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Abstract

Grating scattering is a fundamental model in remote sensing, electromagnetics,
ocean acoustics, nondestructive testing, and image reconstruction. In this work we ex-
amine the problem of detecting the geometric properties of gratings in a two–dimensional
acoustic medium where the fields are governed by the Helmholtz equation. Building
upon our previous Boundary Perturbation approach (implemented with the Operator
Expansions formalism) we derive a new approach which augments this with a new
“smoothing” mechanism. With numerical simulations we demonstrate the enhanced
stability and accuracy of our new approach which further suggests not only a rigorous
proof of convergence, but also a path to generalizing the algorithm to multiple layers,
three dimensions, and the full equations of linear elasticity and Maxwell’s equations.

Keywords: Boundary Perturbations; Operator Expansions; Linear Acoustics; Regu-
larization; Quadratic Optimization.

1 Introduction

Grating scattering is a fundamental model in remote sensing [TKS85], electromagnetics
[Pet80], ocean acoustics [BL82], nondestructive testing [Shu02], and image reconstruction
[NW01]. In a recent paper [MN11a] we devised a Boundary Perturbation technique (based
upon the Operator Expansions—OE—[Mil91a, CS93] formalism) for approximating solu-
tions of two related problems in these fields: 1.) The “forward problem” of simulating
scattering returns of known incident radiation interacting with a grating of known struc-
ture; and 2.) the “inverse problem” of recovering the grating structure given data about
both the incident and scattered radiation. In this work we augment and, as we shall see,
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vastly improve our approach to (2.) with the addition of a “smoothing” mechanism similar
in spirit (though not identical to) classical Tikhonov regularization [Kre99].

As with the OE method as it was originally designed by Milder [Mil91a, Mil91b, Mil96b,
Mil96a] and Milder & Sharp [MS91, MS92], our new approach is spectrally accurate (i.e.,
has convergence rates faster than any polynomial order) due to both the analyticity of the
scattered fields with respect to boundary perturbation, and the optimal choice of spatial
basis functions which arise naturally in the methodology. Our inversion strategy was origi-
nally inspired by the work of Nicholls & Taber [NT08, NT09] on the recovery of topography
shape under a layer of an ideal fluid (e.g. the ocean) which also uses the explicit nature of
the OE formulas to great effect.

This contribution is most similar in spirit to the work of Ito & Reitich [IR99] who con-
sidered the same problem in a similar, but not identical, framework. They employed the
Field Expansions [BR93a, BR93b, BR93c] method as the underlying “forward solver,” and
used a regularization to realize greater stability. By contrast, we use the Operator Ex-
pansions [Mil91a, CS93] formalism which not only has different numerical properties (see,
e.g., [NR01a, NR01b]), but also features formulas where the interface deformation appears
explicitly which, as we demonstrate in §§ 4.2 & 4.4, lead to elegant and easily–derived in-
version formulas. In addition, our regularization features a slightly different cost functional
to be minimized which leads to a constrained quadratic optimization problem rather than a
more general nonlinear one. While this comes at the cost of greater demands placed upon
the measurement of the far–field data, it is rewarded with a vastly simplified numerical
procedure (the “Null Space Method” of Quadratic Programming [NW06]) which involves
inversion of easily precomputed matrices without line searches, derivative calculations, con-
jugate gradient implementations, nonconvexities, etc.

Other approaches to this problem have, of course, been considered and we refer to Ito
& Reitich’s [IR99] paper and the classical texts of Colton & Kress [CK83, CK98, Kre99]
for extensive lists. We mention that most of these are based upon Integral Equation (IE)
formulations requiring explicit knowledge of the Green’s function. These methods, like our
Boundary Perturbation approach, are accurate and efficient as they posit surface unknowns
and are spectrally accurate. However, we mention that our current approach is clearly
advantaged compared to IE methods in two aspects:

1. For the periodic problems we consider here IE approaches must faithfully compute the
periodized Greens function (e.g., via Ewald summation) which is not only technically
challenging, but also introduces an additional discretization parameter thereby sig-
nificantly increasing the computational cost. (See the extensive discussion in [KR09]
for a full discussion of these matters together with suggestions to minimize these is-
sues.) Due to the Fourier basis functions utilized by our scheme, these quasiperiodic
solutions are computed “by default” at no additional cost.

2. As we mentioned above, the impetus for using the Operator Expansions formalism
is due to the fact that the boundary deformations and their powers appear explicitly
in this formulation. As with the Field Expansions recursions, the boundary shape
appears in the IE formulation in a rather implicit fashion rendering the identification
of formulas akin to those in § 4 impossible.

Specific to the simulation of the scattered field from a grating using IE methods, most
recently we are aware of the work of Arens & Grinberg [AG05] on the “Complete Factoriza-
tion Method” as applied to periodic gratings, the iterative regularization method of Hettlich
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[Het02], and the papers of Bruckner et al [BE05, EHR04, BE03] on the generalization of the
Kirsch–Kress optimization method to gratings. In this latter work, [BE05, BE03] focused
upon Integral Equation formulations, while [EHR04] modified these approaches to the Fi-
nite Element framework. We also point out the work of Kress & Tran [KT00], Akduman,
Kress, & Yapar [AKY06], Lahcene & Gaitan [LG11], and the bibliographies of these.

The organization of the paper is as follows: In § 2 we recall the governing equations,
including a discussion of relevant unknowns (§ 2.1). In § 3 we discuss the forward problem
with relevant expansions presented in § 3.1 followed by brief numerical results in § 3.2. In
§ 4 we discuss the particulars of the inverse problem and review our previous Boundary
Perturbation approach to this problem, specifically we give a formula for the mean depth in
§ 4.1, a linear approximation for the perturbation shape in §§ 4.2 & 4.3, and a nonlinearly
corrected version in § 4.4. We describe our new, regularized version of this algorithm in
§ 5, with the principal ideas for a linear algorithm in § 5.1, precise details in § 5.3 (inspired
by the procedures for Constrained Quadratic Programming which we recall in § 5.2), and
a new regularized nonlinear correction given in § 5.4. We close with extensive numerical
results in § 6.

2 Governing Equations

In this contribution we focus on the problem of recovering the interface of a two–dimensional
acoustic medium overlying an impenetrable, periodic solid. Without loss of generality
we assume that observations may be made at y = 0, the interface is “centered” at the
(unknown) level y = ḡ < 0, and has (unknown) deviation g(x) such that

ḡ + g(x) < 0,

see Figure 1.
For simplicity we focus upon the case of a “sound soft” lower material, isonified from

above by time–harmonic incident radiation

ui(x, y) = eiαx−iβy.

It is well known that the scattered field, u = u(x, y), is governed by the Dirichlet problem
[Pet80, MN11a]

∆u+ k2u = 0 y > ḡ + g(x) (2.1a)
∂yu− (iβD)u = 0 y = 0 (2.1b)
u(x, ḡ + g(x)) = ζ(x) (2.1c)

u(x+ d, y) = eiαdu(x, y), (2.1d)

where
ζ(x) := −ui(x, ḡ + g(x)) = −eiαx−iβ(ḡ+g(x)). (2.1e)

To explain the “Outgoing Wave Condition” (OWC), (2.1b), and introduce important no-
tation, we recall that a solution of (2.1a) & (2.1d) via separation of variables gives the
Rayleigh expansion (see [Pet80], Chapter 1, page 10)

u(x, y) =
∞∑

p=−∞
ψ̂pe

iαpx+iβpy +
∞∑

p=−∞
ξ̂pe

iαpx−iβpy, y > ḡ + |g|L∞ ,
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y = ḡ + g(x)

y = 0

∆u + k2u = 0

(α, −β )

Figure 1: Plot of one–layer configuration with incident radiation exp(iαx − iβy), bottom
interface at y = ḡ + g(x), and observation plane at y = 0.

where

αp := α+
2πp
d
, βp :=


√
k2 − α2

p p ∈ U
i
√
α2
p − k2 p 6∈ U

,

and the propagating modes are

U := {p ∈ Z | α2
p < k2}.

The OWC demands that the “downward propagating” coefficients ξ̂p (p ∈ U) and un-
bounded modes ξ̂p (p 6∈ U) be identically zero, while the simple calculation

∂yu(x, 0) =
∞∑

p=−∞
(iβp)ψ̂peiαpx =: (iβD)ψ(x)

defines the order–one Fourier multiplier (iβD). As this is simply a matching condition at
y = 0, it is clear that (2.1b) enforces the OWC transparently.

Remark. We note that the “sound hard” case can be similarly treated and we present
some particulars in Appendix A.

2.1 Unknowns

The ideal unknown would be the surface trace

U(x) := u(x, ḡ + g(x)),
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as the governing equations, (2.1), are equivalent to the simple equation

U = ζ. (2.2)

However, with the inverse problem in mind, it becomes apparent that this is unreasonable
as U is posed at the very surface which we do not know. A more promising choice would
be

u(x, 0) =: ũ(x) =
∞∑

p=−∞
ũpe

iαpx,

or, possibly, from the Rayleigh expansion (see [Pet80], Chapter 1, page 10),

B(x) :=
∑
p∈U

Bpe
iαpx.

We note that since we have chosen y = 0 as our “measuring plane” we have ũp = Bp, for
p ∈ U . We remark that such quantities are quite reasonable data to measure, as the “far
field pattern” for grating scattering is widely regarded as the set of “efficiencies”

ep :=
βp
β
|Bp|2 =

βp
β
|ũp|2 , p ∈ U ,

which are effectively (but not identically) ũp. For later reference we note that, for a lossless
material (Im{β} = 0) there is a principle of conservation of energy [Pet80]:∑

p∈U
ep = 1,

so that a widely–accepted diagnostic of convergence (e.g., [Pet80, BR01]) of a numerical
scheme is to measure the “energy defect”

δ := 1−
∑
p∈U

ep. (2.3)

3 The Forward Problem

Before examining the inverse problem we describe a Boundary Perturbation (BP) method to
recover our chosen unknown ũ from incident radiation, ui, and known structure, {ḡ, g(x)}.
For this we introduce the “Dirichlet Propagation Operator” (DPO) P

P (g)[U(x)] := ũ(x) (3.1)

so that, using (2.2), our governing equation becomes

ũ(x) = P [U ] = P [ζ(x)] = P (g)[ζ(x; g)]. (3.2)

Our solution procedure is classical regular perturbation theory: If we set g(x) = εf(x)
and suppose (verifiable a posteriori) that P and ζ depend analytically upon ε, i.e.

P = P (εf) =
∞∑
n=0

Pn(f)εn, ζ = ζ(x; εf) =
∞∑
n=0

ζn(x)εn,
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then we propose an expansion for the unknown

ũ = ũ(x; ε) =
∞∑
n=0

ũn(x)εn,

and, upon insertion of these forms into (3.2), find a formula for the n–th correction ũn of
the form

ũn =
n∑

m=0

Pn−m[ζm].

From this we obtain a highly accurate approximation of ũ

ũN (x; ε) :=
N∑
n=0

ũn(x)εn,

which may be summed directly (Taylor summation) or via numerical analytic continuation
methods (Padé summation).

Remark. The limitations of our method are largely determined by the validity of
the above expansions. This is characterized by two considerations: First, the smoothness
requirements on f , and second the size of the perturbation allowed (i.e., the magnitude of ε).
Regarding each of these we refer the interested reader to the extensive work, both theoretical
and numerical, on these questions in connection to Laplace’s [NR01a, NR01b, NR03] and
Helmholtz’s equation [NR04a, NR04b]. In these it is shown that the expansions are valid for
quite rough profiles (twice continuously differentiable via elementary methods, or Hölder of
index 1+θ, θ > 0, and even Lipschitz continuous via more sophisticated techniques [HN05]).
Additionally, using analytic continuation techniques the expansions are strongly convergent
for real perturbations of arbitrary size, up to physical obstruction (e.g., intersection of layer
interfaces) [NR03, HN10].

3.1 Expansions

To enable the perturbation strategy above to succeed, the data, ζ, and boundary operator,
P , must be expanded in Taylor series. These effectively appear in previous publications
(see, e.g., [MN11a]), but we briefly rederive them here for completeness. For the data, if we
set g(x) = εf(x) in (2.1e) then

ζ(x; ε) = −eiαx−iβ(ḡ+εf) = −eiαx−iβḡ
∞∑
n=0

(−iβ)nFnεn,

where Fn(x) := f(x)n/n!. Thus

ζn(x) = −(−iβ)ne−iβḡFn(x)eiαx.

Regarding the operator P we appeal to the method of Operator Expansions [Mil91a,
CS93] and seek formulas for the action of Pn on basis functions, in this case the complex
exponentials exp(iαpx). Consider the following quasiperiodic solution of the Helmholtz
equation satisfying the OWC (i.e., satisfying (2.1a), (2.1b), and (2.1d))

Up(x, y) := eiαpx+iβp(y−ḡ)
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and insert this into the definition of P , (3.1):

P (g)
[
eiαpx+iβpg

]
= P (g) [Up(x, ḡ + g)] = Ũp(x) = Up(x, 0) = eiαpx−iβpḡ.

Setting g = εf and expanding in Taylor series results in( ∞∑
n=0

Pn(f)εn
)[ ∞∑

m=0

(iβp)mFmεmeiαpx

]
= e−iβpḡeiαpx. (3.3)

At order zero
P0

[
eiαpx

]
= e−iβpḡeiαpx,

and upon expanding a typical (L2) function in its Fourier series

ψ(x) =
∞∑

p=−∞
ψ̂pe

iαpx

we find a formula for P0 applied to ψ:

P0[ψ] = P0

[ ∞∑
p=−∞

ψ̂pe
iαpx

]
=

∞∑
p=−∞

ψ̂pP0

[
eiαpx

]
=

∞∑
p=−∞

ψ̂pe
−iβpḡeiαpx =: e−iβD ḡψ, (3.4)

which defines the Fourier multiplier exp(−iβDḡ).
At order n > 0 (3.3) yields

n∑
m=0

Pm(f)
[
(iβp)n−mFn−meiαpx

]
= 0,

which, upon solving for Pn, leads to

Pn(f)
[
eiαpx

]
= −

n−1∑
m=0

Pm(f)
[
(iβp)n−mFn−meiαpx

]
.

Once again appealing to the Fourier series representation of the function ψ we find

Pn(f)[ψ] = −
n−1∑
m=0

Pm(f)
[
Fn−m(iβD)n−mψ

]
. (3.5)

3.2 Brief Numerical Results: Forward Problem

This numerical procedure is very much in the spirit of the work of Milder [Mil91a, Mil91b,
Mil96b, Mil96a], Milder & Sharp [MS91, MS92], Kaczkowski & Thorsos [KT94], and Nicholls
& Reitich [NR04a, NR04b, NR08] (see also Voronivich’s reference [Vor99]) and is not a
significant departure from these. However, to give us confidence in the “forward data”
which this method can produce, we report on a series of numerical simulations.

We consider the following physical parameters

α = 0, β = 5.5, d = 2π, ḡ = −1.5, (3.6)
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so that k =
√
α2 + β2 = β = 5.5, and an analytic interface profile with Fourier coefficients

given by

f̂p =

{
1
2 (2ρ)(|p|−1)/(R−1) p 6= 0
0 p = 0

. (3.7)

We make this particular choice as it has mean zero (f̂0 = 0), shares some height/slope
characteristics of the cosine function (since, as with the cosine, f̂1 = f̂−1 = 1/2), and one
can specify the value of the R–th Fourier coefficient as ρ. To get a more concrete feel for
this profile, recall [CHQZ88] that if a function has Fourier coefficients

ĥp =

{
CB−|p| p 6= 0
0 p = 0

,

where B > 1, then

h(x) = C

(
2B cos(x)− 2

B2 + 1− 2B cos(x)

)
.

A brief proof comes from the elementary calculation:

h(x) =
∞∑
p=1

CB−peipx +
∞∑
p=1

CB−pe−ipx

= C

 ∞∑
p=1

(
B−1eix

)p +
∞∑
p=1

(
B−1e−ix

)p
= C

(
B−1eix

1−B−1eix
+

B−1e−ix

1−B−1e−ix

)
= C

(
eix

B − eix +
e−ix

B − e−ix
)

= C

(
(Beix − 1) + (Be−ix − 1)
B2 + 1−Beix −Be−ix

)
= C

(
2B cos(x)− 2

B2 + 1− 2B cos(x)

)
.

In our case
B = (2ρ)−1/(R−1) , C =

1
2
B,

so that

f(x) = C

(
2B cos(x)− 2

B2 + 1− 2B cos(x)

)
=

B2 cos(x)−B
B2 + 1− 2B cos(x)

. (3.8)

For (ε,R) values (0.01, 10), (0.03, 20), and (0.05, 30) with ρ = 10−16, we display in
Figure 2 the energy defect δ = δ(ε) versus perturbation order N . In these results we
truncate all Fourier series beyond ±Nx/2 coefficients, and have selected Nx = 128. The
perturbation series are summed via classical Padé approximation [BGM96] as we have in
previous work [NR01b, NR03, MN11b]. In all three cases, we see the rapid and reliable
convergence of our approach for this analytic yet non–trivial interface.
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Figure 2: Energy defect, δ, summed via Padé algorithm versus number of perturbation
orders retained, N . Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile
parameters: ε = 0.01, 0.03, 0.05, R = 10, ρ = 10−16; numerical parameter: Nx = 128.
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4 The Inverse Problem

We now adopt the point of view that the problem knowns are the incident wavenumber (α, β)
and some scattered far–field data. For these we request a collection of Fourier coefficients
{η̂p} such that

η(x) :=
∑
p∈P

η̂pe
iαpx ≈ ũ(x).

We leave the set of modes P unspecified but remark that we can certainly expect the
propagating modes, U ⊂ P, and any (reliable) additional evanescent modes, p 6∈ U , will
simply add to the accuracy of our method.

4.1 Order Zero Approximation: Formula for ḡ

We recall that our governing equation, (3.2), is

ũ = P [ζ] = P (ḡ, g)[ζ(x; ḡ, g)]

and, making the expansions we utilized with such success in § 3, we write

ũ = P0[ζ0] +O(g).

Ignoring terms of order g and higher we have the approximation

ũ ≈ P0[ζ0].

If we now enforce both ũ = η and ũ = P0[ζ0], and insert the forms for P0 and ζ0 which we
derived in § 3.1, we find

∞∑
p=−∞

η̂pe
iαpx = η = ũ = P0[ζ0] = e−iβD ḡ

[
−e−iβḡeiαx

]
= e−iβD ḡ

[ ∞∑
p=−∞

−e−iβḡeiαpxδp,0

]

=
∞∑

p=−∞
e−iβpḡ

[
−e−iβḡeiαpxδp,0

]
= −e−iβḡe−iβ0ḡeiα0x = −e−2iβḡeiαx, (4.1)

where δp,q is the Kronecker delta function, and we recall that α0 = α and β0 = β. Clearly
this approximation is inaccurate as it is most likely that η̂p 6= 0 for p 6= 0. However,
supposing that both |η̂p| � 1 for p 6= 0, and that |η̂0| ≈ 1, by equating arguments we find

Arg{η̂0} = −2βḡ + 2πm+ π

for any integer m. The ill–posedness of our inverse problem is on full display in this equation
as there are an infinite number of solutions. However, we can make an educated selection
and simply pick

ḡ =
−Arg{η̂0}+ 2πm̄+ π

2β
(4.2)

for the m̄ which selects the shallowest layer (i.e., the negative ḡ of smallest magnitude).
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4.2 Linear Approximation (LA): Formula for g

Motivated by our previous work [MN11a], we write the governing equation (3.2) as

ũ = P0[ζ0] + {P1(·)[ζ0] + P0[ζ1(·)]} [g] +O(g2). (4.3)

Ignoring terms of order g2 we consider

ũ = b+M [g],

where

b := P0[ζ0], (4.4a)
M := {P1(·)[ζ0] + P0[ζ1(·)]} . (4.4b)

Simply setting ũ = η, so that we match the far–field data exactly, we find g from the “Linear
Approximation” (LA)

M [g] = η − b, (4.5)

which is essentially the “Linear Model” in [MN11a] adapted to the one–layer case.

4.3 The Operator M

The ill–conditioning of the inverse problem becomes apparent in this formula with a careful
analysis of M . Recall that, defining φ(x) := exp(i(−βḡ + αx)),

P0[ψ] = e−iβD ḡ[ψ], ζ0(x) = −φ(x),

and that
P1(g)[ψ] = −P0 [g {(iβD)[ψ]}] , ζ1(x; g) = (iβ)g(x)φ(x)

so that

M [g] = P1(g)[ζ0(x)] + P0[ζ1(x; g)]
= −P0 [g {(iβD)[−φ]}] + P0 [(iβ)gφ]
= P0 [g {(iβD)[φ]}+ (iβ)gφ] .

As we saw in (4.1), it is not difficult to show that

(iβD)φ = (iβD)e−iβḡeiαx = e−iβḡ(iβD)
∞∑

p=−∞
δ0,pe

iαpx = e−iβḡ
∞∑

p=−∞
(iβp)δ0,pe

iαpx = (iβ)φ,

so that
M [g] = P0 [g(iβ)φ+ (iβ)gφ] = (2iβ)P0 [φg] .

Therefore, M is essentially the exponentially smoothing operator P0 (multiplication by φ
simply delivers (φg) which is quasiperiodic versus the periodic function g) with inverse

P−1
0 [ψ(x)] =

∞∑
p=−∞

eiβpḡψ̂pe
iαpx

and we point out that, since ḡ < 0, this operator will exponentially amplify the evanescent
wavenumbers, p 6∈ U , giving a severely ill–posed operator.
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4.4 Nonlinear Approximation (NLA): Iteration Scheme for g

Continuing with the program of [MN11a] we write our governing equation (3.2) as

ũ = P0[ζ0] + {P1(·)[ζ0] + P0[ζ1(·)]} [g] +R(Ni)(g) +O(gNi+1), (4.6)

for an approximation order Ni where

R(Ni)(g) :=
Ni∑
n=2

n∑
m=0

Pm(g)[ζn−m(x; g)].

Ignoring terms of order gNi+1 we consider

ũ = b+M [g] +R(Ni)(g),

and, after setting ũ = η, we set up the “Nonlinear Approximation” (NLA) iteration for the
approximations g(k+1):

M
[
g(k+1)

]
= η − b−R(Ni)(g(k)), (4.7)

which is the “Nonlinear Model” in [MN11a] adapted to the one–layer case. We use the
solution of the LA algorithm, (4.5), as the initial guess g(0).

5 Regularizing the Inverse Problem

A standard technique from the theory of inverse problems [Kre99] for regularizing ill–posed
problems of the form

Aϕ = f,

is to minimize the quantity

‖Aϕ− f‖2 + τ ‖ϕ‖2 , τ > 0,

which, if A is compact, has unique solution, ϕτ , satisfying

(τI +A∗A)ϕτ = A∗f.

This Tikhonov Regularization technique [Kre99] could, of course, be applied to our LA
scheme, (4.5), where we set ũ = η (i.e. that we measure the far–field exactly) and ϕ = g.

However, we choose to pursue a slightly different approach in which we allow a “defect”
in the far–field measurement, (ũ 6= η), view the function pair

X := (ũ, g)T

as our unknown, and seek minimizers for the form

q̃(ũ, g) :=
1
2
‖ũ− η‖2L2 +

τ

2

(
‖g‖2L2 + ‖∂xg‖2L2

)
,

for τ > 0. We will constrain our search by demanding that the pair (ũ, g) satisfy the govern-
ing equations (3.2), and note that q̃ penalizes both defect between actual and experimental
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far–field pattern, and oscillations in g. We do not change the set of minimizers by simply
subtracting the constant term 1

2 ‖η‖
2
L2 , and thus we focus on the quantity

q(ũ, g) :=
1
2
‖ũ− η‖2L2 − 1

2
‖η‖2L2 +

τ

2

(
‖g‖2L2 + ‖∂xg‖2L2

)
=

1
2
〈ũ, ũ〉 − Re{ 〈η, ũ〉 }+

τ

2
(〈g, g〉+ 〈∂xg, ∂xg〉)

=
1
2
〈ũ, ũ〉 − Re{ 〈η, ũ〉 }+

τ

2
〈
g, (I − ∂2

x)g
〉
,

where

〈f, g〉 :=
∫ d

0
f(x)g(x) dx,

and we have used integration by parts. Introducing the notation

Q :=
(
I 0
0 τ(I − ∂2

x)

)
, c :=

(
η
0

)
, (5.1)

we can write q as

q(X) =
1
2
〈X,QX〉 − Re{ 〈c,X〉 }. (5.2)

5.1 Regularized Linear Approximation (RLA): Formula for g

Recalling our governing equation, (3.2), we define a constraint function

B(ũ, g) := ũ− P (g)ζ(g),

and, from (4.3), observe that

B(ũ, g) = ũ− P0ζ0 − {P1(·)[ζ0] + P0[ζ1(·)]} [g] +O(g2),

so that, recalling (4.4), making the definition

B(1)(ũ, g) := ũ− b−M [g]

seems reasonable. If we set
A :=

(
I −M

)
, (5.3)

then
B(1)(ũ, g) = AX − b.

We consider our “Regularized Linear Approximation” (RLA) as finding the X satisfying
the constrained quadratic optimization problem:

min
X

q(X) = min
X

{
1
2
〈X,QX〉 − Re{ 〈c,X〉 }

}
such that AX = b. (5.4)

13



5.2 Constrained Quadratic Optimization

To explain our numerical procedure for solving (5.4) we recall the procedure for the corre-
sponding problem in finite dimensions [NW06]. To avoid confusion with our notation for
the infinite–dimensional problem, yet be suggestive with the details of our algorithm, we
denote matrices with bold–face and vectors with an over–arrow, while using the same letter
for corresponding quantities (e.g., functions and vectors, operators and matrices). Consider
the functional

q(~x) :=
1
2
~x∗Q~x− ~c∗~x

where Q ∈ Cn×n is Hermitian and positive definite, ~x,~c ∈ Cn, and ∗ denotes (conjugate)
transpose. We seek to minimize this subject to the set of linear constraints

~B(~x) := A~x−~b = 0,

where A ∈ Cm×n, ~b ∈ Cm, m ≤ n, and A has full row rank m. It is well known [NW06] that
the unique solution of this problem can be found by the method of Lagrange multipliers in
the following way. Consider the Lagrangian

L(x) := q(~x)− ~λ∗ ~B(~x),

with Lagrange multiplier ~λ ∈ Cm. The first–order condition that the function q be mini-
mized is that the gradient of the Lagrangian be zero:

0 = ∇xL(~x) = Q~x− ~c−A∗~λ.

Coupling this to the constraint ~B(~x) = 0 gives the Karush–Kuhn–Tucker (KKT) equations(
Q −A∗

A 0

)(
~x
~λ

)
=
(
~c
~b

)
. (5.5)

To solve this system of equations we have two options [NW06]: Schur complements if
Q is invertible (and easy to apply), and the “Null Space Method” if the null space of A
is known. With a view to future applications with multiply layered media where Q may
not be invertible, we advocate the latter approach and assume that we can find the matrix
Z ∈ Cn×(n−m) containing, as columns, (n−m) linearly independent members of N (A) so
that

AZ = 0.

Now, if we can easily find Y ∈ Cn×m such that the matrix (Y|Z) is non–singular then we
express ~x as

~x = Y~y + Z~z,

a portion in the null space of A and “another part.” Now, inserting this into the second
equation of (5.5), and using AZ = 0, we recover

(AY)~y = ~b,

and it is not difficult to show that (AY) is invertible [NW06]. Now, the first equation of
(5.5) reads

Q[Y~y + Z~z]−A∗~λ = ~c.

14



Left–multiplying by Z∗ and recognizing Z∗A∗ = (AZ)∗ = 0 delivers

(Z∗QZ)~z = Z∗[~c−QY~y],

where K := (Z∗QZ) ∈ C(n−m)×(n−m) can be shown to be invertible [NW06] and ~y is now
known. Finally, left–multiplying the first equation in (5.5) by Y∗ gives

(AY)∗~λ = Y∗[Q(Y~y + Z~z)− ~c] = Y∗[Q~x− ~c],
where (AY)∗ is nonsingular as (AY) is. Summarizing, we solve, in order, the following

(AY)~y = ~b (5.6a)
K~z = Z∗[~c−QY~y] (5.6b)

(AY)∗~λ = Y∗[Q~x− ~c], (5.6c)

where each of the operators (AY), K, and (AY)∗ is invertible.

5.3 Regularized Linear Algorithm: Formula

We now solve (5.4) by minimizing the function q, (5.2), using the “Null Space Method,”
(5.6), with Q and c given in (5.1), and A given in (5.3). Inspired by the developments of
the previous section we define the following operator–valued matrices

Z =
(
M
I

)
, Y =

(
I
0

)
,

and find:
AY = I, (AY )∗ = I, K = M∗M + τ(I − ∂2

x).

The same manipulations we displayed in the finite dimensional case can be performed again
and, if we seek a solution x = Y y + Zz, we find, c.f. (5.6a),

y = b.

Using this calculation we discover that

Z∗[c−QY y] = M∗[η − b]
so that, c.f. (5.6b),

[M∗M + τ(I − ∂2
x)]z = M∗[η − b].

Having found y and z we can form X = (ũ, g)T and recover, c.f. (5.6c), that

λ = Y ∗[Qx− c] = ũ− η.
Vanishing Smoothing Limit: In the limit τ → 0, we find

y = b, M∗Mz = M∗[η − b], λ = ũ− η,
so that z is the least squares solution of the ill–posed equation Mz = η− b. If M−1 existed
then

z = M−1[η − b]
so that(
ũ
g

)
= X = Y y + Zz = Y b+ ZM−1[η − b] =

(
I
0

)
b+

(
M
I

)
M−1[η − b] =

(
η

M−1[η − b]

)
,

which is simply (4.5).
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5.4 Regularized Nonlinear Approximation (RNLA): Iteration Scheme for
g

In light of the success we had in our nonlinear versus linear approximations (NLA versus
LA) [MN11a], we mimic those ideas in the setting of the regularization outlined above,
(5.4). Following that development we note that, from (4.6),

B(ũ, g) = b+M [g] +R(Ni)(g) +O(gN+i+1)

which inspires
B(Ni)(ũ, g) := ũ− b−M [g]−R(Ni)(g).

Using (5.3) once again, we find

B(Ni)(ũ, g) = AX − b−R(Ni)(g),

and consider the iterative “Regularized Nonlinear Linear Approximation” (RNLA) as find-
ing the X(k+1) satisfying the constrained quadratic optimization problem:

min
X(k+1)

q(X(k+1)) = min
X(k+1)

{
1
2

〈
X(k+1), QX(k+1)

〉
− Re{

〈
c,X(k+1)

〉
}
}

such that AX(k+1) = b+R(Ni)(g(k)), (5.7)

where we select X(0) as the solution of the RLA, (5.4).

6 Numerical Results: Inverse Problem

We now demonstrate the convergence behavior of these four algorithms: The Linear Algo-
rithm (LA) (4.5), the Nonlinear Algorithm (NLA) (4.7), the Regularized Linear Algorithm
(RLA) (5.4), and the Regularized Nonlinear Algorithm (RNLA) (5.7). Once again we select
the physical parameters (3.6):

α = 0, β = 5.5, d = 2π, ḡ = −1.5,

the analytic profile, (3.8), with ρ = 10−16 and choices (ε,R) = (0.01, 10), (0.03, 20), (0.05, 30).
The far–field data that we use to generate our approximations are generated by our forward
algorithm (3.2) with Nx = 128 and N = 12. We point out that by doing this we are com-
mitting the “inverse crime” [CK98] of using a philosophically similar method to generate
data for the inversion strategy. Colton & Kress [CK98] (page 133, § 5.3) point out that by
doing this it is unsurprising that “. . . the surface . . . is recovered pretty well.” With this in
mind, in § 6.1 we add noise to the synthetically generated input data to not only address
this criticism but also more realistically simulate “real world” data.

Recalling the definition of the L∞ norm,

|f |L∞ := sup
0<x<d

|f(x)| ,

where the essential supremum is intended, in Figure 3 we display a plot of relative L∞

error compared with the exact solution versus the smoothing parameter τ in the case (ε =
0.01, R = 10). We note that for the LA and NLA methods, as there is no smoothing, we
simply plot the error as a constant function. Furthermore, the NLA line does not appear
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Figure 3: Plot of relative L∞ error in reconstructed solution (compared to the exact solution)
versus the regularization parameter τ for the LA, RLA, and RNLA algorithms. Physical
parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.01, R = 10,
ρ = 10−16; numerical parameters: Nx = 128, Ni = 8.

as the algorithm diverges for this discretization due to ill–conditioning. In the less–resolved
case Nx = 32 we can recover excellent convergence for this method, c.f. [MN11a]; see
Figure 4. In Figure 3 we notice the extremely beneficial gains in accuracy which can be
realized with both the regularizer (three orders of magnitude improvement for the Linear
Algorithm), and the nonlinear correction (over ten more orders of magnitude improvement).
We point out that in this and all subsequent simulations, if τ is chosen sufficiently large
then the recovered solution is simply g(x) ≡ 0 (resulting in 100 % error).

We repeat these calculations for (ε = 0.03, R = 20) and (ε = 0.05, R = 30) and display
the results in Figures 5 and 6, respectively. Once again, we notice the extremely beneficial
effects of using both the regularizer (three orders of magnitude improvement for the Linear
Algorithm), and the nonlinear correction (seven or even nine orders of magnitude further
improvement).

Remark. Of course the key consideration in all of this is the choice of the regularization
parameter τ . This is a subtle and difficult question, and sources like Colton & Kress [CK98]
(page 87, § 4.2) give some guidance, however, as most must admit “. . . quite often the only
choice for selecting the regularization will be trial and error . . . ” [CK98].

6.1 Reconstruction in the Presence of Noise

As the goal of our work is to apply these algorithms to data collected either in the laboratory
or the field, their stability with respect to noise is of fundamental importance. We thus
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Figure 4: Plot of relative L∞ error in reconstructed solution (compared to the exact solu-
tion) versus the regularization parameter τ for the LA, NLA, RLA, and RNLA algorithms.
Physical parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.01,
R = 10, ρ = 10−16; numerical parameters: Nx = 32, Ni = 8.
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Figure 5: Plot of relative L∞ error in reconstructed solution (compared to the exact solution)
versus the regularization parameter τ for the LA, RLA, and RNLA algorithms. Physical
parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.03, R = 20,
ρ = 10−16; numerical parameters: Nx = 128, Ni = 8.
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Figure 6: Plot of relative L∞ error in reconstructed solution (compared to the exact solution)
versus the regularization parameter τ for the LA, RLA, and RNLA algorithms. Physical
parameters: α = 0.0, β = 5.5, d = 2π, ḡ = −1.5; profile parameters: ε = 0.05, R = 30,
ρ = 10−16; numerical parameters: Nx = 128, Ni = 8.
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test the response of the algorithms to two types of random noise. Of course in real data
such noise is present in all aspects of a reconstruction procedure from the specification of
the incident radiation, to the assumptions that the layers are homogeneous (or even have a
layered structure), to the measurements of the far–field pattern. To test our algorithms we
take the point of view that the noise present in the incident wavenumber (α, β) is negligible,
while we adhere to the model of a single acoustic layer with velocity constant up to a very
small error. We introduce significant noise, however, to the far–field data we measure: {η̂p}.

For this we propose two approaches: “Absolute uniform noise”

χ̂p := η̂p + a(2X − 1), X ∼ U(0, 1), (6.1)

where U(0, 1) is a uniformly distributed random variable on the interval (0, 1), or “relative
uniform noise”

θ̂p := {1 + a(2X − 1)} η̂p, X ∼ U(0, 1). (6.2)

For these simulations we use the rand command from MATLAB [MAT10] to generate the
U(0, 1) samples (seeded, in every case, with the integer 100 so as to be reproducible).
To simplify the exposition of our results we restrict ourselves to the profile (3.8) with
(ε = 0.05, R = 30) and noise amplitudes a = 10−3, 10−2, 10−1.

We now present results of simulations using this noise in Figure 7 for absolute noise, (6.1),
and Figure 8 for relative noise, (6.2). Once again we notice the remarkable accuracy that
our new RNLA algorithm can deliver, though, of course, the noise necessarily diminishes its
performance greatly. In the absolute noise case we can realize relative accuracies of 10−3,
2×10−3, and 9×10−3 for values of a = 10−3, 10−2, 10−1, respectively (for τ = 0.01 in every
case).

In the relative noise case we can realize relative accuracies of 5 × 10−4, 4 × 10−3, and
4 × 10−2 for values of a = 10−3, 10−2, 10−1, respectively. In these cases these are achieved
for much smaller values of τ equal to 10−5 or 10−6.

6.2 Moho Depth Variation Recovery

In an effort to display the utility of our approach when applied to “real world” data we
sought out a sample profile inspired by the Mohorovičić (Moho) discontinuity which sep-
arates the Earth’s crust from the mantle underneath [ZK00]. For this we consulted the
work of Zhu and Kanamori [ZK00] on measuring the depth of this discontinuity in southern
California.

We took the estimated Moho depths given in [ZK00] beneath stations located between
−116◦ and −117◦ longitude. We assumed that these points lie roughly along a line, and
then smoothed and interpolated the resulting profile to obtain an equally sampled profile
appropriate for this model (see Figure 11). The smoothing primarily compensates for the
unequal sampling and deviations of the sample locations from a line.

Selecting the physical parameters (3.6):

α = 0, β = 5.5, d = 2π, ḡ = −1.5,

and the “Moho profile,” we once again generate far–field data with our algorithm (3.2) with
Nx = 128 and N = 12. (We point out that these parameter choices represent illumination
from a single direction from above, as opposed to the more realistic situation of multiple
directions from below.) These data were relatively polluted with uniformly distributed noise
of amplitude a = 10−1, (6.2), and given to our RLA and RNLA algorithms. The results
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Figure 7: Relative L∞ error, versus regularization parameter τ , in RNLA approximation of
the true interface shape with far–field data, η̂p, polluted by absolute, uniformly distributed
noise, (6.1), of amplitudes a = 10−3, 10−2, 10−1. Physical parameters: α = 0.0, β = 5.5,
d = 2π, ḡ = −1.5; profile parameters: ε = 0.05, R = 30, ρ = 10−16; numerical parameters:
Ni = 8, Nx = 128.
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Figure 8: Relative L∞ error, versus regularization parameter τ , in RNLA approximation of
the true interface shape with far–field data, η̂p, polluted by relative, uniformly distributed
noise, (6.2), of amplitudes a = 10−3, 10−2, 10−1. Physical parameters: α = 0.0, β = 5.5,
d = 2π, ḡ = −1.5; profile parameters: ε = 0.05, R = 30, ρ = 10−16; numerical parameters:
Ni = 8, Nx = 128.
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Figure 9: Absolute and relative L∞ error, versus regularization parameter τ , in RNLA
approximation of the true Moho interface shape with far–field data, η̂p, polluted by relative,
uniformly distributed noise, (6.2), of amplitude a = 10−1. Physical parameters: α = 0.0,
β = 5.5, d = 2π, ḡ = −1.5; numerical parameters: Ni = 8, Nx = 128.

are tabulated in Figure 9 for the RNLA method, and the actual reconstructions (in the
case τ = 10−6) together with the exact profile are reproduced in Figure 11. Despite the
aperiodicity of the Moho profile, we see the impressive capabilities of our new approach
in recovering the Moho discontinuity. As we measure in L∞, almost all of the error is
due to the non–periodicity in this more realistic simulation. We make this more precise in
Figure 10 with L2 measurements.
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A The Sound–Hard Case

To complement our developments in § 2 we note that an acoustic wave interacting with a
two–dimensional “sound hard” periodic grating has scattered field described by the Neu-
mann problem

∆u+ k2u = 0 y > ḡ + g(x) (A.1a)
∂yu− (iβD)u = 0 y = 0 (A.1b)
(∂Ñu)(x, ḡ + g(x)) = ψ(x) (A.1c)

u(x+ d, y) = eiαdu(x, y), (A.1d)

where
Ñ := (−∂xg, 1)T ,

and
ψ(x) := −(iβ + iα(∂xg))eiαx−iβ(ḡ+g(x)). (A.1e)

For a surface formulation we define the exterior Neumann trace

U ′(x) := −(∂Ñu)(x, ḡ + g(x)),

so that (A.1) becomes
−U ′ = ψ. (A.2)

Introducing the “Neumann Propagation Operator” (NPO) T

T (ḡ + g)[U ′(x)] := ũ(x),

c.f. (3.1), the forward problem becomes a solution of the equation

ũ(x) = T [U ′] = −T [ψ(x)] = −T (g)[ψ(x; g)]. (A.3)

Again, setting g(x) = εf(x), expanding

T = T (εf) =
∞∑
n=0

Tn(f)εn, ψ = ψ(x; εf) =
∞∑
n=0

ψn(x)εn,

and

ũ = ũ(x; ε) =
∞∑
n=0

ũn(x)εn,

we insert these into (A.3). The n–th correction ũn solves

ũn = −
n∑

m=0

Tn−m[ψm],
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and we again obtain a highly accurate approximation

ũN (x; ε) :=
N∑
n=0

ũn(x)εn,

which may be summed directly (Taylor summation) or via numerical analytic continuation
methods (Padé summation).

Finally, to enable our perturbation strategies for both the forward and inverse problems,
we note the following expansions which can be derived as ζn and Pn were in § 3.1. At order
zero

ψ0(x) = −iβe−iβḡeiαx

T0 = − 1
(iβD)

e−iβD ḡ,

and at order n > 0

ψn(x) =
{
−iβ(−iβ)nFn(x)− iα(∂xf)(−iβ)n−1Fn−1(x)

}
eiαxe−iβḡ

Tn =
n−1∑
m=0

Tm(f)
[{
k2Fn−m + ∂xFn−m∂x

}
(iβD)n−m−2

]
.
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