid design processes that differ in some or all aspects from the 

description given below. 

• Before a developer commissions an architect to start designing a new skyscraper, he 

does his own research and comes up with a fairly detailed list of things he wants in the 

design.  This will usually include detailed programming requirements, such as precise 

square footages for every program element, as well as more general design objectives, 

such as natural daylighting, a low carbon footprint, commercial attractiveness, 

community attractiveness, and an iconic image.  Typically handed over to the architect 

in the form of the Design Brief, this information together with the architect's own creative 

input provides a starting point for schematic design.   

• The conventional way in which the architect begins to process the information in the 

Design Brief is with massing models.  This involves building numerous digital or 

physical models of the different massing configurations that result from varying the 

floor-plate dimensions, floor-to-floor height, spacing of refuge floors, and other design 

parameters not fixed in the Design Brief.   



 
 

 

2.1  DESIGN PROCESS     P a g e  | 28 
 

• To consider the resulting models within the urban context of the project, a massing 

model of the surrounding neighborhood may be constructed and the skyscraper 

models positioned one-by-one on the site.    

• Once all the options are modeled, or rather some representative options (there are 

actually infinite options), the designer picks one to pursue.  The decision is typically 

based on considerations like whether different program types fit neatly into zones 

divided by refuge floors, whether a typical floor-plate area can be divided up nicely into 

structural bays of a convenient size, and whether an aesthetically desirable height and 

slenderness can be achieved.  In some cases the tower height is specified by the client 

in the Design Brief.  Also, the finished floor-to-ceiling clearance may be specified by the 

client, which more or less determines the floor-to-floor height, because there typically 

isn't much variability in the total floor depth including structure, HVAC, plumbing, 

electrical and finish materials.  The total floor depth, sometimes called the "sandwich 

depth," can be estimated based on precedent.  

• Next, the position and orientation of the tower on the site are determined and typical 

floorplans are drawn.  This begins with selection of a service core type and placement, 

and adoption of a structural grid.  Once these decisions are made, the core(s) is(are) 

laid out and the shape of the floor-plate is decided.  Here, there are a number of 

considerations, as shown in the Table. 

• Armed with typical floorplans, a new, more-detailed model of the building is 

constructed and attention turns to the building skin.  Thermal and daylighting analyses 

may inform design of the building envelope, or decisions may be based on aesthetics 

alone.  Shaping of the building in elevation will necessitate changes in the floorplans 

and may alter the overall massing of the tower.  This stage of the design process 

typically involves a great deal of computer modeling, rendering, and remodeling.   

• Finally, the podium and site (ground plane) are designed with careful consideration to 

automobile traffic, pedestrian circulation, fire safety requirements, and various other 

functional and aesthetic issues.  This completes the schematic design.   

 



 
 

 

2.1  DESIGN PROCESS     P a g e  | 29 
 
This conventional design process for tall buildings has a number of inefficiencies and 

shortcomings.  Starting with the building of massing models, perhaps the most obvious issue is 

that building a bunch of models (even simple massing models) is time consuming.  Second, 

each new massing configuration requires a new set of calculations and it is easy for error to be 

introduced in this process.  For example, when the floor-plate area is changed, not only does 

the total number of floors change but the number of floors in each program zone changes 

according to each program zone's percentage of the total GFA.  Thus, program zones may no 

longer fit nicely between refuge floors without adjusting the spacing of refuge floors, which 

might change the number of refuge floors required.  Even if the spacing of refuge floors is not 

adjusted, the total number of floors does not necessarily change in proportion to the change in 

floor-plate area, as additional floors may necessitate additional refuge/MEP floors, and fewer 

floors may enable removal of a refuge/MEP floor.   Clearly, use of a parametric model encoding 

the basic tower massing relationships would save time and effort and avoid errors.  Further, 

one parametric model with sufficient flexibility built into it could be reused for a wide class of 

tower design problems.  

 

The conditions for evaluating the massing models in the conventional design process are not 

ideal either.  One problem is that each model, whether digital or physical, must be manually 

placed on the site and the previous model removed in order to see them all in context.  Not only 

is this inconvenient but the time delay between seeing the placed models hinders their 

comparison.  Another drawback is that there is no continuous spectrum of variation with 

conventional models.  The designer must choose from among the available options when a 

better solution may be hidden somewhere in between the chosen parameters, or else go back 

and expend additional time and effort to create more massing models.  These drawbacks are 

additional reasons to employ a parametric model.   

 

There is another important shortcoming at this early stage of the conventional design process 

that is not overcome simply by employing a parametric model.  The choice of massing, like 

orientation, can have important consequences for building performance that are difficult to 

gauge without computation as a tool.  For example, it is difficult to determine with the naked 

eye whether views from a particular model are open or blocked, whether adding height to a 

zone or width to a facade would open up new view corridors and if so how much height or 



 
 

 

2.1  DESIGN PROCESS     P a g e  | 30 
 
width to add.  Likewise, it is impossible to assess by critical observation alone the precise 

effects of massing variations on the amount of solar radiation incident on different parts of the 

building facade.   

 

Computer simulation can produce measurements but it is still only one part of the solution.  To 

gauge how various changes in massing effect the measurements requires performing 

numerous simulations on the different massing models, which is time consuming and still won't 

yield the optimal configuration.  Employing a parametric model in the simulations won't do the 

trick either because manual manipulation is still needed to vary the model and performing each 

simulation, and the designer has no reliable way to know how to find the optimal configuration 

within a reasonably short number of iterations.  The solution is to employ an evolutionary solver 

or some other form of optimizer to evolve/optimize the parametric model in response to 

feedback from simulations.   

2.1.3  Conventional Performance-Based Design 

Performance-based design has been described as "an emerging approach to architecture in 

which building performance is a guiding design principal." 50  Here, performance is broadly 

defined - "its meaning spans multiple realms, from spatial, social and cultural to purely technical 

(structural, thermal, acoustical, etc.)."51  In performance-based design, computer simulation is 

used in the conceptual stages of design to inform early decisions that will eventually have the 

greatest impact on building performance.52  They are also used later in the design process to 

optimize particular elements of a design that need improvement. 53

An example of a design developed using a performance-based approach is the glazed roof 

that spans the British Museum Great Court in London, UK, by Foster + Partners, shown in 

Figure 2.1.1.  The curved shape of the roof and the pattern of steel members constituting the 

structure of the roof were arrived at using a flexible modeling approach that enabled numerous 

   

                                                     
50 Branko Kolarevic and Ali Malkawi, eds., Performative Architecture: Beyond Instrumentality (London: Routledge,2005), 3. 
51 Ibid. 
52 Ibid. 
53 Jane Burry and Mark Burry, The New Mathematics of Architecture (London; Thames and Hudson, 2010), 116-155. 



 
 

 

2.1  DESIGN PROCESS     P a g e  | 31 
 
different options to be generated quickly and tested against different performance criteria, such 

as solar gain, acoustics, and structural efficiency.54

 

   

Figure 2.1. 1  British Museum Great Court, London, UK - roof designed by Foster + Partners 

Another example is the design for the Al Raha Development in Abu Dhabi, UAE, also by Foster 

+ Partners, shown in Figure 2.1.2.  The designers constructed a mutable parametric model of 

the building form that could morph in response to feedback from simulations of its performance 

when exposed to the desert sun and wind.55

 

 

Figure 2.1. 2  Al Raha Development, Abu Dhabi, UAE - Design by Foster + Partners 

                                                     
54 Jane Burry and Mark Burry, The New Mathematics of Architecture (London; Thames and Hudson, 2010), 122-125. 
55 Burry and Burry, New Mathematics, 148-151. 
 



 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 32 
 

2.2.1  Introduction  

In contemporary architectural design, digital tools and media are used not only for visualization 

and representation, but for the derivation and transformation of architectural form.  

Transcending the well-established practice of mechanically constructing models and drawings 

by directly manipulating geometry displayed on a computer screen, this emerging practice 

employs rule-based procedures that are interpreted by software to computationally generate 

and transform geometry.  Generative design is "an approach to design that seeks to challenge 

the hegemony of top-down processes of form-making, and replace it with a bottom-up logic of 

form-finding."56

Conventional computer-aided design (CAD) tools function like sophisticated electronic drawing 

instruments enabling designers to construct digital models and drawings.  The designer has no 

real perception of the computational processes governing the behavior of the digital 

environment in response to his/her manipulations.  Generative design systems and techniques, 

on the other hand, enable the designer to work with the underlying form-generating processes, 

thus activating a whole new field of possible interactions between the human designer and the 

design tool.   

 

Generative design techniques give the designer explicit control over design parameters, their 

logical relationships, and the form-generating process itself.  This can help to unpack 

dependencies, externalize logic, and clarify distinctions between qualities and quantities.  They 

can also free the designer from the limitations in the inbuilt functionality of CAD software, 

support the cognitive design process by enabling the designer to explore unimagined regions 

of the design space, and supplement the designer's own creativity, freeing him/her from 'design 

fixation' and the limits of conventional wisdom.57

This chapter outlines four different categories of techniques for computationally generating 

three-dimensional form.  Any of these generative techniques can be used alone or in 

combination with other techniques to develop a generative system that can be used within the 

developmental step of an evolutionary design system in order to generate alternative designs.  

 

                                                     
56 Neil Leach, “Digital Morphogenesis.” Architectural Design 79, no.1 (2009): 34. 
57 Bentley 



 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 33 
 
The four categories are parametric techniques, combinatorial techniques, replacement 

techniques, and agent-based techniques.  

2.2.2  Parametric Techniques 

Parametric techniques involve varying constraints associated with a predefined model or 

modeling procedure to generate a variety of forms.  When applied to a model, certain 

dimensions are typically defined as variable parameters, and these are varied to transform the 

model into a range of different forms.  When applied to a modeling procedure, certain 

constraints on operations in the procedure are defined as variable parameters, and these are 

varied to transform the end result of the procedure.  Parametric techniques are sometimes 

found in the literature under different headings, such as associative modeling, variational 

design, constraint-based design, etc.         

2.2.3  Combinatorial Techniques 

Combinatorial techniques involve selecting elements from a predefined set and combining the 

selected elements in various arrangements to generate a variety of forms.  Techniques in this 

category may differ from one another in terms of the predefined set of elements they work with, 

and the way selected elements are combined.  The predefined set of elements may include a 

number of different object types, such as solid geometric primitives, which can be selected and 

combined to generate a wide range of different forms.  Alternatively, there may be only one type 

of element, such as a tiny three-dimensional cube or voxel (volumetric pixel), which can be 

combined in large numbers to generate almost any form.  The procedure for combining 

elements may involve selecting certain operations that position and combine the elements in 

space from a predefined set of such operations.  Alternatively, the procedure may make use of 

a predefined organizational template into which different elements are inserted to generate 

forms.   

2.2.4  Replacement Techniques 

Replacement techniques involve repeatedly applying a set of rules that manipulate parts of a 

predefined initial form to generate a new form in a series of steps.  The initial form is described 



 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 34 
 
as a seed, and the set of rules are referred to as transition rules.  At each step, the transition 

rules are applied to the current form to produce a new form, and after a certain number of steps 

a final form is produced. 

The transition rules are essentially if-then rules.  They specify that if the current form has a 

certain part or configuration, then that part or configuration must be replaced by another to 

produce a new form.  The if part of the rule is called the antecedent, and the then part is called 

the consequent.  The first step in applying a transition rule is to examine the current form for 

instances of the part or configuration specified in the antecedent.  If one or more matches are 

found, the transition rule replaces each of them with the part or configuration specified in the 

consequent.  When this happens, the transition rule is said to be fired.  If, on the other hand, no 

matches are found, then the rule is not fired and simply does nothing. 

Many replacement techniques employ not only iteration but also recursion.  In recursive 

replacement techniques, each iteration involves reapplying the same transition rules to the 

result of their application in the previous iteration.  In order for a rule to continue firing after more 

than one iteration, the part or configuration specified in its consequent must contain at least 

one copy of the part or configuration specified in its antecedent.  Recursive replacement 

techniques employing fairly simple transition rules can be used to build up highly complex, self-

similar forms, after only a few iterations.  Although many generative systems employing 

recursive replacement techniques are deterministic,58

L-Systems 

 their rapid, exponential growth is difficult 

to control and the final forms they produce are notoriously unpredictable. 

Lindenmayer-Systems or L-Systems are a kind of parallel replacement system that begin with 

alpha-numeric string data as a seed and employ recursive transition rules to grow.  A simple 

example of an L-systems begin with a seed A and transition rules A -> B and B - > AB.  The 

transition rules are applied at each step to yield the following alternating pattern: 

     Step 0: A 
     Step 1: B       
     Step 2: AB 

                                                     
58  A replacement-based generative system is deterministic as long as its transition rules are deterministic.  Some 
systems employ stochastic transition rules and therefore are not deterministic.   



 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 35 
 
     Step 3: BAB 
     Step 4: ABBAB 
     Step 5: BABABBAB 
     Step 6: ABBABBABABBAB 
     Step 7: BABABBABABBABBABABBAB 

The string values in the final form can be mapped to a variety of geometric operations to 

produce form.  One common strategy is to use LOGO-style 'turtle graphics,' a system of 

commands including move forward, move backward, turn right, turn left, etc. that are used to 

move a cursor know as the 'turtle' through space displayed on the computer screen.  The path 

traced out by the turtle provides a basis for generating geometry through various modeling 

operations such as piping and voxel activation. 

L-systems can be used to construct iterated function systems (IFSs) and fractals.  In an IFS, a 

contractive function is executed recursively, repeatedly performing the same contractive 

transformation on its output from the previous iteration, thereby generating an infinite sequence 

of self-similar forms.59  A fractal, whose self-similar appearance is well known, is the union of 

these resulting forms.60

Supermatter by Supermanoeuvre + Matter Design, shown in Figure 2.2.1, is an example of the 

use of L-systems to generate form.  "Supermatter explores the algorithm as a geno-typical 

morphology, where similarity across the collective is instilled through the instructions of 

assembly embedded within the algorithm as it operates on a discrete set of geometric 

aggregates.  The input of geometry enables a speciation of each resultant object as the rules of 

growth and assembly are applied to the specific geometric constraints and potentials of 

connection particular to each aggregate primitive.  Through changing either one or all of the 

primitives, or the generative rules of the Lindenmayer (L-System) combinatorial algorithm itself, 

differentiation across the population can be instantiated."

  When used as form-generative mechanisms, the recursive nature of L-

systems and IFSs results in formal complexity marked by self-similarity at a range of scales, 

after relatively few recursions, making them potentially useful for generative design in 

architecture. 

61

                                                     
59 Wikipedia contributors, "Iterated function system," Wikipedia, The Free Encyclopedia  

  As revealed in this slightly cryptic 

http://en.wikipedia.org/w/index.php?title=Iterated_function_system&oldid=460647709 (accessed 5 Dec. 2011) 
60 Ibid. 
61 Supermanoeuvre + Matter Design, "Supermatter," Contemporary Digital Architecture: Design and Techniques (Links 
International Ceg, 2010), 212-217. 

http://en.wikipedia.org/w/index.php?title=Iterated_function_system&oldid=460647709�


 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 36 
 
description by the architect, Supermatter is based on L-systems, devised by theoretical 

biologist and botanist Aristid Lindenmayer in 1968 for modeling processes of plant 

development.62

 

  More specifically, Supermatter is an experiment in which strings generated by 

an L-system are translated into geometric transformations performed on geometric primitives, 

resulting in the generation of an aggregate self-similar form. 

Figure 2.2. 1  Supermatter by Supermanoeuvre + Matter Design 

Cellular Automata 

A cellular automaton (CA) is a system made up of a finite matrix of cells (e.g., a two-

dimensional grid), each cell having a finite number of states (e.g., two states: "on" and "off"), a 

neighborhood in the matrix defined relative to itself (e.g., all cells within a 2-cell distance of 

itself), an initial state (e.g., "on") which serves as a seed, and a transition rule for updating the 

state, expressed in terms of its own current state and the states of the other cells in its 

neighborhood (e.g., when 5 or more cells in the neighborhood are "on," change state from "on" 

to "off" or vice versa).63  CAs are typically implemented on a computer, and are fascinating 

examples of how simple programs operating according to simple rules can lead to complex 

and unpredictable behavior with no further human input after they are set up.64

                                                     
62 Aristid Lindenmayer, "Mathematical Models for Cellular Interaction in Development: Parts I and II," Journal of 
Theoretical Biology, 18 (1968), 280-315 

  Such behavior 

63 Wikipedia contributors, "Cellular automaton," Wikipedia, The Free Encyclopedia  
 http://en.wikipedia.org/w/index.php?title=Cellular_automaton&oldid=464924768 (accessed 5 Dec. 2011) 
64 Stephen Wolfram, A New Kind of Science, Wolfram Media (Champaign, IL: 2002). 

http://en.wikipedia.org/w/index.php?title=Cellular_automaton&oldid=464924768�


 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 37 
 
points to the latent potential of algorithmic abstraction as a vehicle for architectural exploration 

within a domain of abstract reality that is independent of experience and "extends beyond the 

limits of perception."65

 

    

 

Figure 2.2. 2 Morphogenetic Lattice by Supermanoeuvre + Kokkugia 

Morphogenetic Lattice, by Supermanoeuvre + Kokkugia, shown in Figure 2.2.2, is an 

experiment in the use of systems "designed to generate ornamental distortions within geometry 

through the internal logic of cellular automata.  A technique where a population of self-similar 

elements in space continually change their state based on the states of their neighbors in a 

feedback loop, giving rise to emergent patterns."66

                                                     
65 Kostas Terzidis, Expressive Form: A Conceptual Approach to Computational Design, Spoon Press (London and New 
York: 2003), 73 

  The architects of Morphogenetic Lattice 

developed a series of encoded procedures to construct a three-layer system in which the lattice 

geometry (top layer) is dependent on a network of springs (middle layer) whose behavior is 

calculated using a physics solver in response to changes in the state of a hex-grid of cellular 

automata (bottom layer).  The network of springs (middle layer) simply serves to smoothly 

translate changes trickling through the cellular automaton (bottom layer) into smooth elastic 

transformations throughout the lattice geometry (top layer), enabling Morphogenetic Lattice to 

appear alive.   

66 Supermanoeuvre + Kokkugia, "Morphogenetic Lattice," Contemporary Digital Architecture: Design and Techniques 
(Links International Ceg, 2010), 208-211. 



 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 38 
 

2.2.5  Agent-Based Techniques 

Agent-based techniques involve defining virtual autonomous agents that move around and 

interact with one another to collaboratively generate form in space.  These techniques offer an 

alternative model to systems of centrally orchestrated form growth and development.  They are 

often inspired by the natural behavior of certain animals, for example, the smarm behavior of 

certain flocks of birds and schools of fish, and the insect colonies built by ants and bees. 

 

 

Figure 2.2. 3  'Swarm Matter' by Kokkugia (top image-feild; bottom image-close-up) 

Swarm Matter by Kokkugia, shown in Figure 2.2.3, is an experiment in the use of agent-based 

techniques to dynamically generate form.  "Swarm Matter is an ongoing research project 

exploring the generation of ornamental geometries though the agent based formation of 

emergent hierarchies and non-linear patterns."67

                                                     
67 Kokkugia, "Swarm Matter," Contemporary Digital Architecture: Design and Techniques, Jacobo Krauel, ed. (Links 
International Ceg, 2010), 126-129. 

  This experiment is essentially concerned with 

the forms that dynamically emerge in a system of components (agents) that each move 

independently according to predetermined rules without any central coordination.  More 

particularly, Swarm Matter is based on a computer simulation of swarm behavior, the collective 



 
 

 

2.2  GENERATIVE DESIGN     P a g e  | 39 
 
motion of a large number of self-propelled entities.68 collective 

behavior

  In nature, swarm behavior is "a 

 exhibited by animals of similar size which aggregate together, perhaps milling about 

the same spot or perhaps moving en masse or migrating in some direction."69  It is witnessed, 

for example, as the swarming of locusts, the flocking of birds, the herding of sheep, the 

schooling of fish, and the blooming of algae. 70   Swarm behavior can be modeled by 

programming similarly sized agents, representing particles or some other objects, to follow 

three simple rules: (1) move in the same direction as your neighbors, (2) remain close to your 

neighbors, and (3) avoid collisions with your neighbors.71

Thomas and Torben Fischer disclose a very different approach to digital form-finding 

employing an agent-based model (ABM).

   

72   Instead of the neo-Darwinian evolutionary 

principals of variation and selection, their approach concentrates more on the genetically 

instructed developmental pathway from genotypes to phenotypes.  To investigate and simulate 

the developmental growth of geometric form, they have created a voxel-based form-modeling 

software system in which individual voxels (volumetric pixels) can be programmed to behave 

(change state) according to predetermined rules in relation to neighboring voxels and time.  

The voxels' state transformations according to preprogrammed rules works like a 3-

dimmensional cellular automaton.  However, unlike conventional cellular automata, these 

voxels can all follow different rules (genetic instructions), and, by employing parallel processing, 

their state updates need not be synchronized.  This approach and the software tool created 

(Zellkalkül) is an attempt to model the "cellular incorporation of morphologic and behavioral 

blueprints." 73 , 74

                                                     
68  O'Loan, Evans, "Alternating Steady State in One-Dimensional Flocking," Journal of Physics A: Mathematical and 
General 32 (8), (1998). 
69 Wikipedia contributors, "Swarm behavior," Wikipedia, The Free Encyclopedia  
http://en.wikipedia.org/w/index.php?title=Swarm_behaviour&oldid=460044985 (accessed 5 Dec. 2011) 
70 Ibid. 
71 Ibid. 
72 Thomas Fischer and Torben Fischer, "Toolmaking for Digital Morphogenesis," International Journal of Design 
Computing, asd Vol. 6, University of Sydney (2003), 1-23 
73 Ibid, 5 
73 See "The Problem of the Blueprint" in Frazer, An Evolutionary Architecture, Architectural Association, (London: 1995) 
 

 

http://en.wikipedia.org/wiki/Collective_animal_behaviour�
http://en.wikipedia.org/wiki/Collective_animal_behaviour�
http://en.wikipedia.org/wiki/Animal_migration�
http://en.wikipedia.org/w/index.php?title=Swarm_behaviour&oldid=460044985�


 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 40 
  

2.3.1  Introduction 

2.3.1.1  Overview 

Evolutionary Design is an interdisciplinary field of research that merges the boundaries of 

evolutionary biology, computer science, and design, as shown in Figure 2.3.1.  The central 

objective of evolutionary design research is the development of methods and computational 

systems for generating and adaptively evolving designs, based on the Neo-Darwinian model of 

evolution through natural selection.   

Frazer was among the first to advocate the use of evolutionary design techniques in the domain 

of architecture.  He envisioned a computational design system in which "architectural concepts 

are expressed as generative rules so that their evolution and development can be accelerated 

and tested by the use of computer models.  Concepts are described in a genetic language 

which produces a code script of instructions for form-generation.  Computer models are used to 

simulate the development of prototypical forms which are then evaluated on the basis of their 

performance in a simulated environment.  Very large numbers of evolutionary steps can be 

generated in a short space of time and the emergent forms are often unexpected."75

 

 

Figure 2.3. 1 - Evolutionary design is rooted in computer science, evolutionary biology, and design 

                                                     
75 J. H. Frazer, An Evolutionary Architecture, (London: AA Publications, 1995) 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 41 
  
Evolutionary design systems are capable of generating and evaluating not only one or several 

design proposals, but entire populations of alternative design proposals, and gradually honing 

in on better designs by replacing old populations of designs with new populations genetically 

bred from the fittest parent designs.  Evolutionary design systems have benefitted from a large 

amount of interest and research.76 77 78

The purpose of creating such systems is not only to enhance productivity by further automating 

the design process.  Evolutionary design systems have the potential to encourage 

experimentation and innovation in the design process, to facilitate the exploration of a wide 

range of design alternatives, to flexibly accommodate design changes, to allow the client more 

control over the design process, and to produce designs for buildings that out-perform 

buildings designed in a conventional manner in key areas such as energy consumption.

   

79

The central issue in the design of evolutionary design systems is the development of generative 

systems capable of producing adequate representations of architectural concepts in response 

to manipulations of genetic variables.  Another important issue is the formulation of fitness 

criteria from various conflicting and ill-defined design criteria.  A further challenge is the issue of 

how the simulated interactions between generated forms and the environment are linked with 

the processes of form generation and selection.

 

80

2.3.1.2  Evolution in Nature 

      

In nature, evolution is the process by which all living organisms change and adapt to their 

environment over generations.  The evolution of a population of organisms is driven by the 

continuous cycle of life and death of individual organisms in the population.  This cycle can be 

broken down into 3 steps: reproduction, development, and natural selection.   

• In reproduction, new organisms are conceived.  Each new organism inherits from its 

parents a unique set of genes that encodes information about various biological traits - 

the genotype.  In the case of sexual reproduction, new child genotypes are created by 

                                                     
76 Ibid.  
77 Bentley, Evolutionary Design by Computers. 
78 Bentley and Corne, Creative Evolutionary Systems. 
79 Janssen, “A Design Method and Computational Architecture.”  
80 Kolarevic, "Digital Morphogenesis." 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 42 
  

reshuffling the genes of the parents in a process called crossover, and by altering 

existing genes to create new genes through random accidental copying errors called 

mutations. 

• In development, each new organism grows from a seed or egg into a fully developed 

organism - the phenotype.  This takes place gradually as a result of processes of cell 

growth, differentiation and morphogenesis, which are triggered by genes in the 

genotype under suitable environmental conditions. 

• In natural selection, the organism must successfully compete with others for limited 

resources in the environment, and the longer it survives, the more likely it is to 

reproduce.  Some organisms possess traits or adaptations that help them to survive 

longer and/or to reproduce more.  These organisms are more likely to pass on their 

genes each generation, causing those genes and adaptations to become more 

common in the population as a whole over time.   

Not all biological organisms have evolvability - the capacity to acquire useful adaptations 

through genetic changes in reproduction.  Populations of organisms that lack evolvability may 

still be capable generating genetic diversity, but the developmental processes that produce the 

phenotype are unable to produce useful adaptations.  As a result, such organisms do not 

become better adapted to their environment through natural selection. 

Kirschner describes three characteristics of biological systems that are conducive to 

evolvability, which he defines as "efficiency of generating novelty in evolution." 81

                                                     
81 Mark Kirschner, "Variations in Evolutionary Biology," Research & Design: The Architecture of Variation (London: Thames 
and Hudson, 2009), 26-33 

  The first is an 

ability to "maximize variation in the amount of mutation."  The more variation there is in a 

population, there greater are the chances of useful traits being selected and passed on to new 

generations.  The second is an ability to "suppress the fallacy of variation produced."  He goes 

on to explain, "Only nonlethal variations contribute to evolution.  In an architectural sense, if you 

were making structures at random, structures that would fall down, structures that nobody 

would be interested in - these would be lethal structures.  Thus, you'd like to have a way of 

biasing the output so at least you would be looking at things that would hold up."  The third 

characteristic is "the provision of useful variation, even for conditions not previously 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 43 
  
encountered."  In addition to maximizing overall variation, and suppressing fatal variation, 

evolvability requires the ability to promote useful variation. 

2.3.1.3  Evolutionary Algorithms    

Universal Darwinism is the theory that evolution by natural selection is substrate-independent, 

meaning that processes analogous to evolution in nature can emerge in systems outside the 

realm of biology.82  This thinking has led to the successful application of evolutionary models to 

explain phenomena in a wide range of domains, including economics, psychology, medicine, 

computer science and physics.83

Evolutionary algorithms encode some of the underlying principals and mechanisms of evolution 

in algorithmic form so that they can be implemented as computer programs.  When executed 

by a computer, they result in a computational process that is loosely analogous to evolution in 

nature.  A population of individual entities is created and selectively bred over generations so 

that the entire population gradually evolves in a desired direction.  Each individual entity in the 

population can represent an alternative solution to some type of problem, such as a parameter 

of an equation or even a complete building design.  Thus, evolutionary algorithms are capable 

of evolving solutions to a wide variety of problems.

   

84 85

Figure 2.3.2 illustrates the cyclical process of computational evolution by evolutionary 

algorithms.  As in natural evolution, the solution being evolved has both a genotype 

representation and a phenotype representation.  The genotype representation is an encoded 

version of the solution and the phenotype representation is the decoded genotype 

representation.  The computational process can be broken down into an initialization step of 

randomly generating a starting population of genotype representations, and an evolutionary 

cycle comprising four steps: reproduction, development, evaluation, and selection.   

 

• In reproduction, a new population of genotype representations are created by 

transforming parent genotypes into new child genotypes using genetic operators such 

as crossover and mutation, according to predetermined reproduction rules.   

                                                     
82 Dawkins, Universal Darwinism. 
83 Wikipedia contributors, "Universal Darwinism." 
84 Mitchell, An Introduction to Genetic Algorithms, 15-16. 
85 Beasley, “Possible Applications of Evolutionary Computation.” 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 44 
  

• In development, the new population of genotype representations are transformed into 

phenotype representations by applying predetermined developmental rules.   

• In evaluation, the performance of each phenotype representation is evaluated with 

respect to one or more objectives.  For each objective, an evaluation score is 

calculated using a mathematical function called the objective function and stored 

together with the solution.   

• In selection, the evaluation scores of each alternative solution are summarized in a 

single figure indicating the merit of the solution - its fitness.  Here, the mathematical 

function used to calculate fitness is called the fitness function.  Solutions that rank 

higher in fitness are selected for reproduction and those not selected are deleted.   

 

Figure 2.3. 2 - The Cycle of Computational Evolution 

Many aspects of evolutionary algorithms depend upon the details of the problem to which they 

are applied.  The evolutionary algorithm and the problem to be solved together make up an 

evolutionary system with variables, including the types of genotype and phenotype 

representations, the reproduction and developmental rules, the type of evaluation performed in 

the evaluation step, the form of the objective function, and the form of the fitness function.  In 

order for the evolutionary algorithm to evolve solutions to the problem, these variables all have 

to be specified.  



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 45 
  
Evolvability of evolutionary systems is analogous to evolvability of biological organisms.  

Evolutionary systems that lack evolvability are able to generate diverse population of solutions, 

but they do not tend to increase in fitness over generations.  As in natural evolution, evolvability 

is related to the nature of the developmental process used to generate phenotype 

representations from genotype representations.  

A wide range of evolutionary algorithms exist that differ in implementation details and the type 

of problems they are designed to tackle.  The four main types are genetic algorithms, 86 87 

genetic programming, 88  evolutionary programming, 89  and evolution strategies. 90

2.3.1.4  Evolutionary Design 

  Of these, 

genetic algorithms are the best known and most commonly used. 

In the design domain, evolutionary algorithms are used to evolve populations of alternative 

designs.91 92 93

                                                     
86 Holland, Adaptation in Natural and Artificial Systems 

  Figure 2.3.3 illustrates the cycle of computational evolutionary design.  Each 

genotype representation is encoded information that can be used to construct a model of a 

design, and the corresponding phenotype representation is the fully constructed design model.  

The reproduction rules can be the typical rules for applying genetic operators used by the 

evolutionary algorithm, and the developmental rules are the generative or transformational 

modeling procedures used to produce the design model from the information encoded in the 

genotype representation.  The evaluation step may consist of performing one or more 

measurements or simulations on the design model, which may incorporate information on the 

environment in which the design is to be realized, and the objective functions and fitness 

function are formulated to convert the evaluation scores into a single figure measuring how 

close the design comes to fulfilling certain design objectives. 

87 Goldberg, Genetic Algorithms 
88 Koza, Genetic Programming  
89 Fogel, "Evolutionary Computation" 
90 Bäck, Evolutionary Algorithms 
91 Frazer, An Evolutionary Architecture 
92 Bentley, Evolutionary Design by Computers  
93 Bentley and Corne, Creative Evolutionary Systems 
 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 46 
  
The ability of evolutionary algorithms to evolve solutions to a wide variety of problems stems 

from the ability to represent solutions to a wide variety of problems as encoded genotypes.  In 

the evolutionary cycle, the processes of selection and reproduction operate only on genotype 

representations, and thus are largely independent of the nature of the problem.  In an 

evolutionary design system, these steps can be performed by a system component called an 

evolutionary solver, and the development and evaluation steps can be performed by a system 

component called a design developer-evaluator, as indicated in Figure 2.3.3.    

 

Figure 2.3. 3 - The Evolutionary Design Cycle 

Figure 2.3.4 is a system diagram illustrating the basic architecture of an evolutionary design 

system, and Figure 2.3.5 is a flowchart illustrating the process of evolving designs using the 

evolutionary design system shown in Figure 2.3.4. Referring to Figure 2.3.4, the system 

includes a user interface 100, an evolutionary solver 200, and a design developer-evaluator 300.  

The evolutionary solver 200 includes a selection system 210 and a reproduction system 220.  

The design developer-evaluator 300 includes a development system 310 and an evaluation 

system 320.      



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 47 
  

 

Figure 2.3. 4 - Basic Architecture of An Evolutionary Design System 

 

Figure 2.3. 5 - Evolutionary Design Process 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 48 
  

2.3.2  Evolutionary Design Systems 

2.3.2.1  Overview 

In Chapter 1.1, three types of evolutionary design were identified: evolutionary design 

optimization, evolutionary design exploration, and integral evolutionary design.  This section 

reviews a number of evolutionary design systems in the literature, identifies each them as one 

of these three types, and discusses their strengths and weaknesses.  

2.3.2.2  GENE_ARCH 

Caldas has developed an evolutionary design optimization system, called GENE_ARCH, for 

helping architects to design energy-efficient and sustainable architectural solutions. 94

 

  

GENE_ARCH can operate in two modes depending on design requirements.  When applied to 

problems where the overall building geometry is fixed, it generates populations of alternative 

solutions from a parametric model, and in cases where the building geometry is allowed to vary, 

it employs shape grammars.  The system employs a Pareto genetic algorithm (GA) as a search 

engine, and uses a sophisticated building energy simulation application DOE-2.1E to evaluate 

alternative design solutions.  Figure 2.3.6 illustrates GENE_ARCH's main components, and 

Figure 2.3.7 illustrates three-dimensional architectural solutions generated by GENE_ARCH. 

 

Figure 2.3. 6  GENE_ARCH's Main Components 

                                                     
94 Caldas, “Generation of Energy-efficient Architecture Solutions,” p59-70. 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 49 
  
A strength of this system lies in its ability to evolve designs on the detailed level of their material 

systems, when the overall building shape and spatial layout are fixed.  Caldas writes, "One of 

the distinctive aspects of GENE_ARCH is that it generates complete building designs, both in 

terms of geometry, spatial layout and room characteristics, as in terms of construction 

materials, internal finishes, types and characteristics of window and glazing systems, and even 

mechanical and electrical installations."95

 

  The main weakness of GENE_ARCH is its inability to 

explore different building shapes and layouts are not specifically encoded.  Even using shape 

grammars, variation in the generated geometry is highly restricted.  Caldas writes, "The on-

going experiments with shape grammars suggest that the method may be too limited to 

provide the necessary handles on complex three-dimensional problems, and to allow the 

emergence of unexpected design characteristics, thus suggesting the need for other 

paradigms."    

Figure 2.3. 7  3-D Building Designs Generated by GENE_ARCH 

 

2.3.2.3  eifForm 

Kristina Shea has developed a design optimization system, called eifForm, that employs a 

combination of a structural shape grammar and parametric techniques to generate and 

transform structural design geometry and topology.96

                                                     
95 Ibid. 

  It executes a recursive cycle of form and 

structure generation, structural performance evaluation, and parametric modification stages.  It 

96 Kristina Shea, et al., "Towards Integrated Performance-based Generative Design Tools," W. Dokonal, ed., Digital Design, 
ECAADE 2003, (Graz Austria: 2003), 253-264 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 50 
  
can accommodate various loading conditions and structural and material constraints.  In the 

generative stage, parametric structural shapes are added, removed or modified by a non-

deterministic, non-monotonic search algorithm based on simulated annealing, rather than an 

evolutionary algorithm. 97    In the evaluation stage, structural analysis and stochastic 

optimization98

  

 are carried out, outputting a new set of optimally-directed parameters.  In the 

modification stage, the new parameters are input by the human designer, completing the first 

iteration of the three-stage iterative process.   Figure 2.3.8 shows an installation structure 

generated and optimized by eifForm.   

 

Figure 2.3. 8  Installation Generated and Optimized by eifForm 

 

2.3.2.4  Schema-Based Approach 

Janssen has developed an evolutionary design exploration system capable of generating a 

variety of designs based on a predetermined design schema, using a combination of 

parametric and combinatorial generative modeling techniques. 99

                                                     
97 Wikipedia contributors, "Simulated annealing," Wikipedia, The Free Encyclopedia  

  The design schema is a 

http://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=460918505 (accessed 5 Dec. 2011) 
98 Wikipedia contributors, "Stochastic optimization," Wikipedia, The Free Encyclopedia  
http://en.wikipedia.org/w/index.php?title=Stochastic_optimization&oldid=456468729 (accessed 5 Dec. 2011) 
99 Janssen, “A Design Method and Computational Architecture." 

http://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=460918505�
http://en.wikipedia.org/w/index.php?title=Stochastic_optimization&oldid=456468729�


 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 51 
  
conceptualization that "captures the essential and identifiable character of a family of 

designs."100

The development system gradually modifies a three-dimensional matrix of cuboid cells, whose 

dimensions are prescribed by the design schema, using a set of modeling operations that push, 

pull and incline the faces of cuboids, merge and remove cuboids, and insert architectural 

objects like columns and staircases.  This process is illustrated in Figure 2.3.9.  The system is 

successful in achieving controlled variation, as demonstrated by the sample of generated 

building designs shown in Figure C, however the types of allowed variation are considerably 

restricted.  In particular, the scale of designs that can be generated is limited to low-rise 

buildings, and the geometry that can be generated is limited to rectilinear geometry.   

  The design schema is encoded in a form that can be used by the evolutionary 

design system to enable generation of designs that differ in overall organization and 

configuration but that preclude non-functional or 'chaotic' forms.  Essentially, the design 

schema prescribes a set of constraints used to construct systems to generate designs with 

controlled variability.   

 

Figure 2.3. 9  Eight-Step Design Generation Process of Jansen's Schema-Based System 

                                                     
100 Ibid, 20   



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 52 
  
2.3.2.5  P0L-Systems 

Hornby has developed an integral evolutionary design system for evolving 3-D static structures, 

like tables.101102103

As shown in Figure 2.3.10, the P0L-system is able to produce surprising table designs that 

exhibit complex regularities, and is reported to be faster and produce designs with higher 

fitness than a comparative system using a non-generative encoding.  However, to achieve this 

performance (for tables) requires the use of no less than twenty complex conditional production 

rules with two parameters each.     

  The system combines parametric context-free Lindenmayer systems (P0L-

systems) with a LOGO-style turtle to construct objects out of voxels.  A string of commands is 

generated by the P0L-system generates a string of commands that move the turtle around 

inside an initially empty three-dimensional grid of voxels.  Every empty voxel the turtle moves 

through gets filled in to gradually build up a structure.  An evolutionary algorithm is used to 

evolve populations of P0L-systems by varying conditions, arguments, symbols, and characters 

of the production rules.  The system can be used to evolve table designs containing thousands 

of voxels by defining a fitness function in terms of table height, surface structure, stability and 

number of excess voxels used. 

 

Figure 2.3. 10  Table Designs Evolved Using P0L-System 

                                                     
101 Hornby, “Functional Scalability,” 569-587. 
102 Hornby, “Generative Representations.” 
103Hornby and Pollack, “Advantages of Generative Encoding.”  



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 53 
  
2.3.2.6  GADES 

Bentley has developed an integral evolutionary design system, called GADES (Genetic 

Algorithm Designer), that can adaptively evolve many different types of design.104

One of the main features of GADES is its flexibility, in terms of the types of designs it is able to 

evolve.  Bentley claims to have been inspired by nature, which, he explains by quoting Dawkins, 

uses the same genetic machinery to generate everything from bacteria to blue whales.

  The system 

generates forms using "clipped stretched cuboids," which are cubes with variable length, width, 

height, and variable three-dimensional location, that may be clipped by a plane of variable 

orientation.  Each clipped stretched cuboid is thus defined by nine parameters.  Forms are 

generated by combining a number of non-overlapping cuboids based on instructions encoded 

in hierarchically structured genotype representations.  To enable reproduction of offspring from 

parents with different sized genotype representations, the system employs a modified 

crossover operator.  The evolutionary algorithm is a modified genetic algorithm (GA) using a 

mapping stage between genotype and phenotype representations, preferential selection of 

parents, and a life-span operator.  Individual designs are evaluated using software modules 

selected from a library, according to the particular design task.   

105

Another important feature of GADES is that it is an integral evolutionary design system, capable 

of both generating novel forms and optimizing them.  This capability too is largely due to the 

generic nature of the phenotype representations employed.  Each clipped stretched cuboid in a 

design is generated by a linear mapping process of nine parameters, encoded in the genotype 

representation.  Accordingly, epistasis is low and any small change in some particular part of 

the genotype representation will cause a corresponding small change in the phenotype 

  The 

flexibility of GADES is due, in large part, to the generic nature of its clipped stretched cuboid-

based representations.  Bentley has demonstrated how a wide variety of different forms, from 

the coffee tables shown in Figure 2.3.11 to the race car shown in Figure 2.3.12, can be created 

by assembling a limited number of these primitives.  The cost of this flexibility, however, is that 

the forms evolved are blocky and exhibit very little detail.   

                                                     
104 Bentley, Evolutionary Design by Computers, 405-423. 
105 Dawkins, Universal Darwinism  



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 54 
  
representation.  This minimizes discontinuities in the evolutionary search space, allowing the 

GA to easily find paths from poor designs to better ones.106

 

 

 

Figure 2.3. 11 Table Designs Evolved by GADES 

 

Figure 2.3. 12  Race Car Evolved by GADES 

 

2.3.2.7  HEAD  

Bukhari, Frazer, and Drogemuller have proposed an integral evolutionary design system, called 

the hierarchical evolutionary algorithmic design (HEAD) system, that is divided into three levels 

"to respond to the hierarchical decomposition of the design problem into sub-problems."107

                                                     
106 Bentley, “Generic Evolutionary Design.”  

  

The HEAD system includes a room-level algorithm, a building-level algorithm, and an 

optimization-level algorithm in the configuration shown in Figure 2.3.13. 

107 Fakhri Bukhari, John H. Frazer, and Robin Drogemuller, “Evolutionary Algorithms for Sustainable Building Design” 
(paper presented at the 2nd International Conference on Sustainable Architecture and Urban Development, Amman, Jordan, 
July 12-14, 2010). 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 55 
  
The room-level algorithm evolves designs for each space in the building based on unspecified 

design criteria, standards, codes, etc., and outputs not just one but a number of the most 

successful variants.  The building level algorithm evolves arrangements of the space designs 

output by the room-level algorithm based on adjacency criteria and outputs a number of the 

most successful configurations to the optimization-level algorithm.  The optimization-level 

algorithm optimizes the successfully evolved configurations based on thermal, daylighting, 

acoustical and cost performance.   

Only the system architecture shown in Figure 2.3.13 is disclosed.  There is no information on 

the type of generative processes employed in the development systems.  Neither is there any 

data on the performance of the system because, at the time of publication, it had not been 

implemented.   

 

 

Figure 2.3. 13  HEAD Architecture 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 56 
  
While the concept of decomposing the design problem into further levels of sub-problems is 

quite promising, the HEAD system seems to have some major drawbacks.  First, the partial 

design solutions evolved by the room-level algorithm restrict the variability of room 

configuration solutions that can be evolved by the building-level algorithm, which in turn restrict 

the variability of the overall building designs evolved by the optimization-level algorithm.  

However, this particular hierarchy of constraints may not reflect the priorities of the design 

problem, in which case they could block off important areas of the design space that should be 

explored for useful adaptations.  For example, in a particular design problem, the overall form 

of the building or the layout of spaces may take precedence over the design of individual 

rooms. In this case, the algorithm for evolving the overall building form or layout of spaces 

should sit at the top of the hierarchy for maximum variability, rather than lower down where the 

range of allowed variation is constrained by previously evolved design elements. 

Further, room, building and overall optimization may not be the most effective choice of sub-

problems.  Depending on the particular design problem, an alternative deconstruction may be 

more in-line with building type characteristics and design priorities.  For example, a skyscraper 

design problem might best be broken down into the design of overall massing, then floor-

plates, and finally building envelope. And the design of a museum or gallery might best be 

approached by making circulation the top priority, followed by detailed plans, the building 

enclosure, and fenestration.  The particular breakdown should follow from the building typology 

and design priorities of the particular problem. 

2.3.3  Experimental Design Projects 

In the design literature, good examples of applied evolutionary design are still few and far 

between.  There are a number of experiments disclosed in publications of research conducted 

over the past several years by the students and directors of the Emergent Technologies and 

Design program at the Architectural Association in London. 108  109  110  111

                                                     
108 Michael Hensel, Achim Menges and Michael Weinstock, eds., Emergence: Morphogenetic Design Strategies 
(Architectural Design) (New Jersey: Wiley, 2004) 

  Most of these 

109 Michael Hensel, Achim Menges and Michael Weinstock, eds., Techniques and Technologies in Morphogenetic Design 
(Architectural Design) (New Jersey: Wiley, 2006) 
110 Michael Hensel and Achim Menges, eds., Versatility and Vicissitude: Performance in Morpho-Ecological Design 
(Architectural Design) (New Jersey: Wiley, 2008) 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 57 
  
experiments (hereinafter referred to as the "AA experiments") are characterized by modeling 

some system or element of the architecture based on the morphology of a chosen plant, 

animal or other naturally-occurring construct, to provide a starting point and framework for 

subsequent evolution or optimization.  The plant, animal or whatever is chosen based on its 

performance in relation to predetermined architectural performance requirements. Its 

morphology is analyzed, and, in an attempt to emulate its performance capacities, certain 

properties of its morphology are incorporated into a computer model.  The model is then 

evolved or optimized in response to feedback from performance simulations.   

A typical example of an AA experiment is the M.Sc. Dissertation of Ioannis Douridas (2006), 

which focused on the design of a new envelope for the Piraeus Tower in Athens, Greece, a 

climatically deficient 1970s mid-rise office building with a glass curtain wall.112

The AA experiments demonstrate the need to establish a starting point and constraints for the 

evolutionary design approach.  While the kind of biomimicry

  Owing to a lack 

of insulation, the building suffers from overheating in the summer and insufficient heating in the 

winter.  Research into a cactus revealed that the cactus' hydrostatic and ribbed body reduce 

thermal gain by self-shading and utilizing airflow.  Based on this analysis, a base element was 

developed from which to algorithmically build up an articulated surface for the building.  In this 

process, a hill-climbing algorithm informed by feedback from performance simulations was 

used in a process of multi-objective optimization.  Figure 2.3.14 is a flowchart of the overall 

iterative design development process. 

113

                                                                                                                                                           
111 Michael Hensel et al., Emergent Technologies and Design: Towards a Biological Paradigm for Architecture (London: 
Routledge, 2010) 

 employed by Douridas and 

many others is one strategy for doing this, it may considerably restrict the evolutionary search 

space, blocking off areas of the design space that may contain useful adaptations.  Moreover, 

the completely different scales and natures of plants and buildings brings into question the 

appropriateness of these kinds of analogies. 

112 Ibid, 65-73 
113 Wikipedia contributors, "Biomimicry," Wikipedia, The Free Encyclopedia  
http://en.wikipedia.org/w/index.php?title=Biomimicry&oldid=465552583 (accessed 5 Dec. 2011) 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 58 
  

 

Figure 2.3. 14  Flowchart of iterative design development process of typical AA experiment 

 

Another example of experimental performance-based evolutionary design is shown in Figures 

2.3.15 and 2.3.16.  Strange Attractor, by MESNE, embodies a different approach to the initial 

setup of the conditions for form discovery.114

Strange Attractor illustrates how performance-based evolutionary design can proceed from a 

formal concept.  BESO operates by iteratively removing under-utilized volume elements from a 

3-dimentional matrix of elements representing the user-defined maximum building envelope, 

under user-defined loading conditions and constraints.

  The architects begin with a strong formal concept, 

the warped figure-8 of a Lorentz attractor, and employ a bi-directional evolutionary structural 

optimization (BESO) algorithm to find optimally-directed structural designs.  In a fully 

automated process, "the form of the pavilion emerges through the actions of a guided 

feedback loop."  The architects comment, "What is most interesting about this process of form 

discovery is the negotiation between the positioning of structural 'boundary conditions' and the 

design constraints of concept, planning strategy and site."   

115

                                                     
114 MESNE, "Strange Attractor," Contemporary Digital Architecture: Design and Techniques, Jacobo Krauel, ed. (Links 
International Ceg, 2010), 200-203. 

  Though form-finding is driven by only 

115 O.M. Querin , G.P. Steven and Y.M. Xie, "Evolutionary structural optimisation (ESO) using a bidirectional algorithm," 
Engineering Computations, Vol. 15 No. 8 (MCB University Press : 1998), 1031-1048. 



 
 

 

2.3  EVOLUTIONARY DESIGN     P a g e  | 59 
  
one type of performance, structural efficiency, issues of program and site are addressed in the 

synthesis of the design concept.  And though it is a strong formal concept, it is also quite 

flexible, having no explicit constraints on interior partitioning or fenestration.  Thus, it 

successfully provides a balance of specificity and generality that is conducive to useful 

variations, which is important in the algorithmic form-evolution process. 

 

Figure 2.3. 15  Form-finding for 'Strange Attractor' using BESO 

 

 

Figure 2.3. 16  Interior Computer Rendering of 'Strange Attractor'



 
 

 

 

 

 

 

 

PART 3 

RESEARCH DOCUMENTATION



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 61 
 

3.1.1  Introduction 

Some researchers have suggested a possible alternative strategy for achieving integral 

evolutionary design that calls for the combination of multiple evolutionary design systems to 

overcome the barriers to adaptive evolution faced by generative evolutionary design systems, 

without resorting to low-level generic rules and representations.116 117

Compound evolutionary design systems are composed of a hierarchy of sub-systems, which 

are themselves evolutionary design systems, working together in coordination on the same 

design problem but at different resolutions.  For example, a compound evolutionary design 

system might include one sub-system dedicated to evolving individual rooms, another sub-

system dedicated to evolving layouts, and yet another system whose purpose is to evolve 

building envelopes containing stacked layouts.  By feeding the outputs of lower-level sub-

systems to the next higher-level sub-systems, the overall system functions like a computational 

pipeline.  The individual sub-systems of the pipeline may operate one at a time in succession, 

or concurrently by synchronizing their outputs.  There are very few examples of compound 

evolutionary design systems in the literature, and it is likely that even fewer have been 

implemented. 

  The proposed combined 

systems might be called compound evolutionary design systems. 

The main problem with compound evolutionary design systems is that they are complex, both 

conceptually and computationally.  This is particularly so of compound systems whose sub-

systems operate concurrently.  Such compound systems tend to have phenotype 

representations with many interdependent elements and, consequently, large numbers of local 

optima.  If care is not taken in the design of the rules and representations, evolution may 

commit itself too early to sub-optimal approximations of the best design, some of which are not 

even functional.  While this problem may be relatively minor in the case of simple design 

problems that do not require solutions with interdependent elements, it can seriously hinder the 

evolutionary process when applied to more complex architectural design problems. 

                                                     
116 Bukhari et al., “Evolutionary Algorithms.” 
117 Ian Parmee, “Exploring the Design Potential of Evolutionary Search, Exploration and Optimisation,” in Evolutionary 
Design by Computers, ed. Peter J. Bentley. (San Francisco: Morgan Kaufmann Publishers, Inc.). 
 



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 62 
 
However, when the different sub-systems operate one by one in succession, interdependent 

elements in different sub-systems are treated independently.  This helps to avoid problems that 

stem from interdependent elements, but it also changes the way the system is capable of 

optimizing designs.  It abandons the idea of a single search for an optimal overall configuration 

of all elements in favor of a series of searches for optimal configurations of sub-systems of 

elements.  Each sub-system evolves an optimal configuration of some part of the overall design, 

which, once fixed, imposes constraints on the next sub-system, and so on, until a complete 

design has been evolved.  To emphasize that they evolve complete designs in multiple stages 

with evolving constraints, rather than in one process with many interdependent elements, 

compound evolutionary design systems employing a hierarchy of sub-systems operating one-

by-one in succession are herein referred to as multi-stage evolutionary design systems. 

3.1.2  Multi-Stage Evolutionary Design Systems 

 

 

 

 

 

 

Figure 3.1. 1  Multi-Stage Evolutionary Design Process 

 

Figure 3.1. 2  General Architecture of N-Stage MSEDS



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 63 
 
Figure 3.1.1 is a flowchart illustrating a multi-stage evolutionary design process comprising N 

steps, and Figure 3.1.1 is a schematic diagram illustrating the general architecture of a multi-

stage evolutionary design system (MSEDS) comprising N sub-systems.  While there is no 

particular limit to the number N, in most cases it will be smaller than 10.  In general, the number 

N will depend on the size, complexity and level of resolution of the building design to be 

evolved by the MSEDS, as well as the number of different performance criteria used to evaluate 

designs in the evolutionary process.  This is discussed in more detail below. 

Referring to Figures 3.1.1 and 3.1.2, the multi-stage evolutionary design process includes step 

S1 of evolving a stage 1 design model using sub-system 1, step S2 of evolving a stage 2 

design model using sub-system 2, step S3 of evolving a stage 3 design model using sub-

system 3, and so on up to step SN of evolving a stage N design model using sub-system N.  

Here, since sub-systems 1 to N are used one by one in succession to evolve different parts of 

an overall building design, the parts evolved by sub-systems 1 to N are referred to as stage 1 to 

N design models.  Taken together, they constitute the overall building design evolved by the 

MSEDS.   

Referring to Figure 3.1.2, each of sub-systems 1 to N has the same general EDS architecture 

shown in Figure 2.3.4, except for one difference.  Each of sub-systems 1 to N is connected to a 

single user interface 100, which is not considered to be included in any sub-system but rather 

is a basic component of the overall MSEDS.  Each of sub-systems 1 to N includes the same 

evolutionary solver 200, which includes the selection system 210 and the reproduction system 

220, but a different design developer-evaluator.  Sub-systems 1 to N respectively include 

design developer-evaluators 1000 to N000, which respectively include development systems 

1100 to N100 and evaluation systems 1200 to N200.  This configuration enables each of sub-

systems 1 to N to evolve a different part of the overall design.  

Sub-systems 1 to N are connected in series from sub-system 1 to sub-system N to form a 

computational pipeline.  More specifically, development systems 1100 to N100 are connected 

in series from development system 1100 to development system N100, so that the design 

evolved by sub-system 1 is output from development system 1100 to development system 

1200, where it acts as a constraint on the evolutionary process in sub-system 2, the design 

evolved by sub-system 2 is output from development system 1200 to development system 



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 64 
 
1300, where it acts as a constraint on the evolutionary process in sub-system 3, and so on 

down the line all the way to sub-system N. 

3.1.3  System Design 

The task of developing an MSEDS to evolve building designs is twofold.  It entails: 

• breaking down the overall design problem into a set of smaller component problems, 

and then  

• developing individual sub-systems to evolve solutions to the component problems, 

which, together, constitute a solution to the overall design problem.   

These two steps, which in some ways mirror the initial steps of a conventional cognitive design 

process, will be referred to as: problem deconstruction and sub-system design. 

3.1.3.1  Problem Deconstruction 

Problem deconstruction involves strategically breaking down the overall design problem into 

smaller interrelated design problems to be solved by separate sub-systems within the multi-

stage evolutionary design system.  This can be approached in the following three steps. 

• The first step toward deconstructing the overall design problem is to carefully rank all of 

its constraints and objects in order of importance.  This is to provide a basis for 

appropriately deconstructing the design problem into smaller parts.  The prioritized 

constraints will also inform the design of a generative process to be employed in each 

part later in the development of the system.  

• The second step is to actually deconstruct the problem.  In this process, fundamental 

architectural concepts are leveraged to impose a basic structure on the evolutionary 

search space.  For example, the preliminary design of a high-rise office building could 

be broken down into three steps that call for the design of: a generic massing model 

that works with the program and other constraints, a set of floorplans to populate the 

massing model and give it shape, and an enclosure system to enclose the model. 



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 65 
 

• The third step is to hierarchically order the parts of the deconstructed design problem 

based on the priority of the constraints they introduce.  This is to ensure that the 

evolutionary search space is not constrained in a way that blocks off more important 

areas where better designs are likely to be found in favor of expanding less important 

areas. Returning to the above example of a high-rise office building, suppose a design 

objective specifies, for aesthetics or some other reason, that the building have some 

predetermined three-dimensional shape, say, the shape of an egg, and further 

suppose that objective is considered to be more important than any potentially 

conflicting constraints on the floorplans.  Then the task of evolving the egg-shaped 

enclosure around the massing model probably ought to precede the task of evolving 

floorplans, to ensure that no compromise in form need be made to accommodate 

floorplans evolved in advance. 

3.1.3.2  Sub-System Design 

The term 'sub-system' refers to each of the separate evolutionary design systems needed to 

evolve solutions to a corresponding part of the decomposed design problem.  The sub-

systems must be integrated in such a way that the solutions they evolve can be combined to 

constitute a solution to the overall design problem.  Design of the evolutionary algorithms used 

in the sub-systems is beyond the scope of the present research.  Instead, the commercially 

available Galapagos evolutionary solver is used to implement each of the sub-systems.  The 

task of designing the sub-systems can be broken down into two parts: development system 

design and evaluation system design.   

Development System  

Development system design involves designing a generative process to create phenotype 

representations from genotype representations for each sub-system of the multi-stage 

evolutionary design system corresponding to each part of the deconstructed design problem.  

This step further constrains the evolutionary search space to ensure that elements of building 

designs are evolved.  Considerable care should be taken not to constrain the generative 

processes in ways that conflict with the priorities assigned in the problem deconstruction step, 



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 66 
 
as this could block off regions of the evolutionary search space where more desirable designs 

might have been found only to open up regions with relatively less potential.   

Returning again to the above example of a high-rise office building, the process used to 

generate floorplans should first off be constrained to produce plans that fit within the egg-

shaped envelope.  This could be accomplished by intersecting a horizontal plane at the height 

of each floor with the surface of the envelope to produce a set of curves yielding the outer 

perimeters of the floor-plates.  A number of other constraints have to be encoded into the 

generative process, and there is often the potential for conflict.  For example, the designer may 

wish to consider the possibility of an atrium of some kind.  In encoding the potential for an 

atrium into the generative process, he must pay careful attention to the problem constraints.  

Suppose one design requirement specifies a minimum average daylight factor, while another of 

higher priority specifies a minimum floor-plate efficiency (area of rentable space divided by total 

area of floor-plate).  In this case, the atrium should be encoded into the generative process in 

such a way that its size is limited by the minimum floor-plate efficiency.   

Evaluation System 

Evaluation system design involves designing a system for evaluating generated designs based 

on functional criteria that reflect relevant performance objectives.  Evaluation results are input to 

a fitness function formulated to output a single-figure appraisal of the quality of the design.  If 

designs are to be evaluated based on multiple conflicting criteria, then multi-objective 

optimization techniques will have to be employed.   

AOF 

One way to handle conflicting performance criteria in a multi-objective optimization scenario is 

to simply add them together.  Weight coefficients can be used to reflect their relative 

importance.  The resulting expression is called an aggregate objective function (AOF). to 

illustrate how weights are calculated, consider the following pair of objectives:  

average daylight factor (DFAVE) = 5 

area-averaged solar heat gain coefficient (SHGCAVE) = 0 



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 67 
 
Adding these equations together yields: 

│DFAVE - 5│ +  SHGCAVE = 0 

Inserting weight coefficients A and B to express the relative importance of the two objectives 

yields:  

f ≡ f(DFAVE, SHGCAVE) = A(│DFAVE - 5│) +  B( SHGCAVE) 

Values for the weight coefficients A and B can be determined by specifying appropriate 

boundary conditions for 𝑓, which may be derived from various constraints and/or preferences.  

For example, if the International Energy Conservation Code (IECC) requires an area-averaged 

solar heat gain coefficient of 0.4 or less, and the program calls for a daylight factor of at least 

2.0, the ratio A/B can be calculated as follows: 

𝑓 (5, 0.4) = f(2.0, 0) 

A(│5 - 5│) + B( 0.4) =  A(│2.0 - 5│) + B(0) 

0.2B = A 

Since only the ratio A/B is meaningful, not their individual values, we can conveniently let A = 1 

and B = 1/0.2 = 5 to obtain the following AOF: 

AOF ≡ f(DFAVE, SHGCAVE) = │DFAVE - 5│ +  5( SHGCAVE) 

In the general case of multi-objective optimization with 𝑛  mutually conflicting performance 

objectives, the AOF can be defined: 

𝐴𝑂𝐹 ≡  𝑓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) =  � 𝑤𝑖�𝑥𝑖 −  𝑥𝑖
𝑜𝑝𝑡�

𝑛

𝑖=1
 

where 𝑥𝑖  represents the actual result of the 𝑖 th performance simulation,  𝑥𝑖
𝑜𝑝𝑡  represents the 

optimal result of the 𝑖th performance simulation, and 𝑤𝑖 represents the 𝑖th weight coefficient.  As 

in the above example, the weight coefficients may be determined by choosing a set of equally 

fit (non-optimal) simulation results (𝑥1
𝑢𝑛𝑓 , 𝑥2

𝑢𝑛𝑓 , 𝑥3
𝑢𝑛𝑓 , … 𝑥n

𝑢𝑛𝑓), and writing: 

𝑤1�𝑥1
𝑢𝑛𝑓 −  𝑥1

𝑜𝑝𝑡�  =  𝑤2�𝑥2
𝑢𝑛𝑓 −  𝑥2

𝑜𝑝𝑡�  =  𝑤3�𝑥3
𝑢𝑛𝑓 −  𝑥3

𝑜𝑝𝑡�  =  …  =  𝑤n�𝑥n
𝑢𝑛𝑓 −  𝑥𝑛

𝑜𝑝𝑡� 



 
 

 

3.1  MULTI-STAGE EVOLUTIONARY DESIGN P a g e  | 68 
 
As the weight coefficients are calculated from boundary conditions set by the designer, this 

method provides a way to encode design priorities into the evaluation process for multiple 

evaluation criteria. 

 

 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 69 
 

3.2.1  Introduction 

Most building design problems are sufficiently complex that when design solutions are explored 

using a single evolutionary design system employing a sufficiently constrained generative 

process, epistasis and interdependent elements severely hinder adaptive evolution.  The 

underlying strategy of multi-stage evolutionary design is to deconstruct the complex building 

design problem into smaller, interrelated component design problems that can each be 

effectively tackled by a different convergent evolutionary design system without epistasis and 

interdependent elements becoming barriers to adaptive evolution.  This approach does limit the 

evolutionary search space, but it does so in a way that is consistent with the prioritized 

objectives and constraints of the design problem.        

This chapter presents research focused on designing multi-stage evolutionary design systems 

to adaptively evolve design solutions to a particular category of design problem - the 

skyscraper.      

3.2.2  Design Problem 

As a category of design problem, the skyscraper is defined in this research to include all multi-

story structures that have a single independent load-bearing structure consisting of a steel 

framework, and a minimum total height of 100 m (330 ft).   

3.2.3  Skyscraper MSEDS Design 

According to the multi-stage evolutionary design approach, a given design problem is tackled 

by first designing a system that addresses a whole class of design problems to which the given 

problem belongs.  The multi-stage evolutionary design system is like a developmental meta-

model consisting of generative rules and procedures that can be instantiated as a model of any 

design in the evolutionary search space by varying its genetic parameters.  In these terms, 

each sub-system is a specific part of the meta-model that can be instantiated as a 

corresponding part of any design model in the evolutionary search space by variation of its 

genetic parameters.  Designing the system is, in effect, equivalent to designing the evolutionary 

search space. 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 70 
 
3.2.3.1  Problem Deconstruction 

Constraint Prioritization 

The first step in designing the system involves looking at the general architectural constraints of 

the particular class of design problem.  The following is a list of typical constraints on the 

skyscraper design problem, grouped according to their source:  

General  

• multiple storeys 

• single independent vertical structure capable of resisting vertical and lateral loads. 

• one or more vertical service cores capable of providing required vertical transportation 

(elevators) and space for routing HVAC risers, plumbing, electrical and data 

transmission systems. 

• flexible enclosure system capable of providing thermal barrier, admitting daylight, and 

permitting views 

• maximum slenderness ratio of 1:20 (beyond this limit there are no precedents) 

Codes and Regulations    

• means of egress on every floor (details specified by local building code) 

• fireproof refuge areas located at minimum intervals (specified by local building code / 

fire code)     

• maximum usable floor area per fire zone 

• maximum height specified by local zoning regulations 

• maximum floor area ratio (FAR) specified by local zoning regulations 

• podium setbacks from lot boundary specified by local zoning regulations 

• tower setbacks from lot boundary specified by local zoning regulations 

• maximum site coverage (plinth area) specified by local zoning regulations 

• minimum green area coverage of ground plane specified by local zoning regulations 

and design brief 

• emergency vehicle access routes and maneuvering zones with access to all elevations 

and satisfying minimum area requirement specified in fire safety regulations   

Design Brief 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 71 
 

• gross floor area (GFA)  

• breakdown of GFA for program  

• target building height 

• minimum floor-to-ceiling clearance 

• minimum floor-plate efficiency  

• maximize floor-plate efficiency 

• maximize flexibility of space 

• maximize views 

• minimize energy consumption 

• maximize natural daylight  

• maximize indoor comfort 

• minimize wind loads 

• minimize construction costs 

• aesthetic/cultural/stylistic preferences 

• preferences related to structural grid   

The first group of constraints above relates to the basic functionality and structural soundness 

of the skyscraper, and the second group relates to legal requirements specified in relevant 

codes and regulations .  Both groups are necessary constraints and therefore may be hard-

coded into the generative rules and procedures of the system.  Here, constraints related to 

specific codes and regulations may be encoded as variables so that the system can be easily 

modified for application to different site conditions or in different localities, and can easily cope 

with changes in regulations.  However, for any given skyscraper design problem, these 

constraints will be fixed according to the particular site conditions (lot size and boundary, etc.) 

and the applicable codes and regulations.    

The third group of constraints and objectives relates to design requirements and objectives 

expressed by the client or suggested by the designer.  For simplicity, the source of this group 

will be referred to as the Design Brief, although, as mentioned, some or all objectives in the 

group may originate from other sources.  Not all constraints in the group are immutable and not 

all are of equal necessity and importance.  Rather, they can be selected for consideration or 

omitted, and they can be arranged along a scale from highest priority to lowest.  For any given 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 72 
 
design problem, the choices of which of these constraints to implement and what level of 

priority to assign to each of them, are subjective decisions made by the client and/or architect.  

Some of these decisions may affect the way constraints are hard-coded into the system, which 

could have an impact on the applicability of the system to other skyscraper design problems 

with conflicting priorities.   

Problem Deconstruction 

Design constraints identified above as 'general' or stemming from 'codes and regulations' are 

necessary constraints, though they won't always specify the same limits for every skyscraper 

design problem.  Together they impose some initial limits on the basic form or massing the 

skyscraper is allowed to have.  For example, they directly specify setbacks, a site coverage limit, 

and a height limit, and, combined with the GFA and floor-to-ceiling clearance requirements 

from the Design Brief, they specify the general massing of the skyscraper as a function of four 

or five different design parameters.  The precise form of the parametric massing equations that 

result from combining these constraints will be described below.  Regarding the present task of 

deconstructing the design problem, the realization that necessary design constraints can be 

combined to parametrically describe the general massing of a design solution suggests a way 

forward that doesn't require any additional assumptions. That is, the skyscraper design 

problem can be initially broken down into the relatively simple problem of designing its general 

massing and the remaining problem of designing its specific form and details, without 

constraining the design space in any unnecessary ways. 

The remaining problem of designing the specific form and details of the skyscraper is still quite 

complex and needs to be further deconstructed.  Aside from general massing, some important 

aspects of the design that need to be addressed early on are: 

• the shapes and dimensions of typical and atypical floor-plates 

• the type and placement of the service core(s) 

• typical floorplans showing partitioning and circulation 

• the overall form of the building envelope 

At a low level of resolution, these four aspects wholly constitute the remaining part of the design 

problem.  Thus, to further deconstruct the problem, they must be divided into at least two 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 73 
 
groups.  Although they are all interdependent to some degree, the first three aspects are more 

closely related to one another than to the fourth.  The first three all deal with horizontal 

organization, and they directly address functional space requirements at the human scale, 

which is a high priority.  The fourth aspect, on the other hand, is not directly relevant to 

functional space requirements at the human scale, but rather to issues such as 

aesthetic/stylistic preference and wind loading (aerodynamics).  Since these issues are of a 

very different nature than functional space requirements, it is reasonable to expect one of the 

two sets of issues to dominate the other in priority for any given design problem.  Therefore, is it 

also reasonable to expect that severing the connection between these two components of the 

design problem will not improperly restrict the design space.  Splitting off the fourth aspect 

listed above from the remaining design problem still leaves a fairly complex problem consisting 

of the first three highly interdependent aspects.  However, it is essentially a 2-dimensional 

space planning problem and, if carefully encoded, such problems can typically be solved in a 

convergent evolutionary process.   

There is another aspect of the overall design problem that corresponds to a higher level of 

design resolution and is an important factor affecting a number of performance objectives - the 

detailed structure and properties of the building envelope or building skin.  This includes the 

materials used in the curtain wall facade, the precise pattern of those materials, their thermal 

and optical properties, as well as the detailed configuration of any shading system employed.  

Because of its high degree of relevance to various performance goals, it is important to 

consider design of the building skin early on in the design process.  As it corresponds to a 

higher level of resolution of aspects of the design problem that are predetermined, presumably, 

in response to higher priority objectives, adding design of the building skin as a separate part 

of the overall design problem to be tackled by the multi-stage evolutionary design system will 

not improperly restrict the design space.  

The process of deconstructing the overall design problem thus results in identification of the 

following four sub-problems: 

• design of general massing 

• schematic design of typical and atypical floor-plates, including type and placement of 

service core(s), plan partitioning and circulation 

• design of overall form of building envelope 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 74 
 

• detailed design of building skin 

This is not the only possible way to deconstruct the design problem.  Care should be taken to 

ensure that the sub-problems are framed in a way that reflects the particular priorities of the 

design problem.   

Also, the ordering of sub-problems shown above is not the only possible ordering.  For 

example, suppose the client or designer has an aesthetic or stylistic preference for an overall 

building form that embodies certain sculptural qualities, which is nearly always true.  Should 

such a preference rank higher in priority than the goal of optimizing the functionality of typical 

floorplans, then the order of the second and third sub-problems could be switched.  In this 

case, the overall form of the skyscraper would largely predetermine the shape(s) of the floor-

plates, rather than the other way around.   

This flexibility in defining and ordering sub-problems translates into a considerable degree of 

flexibility in designing the multi-stage evolutionary design system.  Reframing and/or reordering 

sub-problems calls for modifying the system in ways that can redefine the evolutionary search 

space.  By exploiting this flexibility, modified systems can be implemented to explore different 

design alternatives that represent optimal solutions for different sets of design constraints and 

priorities.  This adds another level of controlled variability to designs that can be produced.  

System Architecture 

Figure 3.2.1 is a flowchart illustrating the process of evolving a skyscraper design in four stages 

corresponding to the above four sub-problems.  Figure 3.2.2 is a schematic diagram illustrating 

the general architecture of a multi-stage evolutionary design system (MSEDS) comprising 4 

sub-systems designed to evolve a skyscraper design by executing steps S1-S4 of Figure 3.2.1.  

Figure 3.2.3 is an image illustrating examples of design models evolved in each of steps S1-S4 

of Figure 3.2.1.  

 

 

 

 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 75 
 
 

 

 

 

 

Figure 3.2. 1  Skyscraper Multi-Stage Evolutionary Design Process 

 

Figure 3.2. 2  Skyscraper MSEDS Architecture 

 

  

Figure 3.2. 3  Examples of Models Produced at Different Stages of the Skyscraper MSED Process 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 76 
 
Referring to Figures 3.2.1, 3.2.2, and 3.2.3, in S1, a stage 1 design model representing the 

general massing of the skyscraper using rectangular planes vertically arrayed and grouped into 

service zones is evolved using general massing sub-system 1.  In S2, a stage 2 design model 

including at least one floor-plate design for each service zone is evolved using floor-plate sub-

system 2.  In S3, a stage 3 design model, in which the floor-plates evolved in S2 are vertically 

arrayed according to the general massing evolved in S1, the arrayed floor-plates are wrapped 

with a surface representing the building envelope, and service core and structural members are 

extruded, is evolved using envelope sub-system 3.  Finally, in S4, a stage 4 design model 

including the stage 3 design model evolved in S3 as well as further details such as shading 

devices and building information representing material construction is evolved using skin sub-

system 4. 

3.2.3.2  General Massing Sub-System 

Development System 

As described above, general constraints, constraints specified in relevant codes and 

regulations, and GFA, when taken together allow the general massing of the skyscraper to be 

specified in terms of several different design parameters.  The main parameters are listed in the 

table below: 

 

Quantity  Variable  

No. floors between refuge/MEP floors  R  

Floor-to-floor height  h  

Target building height  H  

Total no. of floors (including podium)  N  

No. of refuge/MEP floors  n
r 
 

No. of tenant floors  n
t 
 

Gross floor area  GFA  

Area of typical floor-plate  A  
 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 77 
 
Here, 'refuge/MEP floors' are floors reserved for refuge areas and mechanical rooms, and 'No. 

floors between refuge/MEP floors' refers to the interval between refuge floors which is limited by 

the relevant codes and regulations.  The other parameters are self explanatory.  With these 

parameter definitions, the parametric massing equations are: 

𝑁 =
𝐻
ℎ

 

𝑛𝑟 =
𝑁
𝑅

 

𝑛𝑡 = 𝑁 −  𝑛𝑟  =  𝑁 �1 −
1
𝑅
� 

𝐴 =
𝐺𝐹𝐴
𝑛𝑡

=
𝐺𝐹𝐴

�𝑁 − 𝑁
𝑅�

 

These equations can be used to define a parametric massing model of a skyscraper.  By 

setting the GFA to the value required in the Design Brief, and setting the floor-to-floor height 

based on the floor-to-ceiling clearance required in the Design Brief, the other parameters can 

be varied within applicable constraints to explore different massing options. 

Evaluation System 

Objectives for optimizing the massing of the skyscraper are the same as in a conventional 

manual design process.  Some typical objectives are: 

• achieve target building height 

• minimize number of refuge floors required 

• neatly fit program zones between refuge floors 

• maximize typical floor-plate area within limit of one fire zone per floor 

• typical floor-plate areas that can be neatly divided up into convenient structural bays  

The parametric massing model can be evaluated with respect to these criteria without having to 

simulate or calculate anything, simply by visualizing the model.  Thus, while evolutionary 

algorithms could be used to carry out the optimization, it may be a simple enough task to 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 78 
 
perform manually.  Optimization of the general massing system yields typical floor-plate areas 

for each program zone. 

3.2.3.3  Floor-plate Sub-System  

Development System 

In designing an evolutionary design system to tackle the problem of floor-plate design, the 

following issues have to be considered: 

• service core type and placement 

• overall floor-plate shape and dimensions 

• structural layout 

• partitioning and circulation 

Of these, service core type and placement may be the most fundamental and consequential 

consideration.   

   

 

 

3.2. 1 - Service Core Type and Placement Schemes 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 79 
 
In skyscrapers, a single centrally located service core is almost universal.  The main reason for 

this is that a central core maximizes the amount of unobstructed, rentable area around the 

daylit perimeter of the building.   However, to allow for the possible discovery of designs that 

defy this conventional wisdom, it may be desirable to allow the service core to vary in type and 

placement.  Figure 3.2.3 is a chart summarizing some of the different options for core type and 

placement, along with some of their advantages and disadvantages. 

The first task then becomes designing and implementing a generative process that is capable 

of generating a range of core type and placement options, like those shown in Figure 3.2.3, in a 

general way that can be applied to different floor-plate shapes, and without generating non-

functional configurations.  Such a generative process is described in Chapter 3.4. 

The next task is to create a generative process for generating a wide variety of floor-plate 

shapes, to which the core type and placement generative process can be linked.  Here, floor-

plate shapes are preferably generated with as much variability as possible within certain 

practical limits.  For example, the generated shapes may preferably range from primitive circles 

and rectangles to complex, irregular curvilinear and rectilinear shapes, so long as the total area 

for each typical floor-plate stays close to the value determined by optimizing the massing 

model.  It is also preferable to exclude chaotic shapes and shapes with very fine features.  A 

few examples of applicable generative processes are described in Chapter 3.4. 

The next task is to devise a process for generating a structural grid and structural members 

such as columns based on core type, placement and floor-plate shape.  The generative 

process should be capable fitting the structural grid to the floor-plate in structurally logical 

manner to enable evaluation of the general structural scheme, however it is not necessary for 

the generative process to be capable of developing detailed structural designs.  Such a  

generative process is disclosed in Chapter 3.4 

The final task is to encode circulation and variable partitioning as a function of the number of 

separate rental spaces and the area each specified in the Design Brief.  Again, circulation and 

variable partitioning should be encoded in a general way that can be applied to different floor-

plate shapes, and only functional configurations should be generated.  Such an encoding is 

described in Chapter 3.4. 

Evaluation System 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 80 
 
The next step in designing the floor-plate sub-system 2 is to design an evaluation system for 

evaluating generated floor-plate designs.  The criteria for evaluation should reflect performance 

objectives specified in the Design Brief.  Evaluation results are input to a fitness function 

formulated to output a single-figure appraisal of the quality of the design.  If designs are to be 

evaluated based on multiple conflicting criteria, then an aggregate objective function (AOF) will 

have to be constructed as a fitness function.  The following are a selection of evaluation 

techniques that could be used alone or in combination. 

View Value 

During the course of this research, a method was devised for evaluating floor-plate designs 

based on a quantitative measure of the quality of views opened up to tenants by the design, 

referred to as a view value.  The view value depends not only on the floor-plate and layout of 

rental spaces, but also on the particular context in which the design is to be constructed and 

utilized.   

 

3.2. 2 - Parametric View Ring 

To evaluate floor-plate designs based on view value, a parametric view ring is constructed as 

shown in Figure 3.2.4.  The view ring is centered on the site and divided up into sections 

corresponding to different views.  It can be divided into any number of segments and the 

angles subtended by the segments can be freely adjusted to match the site conditions of the 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 81 
 
design problem.  Then, the views are ranked from best to worst and the thicknesses of the 

corresponding sections of the view ring are adjusted to reflect the rankings, with better views 

getting thicker sections.    

Once the view ring is set up, evaluations can be performed during the evolutionary process as 

shown in Figure 3.2.5.  Rays are projected from the geometric center of each rental space 

defined by a given floor-plate design, in the direction of both corners of the same space at the 

building facade.  If the line of sight from the center of a rental space to either of its corners at 

the building facade is obstructed by a partition or by the building core, then a ray is projected 

from the center of the space toward the edge of the obstruction instead of toward the corner.  

For each rental space, the angular range between the two rays projected from its center is 

defined as the view range, and the area of the view ring enclosed by the view range is defined 

as the view value.  Defined in this way, the view range of a rental space reflects its facade 

frontage and depth, and the view value of a rental space reflects its view range and the quality 

of views within its view range, as represented using the view ring.   

 

 

3.2. 3 - View Evaluation Process 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 82 
 
If all tenants on a floor are to be treated equally, then summing the individual view values 

calculated for each rental space in a given floor-plate design yields the total view value for that 

design.  If, on the other hand, the intention is to create 'premium' rental spaces for higher 

paying tenants as well as 'standard' tenant spaces on the same floor, and it is more important 

that the premium rental spaces have high view values, then weight coefficients may be applied 

to the individual view values before summing to obtain the total view value of the design.  In 

either case, the larger its total view value, the better the design takes advantage of the views 

naturally available at the site.  In a simple case where this is the only criteria for judging the 

fitness of floor-plate designs, then total view value may be equated with fitness in the 

evolutionary process.    

Floor-plate Efficiency 

Another common design objective is to maximize floor-plate efficiency, defined as the 

percentage of gross floor area (GFA) that is net rentable area (NRA).  Floor-plate efficiency can 

be approximated by subtracting the total area reserved for the service core(s) and circulation 

from the total floor-plate area, dividing the result by the total floor-plate area, and multiplying by 

100%.  In a simple case where this is the only criteria for judging the fitness of floor-plate 

designs, then the floor-plate efficiency may be equated with fitness in the evolutionary process. 

Facade insolation 

Another important design objective is to minimize energy consumption, and one of the largest 

causes of energy consumption in many buildings is the need for mechanical cooling.  In any 

climate, solar radiation incident on the building facade usually makes up a large part of the total 

cooling load.  Accordingly, in order to minimize energy consumption, it is important to try to 

reduce exposure of the building envelope to solar radiation.  This has a direct bearing on the 

overall 3-dimensional form of the building envelope and therefore, the shapes and orientations 

of individual floor-plates. 

The evaluation of facade insolation is somewhat more complicated than the evaluation of view 

value or floor-plate efficiency.  It requires the use of solar simulation to calculate the angle of 

incidence of solar radiation on the building envelope over the course of a day and throughout a 

year.  One strategy for deriving an approximate model of the building envelope to use in the 

facade insolation simulation is to simply extrude the floor-plate vertically.  The extrusion may 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 83 
 
begin from a height corresponding to the lower end of the stack of floor-plates and end at the 

top of the stack, according to the general massing model. 

The facade insolation simulation will typically produce several sets of results, including facade 

insolation in Watts per square meter averaged over the year, and averaged over each season 

of the year.  Depending on the local climate at the site, it may be desirable to minimize facade 

insolation year-round, or it only be desirable during hot seasons.  Whichever the case may be, 

the appropriate facade insolation data is selected, and if there are no other evaluation criteria, 

the negative of the data is equated with fitness.  Here, it is necessary to take the negative of the 

facade insolation results because fitness increases as facade insolation decreases.  

Daylight 

Numerous studies have shown that the level of natural daylight inside buildings is linked to the 

health and performance of building occupants. Natural daylighting can also reduce the need 

for artificial lighting, thereby reducing energy consumption.  Accordingly, in designing for 

occupant health, productivity, and low energy consumption, it is desirable for natural daylight 

levels to fall within an optimal range in all occupied spaces.   

Daylight levels inside skyscrapers vary across each floor according to proximity to the building 

envelope, the geometry and optical properties of the building envelope, internal partitioning, 

and solar geometry.  Thus, like facade insolation, daylight analysis requires the use of solar 

simulation and an appropriately constructed analysis model.  A model for daylight analysis can 

consist of surfaces representing two adjacent floor-plates, all internal partitions and the building 

envelope between those floor-plates, and data representing the optical properties of each 

surface in the model.   

It is difficult to accurately gauge daylight levels without considering the detailed form and 

properties of the building skin, which will typically be evolved after the building floor-plates.  

Nevertheless, daylight analysis using a simplified envelope having fixed optical properties and 

no shading devices can be performed to isolate the daylight performance contribution of the 

floor-plate design. Here, floor-plate designs may be evaluated based on lowest daylight level, 

range of variation in daylight level, and/or average daylight level, measured in the simulation.  It 

is typically preferable to maximize lowest daylight level, minimize range of variation, and aim for 

some target average daylight level.  While excessive daylight can be mitigated with shading 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 84 
 
devices, etc., inadequate penetration of daylight into deep or partitioned-off areas of the floor-

plate can only be rectified by changing the floor-plate design. 

3.2.3.4  Envelope Sub-System 

Development System  

The third component of the skyscraper multi-stage evolutionary design system illustrated in 

Figure 3.2.2 is the envelope sub-system 3.  The building envelope is the outer wall (typically a 

curtain wall) that wraps around the floor-plates and encloses the interior space of the 

skyscraper.  As such, its form is largely determined by the combination of general massing and 

floor-plate designs evolved using the general massing sub-system 1 and the floor-plate sub-

system 2.  However, neither of those sub-systems directly develop the form of the skyscraper in 

elevation.  Thus, the envelope sub-system 3 is included as a means of adding a limited degree 

of variability to the overall form of the skyscraper viewed in elevation, within the constraints 

imposed by the evolved general massing and floor-plate designs.118

The envelope can be treated as a tubular surface wrapped around a stack of floor-plates 

evolved using the floor-plate sub-system 2 and stacked according the general massing 

scheme evolved using the general massing sub-system 1.  Since its horizontal cross-section at 

any elevation corresponds to the outer perimeter of the floor-plates arrayed at that elevation, 

the envelope can be generated using well-known geometric modeling operations, such as 

lofting, sweeping, or blending, by taking the outer perimeters of floor-plates as profile curves.  

Accordingly, one strategy for modifying the envelope is to modify its profile curves.  This 

involves selecting floor-plate outlines to use as profile curves, and selectively modifying some 

of the profile curves before creating the envelope surface.  A specific implementation of this 

strategy is described in Chapter 3.4. 

 

 

 

                                                     
118 As mentioned in Chapter 3.2, in alternative design problem deconstruction scenarios, the overall form of the 
skyscraper viewed in elevation may take priority over other design objectives more closely related to floor-plate design.  
In such a case, the envelope sub-system 3 would precede the floor-plate sub-system 2 in the hierarchy of sub-systems 
constituting the skyscraper MSEDS and, accordingly, would not be constrained by floor-plate designs but only by general 
massing. 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 85 
 
 

Evaluation System 

Even small modifications to the form of the building envelope can significantly impact building 

performance in a number of areas such as aerodynamics and self-shading. 119

Whatever the particular design objective(s), evaluation of aerodynamic performance generally 

requires computational fluid dynamics (CFD) simulation.  For external CFD analysis, site-

specific wind data and a simple model of the building envelope surface are all that is required, 

whereas for CFD analysis of internal wind-driven airflow, a model of the envelope fenestration 

and internal partitions are additionally required.  In some cases, it may be desirable to evaluate 

buoyancy-driven airflow inside a skyscraper or inside the air cavity of a double-skin facade 

(DSF).  This will require a more sophisticated model and CFD analysis.  

  The 

aerodynamics of skyscrapers is structurally very important.  Aerodynamic forms may require 

less structure due to lower wind loads, and properly modulated forms may be less susceptible 

to wind-driven oscillation.  Shaping of the building envelope might also aim to capture winds as 

part of a natural ventilation strategy, or to channel winds through wind turbines to produce 

electricity.         

Meanwhile, inclination of the surface of the building envelope with respect to the vertical can 

produce self-shading effects, thereby lowering facade insolation and energy consumption 

associated with cooling.  Two potential evaluation strategies are outlined below. 

Wind Load 

The wind pressure on the envelope can be simulated using wind-driven CFD and a simple 

surface model of the building envelope.  If the envelope model is encoded to have variable 

profile curves and/or variable openings through which air can flow, these properties may be 

varied by manipulating corresponding genetic parameters to produce a population of 

alternative envelope designs.  The maximum wind pressure on the envelope under design 

conditions may be simulated using CFD and used to evaluate the alternative designs. Here, the 

fitness should be defined to increase as the simulated wind pressure decreases.  

                                                     
119 Other considerations include reflective glare, solar lensing, etc.   



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 86 
 
Facade insolation   

Reduced facade insolation as a result of self-shading provides other potential criteria for 

evaluating different envelope designs.  In the simplest case, a solar simulation is performed on 

simple surface models of envelope design variants, produced using a development system 

employing variable profile curves.  Depending on whether it is desirable to minimize facade 

insolation year-round or only during hot seasons, the appropriate facade insolation data is 

selected, and fitness is defined to increase as facade insolation decreases.  

3.2.3.4  Building Skin Sub-System 

Development System 

The final component of the skyscraper multi-stage evolutionary design system illustrated in 

Figure 3.2.2 is the skin sub-system 4.  Here, 'skin' refers to the detailed material construction of 

the building envelope, including shading devices.  While the envelope sub-system 3 is used to 

evolve the overall form of the building envelope, the skin sub-system 4 is used to evolve the 

material properties and any other performance-related features of the building envelope, such 

as shading devices or double skin systems.   

Environmental inputs such as solar loads are not uniform across the entire surface of the 

building envelope.  Therefore, building skin designs that yield the best performance are not 

likely to have the same characteristics all over.  In order to enable different regions of the 

building skin to have different properties, it is necessary to sub-divide the envelope into regions.  

Here, the method of sub-division should allow the regions to vary in size and location.  One 

such method is described in Chapter 3.4. 

Material properties can generally be designated by appropriately setting parameter values and 

require no generative process.  Physical objects like louvers, fins, double skin facades (DSFs), 

and secondary cladding systems, on the other hand, must be generated for each region of the 

sub-divided building envelope.  It is important to encode sufficient variability into the generative 

processes used to generate these systems.  In the case of louvers, for example, louver width, 

displacement from the surface of the building envelope, and spacing interval should all be 

controlled  variable genetic parameters.  One example of such a generative process is 

described in Chapter 3.4.    



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 87 
 
Evaluation System 

The material systems of the building skin, together with the geometry of the building envelope, 

have a considerable impact on thermal performance, daylight penetration, and access to views.  

They are also a major factor affecting the overall cost performance and aesthetics of the 

skyscraper design.  Any one or combination of these performance areas could be selected as 

criteria for evaluating building skin designs.  A few examples are outlined below. 

Facade insolation          

The degree to which shading devices shade the building facade from direct solar radiation is a 

key factor affecting thermal performance.  Facade insolation of a facade clad in shading 

devices can be measured by performing a solar simulation on a model of the facade including 

the shading devices.  Here, the length of time required to perform the simulation typically 

increases dramatically as the geometry of the model increases in number of parts and 

complexity, and the evolutionary process entails repeatedly performing the simulation for each 

new design in the population, each generation.  Therefore, to prevent the evolutionary process 

carried out by the skin sub-system 4 from taking too long, it is preferable to include only as 

much of the building skin as is necessary to obtain reliable simulation results and no more.  

This might mean extracting a horizontal slice of the skin one or two floor-heights thick to 

represent a larger region in the analysis. 

Daylight          

Certain material systems and shading devices can significantly restrict penetration of daylight 

through the building envelope.  In some cases this may be desirable, but it is often an 

unwanted consequence of using such systems and devices to reduce solar heat gain.  For 

each different skin design, daylight levels inside the building can be measured by performing a 

daylight simulation on a model consisting of surfaces representing two adjacent floor-plates, all 

internal partitions and the building envelope between those floor-plates, all external and internal 

shading devices, and data representing the optical properties of each surface in the model.   

Cost Performance 

Every aspect of a building design has an associated cost performance, however it is often 

difficult to measure cost performance until a later stage of the design process when the design 



 
 

 

3.2  SKYSCRAPER MSEDS DESIGN  P a g e  | 88 
 
is quite highly resolved. If, however, the construction costs of different material systems under 

consideration for the building skin are known in advance, then rough energy performance 

simulation results could be coupled with cost data to perform a net present value (NPV) 

analysis for each different skin design.  By setting the term of the NPV analysis, the discount 

rate, the cost of energy, and the inflation rate, the calculated net present value of each design 

could be defined as proportional to fitness. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 89 
 

3.3.1  Introduction 

This Chapter describes the design and implementation of a multi-stage evolutionary skyscraper 

design system (skyscraper MSEDS) based on the methodology and general architecture 

described in Chapter 3.3.  A specific skyscraper design problem is taken as a reference for 

problem deconstruction and other specific system design tasks: The Rolansberg Hanking 

International Schematic Design Competition held in August and September, 2012 (hereinafter, 

referred to as the "Hanking Competition").  The end result is a skycraper MSEDS design and 

implementation tailored to adaptively evolve designs that respond to the requirements and 

objectives of the Hanking competition.   

3.3.2  Design Problem 

 
Figure 3.3. 1  Hanking Competition Site and Land Use Map 

 

Figure 3.3. 2  View of Shenzhen at Night Showing Location for Skyscraper  



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 90 
 
The Hanking competition called for the design of a 330m-tall office skyscraper boasting a 

combined GFA of 110,000m2 in the city of Shenzhen in Nanshan, China.  The client was 

Rolansberg Hanking, the second largest land developer based in Shenzhen, and the top of the 

Hanking Center was to serve as their headquarters.   

Figure 3.3.1 is a map showing the site for Hanking Center and land use in the neighborhood, 

and Figure 3.3.2 is a view of Shenzhen at night, showing the location of Hanking Center.  The 

site was 11,000m2, roughly rectangular with the broad side oriented North-South.  The 

surrounding neighborhood consisted mainly of low-rise residential, with a few high-rise office 

buildings under 150m tall in the vicinity.  The site bordered on a major thoroughfare with the 

best views in either direction down the thoroughfare and to the south over a university campus.   

3.3.3  Skyscraper MSEDS Design 

3.3.3.1  Problem Deconstruction 

Constraint Prioritization 

The first step in designing the system involves studying the problem constraints and objectives 

and arranging them in order of priority.  General constraints on the skyscraper class of design 

problem are discussed in Chapter 3.3.  The following is a prioritized list of constraints specific 

to the Hanking Competition:  

Codes and Regulations (necessary)    

• land coverage = 11,000m2 

• land use  - commercial office building 

• maximum height specified by zoning regulations = 330m + 20m cheat zone  = 350m 

• maximum floor area ratio (FAR) specified by local zoning regulations = 10 

• podium setbacks from lot boundary specified by local zoning regulations = 10m 

(North-South), 8m (East-West) 

• tower setbacks from lot boundary specified by local zoning regulations 

• maximum site coverage (plinth area) specified by local zoning regulations = 63% 

• minimum green area coverage of ground plane specified by local zoning regulations 

and design brief = 15% 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 91 
 

• means of egress on every floor (details specified by local building code) 

• fireproof refuge areas located at minimum intervals of fourteen floors     

• maximum usable floor area per fire zone = 2000m2 

• emergency vehicle access routes and maneuvering zones with access to all elevations 

and satisfying minimum area requirement specified in fire safety regulations   

Design Brief (requirements)     

• gross floor area (GFA) =  110,169m2 

• breakdown of GFA for program: 

• commercial office area = 62,719m2 

 innovative industries = 4,400m2 

 business apartments = 33,050m2 

 commercial = 10,000m2 

 commercial part of basement - 4,000 - 5,000m2  

• target building height - not specified 

• minimum floor-to-ceiling clearance = 3m 

• minimum floor-plate efficiency - not specified 

Design Brief (performance objectives) 

• maximize floor-plate efficiency 

• maximize flexibility of space 

• minimize energy consumption 

• maximize views 

• maximize natural daylight  

• maximize indoor comfort 

• iconic landmark 

• minimize wind loads 

• minimize construction costs 

 

 

 

 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 92 
 
Problem Deconstruction 

The above prioritized list of constraints confirm that constraints related to codes, regulations 

and requirements in the Design Brief together specify the general massing of the skyscraper as 

a function of four or five different design parameters.  Also, they indicate that the client places 

greater importance on efficiency, functionality and sustainability than on achieving some 

particular aesthetic, which suggests that the overall building form should follow, in large part, 

from the design of the floor-plates and the overall massing.  These observations confirm the 

appropriateness of deconstructing the problem into the following four parts, as described in 

Chapter 3.3:   

• design of general massing 

• schematic design of typical and atypical floor-plates, including type and placement of 

service core(s), plan partitioning and circulation 

• design of overall form of building envelope 

• detailed design of building skin 

 

System Architecture 

This problem deconstruction yields the general system architecture illustrated in Figures 3.3.1 

and 3.3.2.  Figure 3.3.3 is a schematic diagram illustrating the skyscraper MSEDS general 

architecture of Figure 3.3.1 in more detail.  Referring to Figure 3.3.3, the design developer-

evaluator of each of sub-systems 1 through 4 includes X number of development modules 

(shown in blue) in the development system, and Y number of performance evaluation modules 

(shown in blue) in the evaluation system.  The task of designing a particular skyscraper MSEDS 

based on this architecture entails specifying the number, configuration, functions and 

interrelationships of these modules.  The main objectives and considerations relevant to this 

task are discussed in Chapter 3.3.  The remainder of this chapter describes the sub-systems of 

a specific MSEDS design, aimed at evolving design solutions for the Hanking Competition, and 

its implementation. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 93 
 

 

Figure 3.3 1  Skyscraper MSED Architecture 

 

3.3.3.2  General Massing Sub-System 

Development System 

Figure 3.3.4 is a flowchart illustrating the process of developing general massing models using 

the development system 1100 of the design developer-evaluator 1000 of the general massing 

sub-system 1 shown in Figure 3.3.3.  Figure 3.3.5 is a schematic diagram of the general 

massing sub-system 1 shown in Figure 3.3.3, illustrating the general design of the development 

system 1100 of the design developer-evaluator 1000. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 94 
 
 

Figure 3.3 2  Massing Model Development Process 

 

 

 

Figure 3.3 3  Massing Sub-System 1 Showing Design of 
Development System 1100 

Referring to Figures 3.3.4 and 3.3.5, in S1100, values of input parameters 1101 are received 

from the user input device 110 of the user interface 100 and/or the reproduction system 220 of 

the evolutionary solver 200.  In S1110, a floor generator 1110 generates a planar surface of 

area specified by input parameter values for each program zone.  In S1120, a floor calculator 

1120 calculates the total number of floors N and the number of tenant floors nt  in each service 

zone from input parameter values using the parametric massing equations described in 

Chapter 3.2.  In S1130, a height list calculator 1130 calculates a list of elevations of all tenant 

floors from input parameter values.  In S1140, a floor arrayer 1140 vertically arrays a number of 

each of the planar surfaces generated by the floor generator 1110 corresponding to the 

number of tenant floors nt calculated by the floor calculator 1120 at the at the heights calculated 

by the height list calculator 1130.  In S1150, a color coder 1150 color codes the planar surfaces 

vertically arrayed by the floor arrayer 1140 according to program zone.  In S1160, the massing 

model including the vertically arrayed planar surfaces is displayed on the display 120 of the 

user interface 100.  In S1170, the outputs of the floor calculator 1120, the height list calculator 

1130 and the color coder 1150 are output to the evaluation system 1200.  In S1180, the 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 95 
 
selection system 210 of the evolutionary solver 200 determines whether or not a termination 

request signal is received from the user input device 110 or the terminator 211 (refer to Figure 

3.3.3).  If the termination request signal is received, in S1190, the outputs of the floor calculator 

1120, the height list calculator 1130 and the color coder 1150 are output to the development 

system 2100 of the floor-plate sub-system 2.  If it is determined that the termination request 

signal is not received, the process returns to S1100 and new input parameter values are 

received.     

Evaluation System 

 

 

Figure 3.3 4  Massing Model Evaluation Process 

 

Figure 3.3 5  General Massing Sub-System 1 Showing Design of 
Evaluation System 1200

Figure 3.3.6 is a flowchart illustrating the process of evaluating general massing models using 

the evaluation system 1200 of the design developer-evaluator 1000 of the general massing 

sub-system 1 shown in Figure 3.3.3.  Figure 3.3.7 is a schematic diagram of the general 

massing sub-system 1 shown in Figure 3.3.3, illustrating the general design of the evaluation 

system 1200 of the design developer-evaluator 1000. 

Referring to Figures 3.3.6 and 3.3.7, in S1210, geometry and parameter values output from the 

development system 1100 are received as input parameter and geometry 1201.  In S1220-1, a 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 96 
 
height evaluator evaluates the overall height of the received geometry and outputs the result to 

the display 120 of the user interface 100 and to a fitness calculator 1230.  In S1220-2, a 

massing efficiency evaluator 1220-2 evaluates the efficiency of the received geometry and 

outputs the result to the display 120 of the user interface 100 and to the fitness calculator 1230.  

In S1220-3, a floor-plate efficiency evaluator 1220-3 evaluates the efficiency of the received 

geometry and outputs the result to the display 120 of the user interface 100 and to the fitness 

calculator 1230.  In S1220-4, a zone division evaluator 1220-4 evaluates how closely divisions 

between program zones coincide with refuge/MEP floors that divide service zones and.outputs 

the result to the display 120 of the user interface 100 and to the fitness calculator 1230.  In 

S1230, the fitness calculator 1230 calculates the fitness of the received geometry by adding the 

outputs of the height evaluator 1220-1, the massing efficiency evaluator 1220-2, the floor-plate 

efficiency evaluator 1220-3, and the zone division evaluator 1220-4.  In S1240, the fitness 

calculator outputs the calculated fitness value to the selection system 210 of the evolutionary 

solver 200.  In S1250, the selection system 210 of the evolutionary solver 200 determines 

whether or not a termination request signal is received from the user input device 110 or the 

terminator 211 (refer to Figure 3.3.3).  If the termination request signal is received, the 

evaluation process ends, and if the termination request signal is not received, the evaluation 

process is repeated from S1210 for new input geometry and parameter values.        

 

Figure 3.3 6  Selection of Optimal Massing Model Generated by Development System 1100 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 97 
 
Figure 3.3.8 illustrates different massing models generated by the development system 1100, 

including the optimal massing model evaluated to be most fit in terms of massing efficiency 

(total number of floors / number of refuge zones), proximity to target height, ability to divide 

floor-plates into convenient structural bays, and how closely divisions between program zones 

coincide with refuge/MEP floors that divide service zones.  

 

 

Figure 3.3 7  Grasshopper Implementation of General Massing Sub-System 1 

Figure 3.3.9 illustrates an implementation of the general massing sub-system 1 in the 

Grasshopper graphical scripting language. 

3.3.3.3  Floor-plate Sub-System 

Development System 

Figure 3.3.10 is a flowchart illustrating the process of developing floor-plate designs using the 

development system 2100 of the design developer-evaluator 2000 of the floor-plate sub-system 

2 shown in Figure 3.3.3.  Figure 3.3.11 is a schematic diagram of the floor-plate sub-system 2 

shown in Figure 3.3.3, illustrating the general design of the development system 2100 of the 

design developer-evaluator 2000. 

 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 98 
 

Figure 3.3 8  Floor-plate Design Development Process 

 

Figure 3.3 9  Floor-plate Sub-System 2 Showing Design of 
Development System 2100

Referring to Figures 3.3.10 and 3.3.11, in S2100, final geometry and parameter values output 

from the general massing sub-system 1 are received as input parameters 2101.  In S2110, 

additional input parameter values are received from the user input device 110 of the user 

interface 100 and/or the reproduction system 220 of the evolutionary solver 200.  In S2120, a 

core & circulation generator 2120 generates geometry representing a service core and 

circulation for a floor-plate design, based on input parameter values.  In S2130, a floor-plate 

generator 2130 generates a planar surface representing a floor-plate, based on input 

parameter values and the core and circulation geometry generated by the core & circulation 

generator 2120.  In 2140, a structure generator generates a structural grid and lays out 

geometry representing structural members such as columns, based on the floor-plate 

geometry generated by the floor-plate generator 2130 and the service core and circulation 

geometry generated by the service core & circulation generator 2120.  In S2150, a partition 

generator 2150 partitions the floor-plate into rental spaces based on input parameter values 

and the core and circulation geometry generated by the core & circulation generator 2120.  In 

S2160, geometry generated by the floor-plate generator 2130, the structure generator 2140, 

and the partition generator 2150 is output as output geometry 2102 to the display 120 of the 

user interface 100, and to the evaluation system 2200.  In S2170, the selection system 210 of 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 99 
 
the evolutionary solver 200 determines whether or not a termination request signal is received 

from the user input device 110 or the terminator 211 (refer to Figure 3.3.3).  If the termination 

request signal is received, in S2180, the output geometry 2102 is output to the development 

system 3100 of the envelope sub-system 3.  Meanwhile, if the termination request signal is not 

received, the process is repeated from S2110 for new input parameter values.  

 

Figure 3.3 10  Core & Circulation Generation Process 

 

 

 

Figure 3.3 11  Core & Circulation Generator 2120

Figure 3.3.12 is a flowchart illustrating the process of generating geometry representing the 

service core and circulation for a floor-plate design using the core & circulation generator 2120 

shown in Figure 3.3.11.  Figure 3.3.13 is a schematic diagram of the core & circulation 

generator 2120 shown in Figure 3.3.11. 

Referring to Figures 3.3.12 and 3.3.13, in S2121, input geometry and parameter values are 

received as input parameters 2121.  In S2122, a core generator 2122 generates at least one 

planar shape representing a basic service core configuration based on input parameter values.  

In S2123, a core arranger 2123 orients the service core geometry generated by the core 

generator 2122 based on an input core orientation parameter value.  In S2124, a core modifier 

2124 modifies the basic service core geometry generated by the core generator 2122 and 

oriented by the core arranger 2123 based on an input elevator service zone parameter value.  

In S2125, a circulation generator 2125 generates a planar shape representing circulation 

between the service core and rental spaces based on the service core configuration generated 

by the core generator 2122, oriented by the core arranger 2123, and modified by the core 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 100 
 
modifier 2124, and input parameter values.  In S2126, the geometry output by the core modifier 

2124 and the circulation generator 2125 is output to the floor-plate generator 2130, the 

structure generator 2140, and the partition generator 2150, and also as output geometry 2102, 

all shown in Figure 3.3.11. 

 

Figure 3.3 12  Core & Circulation Configurations 

Figure 3.3.14 illustrates different service core and circulation layouts that may be generated by 

the core & circulation generator 2120 as a function of core type and number of separate rental 

units on the floor-plate. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 101 
 
 

 

Figure 3.3 13  Floor-plate Generation Process 

 

 

 

Figure 3.3 14  Floor-plate Generator 2130

Figure 3.3.15 is a flowchart illustrating the process of generating geometry representing the 

floor-plate itself for a floor-plate design using the floor-plate generator 2130 shown in Figure 

3.3.11.  Figure 3.3.16 is a schematic diagram of the floor-plate generator 2130 shown in Figure 

3.3.11. 

Referring to Figures 3.3.15 and 3.3.16, in S2131, input geometry and parameter values are 

received as input parameters 2131.  In S2132, a floor-plate shaper 2132 generates at least one 

planar shape representing the entire floor-plate and connected to the service core configuration 

output by the core & circulation generator 2120 shown in Figure 3.3.11 based on input 

parameter values.  In S2133, a floor-plate analyzer 2133 determines whether the width of any 

part of the floor-plate generated by the floor-plate shaper 2132 is less than an input threshold 

value d.  If the width of some part of the floor-plate is less than d, in S2134, the floor-plate is 

modified such that its width exceeds d everywhere.  Then, in S2135, the planar shape 

representing the floor-plate is output to the structure generator 2140, the partition generator 

2150, and as output geometry 2102, shown in Figure 3.3.11.  If, on the other hand, the width is 

not less than d anywhere on the floor-plate, then S2134 of modifying the floor-plate is skipped 

and S2135 of outputting the floor-plate is carried out directly.        



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 102 
 

 

 

Figure 3.3 15  Floor-plate Generation Techniques 

 

Figure 3.3.17 illustrates three different techniques that may be employed by the floor-plate 

shaper 2132 to generate planar shapes representing floor-plates.  Technique 1 uses a variable 

number of circles with variable radii and variable center coordinates to define the outer 

perimeter of a floor-plate.  Technique 2 employs a fixed number of connected rectangles of 

variable dimensions to produce a floor-plate shape.  Technique 3 superimposes a variable 

number of rectangles of variable dimensions and orientation to form a floor-plate.   



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 103 
 

Figure 3.3 16  Structure Generation Process 

 

 

 

 

Figure 3.3 17  Structure Generator 2140

Figure 3.3.18 is a flowchart illustrating the process of generating a structural grid and geometry 

representing structural members for a floor-plate design using the structure generator 2140 

shown in Figure 3.3.11.  Figure 3.3.19 is a schematic diagram of the structure generator 2140 

shown in Figure 3.3.11. 

Referring to Figures 3.3.18 and 3.3.19, in S2141, input geometry and parameter values are 

received as input parameters 2141.  In S2142-1, a shape analyzer 2142 determines whether the 

floor-plate conforms to a rectangular grid.  If it does, in S2143-1, a grid generator 2143 

generates at least one rectangular grid based on the floor-plate geometry and input parameter 

values.  If the floor-plate does not conform to a rectangular grid, in S2142-2, the shape analyzer 

2142 determines whether the floor-plate conforms to a radial grid.  If it does, in S2143-2, the 

grid generator 2143 generates at least one radial grid based on the floor-plate geometry and 

input parameter values.  If the floor-plate does not conform to a radial grid either, the in S2143-

3, the grid generator 2143 generates at least one irregular grid based on the floor-plate 

geometry and input parameter values.  After S2143-1, S2143-2, or S2143-3, in S2144, a grid 

merger 2145 determines whether more than one grid has been generated.  If so, in S2145, the 

grid merger 2144 merges the generated grids according to a predetermined method.  Then, in 

S2146, a structural member arrayer 2145 generates and arrays geometric elements 

representing structural members such as columns, based on the grid and input parameter 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 104 
 
values.   If the grid merger 2144 determines that only one grid has been generated, then S2145 

of grid merging is skipped and S2146 of arraying structural members is carried out directly.  

Finally, in S2147, geometry generated by the grid generator 2143, the grid merger 2144, and 

the structural member arrayer 2145 is output as output geometry 2146. 

 

 

Figure 3.3 18  Structural Grid Fitting Options 

Figure 3.3.20 illustrates rectangular, radial, and irregular grids fit to three different floor-plate 

shapes.  In all three cases, the floor-plate conforms to a rectangular grid, so only the 

rectangular grid is generated, and columns are placed at locations on the grid around the 

perimeter of the floor-plate and surrounding the service core.     



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 105 
 

 

Figure 3.3 19  Partition Generation Process 

 

 

 

 

 

 

 

Figure 3.3 20  Partition Generator 2150

Figure 3.3.21 is a flowchart illustrating the process of partitioning a floor-plate design into a 

predetermined number of rental spaces using the partition generator 2150 shown in Figure 

3.3.11.  Figure 3.3.22 is a schematic diagram of the partition generator 2150 shown in Figure 

3.3.11. 

Referring to Figures 3.3.21 and 3.3.22, in S2151, input geometry and parameter values are 

received as input parameters 2151.  In S2152, a fixed partition generator 2152 generates line 

segments representing fixed partitions according to input parameter values.  Here, 'fixed' 

means that the placement of the partitions is fully determined by the core configuration and 

does not vary with respect to the same core configuration during the evolutionary process.  In 

S2153, a cone generator 2153 generates at least one planar shape representing a 'partition-

free' region where partitions should not be placed according to input parameter values.  The 

partition-free regions may be shaped like cones.  In S2154-1, a grid analyzer 2154 determines 

whether the floor-plate conforms to a rectangular grid.  If so, in S2154-1, a variable partition 

generator 2155 generates line segments representing variable partitions based on the 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 106 
 
rectangular grid and input parameter values.  If the floor-plate does not conform to a 

rectangular grid, in S2154-2, the grid analyzer 2154 determines whether the floor-plate 

conforms to a radial grid.  If so, in S2154-2, the variable partition generator 2155 generates line 

segments representing variable partitions based on the radial grid and input parameter values.  

If the floor-plate does not conform to a radial grid either, then the variable partition generator 

2155 generates line segments representing variable partitions based on the perimeter of the 

floor-plate and input parameter values.  Once variable partitions have been generated in one of 

S2155-1, S2155-2 and S2155-3, a partition modifier 2156 determines whether any variable 

partitions are generated within the partition-free region generated by the cone generator 2153.  

If one or more variable partitions do enter the partition-free region, then in S2156, the partition 

modifier 2156 deletes those partitions.  Next, in S2158, a floor-plate divider 2147 divides the 

planar surface representing the floor-plate along the line segments representing the fixed and 

remaining variable partitions to create separate planar surfaces corresponding to separate 

rental spaces.  If no variable partitions pass through the partition-free region, then S2156 is 

skipped and S2158 is performed directly.  Finally, in S2139, geometry output from the fixed 

partition generator 2152, the partition modifier 2156, and the floor-plate divider 2157 is output 

as output geometry 2158 to the display 120 of the user interface 100 and to the evaluation 

system 2200.        

Figure 3.3.23 illustrates general floor-plate partitioning schemes as a function of elevator 

service zone and number of rental spaces on the floor, for a central service core layout.  Fixed 

partitions are aligned with the hallway through the core (vertically on the page), all other 

partitions are variable partitions, and partition-free regions shown as grey cones.  As shown, 

when the elevator service zone increases, a portion of the floor-plate allocated to the service 

core is regained as tenant space, reflecting the termination of elevator shafts not needed to 

service higher zones due to the use of destination control.  Note also how the circulation 

between the core and the rental spaces changes with service zone and number of rental 

spaces to allow every tenant access.  In this example, the partition-free regions are designed to 

minimize the need for circulation connecting the elevator lobby with the outside of the core, and 

to prevent awkward partitioning of regained core space. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 107 
 

 

 

Figure 3.3 21  Floor-plate Partitioning Schemes 

       

Evaluation System 

Figure 3.3.24 is a flowchart illustrating the process of evaluating floor-plate designs using the 

evaluation system 2200 of the design developer-evaluator 2000 of the floor-plate sub-system 2 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 108 
 
shown in Figure 3.3.3.  Figure 3.3.25 is a schematic diagram of the floor-plate sub-system 2 

shown in Figure 3.3.3, illustrating the general design of the evaluation system 2200. 

 

Figure 3.3 22  Floor-plate Design Evaluation Process 

 

 

 

Figure 3.3 23  Floor-plate Sub-System 2 Showing General Design of 
Evaluation System 2200 

Referring to Figures 3.3.6 and 3.3.7, in S2200-1, a daylight evaluator 2220-1 receives 

environmental parameter values input from the user input device 110 of the user interface 100.  

The parameters include weather data based on geographical location, sky conditions, and 

material properties of glazing assemblies for the skyscraper.  In S2200-2, a view evaluator 

2220-2 receives environmental parameter values input from the user input device 110 of the 

user interface 100.  The parameters include angles specifying view corridors from the site, and 

values ranking the quality of view down each of the view corridors.  The parameter values are 

used to generate a view ring as described in Chapter 3.3.  In S2210, geometry and parameter 

values output from the development system 2100 are additionally received as input parameters 

and geometry 2201.  In S2220-1, the daylight evaluator 2220-1 carries out a daylight simulation 

on the received geometry based on the received environmental parameter values and outputs 

the results to the display 120 of the user interface 100 and to a fitness calculator 2230.  Here, 

the geometry used in the daylight simulation may include surfaces representing two adjacent 

floor-plates, all internal partitions, and a section of the building enclosure.  In S2220-2, the view 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 109 
 
evaluator 2220-2 calculates the view value of each rental space and the overall view value of 

the floor-plate design as described in Chapter 3.3 and outputs the results to the display 120 of 

the user interface 100 and to the fitness calculator 2230.  Steps S2220-1 and S2220-2 may be 

performed concurrently or sequentially.  In S2230, the fitness calculator 2230 calculates a 

fitness value based on the outputs of the daylight evaluator 2220-1 and the view evaluator 

2220-1.  Here, an aggregate objective function (AOF) may be used to adjust the relative 

priorities of daylight and view performance in calculating fitness, as described in Chapter 3.3.  

In S2240, the calculated fitness value is output to the selection system 210 of the evolutionary 

solver 200.  In S2250, the selection system 210 determines whether a termination request 

signal is received from the user input device 110 or the terminator 211 (refer to Figure 3.3.3).  If 

the termination request signal is received, the evaluation process ends, and if the termination 

request signal is not received, the evaluation process is repeated from S2210 for new input 

geometry.      

 

Figure 3.3 24  Daylight Evaluation Process 

 

 

Figure 3.3 25  Daylight Evaluator 2220-1

Figure 3.3.26 is a flowchart illustrating the daylight evaluation process using the daylight 

evaluator 2220-1 shown in Figure 3.3.25.  Figure 3.3.27 is a schematic diagram of the daylight 

evaluator 2220-1 shown in Figure 3.3.25. 

Referring to Figures 3.3.26 and 3.3.27, in S2221-1, input geometry and parameter values are 

received as input parameters and geometry 2221-1. In S2222-1, a model generator 2222-1 

generates the geometry needed to perform a daylight simulation on the floor-plate design 

based on geometry output by the development system 2100 shown in Figure 3.3.11.  As 

mentioned above, this may include surfaces representing two adjacent floor-plates, all internal 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 110 
 
partitions, and a section of the building enclosure.  The floor-plates may be vertically separated 

by the floor-to-ceiling clearance distance, internal partitions may be generated by extruding the 

outputs of the core & circulation generator 2120 and the partition generator 2150 of the 

development system 2100 shown in Figure 3.3.11, and the building enclosure may be 

approximated by extruding the outer perimeter of one of the floor-plates.  Next, in S2223-1, a 

daylight simulator 2223-1 performs a daylight simulation on the model generated by the model 

generator 2222-1 based on input parameter values, including the environmental parameter 

values received from the user input device 110.  In S2224-4, an objective calculator 2225-1 

calculates a single figure measure of daylight performance, for example, average daylight 

factor (DF) for all rental spaces on floor-plate, from the simulation results.  In S2225-1, the 

objective calculator 2225-4 outputs the daylight performance value to the fitness calculator 

2230 of the evaluation system 2200 shown in Figure 2.34.25. 

 

 

Figure 3.3 26  Visualization of Daylight Simulation Results 

 

Figure 3.3.28 is a visualization of daylight simulation results for a typical floor-plate design.  

Daylight simulations have to be very course in precision in order to minimize delay in system 

operation.  This is no significant compromise because simulation results are only used to 

establish the relative ranking of alternative floor-plate designs, not to provide precise and 

accurate measurements.    



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 111 
 

 

Figure 3.3 27  View Performance Evaluation Process 

 

 

Figure 3.3 28  View Performance Evaluator 2220-2 

 

Figure 3.3.29 is a flowchart illustrating the view evaluation process using the view evaluator 

2220-2 shown in Figure 3.3.25.  Figure 3.3.30 is a schematic diagram of the view evaluator 

2220-2 shown in Figure 3.3.25. 

Referring to Figures 3.3.29 and 3.3.30, in S2221-2, input geometry and parameter values are 

received as input parameters and geometry 2221-2. In S2222-2, a view ring generator 2222-1 

generates a view ring quantitatively describing the quality of different view corridors available 

from the site.  In S2223-2, a view cone generator 2223-2 generates view cones representing the 

total view range of each rental space as a function of facade frontage and geometric center of 

the space as described in Chapter 3.3.  In S2224-2, a view value calculator 2224-2 calculates 

the area of the portion of the view ring generated by the view ring generator 2222-2 that 

overlaps with each view cone generated by the view cone generator 2223-2 as the view value 

for each rental space.  In S2225-2, an objective calculator 2225-2 calculates a total view value 

for the floor-plate design as a weighted sum of the view values of individual rental spaces 

according to input parameter values.  In S2226-2, the objective calculator 2225-2 outputs the 

total view value to the fitness calculator 2230 of the evaluation system 2200 shown in Figure 

2.34.25. 

 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 112 
 

 

Figure 3.3 29  Visualization of View Evaluation Process 

 

Figure 3.3.31 is a visualization of the view evaluation process for a typical floor-plate design.  

The six smaller objects on the right show the regions of the view right that overlap with the view 

cones of each of six rental spaces in the floor-plate design, and the larger object on the right 

shows the view cones of all six rental spaces together.   

 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 113 
 

 

Figure 3.3 30  Grasshopper Implementation of Floor-plate Sub-System 2 

 

 

Figure 3.3 31 Alternative Grasshopper Implementation of Core & 
Circulation Generator 2120 

 

 

 

Figure 3.3 32  Alternative Grasshopper Implementation of Floor-
plate Generator 2130 

 

Figure 3.3.32 illustrates an implementation of the floor-plate sub-system 2 in the Grasshopper 

graphical scripting language, Figure 3.3.33 illustrates an alternative Grasshopper 

implementation of the core & circulation generator 2120, and Figure 3.3.34 illustrates an 

alternative grasshopper implementation of the floor-plate generator 2130. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 114 
 
3.3.3.4  Envelope Sub-System 

Development System 

Figure 3.3.35 is a flowchart illustrating the process of developing building envelope designs 

using the development system 3100 of the design developer-evaluator 3000 of the envelope 

sub-system 3 shown in Figure 3.3.3.  Figure 3.3.36 is a schematic diagram of the envelope 

sub-system 3 shown in Figure 3.3.3, illustrating the general design of the development system 

3100 of the design developer-evaluator 3000. 

 

 

 

Figure 3.3 33  Building Envelope Development Process 

 

 

Figure 3.3 34  Envelope Sub-System 3 Showing Design of 
Development System 3100

Referring to Figures 3.3.35 and 3.3.36, in S3100, final geometry and parameter values output 

from the general massing sub-system 1 and the floor-plate sub-system 2 are received as input 

parameters 3101.  In S3110, additional input parameter values are received from the user input 

device 110 of the user interface 100 and/or the reproduction system 220 of the evolutionary 

solver 200.  In S3120, a floor-plate arrayer 3120 vertically arrays the input floor-plates based on 

the input massing model.  In S3130, an envelope generator 3130 generates at least one 

surface enclosing the floor-plates arrayed by the floor-plate arrayer 3120 and representing the 

building envelope according to input parameter values.  In S3140, the generated building 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 115 
 
envelope is output as output geometry 3102 to the display 120 of the user interface 100, and to 

the evaluation system 3200.  In S3150, the selection system 210 of the evolutionary solver 200 

determines whether or not a termination request signal is received from the user input device 

110 or the terminator 211 (refer to Figure 3.3.3).  If the termination request signal is received, in 

S3160, the output geometry 3102 is output to the development system 4100 of the skin sub-

system 4.  Meanwhile, if the termination request signal is not received, the process is repeated 

from S3110 for new input parameter values. 

 

 

Figure 3.3 35  Building Envelope Generation Process 

 

 

 

 

 

 

Figure 3.3 36  Envelope Generator 3130

Figure 3.3.37 is a flowchart illustrating the process of generating at least one surface 

representing the building envelope using the envelope generator 3130 shown in Figure 3.3.36.  

Figure 3.3.38 is a schematic diagram of the envelope generator 3130 shown in Figure 3.3.36. 

Referring to Figures 3.3.37 and 3.3.38, in S3131, input geometry and parameter values are 

received as input parameters 3131.  In S3132, an outline modifier 3132 modifies the outline 

curve of at least one of the vertically arrayed floor-plates output by the floor-plate arrayer 3120 

shown in Figure 3.3.36.  The nature of the modification is up to the discretion of the system 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 116 
 
designer and may include modest offsets and various other forms of articulation in the plane of 

the corresponding floor-plate.  Here, the modification process should be sufficiently 

constrained so that the modified outline curve does not significantly cut into the floor-plate or 

extend too far out from the floor-plate, rendering it incompatible with the evolved floor-plate 

design.  In the present implementation, a modest, variable outward offset is the chosen 

modification.  Such modifications expand the evolutionary search space to include potentially 

useful adaptations such as tapered, notched and wavy facades that can have self-shading 

properties and distribute wind loads.   

In S3133, a profile curve selector 3133 selects at least two planar curves from among the 

outline curves modified by the outline modifier 3132 and the remaining unmodified outline 

curves of the vertically arrayed floor-plates, to use as building envelope profile curves in 

response to input parameter values.  In S3134, a main envelope generator 3134 generates at 

least one surface enclosing the vertically arrayed floor-plates and representing the main 

building envelope, based on the profile curves selected by the profile curve selector 3133.  

Here, the generation process may include some form of curve lofting, sweeping, or extruding.  

In S3135, an envelope modifier 3135 modifies the at least one surface generated by the main 

envelope generator 3134 according to input parameter values to produce a final building 

envelope.  The form of modification may include various geometric modeling operations such 

as trimming, rebuilding, surface blending, etc.   

In S3136, a crown generator 3136 generates at least one surface beginning from the 

uppermost profile curve of the main building envelope, representing the 'crown' of the 

skyscraper, in response to input parameter values.  In S3137, a skirt generator 3137 generates 

at least one surface between the uppermost surface of the podium and the lowermost profile 

curve of the main building envelope representing the 'skirt' of the skyscraper.  Finally, in S3138, 

the surface geometry generated/transformed by the envelope modifier 3135, the crown 

generator 3136, and the skirt generator 3137 is output as output geometry 3138 to the display 

120 of the user interface 100 and to the evaluation system 3200.       



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 117 
 

 

Figure 3.3 37  Visualization of Building Envelope Generation Process 

Figure 3.3.39 is a visualization of the building envelope generation process, showing three 

simple examples of main building envelope forms generated from different profile curves 

(highlighted in yellow).  The evolved massing and floor-plate designs in the illustrated example 

result in a tower with a central service core and three blocks of floor-plates.  The first variation 

on the building envelope has a gradual downward taper, the third mixes more abrupt 

downward tapers on the top two blocks with a gradual downward taper on the bottom block, 

and the fourth blends gradual upward and downward tapers to produce a subtle wave or 

undulation that connects the three blocks and slightly reduces the segmented appearance of 

the tower.       

Evaluation System 

Figure 3.3.40 is a flowchart illustrating the process of evaluating envelope designs using the 

evaluation system 3200 of the design developer-evaluator 3000 of the envelope sub-system 3 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 118 
 
shown in Figure 3.3.3.  Figure 3.3.41 is a schematic diagram of the envelope sub-system 3 

shown in Figure 3.3.3, illustrating the general design of the evaluation system 3200. 

 

Figure 3.3 38  Envelope Design Evaluation Process 

 

 

 

Figure 3.3 39  Envelope Sub-System 3 Showing General Design of 
Evaluation System 3200 

Referring to Figures 3.3.40 and 3.3.41, in S3200-1, a facade insolation evaluator 3220-1 

receives environmental parameter values input from the user input device 110 of the user 

interface 100.  The parameters include weather data based on geographical location, sky 

conditions, and a daily time period during which the tower is occupied and requires climate 

control.  In S3210, the surface geometry and parameter values output from the development 

system 3100 are additionally received as input parameters and geometry 3201.  In S3220-1, the 

facade insolation evaluator 3220-1 carries out a facade insolation simulation to predict the 

amount of solar energy that would be directly incident on the glazed portion of the building 

envelope geometry developed by the development system 3100 during the specified period of 

occupation, in kWh/m2, averaged over an entire year.  In S3230, the simulation results are 

output to the display 120 of the user interface 100 and to a fitness calculator 3230.  Since there 

are no other performance simulation modules in the evaluation system 3200, the fitness 

calculator 3230 equates fitness with the negative of the average facade insolation value output 

from the facade insolation evaluator 3220-1, so that lower insolation values correspond to less 

negative, i.e., greater, fitness values.  In S3240, the fitness calculator 3230 outputs the 

calculated fitness value to the selection system 210 of the evolutionary solver 200.  In S3250, 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 119 
 
the selection system 210 determines whether a termination request signal is received from the 

user input device 110 or the terminator 211 (refer to Figure 3.3.3).  If the termination request 

signal is received, the evaluation process ends, and if the termination request signal is not 

received, the evaluation process is repeated from S3210 for new input geometry. 

     

 

Figure 3.3 40  Facade Insolation Evaluation Process 

 

 

Figure 3.3 41  Facade Insolation Evaluator 3220-1

Figure 3.3.42 is a flowchart illustrating the facade insolation evaluation process using the 

facade insolation evaluator 3220-1 shown in Figure 3.3.42.  Figure 3.3.43 is a schematic 

diagram of the facade insolation evaluator 3220-1 shown in Figure 3.3.41. 

Referring to Figures 3.3.42 and 3.3.43, in S3221-1, input geometry and parameter values are 

received as input parameters and geometry 3221-1. In S3222-1, a model generator 3222-1 

generates surface geometry representing the glazed portion of the building envelope 

developed by the development system 3100 an converts the geometry to mesh form if not 

already in mesh form.  In S3223-1, a solar simulator 3223-1 carries out the facade insolation 

simulation based on the input parameter values described above.  In the Grasshopper 

implementation disclosed herein, the solar simulator 3223-1 is implemented using Autodesk's 

Ecotect software application together with [uto]'s Gecko plug-in for Grasshopper, which allows 

remote control of the Ecotect simulation kernel from the Grasshopper user interface.  In S3224-

1, an objective calculator 3224-1 calculates the desired quantity - direct insolation during the 

specified period of occupation, in kWh/m2, averaged over an entire year - from the simulation 

results output by the solar simulator 3223-1.  Here, the decision to take the yearly average was 

made based on the climate of Shenzhen, the site of the Hanking competition.  It was found that 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 120 
 
cooling during the daytime is typically required year-round in Shenzhen. Therefore, to help 

minimize cooling loads, it is desirable to minimize direct insolation on the glazed building 

facade year-round.  In S3225-1, the objective calculator 3224-1 outputs the calculated 

insolation value to the fitness calculator 3230 shown in Figure 3.3.41. 

 

 

Figure 3.3 42  Visualization of Facade Insolation Simulation Results 

 

Figure 3.3.44 is an image of facade insolation simulation results generated by the facade 

insolation evaluator 3220-1 and output to the display 120 of the user interface 100.  As with the 

daylight simulations carried out in the evaluation system 2200 of the floor-plate sub-system 2 

described above, it is important for the facade insolation simulation be very course in precision 

in order to minimize delay in system operation.  This is no significant compromise because 

simulation results are only used to establish the relative ranking of alternative envelope designs, 

not to provide precise and accurate measurements.    



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 121 
 

 

Figure 3.3 43  Grasshopper Implementation of Building Envelope Sub-System 3 

 

Figure 3.3.45 illustrates an implementation of the envelope sub-system 2 in the Grasshopper 

graphical scripting language. 

           



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 122 
 
3.3.3.5  Skin Sub-System 

Development System 

Figure 3.3.46 is a flowchart illustrating the process of developing building envelope designs 

using the development system 4100 of the design developer-evaluator 4000 of the skin sub-

system 4 shown in Figure 3.3.3.  Figure 3.3.47 is a schematic diagram of the skin sub-system 4 

shown in Figure 3.3.3, illustrating the general design of the development system 4100 of the 

design developer-evaluator 4000. 

 

 

Figure 3.3 44  Building Skin Development Process 

 

 

Figure 3.3 45  Building Skin Sub-System 4 Showing General Design 
of Development System 4100

Referring to Figures 3.3.46 and 3.3.47, in S4100, final geometry and parameter values output 

from the general massing sub-system 1, the floor-plate sub-system 2 and the envelope sub-

system 3 are received as input parameters 4101.  In S4110, additional input parameter values 

are received from the user input device 110 of the user interface 100 and/or the reproduction 

system 220 of the evolutionary solver 200.  In S4120, an envelope sub-divider 4120 sub-divides 

the building envelope geometry received from the development system 3100 of the envelope 

sub-system 3 into N sections based on input parameter values.  In S4130, a material system 

designator 4130 assigns predetermined material systems to each of the N envelope sections 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 123 
 
output from the envelope sub-divider 4120.  In S4140, a shading device generator 4140 

generates shading devices of variable type, dimensions and configuration, separately for each 

of the N envelope sections.  In S4150, the N envelope sections with material systems 

designated by the material system designator 4140 and the shading devices generated by the 

shading device generator 4140 are output as output geometry 4102 to the display 120 of the 

user interface 100 and to the evaluation system 4200. 

 

 

Figure 3.3 46  Building Envelope Sub-Division Process 

 

 

 

Figure 3.3 47  Envelope Sub-Divider 4120

 

Figure 3.3.48 is a flowchart illustrating the process of sub-dividing the building envelope into N 

sections using the envelope sub-divider 4120 shown in Figure 3.3.47.  Figure 3.3.49 is a 

schematic diagram of the envelope sub-divider 4120 shown in Figure 3.3.47. 

Referring to Figures 3.3.47 and 3.3.48, in S4121, input geometry and parameter values are 

received as input parameters 4121.  In S4142, a first slice plane generator 4122 generates Nh 

horizontally oriented planar surfaces according to input parameter values.  In S4142, a second 

slice plane generator 4123 generates Nv vertically oriented planar surfaces according to input 

parameter values.  In S4124, a slicer 4124 sub-divides the building envelope into N sections 

using the horizontal Nh horizontally oriented planar surfaces and the Nv vertically oriented planar 

surfaces as slicing planes.  In S4125, the resulting geometry consisting of N sections of the 

building envelope is output as output geometry 4125. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 124 
 

 

Figure 3.3 48  Visualization of Sub-Division of Building Envelope Using Slice Planes 

Figure 3.3.50 is a visualization of how the building envelope is divided into N sections using a 

variable number of horizontal and vertical slice planes of variable height and rotation angle, 

respectively, according to input parameter values. 

 

 

Figure 3.3 49  Shading Device Generation Process 

 

 

 

Figure 3.3 50  Shading Device Generator 4140

Figure 3.3.51 is a flowchart illustrating the process of shading devices for each of the N 

sections of the subdivided building envelope using the shading device generator 4140 shown 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 125 
 
in Figure 3.3.47.  Figure 3.3.52 is a schematic diagram of the shading device generator 4140 

shown in Figure 3.3.47. 

Referring to Figures 3.3.51 and 3.3.52, in S4141, input geometry and parameter values are 

received as input parameters 4141.  In S4142, a louver generator 4142 generates horizontal 

shading louvers with width, spacing, and displacement from the building envelope surface 

specified by input parameter values, for each of the N sections of the sub-divided building 

envelope.  In S4143, a fin generator 4142 generates vertical shading fins with width, spacing, 

and displacement from the building envelope surface specified by input parameter values, for 

each of the N sections of the sub-divided building envelope.  In S4144, the building envelope 

geometry together with the generated shading louvers and fins are output as output geometry 

4144 to the display 120 of the user interface 100 and to the evaluation system 4200. 

 

Figure 3.3 51  Visualization of Different Louver/Fin Arrangements 

Figure 3.3.53 is a visualization of three different shading louver/fin arrangements generated by 

the shading device generator 4140 described above. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 126 
 
Evaluation System 

Figure 3.3.54 is a flowchart illustrating the process of evaluating building skin designs using the 

evaluation system 4200 of the design developer-evaluator 4000 of the skin sub-system 4 shown 

in Figure 3.3.3.  Figure 3.3.55 is a schematic diagram of the skin sub-system 4 shown in Figure 

3.3.3, illustrating the general design of the evaluation system 4200. 

 

Figure 3.3 52  Skin Design Evaluation Process 

 

 

 

Figure 3.3 53  Skin Sub-System 4 Showing General Design of 
Evaluation System 4200 

Referring to Figures 3.3.54 and 3.3.55, in S4200-1, a daylight evaluator 4220-1 receives 

environmental parameter values input from the user input device 110 of the user interface 100.  

The parameters include weather data based on geographical location, sky conditions, and 

material properties of glazing assemblies for the skyscraper.  In S4200-2, a facade insolation 

evaluator 4220-2 receives environmental parameter values input from the user input device 110 

of the user interface 100.  These parameters include weather data based on geographical 

location, sky conditions, and a daily time period during which the tower is occupied and 

requires climate control.  In S4210, the surface geometry and parameter values output from the 

development system 4100 are additionally received as input parameters and geometry 4201.  



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 127 
 
In S4220-1, the daylight evaluator 4220-1 carries out a daylight evaluation on the input 

geometry and outputs the results to the display 120 of the user interface 100 and to a fitness 

calculator 4230.  In S4220-2, the facade insolation evaluator 4220-2 carries out a facade 

insolation simulation and outputs the results to the display 120 of the user interface 100 and to 

the fitness calculator 4230.  In S4230, the fitness calculator 4230 calculates a fitness value for 

the skin design based on the simulation results received from the daylight evaluator 4220-1 and 

the facade insolation evaluator 4220-2.  Here, maximizing daylight and minimizing solar 

exposure are conflicting objectives, and thus multi-objective optimization techniques are 

required.  In the present design, the fitness calculator simply uses an aggregate objective 

function (AOE) of the form described in Chapter 3.1.  In S4240, the fitness calculator 4230 

outputs the calculated fitness value to the selection system 210 of the evolutionary solver 200.  

In S4250, the selection system 210 determines whether a termination request signal is received 

from the user input device 110 of the user interface 100 or from its internal terminator 211 (refer 

to Figure 3.3.3).  If the termination request signal is received, the process ends and the final 

output geometry and parameters of the development systems of sub-systems 1 through 4 

constitute a fully evolved skyscraper design.  If the termination request signal is not received, 

then the process repeats from S4210 for new input geometry supplied by the development 

system 4100. 

The daylight evaluator 4220-1 has the same general design and functionality as the daylight 

evaluator 2220-1 described above with reference to Figures 3.3.26, 3.3.27 and 3.3.28, and the 

facade insolation evaluator 4220-2 has the same general design and functionality as the facade 

insolation evaluator 3220-1 described above with reference to Figures 3.3.42, 3.3.43, and 

3.3.44.   

 

 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 128 
 

  

Figure 3.3 54  Visualization of Facade Insolation Simulation Results 

 

Figure 3.3.56 is a visualization of facade insolation simulation results for a building skin model 

including a dense array of shading louvers. 

 

 

Figure 3.3 55  Grasshopper Implementation of Skin Sub-System 4 

 

Figure 3.3.57 illustrates an implementation of the skin sub-system 4 in the Grasshopper 

graphical scripting language. 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 129 
 
3.3.3.6  Overall System 

 

Figure 3.3 56  Skyscraper MSEDS Customized for Hanking Competition 

Figure 3.3.58 is a schematic diagram illustrating the overall design of a skyscraper MSEDS 

based on the skyscraper MSEDS architecture shown in Figure 3.3.3 and customized to evolve 

designs for the Hanking competition.  The structures and functions of the components of each 

sub-system have been described in the preceding sections. 

Both the skyscraper MSEDS shown in Figure 3.3.58 and the general architecture shown in 

Figure 3.3.3 are expansible, modular, and can be reconfigured to address the demands of 

different skyscraper design problems.  Modifications can be made on two levels: the module 

level and the sub-system level.  

• Module-level modifications involve altering or replacing one or more of the component 

modules of the development and evaluation systems colored blue in Figure 3.3.3 

(architecture) and Figure 3.3.58 (working design).  Such modifications change the way 



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 130 
 

the modified module operates but do not affect how it interoperates with other modules 

and functions overall within the system.  Examples such as alternative core and 

circulation generators and alternative floor-plate generators have already been given in 

the preceding description.   

• Sub-system-level modifications are major modifications to the system design shown in 

Figure 3.3.58, that alter the way modules work together and therefore alter the general 

design of the MSEDS on the development system or evaluation system level.  Such 

modification include the addition and removal of modules.  For example, the envelope 

sub-divider 4120 might be eliminated from the development system 4100 of the skin 

sub-system 4, so that the material system designator 4130 and the shading device 

generator 4140 operate the same way on the entire building envelope. 

 

Figure 3.3 57  Skyscraper Designs Developed (Not Evolved) by Skyscraper MSEDS 

Figure 3.3.59 illustrates a selection of skyscraper designs generated using the skyscraper 

MSEDS described herein.  These designs demonstrate a high degree of variability in the forms 

than can be produced.     



 
 

 

3.3 SKYSCRAPER MSEDS CASE STUDY P a g e  | 131 
 

 

Figure 3.3 58  Grasshopper Implementation of Skyscraper MSEDS Customized for Hanking Competition 

Figure 3.3.57 illustrates an implementation of the entire skyscraper MSEDS described in the 

preceding sections in the Grasshopper graphical scripting language. 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 132 
 

3.4.1  Introduction 

The final objective of this research is to test the skyscraper MSEDS design and implementation 

described in Chapter 3.3 by using it to evolve a skyscraper design that responds to the 

requirements and objectives of the Hanking competition (as it has been designed to do) and 

then evaluating the performance of the evolved design alongside other designs entered in the 

competition.  Not only would this provide evidence about how well the skyscraper MSEDS 

design and implementation work to fulfill their intended purpose, but it could also help to 

validate the multi-stage evolutionary design approach itself.   

3.4.2  Evaluation Setup 

3.4.2.1  Evolved Design 

A skyscraper design was evolved using the skyscraper MSED implementation based on the 

system design described in Chapter 3.3.  Although the evolutionary process executed by each 

sub-system was convergent, repeated test runs of the same system with the same initial setup 

converged on a slightly different design each time, indicating that the evolved designs were all 

sub-optimal.  Nevertheless, their substantial similarities suggested that they were probably only 

slightly sub-optimal, so a final run of each sub-system was carried out and the resulting design 

was saved for evaluation.   

3.4.2.2  Competition Designs 

The Hanking competition had six participants: internationally renowned architects/firms Thom Mayne 

(Morphosis) -1st place Winner, TFP Farrells -2nd place, Gensler - 3rd place, Urbanis, Adrian Smith, and 

Leo a Daly.  However, limits on time and resources dictated that the list of designs to be taken for 

comparison be restricted to three.  Therefore, the top three designs by Morphosis, TFP Farrells and 

Gensler were selected and modeled based on documentation submitted during the competition and 

made available to all participants after judging.  However, in the case of the Gensler design, the 

author was already in possession of a detailed and accurate design model so no reconstruction was 

required. 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 133 
 
3.4.2.3  Evaluation Criteria 

As described in Chapter 3.3, the Hanking Competition called for the design of a 110,000m2, 

330m-tall, flexible office tower in the city of Shenzhen, China.  Among the design objectives 

expressed in the Design Brief issued to the competition participants, minimizing energy 

consumption, maximizing views and maximizing natural daylight are ranked as top priorities.  

Accordingly, the skyscraper MSEDS was designed to adaptively evolve designs that not only 

meet the program requirements and obey the relevant regulations, but that also excel in these 

three performance categories.  It is assumed that the designs submitted by the competition 

participants also aimed to perform well in these areas.120

While daylight and views can be easily evaluated using the same techniques employed in the 

skyscraper MSEDS, it is somewhat more difficult to evaluate energy consumption because the 

designs are only resolved to the schematic level and there is insufficient information available 

about them.  As the local climate in Shenzhen typically requires daytime cooling year-round, it 

may be inferred that mechanical cooling will account for the largest portion of overall building 

energy consumption, and in large, glazed office buildings, one of the largest contributors to 

daytime cooling loads is facade insolation.  Accordingly, for the purposes of this comparative 

evaluation, facade insolation was taken as an indicator of energy consumption. 

     

3.4.2.4  Evaluation Procedures 

The Hanking competition program requirements called for 33,050m2 of business apartments in 

a lower zone of the tower, with six apartments per floor, and 62,719m2 of commercial office 

space to be distributed between a middle zone with 3-4 rental spaces per floor, and an upper 

zone with 1-2 rental spaces per floor.  Thus, for the sake of a thorough comparison, three 

typical floors were chosen from each design for evaluation: one in the lower zone with 6 rental 

spaces, one in the middle zone with either 3 or 4 rental spaces, and one in the high zone with 

two rental spaces.  The following evaluation procedures were carried out:121

                                                     
120 The author was a member of the Gensler design team and can testify that this was indeed the case for at least one 
participant. 

 

121 This work was performed in part for ARCH 690 Design Optimization through Building Simulation, Instructor: Manfred 
Zapka, phD, PE, LEED AP   



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 134 
 

• The selected floors were modeled using DesignBuilder software and daylight 

simulations were carried out using Radiance, the industry standard daylight simulation 

program.   

• Next, the view performance of the selected floors was evaluated using the evaluation 

routine described in Chapter 3.3 and employed in the skyscraper MSEDS.   

• Finally, models of the entire building models were constructed using Rhinocerous3D 

and then imported into Autodesk Ecotect for solar exposure simulation to determine a 

daily facade insolation value for each, averaged over a year.    

3.4.2.5  Controls 

Throughout the evaluation process, the following controls were maintained: 

• all designs were modeled to the same level of detail; 

• any design parameters not defined in one or more designs were assigned the same 

default value in all designs; and  

• the same design-independent simulation parameters, such as weather data, etc., were 

applied in all simulations. 

3.4.3  Evaluation Results       

Figures 3.4.1 through 3.4.4 are images showing the evaluation results alongside a model of 

each of the four skyscraper designs.  At the top of each figure is the name of the designer (the 

evolved design is indicated as "MSEDS") and a table displaying that design's rank in each of 

the three performance categories and its rank overall.  The overall ranking was calculated by 

assigning equal weight to all three performance categories. 

 

 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 135 
 

 

Figure 3.4. 1  Morphosis Design Performance Evaluation Summary 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 136 
 

 

Figure 3.4. 2  TFP Farrells Design Performance Evaluation Summary 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 137 
 

 

Figure 3.4. 3  Gensler Design Performance Evaluation Summary 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 138 
 

 

Figure 3.4. 4  MSEDS-Evolved Design Performance Evaluation Summary 



 
 

 

3.4 PERFORMANCE EVALUATION  P a g e  | 139 
 
The results shown in Figures 3.4.1 through 3.4.2 indicate that if the three evaluation criteria - 

views, daylighting, and facade insolation - are assigned equal priority, then the design evolved 

using the MSEDS outperforms all three designs from the competition overall.  It overtakes the 

2nd and 3rd place designs in every category, but rates slightly below the competition-winning 

design by Morphosis in the categories of view and daylighting performance.  The MSED still 

comes out on top overall because the curiously oriented Morphosis design, with no shading 

devices to protect its broad Western facade, ranks last in the category of facade insolation. 

 

  



 
 

 

3.5  DISCUSSION  P a g e  | 140 
 

3.5.1  Review 

The overall goal of this research is to contribute to the development of a practical evolutionary 

design approach that would enable designers to design and implement computational systems 

to adaptively evolve novel building designs based on performance criteria.  The main problem 

is to find a way to reduce epistasis and interdependent elements enough to allow convergent 

adaptive evolution of novel designs, without resorting to representations that are too generic to 

convey important building design information.   

The central proposition of this thesis is that the integration problem can be overcome by 

strategically deconstructing the design problem into a set of simpler component problems with 

solutions that have fewer interdependent elements and that can be generated from fewer 

parameters using low-compression generative encodings that have low epistasis.  According to 

this approach, it is proposed that epistasis and interdependent elements can be reduced 

enough to facilitate convergent adaptive evolution, and solutions to the component problems 

can be recombined to produce a novel overall solution with a high degree of variability that 

makes it difficult to anticipate even with foreknowledge of its component parts.   

To implement this strategy, the multi-stage evolutionary design framework was developed.  It 

comprises a system design methodology that broadly defines a set of procedures for 

designing multi-stage evolutionary design systems (MSEDSs) and using them to evolve design 

solutions, and a system architecture that specifies the general configuration of software and 

hardware components for the MSEDS.  According to the framework, a design problem is 

deconstructed into smaller sub-problems based on a prioritized list of constraints and 

performance objectives, and a hierarchy of evolutionary design sub-systems is constructed to 

evolve solutions to each of the sub-problems.  Sub-problems that relate to high-priority 

constraints and objectives are tackled first, and the evolved solutions constrain subsequent 

sub-problems in a manner consistent with design priorities.  This allows the evolutionary search 

space to take in areas of the design space where the most important adaptations are likely to 

exist. 

To sum up, breaking down the overall problem into smaller sub-problems reduces epistasis 

and interdependent elements to allow a convergent adaptive evolutionary process of partial 



 
 

 

3.5  DISCUSSION  P a g e  | 141 
 
design solutions, which can then be combined to produce a novel and optimal overall design 

solution.  And hierarchically ordering the sub-systems efficiently structures the evolutionary 

search space to support the system's potential to develop useful adaptations that can improve 

performance.  If the multi-stage evolutionary design framework is successful in overcoming the 

integration problem to allow convergent adaptive evolution of novel designs without blocking off 

important areas of the design space, then this research is successful in achieving its overall 

goal.   

3.5.2  Outcomes 

3.5.2.1  System Design 

To test the multi-stages evolutionary design framework, it was applied to design an MSEDS for 

evolving solutions to a particular class of design problem - the skyscraper.  The results show 

that a flexible, modular and expansible MSEDS design can be constructed by carefully 

deconstructing the design problem into four sub-problems: general massing, design of the 

floor-plates, design of the overall envelope form, and design of the more detailed properties of 

the building skin, including material properties and shading devices.  This particular break-

down and sequence of sub-problems reflects a particular set of performance objectives, 

described in Chapter 3.2 and 3.3.  If the performance objectives of a particular skyscraper 

design problem are considerably different, then the hierarchical ordering of the sub-problems 

can be changed and the system reconfigured accordingly.  Adding, subtracting or reordering 

sub-systems are system design-level modifications whose availability renders the framework 

flexible to address skyscraper design problems with a wide range of different design priorities.  

Though not explored in detail in this thesis, it is suggested that the multi-stage evolutionary 

design framework could be applied to design MSEDSs for evolving solutions to a variety of 

other architectural design problems, besides skyscrapers, with equal success.  This would 

involve alternative problem deconstructions that reflect the functions and characteristics of 

different building typologies.  For example, a museum or gallery design problem might be 

deconstructed into an initial sub-problem of designing a circulation scheme to meet 

predetermined objectives that relate to the choreography of the patron's experience. This could 

be followed by the problem of laying out a set of floorplans constrained by the circulation 



 
 

 

3.5  DISCUSSION  P a g e  | 142 
 
scheme and the program requirements.  A third sub-problem may be the design of the overall 

building form to accommodate the evolved plans and embody certain preferred cultural or 

stylistic qualities.  To complete the design, a fourth sub-system may be dedicated the problem 

of designing the fenestration with careful attention to the manipulation of natural light within 

different spaces. 

For a commercial shopping center, advertising effect and image are high-priority design 

objectives.  Centrally located retail spaces with high visibility to shoppers bring in substantially 

higher rental fees.  A convenient and engaging layout and a comfortable, well-lit, well-ventilated 

environment are also important objectives.  According to the multi-stage evolutionary design 

framework, the first sub-problem should address these issues as directly as possible.  It might 

come down to the three-dimensional form of the exterior walls that divide the main circulation 

space from the retail spaces, as they provide the main surfaces for advertising, they are the 

main obstacles to the visibility of storefronts, and they strongly affect lighting and airflow.  

Noting that sharp corners and ninety-degree angles restrict vision more than gradual curves 

and wide angles, one strategy might be to design a main wall sub-system with the encoded 

potential to develop smoothly curving walls.  This could lead to forms with a range of interesting 

adaptations, from which complete plans could be developed, and finally some kind of roof 

structure.     

These examples, though they are only 'thought experiments,' support the hypothesis that the 

multi-stage evolutionary design framework is flexible enough to tackle a wide range of 

architectural design problems having diverse performance objectives without blocking off 

important areas of the design space.  This flexibility stems from the freedom to reframe the 

overall problem as any set of sub-problems that allows maximum variability of those parts of 

the design that have the greatest bearing on design performance in identified key areas.   

The framework also allows particular system designs to be tailored to match more subtle 

variations in performance objectives, by modification on the sub-system level.  Such 

modifications alter the functionalities and interrelationships of the modules constituting the 

development and evaluation systems within a sub-system.  Such modifications affect the 

overall scheme of developing and evaluating design solutions to a given sub-problem, 

changing the interdependencies among elements of the solutions.  For example, in the 

development system of the floor-plate subsystem of the MSEDS design described in Chapter 



 
 

 

3.5  DISCUSSION  P a g e  | 143 
 
3.3, the service core and circulation layout are generated first, and the floor-plate and partitions 

and generated afterwards based on the location of the service core.  Through a sub-system-

level modification, the floor-plate could be generated first, and the core, circulation and 

partitions placed afterwards according to the layout of the floor-plate.  Such a design could, for 

example, allow the core to always be centered at the geometric center of the floor-plate, or 

located at a given interval from the edge of the floor-plate.   

The framework also allows particular generative and evaluative process carried out by modules 

in the development and evaluation systems to be altered via module-level modifications.  

Module-level modifications change the way the modified module operates but do not affect 

how it interoperates with other modules and functions overall within the system.  Examples 

such as alternative core and circulation generators and alternative floor-plate generators are 

described in Chapter 3.3.  Both sub-system-level modifications and module-level modifications 

can be used to alter constraints and access new fields of design variation. 

3.5.2.2  System Implementation 

Use of the multi-stage evolutionary design framework to design the skyscraper MSEDS shows 

that the framework enables the design of flexible, modular and expansible systems that can 

efficiently structure the evolutionary search space to cover the most important regions of the 

design space.  However, to test whether the framework can overcome the integration problem 

to allow convergent adaptive evolution of novel designs requires construction and testing of a 

prototype system implementation, so one was built based on the skyscraper MSEDS design.   

The first real test of the system's performance related to the variability of designs it can 

generate.  The selection of generated designs shown in Figure 3.3.59 demonstrates a 

considerable degree of design variability.  This speaks to the potential of the system and, by 

extension, the framework to produce novelty.  Given the variation illustrated in Figure 3.3.59, it is 

hard to predict what form of design the skyscraper MSED will produce.         

The second performance test was to try evolving a design and then observe whether the 

evolutionary process converges around a single design.  Throughout repeated trials, the 

evolutionary process executed by each sub-system was observed to converge.  However, in 

the case of the floor-plate sub-system, even with the same initial setup, the population 



 
 

 

3.5  DISCUSSION  P a g e  | 144 
 
converged on a slightly different design each time, indicating that the evolved floor-plate 

designs were all sub-optimal.  But, based on their substantial similarities, they were probably 

only slightly sub-optimal.  It is likely that the fitness landscape of the floor-plate sub-system had 

a number of closely grouped local optima, and the evolving population was converging on 

those.  In future work, this kind of problem can be corrected by modification of the 

implementation details, or module-level or sub-system-level modification of the system design.   

Whether the MSEDS was finding global optima or local optima, the evolutionary process was 

convergent, demonstrating that the MSEDS and, by extension, the multi-stage evolutionary 

design framework had overcome the remaining part of the integration problem.  Thus, it is 

concluded that this research successfully achieved its primary objective. 

3.5.2.3  Performance Evaluation 

To more directly test the capability of the skyscraper MSEDS design and implementation to 

evolve high-performance designs, and to help validate the multi-stage evolutionary design 

framework, a skyscraper design was evolved for the Hanking competition and compared with 

the designs of the top three competition entries by simulating the daylighting, view and facade 

insolation performance of each design.  The detailed set up and results of this comparative 

evaluation are described in Chapter 3.4.  To recap, the evolved design was found to outperform 

all three conventional designs in overall performance, despite placing second behind Thom 

Mayne's design in the daylighting and view performance categories.   

This not only supports the hypothesis that the multi-stage evolutionary design approach is 

capable of producing designs for buildings that outperform designs developed using 

conventional performance-based approaches, but it also demonstrates one of the most serious 

potential limitations of evolutionary design - restricted variability.  The evaluation results indicate 

that the Morphosis design excels in view and daylight performance because of its narrow, 

rectangular floor-plates and detached service core connected to the main floor-plate via a 

narrow bridge corridor.  The potential to generate such a detached core configuration, 

apparently a very useful adaptation, was not encoded into the MSEDS.  

In order to evolve designs with useful adaptations that improve performance, the generative 

processes employed in development must allow sufficient variation in the generated designs.  



 
 

 

3.5  DISCUSSION  P a g e  | 145 
 
On the other hand, if variability is too unrestricted, an over-abundance of non-functional forms 

could be generated, which would seriously hinder evolution.  An important system design 

objective, then, is to find ways to constrain variability so as to suppress generation of non-

functional forms and configurations without blocking off areas of the design space that may 

contain useful adaptations.  To this end, the system designer must draw upon a broad body of 

architectural knowledge, as well as his/her personal insights, experiences and sensibilities.   

3.5.3  Human-Computer Synergy 

In evolutionary design, the role of the designer is not to define a single design solution, but 

rather to define the boundaries of the design solution space, and to specify the criteria for 

evaluating the merit of individual designs in the space.  The task of the evolutionary design 

system is then to sweep through the solution space in search of the best designs.  This 

partnership between human and computer requires that the human designer put his/her 

knowledge, insight, experience and sensibilities to work on a higher plane of abstraction than in 

conventional design processes.  Instead of focusing on the lines and proportions of a particular 

design, guided by personal aesthetic preferences and intuition, the designer creatively devises 

ways to produce and control variation based on knowledge, experience and skill, and encodes 

that essential architectural intelligence and creativity into a computational system that can 

explore and evaluate thousands of options.    

This approach plays to the strengths of both the human designer and the computer assistant, 

maximizing the synergy of human cognition and computation.  Because of its ability to take 

samples from all corners of the evolutionary search space and gradually hone in on the best 

designs, there is the unique potential to produce optimal designs that are virtually impossible to 

discover using conventional methods.  Once a design is evolved, the human designer is free to 

further develop and refine the design, or to make adjustments to the system and evolve an 

alternative design.  This process helps to free designers from 'design fixation' and encourages 

experimentation and innovation. 

 



 
 

 

3.5  DISCUSSION  P a g e  | 146 
 

3.5.4  Future Work 

For a designer with coding experience, it requires a substantial amount of time and effort to 

construct any kind of evolutionary design system from scratch.  For a designer with no coding 

experience, the task is all but impossible.  However, if architectural intelligence of the kind 

discussed above could be gathered and encoded to produce a library of modules and sub-

systems that could be assembled to build MSEDSs within a user-friendly application 

environment, then a designer with no coding experience could select and combine modules 

and sub-systems from the library to create and customize new systems to address new design 

problems.  Among all evolutionary design systems, this potential is a unique feature of the 

MSEDS framework developed from this research.   

Future research will focus on developing this potential by gathering and encoding design 

intelligence, and adopting a new platform for implementation to provide a more user-friendly 

interface.  The hope is that this line of research will eventually make evolutionary design tools 

available for architects to use in mainstream practice. 

 

  

 

 

 



 

Bibliography 

Aranda, Benjamin, and Chris Lasch. Pamphlet Architecture 27: Tooling. New York: Princeton 

Architectural Press, 2005. 

Arora, J.S., and R.T. Marler. "Survey of multi-objective optimization methods for engineering." 

Structural Multidisciplinary Optimization, Vol.26, Nr.6 (2004), 369-395. 

Bäck, T. Evolutionary Algorithms in Theory and Practice. New York: Oxford Univerity Press, 1996. 

Baron, P., R. Fisher, F. Mill, A. Sherlock, and A. Tuson. “A Voxel-based Representation for the 

Evolutionary Shape Optimization of a Simplified Beam: A Case-study of a Problem-centered 

Approach Genetic Operator Design.” In 2nd On-line World Conference on Soft Computing in 

Engineering Design and Manufacturing (WSC2), 1997. 

Baron, P., R. Fisher, A. Tuson, and F. Mill. “A Voxel-based Representation for Evolutionary Shape 

Optimization”. AI EDAM Special Issue: Evolutionary Design, Vol.13, Nr. 3 (1999). 

Beasley, D. “Possible Applications of Evolutionary Computation.” In Evolutionary Computation 1: 

Basic Algorithms and Operators, edited by T. Bäck, D.B. Fogel, and T. Michalewicz, 4-19. 

Philadelphia: Institute of Physics Publishing, 2000.  

Bentley, Peter. “Aspects of Evolutionary Design by Computers.” In Proceedings of the 3rd On-Line 

World Conference on Soft Computing:WSC3 (1998): 1-17. 

http://arxiv.org/html/cs/9809049/dss5.html. 

Bentley, P. “An Introduction to Evolutionary Design by Computers.” In Evolutionary Design by 

Computers, edited by P. Bentley, 1-73. San Francisco: Morgan Kaufman Publishers, 1999. 

Bentley, P.J. “Generic Evolutionary Design of Solid Objects using a Genetic Algorithm.” Doctoral 

dissertation, Division of Computing and Control Systems, Department of Engineering, University 

of Hudersfield. 1996. 

Bentley, P.J., ed., Evolutionary Design by Computers. San Francisco: Morgan Kaufmann 

Publishers, 1999. 



 

Bentley P.J., and D.W. Corne., eds. Creative Evolutionary Systems. London: Academic Press, 

2002. 

Bukhari, Fakhri, John H. Frazer, and Robin Drogemuller. “Evolutionary Algorithms for Sustainable 

Building Design.” Paper presented at the 2nd International Conference on Sustainable 

Architecture and Urban Development, Amman, Jordan, July 12-14, 2010. 

Burry, Jane, and Mark Burry. The New Mathematics of Architecture. London: Thames and Hudson, 

2010. 

Caldas, L. “An Evolution-based Generative Design System: Using Adaptation to Shape 

Architectural Form.” Doctoral dissertation, Massachusetts Institute of Technology, 2001. 

Caldas, Luisa, “Generation of Energy-efficient Architecture Solutions Applying GENE_ARCH: An 

Evolution-based Generative Design System.” Advanced Engineering Informatics, Vol.22 (2008), 

59-70. http://www.sciencedirect.com. 

Corser, Robert, ed. Fabricating Architecture: Selected Readings in Digital Design and 

Manufacturing. New York: Princeton Architectural Press, 2010. 

Dasgupta, D., and Z. Michalewicz, eds. Evolutionary Algorithms in Engineering Applications. 

Dusseldorf: Springer-Verlag, 1997. 

Dawkins, R. “Universal Darwinism.” In Evolution from Molecules to Men, edited by D.S. Bendall, 

403-425. Cambridge: University Press, 1983. 

De Vries, Peter. “Morphology and Structural Behavior of the Hyperbolic Lattice.” Structural 

Morphology Colloquium (2000), 374-381. 

Di Cristina, Giuseppa, ed. Architecture and Science (Architectural Design). Sussex: Wiley-

Academy, 2001. 

Evans, M.R., and O.J. O'Loan. "Alternating steady state in one-dimensional flocking." Journal of 

Physics A: Mathematical and General, Vol.32, Nr.8 (1999), L99-L105. 

Fischer, Thomas, and Torben Fischer. "Toolmaking for Generative design." International Journal of 

Design Computing, asd Vol.6 (2003), 1-23. 

http://www.sciencedirect.com/�


 

Fogel, D.B. Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE 

Press, 1995. 

Fox, Michael, and Miles Kemp. Interactive Architecture. New York: Princeton Architectural Press, 

2009. 

Frazer, John H. An Evolutionary Architecture. London: Architectural Association, 1995. 

Garcia, Mark, ed. The Patterns of Architecture (Architectural Design). New Jersey: Wiley, 2010.  

Goldberg, D. G.. Genetic Algorithms in Search, Optimization and Machine Learning. Reading: 

Addison-Wesley, 1989. 

Grondzik, Walter T., Alison G. Kwok, John S. Reynolds, and Benjamin Stein. Mechanical and 

Electrical Equipment for Buildings. 11th ed. New Jersey: John Wiley and Sons, 2010. 

Gurdal, Zafer, and Raphael T. Haftka. Elements of Structural Optimization. Norwel: Kluwer 

Academic Publishers, 1992. 

Hensel, Michael, Achim Menges, and Michael Weinstock. Emergent Technologies and Design: 

Towards a Biological Paradigm for Architecture. London: Routledge, 2010. 

Hensel, Michael, Achim Menges, and Michael Weinstock, eds. Emergence: Morphogenetic 

Design Strategies (Architectural Design). New Jersey: Wiley, 2004.  

Hensel, Michael, Achim Menges, and Michael Weinstock, eds. Techniques and Technologies in 

Morphogenetic Design (Architectural Design). New Jersey: Wiley, 2006. 

Hensel, Michael, and Achim Menges, eds. Versatility and Vicissitude: Performance in Morpho-

Ecological Design (Architectural Design). New Jersey: Wiley, 2008. 

Holland, J.H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 

1975. 

Hornby, Gregory S. “Functional Scalability through Generative Representations: the Evolution of 

Table Designs.” Environment and Planning B: Planning and Design, Vol.31 (2004): 569-587. 



 

Hornby, Gregory S. “Generative Representations for Computer-Automated Evolutionary Design.” 

Paper presented at 2006 ERCOFTAG Design Optimization: Methods and Applications. Las 

Palmas, Spain, Apr. 5-7, 2006. 

Hornby, Gregory S., and Jordan B. Pollack. “The Advantages of Generative Encoding for Physical 

Design.” Paper presented at 2001 IEEE Congress on Evolutionary Computation. Seoul, Korea, 

May 27-30, 2011. 

Janssen, Patrick H.J. “A Design Method and Computational Architecture for Generating and 

Evolving Building Designs.” PhD diss., Hong Kong Polytechnic University, 2004. 

Janssen, Patrick. “A Generative Evolutionary Design Method.” Digital Creativity, Vol.17, Nr.1 

(2006): 49-63. 

Janssen, Patrick, John Frazer, and Ming-Xi Tang. “A Computational System for Generating and 

Evolving Building Designs.” In Digital Opportunities: Proceedings of the 10th International 

Conference on Computer-Aided Architectural Design Research in Asia (2005): 463-474. 

Janssen, Patrick H.T., John H. Frazer, and Ming-Xi Tang. “A Framework for Generating and 

Evolving Building Designs.” International Journal of Architectural Computing, Vol.3, Nr.4 (2005): 

449-470. 

Kolarevic, Branko. Architecture in the Digital Age: Design and Manufacturing. UK: Taylor and 

Francis, 2005. 

Kolarevic, Branko, and Ali Malkawi, eds. Performance-based architecture: Beyond Instrumentality. 

London: Routledge, 2005. 

Kolarevic, Branko, and Kevin Klinger, eds. Manufacturing Material Effects: Rethinking Design and 

Making in Architecture. London: Routledge, 2008. 

Kolarevic, Branko. "Generative design and Computational Architectures." Presented at SIGraDi 

2000, Rio de Janiero, 2000. 

Kotnik, Toni. “Digital Architectural Design as Exploration of Computable Functions.” International 

Journal of Architectural Computing, Vol.8, Nr.1 (2010), 1-16. 



 

Kottas, Dmitris. Contemporary Digital Architecture: Design and Techniques. Links International, 

Ceg, 2010. 

Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural 

Selection. Cambridge: MIT Press, 1992. 

Kubo, Michael, and Farshid Moussavi, eds. The Function of Ornament. Barcelona: Actar and 

Harvard Graduate School of Design, 2006.  

Lagios, Kera, Jeff Niemasz, and Christophe F. Reinhart. “Animated Building Performance 

Simulation (APBS) – Linking Rhinoceros/Grasshopper with Radiance/Dayism.” Paper presented 

at Simbuild 2010, New York City, New York, August 2010. 

Leach, Neil. “Generative design.” Architectural Design, Vol.79, Nr.1 (2009), 32-37. 

Leach, Neil, David Turnbull, and Chris Williams, eds. Digital Tectonics. Chichester: Wiley-

Academy, 2004. 

Leach, Neil. “Generative design.” Lecture, University of East London, 2008. 

Lindenmayer, Aristid. "Mathematical Models for Cellular Interaction in Development: Parts I and II." 

Journal of Theoretical Biology 18 (1968): 280-315. 

Markov, A.A., and N.M. Nagorny. The Theory of Algorithms. Moscow: Academy of the Sciences 

USSR, 1954. 

McWilliams, Chandler, and Casey Reas. Form+Code in Design, Art and Architecture (Design 

Briefs). New York: Princeton Architectural Press, 2010. 

Meredith, Michael. From Control to Design: Parametric/Algorithmic Architecture. Edited by Aranda-

lasch and Mutsuro Sasaki. Barcelona: Actar, 2008. 

Mitchell, M. An Introduction to Genetic Algorithms. Cambridge: MIT Press, 1999. 

Mitchell, William J. Logic of Architecture: Design, Computation, and Cognition. Cambridge: The 

MIT Press, 1990. 



 

Moussavi, Farshid. The Function of Form. Edited by Daniel Lopez and Garrick Ambrose, Ben 

Fortunato, Ryan R Ludwig, and Ahmadreza Schriker. Barcelona: Actar and Harvard Graduate 

School of Design, 2009. 

Oxman, Rivka. “Performance-based Design: Current Practices and Research Issues.” 

International Journal of Architectural Computing, Vol.6, Nr.1 (2008), 1-17. 

Parmee, Ian. “Exploring the Design Potential of Evolutionary Search, Exploration and 

Optimisation.” In Evolutionary Design by Computers, edited by Peter J. Bentley, 119-143. San 

Francisco: Morgan Kaufmann Publishers, Inc., 1999.   

Querin, O.M., G.P. Stevens and Y.M. Xie. "Evolutionary structural optimisation (ESO) using a 

bidirectional algorithm." Engineering Computations, Vol.15, Nr.8 (1998), 1031-1048. 

Rizos, Ioannis. “Next Generation Energy Simulation Tools: Coupling 3D sketching with Energy 

Simulation Tools.” MSc Thesis, University of Strathclyde, 2007. 

Roudavski, Stanislav. “Towards Morphogenesis in Architecture.” International Journal of 

Architectural Computing, Vol.7, Nr.3 (2009), 345-374.  

Shea, Kristina, R. Aish, and M. Gourtovaia. "Towards Integrated Performance-based Generative 

Design Tools." Edited by W. Dokonal, Digital Design. Presented at ECAADE 2003, Graz Austria, 

2003, 253-264.  

Shea, K. “Essays of Discrete Structures: Purposeful Design of Grammatical Structures by 

Directed Stochastic Search.” Doctoral dissertation, Carnegie Mellon University, 1997. 

Shea, K. “An Approach to Multiobjective Optimization for Parametric Synthesis.” In 13th 

International Conference on Engineering Design (ICED 01) – Design Methods for Performance 

and Sustainability, WDK 28 (2001), 203-210. 

Shea, K. “Directed Randomness.” In Digital Tectonics, edited by N. Leach, D. Turnbull, and C. 

Williams, 10-23. London: Academic Press, 2004. 

Silver, Mike, ed. Programming Cultures: Architecture, Art and Science in the Age of Software 

Development (Architectural Design). Academy Press, 2006.  



 

Spuybroek, Lars, ed. Research & Design: the Architecture of Variation. London: Thames and 

Hudson, 2009.  

Stiny, George. Shape: Talking about Seeing and Doing. Cambridge: MIT Press, 2006. 

Teknomo, Kardi, Yasushi Takeyama, and Hajime Inamura. “Determination of Pedestrian Flow 

Performance Based on Video Tracking and Microscopic Simulations.” Proceedings of 

Infrastructure Planning Conference, Vol.23, Nr.1 (2000), 639-642.  

Terzidis, Kostas. Algorithmic Architecture. London: Architectural Press, 2006. 

Terzidis, Kostas. Expressive Form: A Conceptual Approach to Computational Design. London: 

Spoon Press, 2003. 

Weinstock, Michael. The Architecture of Emergence: the Evolution of Form in Nature and 

Civilisation. New Jersey: Wiley, 2010. 

Wolfram, Stephen. A New Kind of Science. Champaign: Wolfram Media, 2002. 

Woodbury, Robert. Elements of Parametric Design. London: Routledge, 2010. 

 


	PART 1
	INTRODUCTION
	1.1.1  Overview
	1.1.2  Evolution in Nature
	1.1.3  Evolutionary Algorithms
	1.1.4  Evolutionary Design
	1.2.1  Problem Overview
	1.2.2  Problem Statement
	1.3.1  Research Objectives
	1.3.2  Research Methodology
	1.3.2  Research Scope
	1.4.1  Thesis Organization
	PART 2
	LITERATURE REVIEW
	2.1.1  Introduction
	2.1.2  Conventional Skyscraper Design Process
	The following paragraphs describe a skyscraper design process.  It is suggested that the described process can be regarded as typical of how many mainstream architectural design firms approach the design of tall buildings in a large number of cases.  ...
	2.1.3  Conventional Performance-Based Design
	2.2.1  Introduction
	2.2.2  Parametric Techniques
	2.2.3  Combinatorial Techniques
	2.2.4  Replacement Techniques
	L-Systems
	Cellular Automata
	2.2.5  Agent-Based Techniques
	2.3.1  Introduction
	2.3.1.1  Overview

	/
	2.3.1.2  Evolution in Nature

	Not all biological organisms have evolvability - the capacity to acquire useful adaptations through genetic changes in reproduction.  Populations of organisms that lack evolvability may still be capable generating genetic diversity, but the developmen...
	2.3.1.3  Evolutionary Algorithms
	2.3.1.4  Evolutionary Design

	2.3.2  Evolutionary Design Systems
	2.3.2.1  Overview

	In Chapter 1.1, three types of evolutionary design were identified: evolutionary design optimization, evolutionary design exploration, and integral evolutionary design.  This section reviews a number of evolutionary design systems in the literature, i...
	2.3.2.2  GENE_ARCH

	Caldas has developed an evolutionary design optimization system, called GENE_ARCH, for helping architects to design energy-efficient and sustainable architectural solutions.93F   GENE_ARCH can operate in two modes depending on design requirements.  Wh...
	A strength of this system lies in its ability to evolve designs on the detailed level of their material systems, when the overall building shape and spatial layout are fixed.  Caldas writes, "One of the distinctive aspects of GENE_ARCH is that it gene...
	2.3.2.3  eifForm
	2.3.2.4  Schema-Based Approach
	2.3.2.5  P0L-Systems
	2.3.2.6  GADES
	2.3.2.7  HEAD

	Bukhari, Frazer, and Drogemuller have proposed an integral evolutionary design system, called the hierarchical evolutionary algorithmic design (HEAD) system, that is divided into three levels "to respond to the hierarchical decomposition of the design...
	The room-level algorithm evolves designs for each space in the building based on unspecified design criteria, standards, codes, etc., and outputs not just one but a number of the most successful variants.  The building level algorithm evolves arrangem...
	Only the system architecture shown in Figure 2.3.13 is disclosed.  There is no information on the type of generative processes employed in the development systems.  Neither is there any data on the performance of the system because, at the time of pub...
	/
	While the concept of decomposing the design problem into further levels of sub-problems is quite promising, the HEAD system seems to have some major drawbacks.  First, the partial design solutions evolved by the room-level algorithm restrict the varia...
	Further, room, building and overall optimization may not be the most effective choice of sub-problems.  Depending on the particular design problem, an alternative deconstruction may be more in-line with building type characteristics and design priorit...
	2.3.3  Experimental Design Projects
	PART 3
	RESEARCH DOCUMENTATION
	3.1.1  Introduction
	3.1.2  Multi-Stage Evolutionary Design Systems
	3.1.3  System Design
	3.1.3.1  Problem Deconstruction
	3.1.3.2  Sub-System Design
	Development System
	Evaluation System
	AOF

	3.2.1  Introduction
	3.2.2  Design Problem
	3.2.3  Skyscraper MSEDS Design
	3.2.3.1  Problem Deconstruction
	Constraint Prioritization
	The third group of constraints and objectives relates to design requirements and objectives expressed by the client or suggested by the designer.  For simplicity, the source of this group will be referred to as the Design Brief, although, as mentioned...
	Problem Deconstruction
	Referring to Figures 3.2.1, 3.2.2, and 3.2.3, in S1, a stage 1 design model representing the general massing of the skyscraper using rectangular planes vertically arrayed and grouped into service zones is evolved using general massing sub-system 1.  I...
	3.2.3.2  General Massing Sub-System

	𝑁=,𝐻-ℎ.
	3.2.3.3  Floor-plate Sub-System
	3.2.3.4  Envelope Sub-System
	3.2.3.4  Building Skin Sub-System

	3.3.1  Introduction
	3.3.2  Design Problem
	The Hanking competition called for the design of a 330m-tall office skyscraper boasting a combined GFA of 110,000m2 in the city of Shenzhen in Nanshan, China.  The client was Rolansberg Hanking, the second largest land developer based in Shenzhen, and...
	Figure 3.3.1 is a map showing the site for Hanking Center and land use in the neighborhood, and Figure 3.3.2 is a view of Shenzhen at night, showing the location of Hanking Center.  The site was 11,000m2, roughly rectangular with the broad side orient...
	3.3.3  Skyscraper MSEDS Design
	3.3.3.1  Problem Deconstruction
	Constraint Prioritization
	Problem Deconstruction
	The above prioritized list of constraints confirm that constraints related to codes, regulations and requirements in the Design Brief together specify the general massing of the skyscraper as a function of four or five different design parameters.  Al...
	System Architecture
	3.3.3.2  General Massing Sub-System
	3.3.3.3  Floor-plate Sub-System
	/
	/
	3.3.3.4  Envelope Sub-System
	/
	3.3.3.5  Skin Sub-System

	/
	/
	Referring to Figures 3.3.54 and 3.3.55, in S4200-1, a daylight evaluator 4220-1 receives environmental parameter values input from the user input device 110 of the user interface 100.  The parameters include weather data based on geographical location...
	Figure 3.3.56 is a visualization of facade insolation simulation results for a building skin model including a dense array of shading louvers.
	3.3.3.6  Overall System

	3.4.1  Introduction
	3.4.2  Evaluation Setup
	3.4.2.1  Evolved Design
	3.4.2.2  Competition Designs
	3.4.2.3  Evaluation Criteria
	3.4.2.4  Evaluation Procedures
	3.4.2.5  Controls

	3.4.3  Evaluation Results
	Figures 3.4.1 through 3.4.4 are images showing the evaluation results alongside a model of each of the four skyscraper designs.  At the top of each figure is the name of the designer (the evolved design is indicated as "MSEDS") and a table displaying ...
	/
	3.5.1  Review
	3.5.2  Outcomes
	3.5.2.1  System Design
	3.5.2.2  System Implementation
	3.5.2.3  Performance Evaluation

	3.5.3  Human-Computer Synergy
	3.5.4  Future Work

