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What moved where?: The impact of velocity uncertainty on 
microseismic location and moment-tensor inversion

Abstract
With the rise of unconventional resources, microseismic 

monitoring is becoming increasingly important because of its 
cost-effectiveness. This has led to significant research activity on 
how best to locate events and characterize their moment tensors. 
Locations tell us where fracturing is occurring, allow the tracking 
of fluid movement, and fracture propagation. Moment tensors 
help to determine the type of failure occurring, which is beneficial 
in planning and interpreting the results of hydraulic-fracturing 
jobs and in monitoring production. The rising number of methods 
to determine parameters raises important questions about how 
uncertainties in the input parameters are translated into uncertain-
ties in the final locations and moment tensors. We present a 
framework for assessing these uncertainties and use it to demon-
strate how velocity uncertainty — as well as uncertainties in arrival 
times and amplitudes — translates into uncertainties on the re-
covered quantities of location and moment-tensor parameters.

Introduction
As long as countries like the United States continue to move 

toward exploiting internal sources of energy, unconventional re-
sources will be an important part of the world’s energy portfolio. 
Microseismic monitoring is one of the most commonly used methods 
to estimate the reservoir volume, drainage area, and other charac-
teristics of such unconventional reservoirs. Microseismic monitoring 
is attractive because it is less expensive than imaging, and it can 
potentially be done in real time. For multistage hydraulic fracturing, 
such real-time monitoring is advantageous because then the results 
of the previous stage of fracturing can be used to guide activities 
during subsequent stages. Most often, the typical output of a mi-
croseismic monitoring program is a collection of estimated event 
locations along with moment tensors (Eisner et al., 2011). Accurate 
location and origin-time estimations of microseismic events are 
important because they potentially allow us to monitor changes in 
the stress field due to the injection and where fractures have been 
generated or stimulated. Moment tensors give more information 
about the stress state than do locations alone. They also provide an 
indication of whether or not faults are active, fractures have opened, 
and they provide information about the physical fault parameters 
(strike, dip, and rake) in addition to the event size.

Locations are usually obtained by the processing of arrival 
times and moment tensors by analyzing the polarities or ampli-
tudes of first-arriving P- and S-waves. There are methods (Li 
et al., 2011; Nakata and Beroza, 2016; Sharan et al., 2016; 
Kaderli et al., 2015 and references therein) that use the entire 
waveform to recover both this information and additional sub-
surface parameters, but we will not deal with those methods in 
this paper. All location and moment-tensor inversion (MTI) 
algorithms rely on velocity information, and thus uncertainty 
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in the velocity may have a strong impact on the recovered results. 
From a theoretical viewpoint, it would be best to use the informa-
tion from arrival times, velocity analyses, and the entire recorded 
waveform to jointly reduce the uncertainty in event location, 
MTI, and in the velocity model itself. Doing all these things 
together is computationally intractable, but in this paper we set 
up a framework that takes a first step in this direction.

Our framework tells us how to go from estimates of uncertain-
ties in the input data (e.g., arrival times, waveforms, velocities) to 
estimates of uncertainty in model parameters (e.g., locations, 
moment tensors, velocities) through application of Bayes’ theorem. 
Bayes’ theorem, which we describe in more detail to follow, tells 
us how to translate uncertainties on our input parameters into the 
resulting uncertainties on our output parameters. Here, we apply 
this methodology to determine what the uncertainties are on both 
locations and focal mechanisms for given uncertainties in velocity. 
The location part builds on our past work (Poliannikov et al., 
2011a, 2011b, 2012, 2014, 2015, 2016; Poliannikov and Djikpesse, 
2015; Poliannikov and Malcolm, 2016), which has focused primar-
ily on the location problem and highlights how different location 
algorithms perform under different assumptions on the uncertain-
ties in both arrival times and velocity. That work shares some 
similarities with that of Eisner et al. (2009). A recent overview 
of MTI methods can be found in Cesca et al. (2013) or Gu (2016).

Problem setup
Our goal is to provide a general framework through which 

uncertainties in velocity and arrival times can be incorporated into 
a final estimate of locations and moment tensors with uncertainties 
on each quantity. To illustrate our method, we use a simple problem 
of processing a single source. We can process many events jointly 
using straightforward generalizations of methods presented here. 
Our framework is applicable to both surface and borehole monitor-
ing as long as the direct arrivals from the event are visible. From 
either recording geometry, we assume that (uncertain) arrival times 
and amplitudes are picked from recorded data either manually or 
automatically. When the signal-to-noise ratio (S/N) is low and 
arrivals are not easily picked, migration-based location algorithms 
may need to be used, which makes Bayesian analysis more chal-
lenging, though some progress can be made (Poliannikov and 
Malcolm, 2016). Figure 1 shows the source location and monitoring 
geometry we use for our examples.

Measuring data uncertainties
Velocity uncertainty. Although many velocity-analysis tech-

niques do not come with an explicit error determination, any 
method that shows an imperfect fit to the data used to determine 
the velocity or has limitations in the resolution of the velocity due 
to data distribution can be used to estimate the velocity uncertainty 
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in some way. In each case, the Bayesian formulation requires us 
to make explicit which velocity models we consider possible before 
we estimate locations and moment tensors from the microseismic 
data. As the procedure continues, and locations are computed for 
various scenarios or a joint location-velocity inversion is performed, 
we may refine our velocity model and its associated uncertainty 
model. In all cases, however, some initial assumptions must be 
made about the velocity, and most conventional velocity-analysis 
methods can provide the necessary information about uncertainty. 
For example, if velocities are picked through some sort of semblance 
analysis, the associated semblance functions will have peaks with 
a width allowing different interpreters to arrive at different models. 
If velocities instead are taken from an analysis of well logs, then 
the log data may be blocked or averaged in different ways and 
must be transformed to compensate for potential differences in 
what the log measures and what the microseismic wave will see 
(e.g., different components or frequencies). These procedures can 
be used to give quantitative information about the range of plausible 
models. A third method of velocity analysis encompasses velocity-
inversion algorithms that seek to minimize some sort of cost 
function. These algorithms must be stopped at what is often a 
somewhat arbitrarily chosen point, which means that, again, more 
than one feasible model can be estimated from this analysis.

Traditionally this uncertainty information is ignored, at least 
partially, because it is not clear what to do with this information; 
this is part of what we address in this paper. Quantifying velocity 
uncertainty means building a prior probability distribution p(v) 
from which we can sample different velocity models, called velocity 
realizations, that each represent a plausible velocity model. Simply 
providing several possible velocity models is a particular case of 
velocity-uncertainty quantification. These models would make 
up p(v), and sampling p(v) would entail choosing one of these 
models at random.

Making the right assumptions about the best choice for p(v) 
in a given situation is difficult. Underestimating the uncertainty 
may lead to a bias in the final results, as the true velocity model 
may not be included in the initial set. By contrast, overestimating 
the uncertainties is fine in theory but makes further processing 
more computationally expensive and may result in unrealistically 
large error bounds on the final estimated parameters.

Arrival time and amplitude-picking uncertainties. Our frame-
work for location and moment-tensor inversion relies on direct 
arrival times and amplitudes, which may be picked automatically, 
manually, or through a combination of the two. The quality of 
both sets of picks depends on many factors, including the source 
time function, radiation pattern, signal noise, etc. It is often the 
case that picks are characterized as simply good or bad, which is 
insufficient for careful uncertainty analysis. Any estimated quantity 
such as the P-arrival time from a given event to a given station 
must come with some error bars, which imply a probability dis-
tribution for the pick, rather than a single number. One way to 
do this is to use characteristic functions (see Massin and Malcolm 
[2016] and references therein).

Estimating model uncertainties
As mentioned above, we will work with a single event to 

simplify the discussion. We assume that this event is located at x, 
with moment tensor m embedded in a material with velocities 
v = (vp, vs). To each station, we associate an arrival time, t = (tp, ts), 

and P/S amplitude ratio r. We treat (t, v, r) as random variables, 
which means they are conceptually characterized by a joint prob-
ability distribution. We then attempt to estimate the location and 
moment tensor and their associated uncertainties using this proba-
bilistic description of the input information. To make this explicit, 
we briefly outline the theory first for locations given arrival times 
and then for moment tensors given arrival amplitude ratios.

As one example of a probability distribution, we may character-
ize each quantity by a mean and a standard deviation. The problem 
with this assumption is that it implies that the distributions are 
Gaussian, which we shall see is not the case here. As a result, we 
must define our probability distributions more generally.

Event location. As mentioned above, we must begin with a 
probabilistic statement of the problem. We formulate the problem 
by defining a likelihood function, p(t|x,v), which is read as “the 
likelihood of observing arrival time t, given the input distributions 
on x and v.” This is a modeled range of arrival times for a given 
range of locations and velocities. In other words, we calculate 
p(t|x,v) by computing the arrival times that would be recorded 
for a microseism at x with velocity model v. For simplicity, we 
are fixing the origin time; it can be incorporated easily (Polian-
nikov et al., 2014) but adds to the notational clutter. From this, 
we would then like to compute the posterior, p(x|t), or the prob-
ability of the event being located at x given the distributions of 
arrival times with the effects of the velocity uncertainty folded 
in. We will use two tools to obtain this final likelihood: Bayes’ 
theorem and marginalization, described hereafter. We can use 
these tools to obtain different probabilities for different parameters 
by simply adjusting which parameters we consider as inputs and 
which we estimate. For example, we can first compute p(x,v|t), 
which is the joint probability of observing the location x, and 
velocity v, given the arrival time data, t, and then, if desired, 
integrate (or marginalize) this joint posterior over v to get the 
posterior of just the location.

Figure 1. Experimental setup. The triangles are monitoring stations, and the 
beach ball represents the moment tensor we attempt to recover. We will also 
recover the location of this event.
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Bayes’ theorem relates a likelihood function (forward model) 
to the posterior distribution (inversion). Explicitly it tells us that

p model |data( ) =
p data |model( ) p model( )

p data( )
,          (1)

so given a forward model p(data|model) and a prior distribution 
of the input parameters p(model), we can probabilistically invert 
for the input parameters model using the observed output data. 
To apply equation 1, we must simply define our model and data 
appropriately. For example, to estimate the posterior, p(x,v|t), we 
set data = (t), model = (x,v) and obtain

p x,v |t( ) =
p t |x,v( ) p x,v( )

p t( )
.                   (2)

In the expression above, the normalization constant p(t) is 
the unconditional probability of the observed data that ensures 
that the left-hand side is a valid probability density that integrates 
to one. We can then reduce the joint posterior p(x,v|t) to the 
smaller distribution that we are really interested in, namely p(x|t), 
by marginalizing (integrating) over our auxiliary variable, v. 
Marginalizing simply means incorporating all possible outcomes 
for a particular variable. In our case, we may be interested only 
in the location and not the velocity, so we take the joint distribution 
estimated with equation 2, which measures jointly the location 
and velocity and their associated uncertainties, and estimate a 
distribution on only the location. To remove the dependence on 
the velocity, we then calculate

p x |t( ) = p x,v |t( )dv∫ .                       (3a)

Similarly, we can calculate the uncertainty in the velocity 
model as constrained by the recorded microseismicity:

p v |t( ) = p x,v |t( )dx∫ .                       (3b)

This distribution is shown in Figure 2.
The event location algorithm can be summarized as follows. 

First, we make initial assumptions about the velocity model, along 
with the associated uncertainty, using data unrelated to a micro-
seismic survey. Second, we detect events and estimate arrival 
times and their errors from the recorded waveforms. We then 
model the likelihood in p(t|x,v) using Monte Carlo sampling over 
the range of models provided in the probability distribution for 
v and the grid of possible locations. These quantities together 
allow us to apply equations 2 and then 3 to estimate the posterior 

distribution for the event location x 
given t. The results of this process are 
shown in Figure 3.

Observe that the peak of posterior 
distribution does not have to coincide 
with the true location of the event. If it 
did, it would imply that we could recover 
the event location precisely, which is 
generally not possible. As expected, the 
distributions are larger in the depth 
direction than in either of the lateral 
directions; we expect this because the 
monitoring array has larger extent in 
both lateral directions than it does in 
depth. Figure 3b shows 2D uncertainty 
ellipses as confidence regions. A 50% 
confidence region means that for 50% 
of the realizations of velocity and picked 
arrival times, the event is located some-
where within this ellipse.

Moment-tensor inversion. Having 
obtained a distribution for the 

Figure 2. The posterior distribution of the P-velocity. The true value of the 
P-velocity is 3500 m/s.

Figure 3. The posterior estimates of locations and their uncertainties, p(x |t). (a) 1D slices of the resulting 
distribution; (b) 2D confidence ellipses for three different confidence levels. The red dot shows the true 
microseism location.
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locations, we now move on to estimate the moment tensor, m, 
characterized by the strike, dip, and rake of the fault, and cal-
culate the uncertainty of this estimate, given the P/S amplitude 
ratio, r. We use the amplitude ratio because it is less dependent 
on velocity errors as well as the differences in the measurement 
response at different stations, which may come from different 
instrument types and qualities as well as differences in their 
immediate environment.

Our basic approach to moment-tensor estimation is the same 
as it was to the event-location problem: we first estimate our 
errors on the data, r, and construct a likelihood function (forward 
model), p(r|m,x,v), that describes what measurements we are 
likely to observe given certain model parameters. This likelihood 
along with “priors” on the input parameters allow us to use Bayes’ 

theorem from equation 1 to calculate the joint posterior distribu-
tion, p(m,x,v|r). By integrating over x and v, we obtain the final 
posterior distribution p(m|r), which gives us the best estimate 
of the moment tensor as well as the associated uncertainty. 
Mathematically,

p m|r( )  ∝  p r |m,x,v( ) p m( ) p x,v( )dx  dv∫∫ .        (4)

Recall that we are estimating the moment tensor after we 
have already located the event. The probability density function 
p(x,v) that acts as a prior here is actually the posterior distribution 
for the location problem given in equation 2. The moment tensor 
depends both on the event location and the velocity model, 
which in turn are correlated through arrival times that proba-
bilistically tie them together. This means that to quantify the 
moment-tensor uncertainty, we first must solve, in principle, a 
joint location-velocity estimation problem with uncertainty 
quantification and then use the solution to that problem in 
moment-tensor inversion. In this work, we implicitly use an 
additional assumption that amplitude ratios, r, carry no informa-
tion about event locations beyond what can already be inferred 
from arrival times. We believe that this assumption is approxi-
mately satisfied for most, if not all, practical setups.

From a workflow perspective, we first model the possible 
observations, r, given a range of moment tensors, p(m), and 

locations p(x,v|t), to obtain p(r|m,x,v) 
using Monte Carlo sampling. Once 
we have this, we perform a weighted 
stack over all possible velocity models 
and moment tensors to obtain our final 
likelihood, which is that of a particu-
lar moment tensor, m, given the ob-
served ratio, r, (at all stations). The 
weights in this stack are the prior, 
which consists of two parts. First there 
is p(m), which is the a priori informa-
tion (that we have before the experi-
ment is performed); for example, one 
can look only over double-couple 
mechanisms, or choose to include a 
tensile component. In our example we 
use a flat prior allowing for any com-
bination of strike, dip, and rake within 
shown ranges. The second part of the 
prior is the location information 
p(x,v|t) discussed above. We would 
like to emphasize that this is not a 
single prior location and velocity, but 
a probability distribution that incor-
porates all of our available information 
about possible event locations. In this 
way, we incorporate all of the work 
done to obtain the location probability 
into our estimated moment tensor and 
its likelihood function.

Figure 4. True (left) and recovered (right) beach balls computed from the strike, 
dip, and rake recovered through the Bayesian process.

Figure 5. Confidence intervals for the strike, dip, and rake of the event. In this case, we note that the strike and dip 
are better recovered than is the rake.
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We show the results of this procedure in Figures 4 and 5. 
In Figure 4, we show the true and the maximum likelihood 
estimate of the moment tensor. From this figure, we see that 
the recovered moment tensor is very similar to the true moment 
tensor, indicating that our method is indeed producing the 
correct answer as expected. However, it provides no information 
about estimation errors. In Figure 5, we see the additional in-
formation that becomes available after a careful uncertainty 
analysis. We see that we do get estimates of the strike, dip, and 
rake that are within the 90% confidence region of the true values. 
The inversion is done for a single realization of the noise in both 
the velocity and the arrival times, and thus some bias is expected. 
Now we can also compare the recovery of different parameters. 
We see that the strike and dip are better recovered than is the 
rake. This is likely a result of our particular acquisition geometry 
and should not be taken as a conclusion of the method itself. 
We also note in this figure that the resulting distribution is 
clearly not Gaussian. This is a key observation as it tells us that 
we cannot characterize the resulting uncertainties with a simple 
error bar or standard deviation, but instead must really visualize 
the entire probability distribution to understand the uncertainties 
in the resulting fault parameters.

Discussion and conclusions
We have presented a framework for quantitatively estimating 

the uncertainties in microseismic event locations and moment 
tensors beginning from simple assumptions and estimates of the 
errors on arrival times, velocities, and amplitude ratios. This in-
formation is readily available, when translated correctly from 
standard processing tools.

We show with simple examples that our method is able to 
correctly recover both location and moment-tensor estimates, but 
also gives much more information. This new information is the 
uncertainties in the recovered parameters, which can be used to 
better constrain decision making, improve our understanding of 
what our data truly tell us about these parameters, and design a 
better network for a proposed experiment. Although we have 
illustrated our framework with relatively simple examples, the 
basic ideas extend to more complicated situations including non-
homogeneous velocities and multiple events. Dealing with the 
computational cost of moving beyond relatively simple models 
with a few events and a handful of layers may be challenging. 
Through smart sampling of a carefully chosen model space and 
fast algorithms, we believe that more complicated models can be 
handled within the framework we present.

Throughout the paper, we have treated event locations and 
moment tensors as ultimate quantities of interest. In reality, 
these often become inputs to more complicated research that 
seeks to understand variations in the stress field, fluid flow during 
and after the injection, and the flow characteristics of a producing 
reservoir. Understanding the uncertainty in basic properties of 
microseismic events is critical for understanding the quality and 
reliability of conclusions made down the line. 

Corresponding author: poliann@mit.edu
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