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Abstract

In this thesis, research for retrieving wind direction and speed from rain-contamina-

ted X-band marine radar images is presented. Firstly, a method for retrieving wind

direction from X-band marine radar data is proposed. The algorithm is used to inves-

tigate radar backscatter in the wavenumber domain and obtain wind direction from

the wavenumber spectrum. For rain-contaminated images collected under low wind

speeds (i.e. less than 8 m/s), wind directions are retrieved using spectral components

with wavenumbers of [0.01, 0.2] rad/m. For rain-contaminated images obtained un-

der high wind speeds and rain-free images, wind directions are retrieved using the

spectral values at wavenumber zero. The algorithm was tested using X-band radar

images and anemometer data collected on the east coast of Canada. Comparison with

the anemometer data shows that the root mean square error (RMSE) of wind direc-

tions retrieved from low-wind-speed rain-contaminated images is reduced by 25.1◦.

Secondly, two methods for estimating wind speed from X-band nautical radar images

are presented. One method is used to determine wind speeds by relating the spec-

tral strengths of radar backscatter to the wind speeds using a logarithmic function.

The other method is used to mitigate rain influence by applying gamma correction

to rain-contaminated images, and then relate the average radar image intensities to

measured wind speeds with a logarithmic function. Comparison with the anemometer

data show that the two methods reduce the RMSEs of wind speeds estimated from

rain-contaminated radar data by 5.9 m/s and 5.4 m/s, respectively. Unlike existing

methods which require the exclusion of rain-contaminated data, the new wind param-

eter retrieval methods work well for both rain-contaminated and rain-free images.
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Chapter 1

Introduction

1.1 Research Rationale

Marine radars which are usually installed on ships can detect targets nearby. The

equipment works by transmitting electromagnetic waves to the sea surface and col-

lecting the backscattered signal. Typically, the electromagnetic waves transmitted by

marine radars are in X-band (8 to 12 GHz) or S-band (2 to 4 GHz). This work focuses

on X-band marine radar, whose radio wavelength is about 3 cm. While X-band ma-

rine radars were originally used for target detection, they can also be used to collect

sea surface information. The interaction between the transmitted electromagnetic

waves and sea surface waves leads to the changes in radar backscatter which result in

wave patterns in the radar images [1]. The wave patterns appearing in marine radar

images have been observed since 1960 [2,3]. However, these patterns were considered

as noise and eliminated for ship navigation [4]. In the 1980s, researchers began to

investigate marine radar images which contain abundant wave information [5–7]. X-
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band marine radar was used for various sea surface measurements and became a new

tool for ocean remote sensing [8–12].

Compared with traditional remote sensing systems, such as synthetic aperture

radar (SAR) and high-frequency (HF) radar, marine radar systems are more cost-

effective and flexible for routine measurements [7]. For example, although SAR sys-

tems can be used to obtain ocean measurements, they are too expensive for routine

measurements of specific ranges, since they need to be installed on aircraft or satel-

lites for remote sensing [11]. Moreover, the time interval for SAR to revisit a specific

location is in the order of days, while the measurement interval for marine radar is in

the order of seconds [12, 13]. HF radars are typical installed onshore due to the size

of the system [14]. Marine radars can be a complement to HF radars, since the they

can be installed on a ship to obtain measurements of the open sea.

The sea surface parameters that can be measured using X-band marine radars

include sea surface wave height, wind direction and wind speed. Traditionally, wave

information was collected by buoys. However, buoys provide only temporal point

measurements while marine radar can image sea surface waves both temporally and

spatially [15]. Sea state parameters are closely related to wind conditions, since the

frictional force of the wind field generates sea surface roughness [16–20]. Wind direc-

tion and speed can be estimated by analysing radar images that contain wave patterns.

Unlike measurements obtained using traditional wind sensors such as anemometers,

the estimated wind information from radar images is less affected by air flow distor-

tion due to the instrument’s platform. In this research, wind parameter retrieval from

X-band marine radar images is investigated.
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1.2 Literature Review

Sea surface wind information is important for marine navigation. Such information

may be obtained from anemometers as well as X-band marine radar images. As noted,

the advantage of marine radars is that they are less likely to be affected by the air

flow distortion introduced by the ship’s pitch and roll. Moreover, the extra cost to

obtain wind information from such radars is not significant, since they are already

installed on ships [21].

The most important mechanism contributing to the interaction between radar and

ocean waves is Bragg scattering [1], which could be writen as [22]

d =
mλ

2 sinφ
(1.1)

where d is the distance of the reflective sub-surfaces, λ is the electromagnetic wave-

length, φ is the incidence angle, m is the order of scattering. For X-band marine

radar working at grazing incidence, λ = 3cm, φ ≈ 90◦, and the scattering from the

first order, i.e. m = 1, is considered to be the strongest [1]. Thus, sea surface capillary

waves with wavelengths in the cm-scale contribute to X-band radar backscatter [23].

Considering the sea surface as a composition of small capillary waves riding on the

top of large gravity waves, in 1968 Wright [24] proposed a composite scattering model.

The model effectively explained microwave scattering characteristics at intermediate

incidence angles [25–28]. However, measured radar backscatter intensities were al-

ways higher than that predicted using Wright’s model for HH (horizontal transmit

and horizontal receive) -polarized radar operating at large incidence (or low graz-

ing) angles [29]. To explain this phenomenon, Lyzenga et al. [30] pointed out that

the scattering from wave wedges should be considered. In the 1990s, it was found
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that the contribution of wave breaking to the radar cross section is significant and

may increase with the friction velocity of the wind [31–33]. Although the microwave

scattering mechanism at grazing incidence is not yet fully understood, it is well ac-

cepted that the modulation of long gravity waves to small surface waves combined

with tilt and shadowing effects cause changes in the radar backscatter, resulting in

wave patterns in radar images [16, 21, 34–36].

Spectral analyses of radar images were conducted in the 1980s. In 1982, Hooge-

boom and Rosenthal [37] obtained two-dimensional power spectra by digitalizing

radar backscatter and applying the two-dimensional Fourier transform on the cor-

responding radar images. It was found that the two-dimensional power spectra ob-

tained from radar images agreed well with those obtained from buoys [38]. However,

a 180◦ directional ambiguity existed in the obtained spectra [6]. In 1985, Atanassov et

al. [6] proposed a method to remove the directional ambiguity by performing Fourier

transform on two sequential images along with an application of the dispersion rela-

tionship. In the same year, Young et al. [7] performed three-dimensional analysis on

radar images which also successfully solved the ambiguity problem. This exhibited

the possibility of using the spectral analysis of radar images for retrieving sea surface

information. However, these techniques for retrieving wind information were more

widely applied to SAR images instead of marine radar images [39, 40].

Methods for retrieving wind information from marine radar images are derived

based on the fact that radar backscatter intensity varies with azimuth directions and

wind speeds. Two observations aid wind direction retrieval, one of them being that

linear features, i.e. wind streaks, are well-aligned with the mean wind direction on

the averaged radar images [19]. The other observation is that the radar backscatter
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intensity exhibits a single peak in the upwind direction [41,42]. Various wind direction

retrieval methods were proposed based on these two observations [20, 21, 43].

In 2003, Dankert et al. [19, 20] performed space domain analysis on X-band ma-

rine radar images. By averaging marine radar image sequences every 2 minutes,

they observed wind-induced streaks and from there determined wind direction from

averaged radar images. The directional ambiguity can be removed by calculating

the cross-correlation between image sequences. Wind speed is retrieved by relat-

ing the normalized radar cross sections (NRCS) to the measured wind speeds using

neural networks. The radar-retrieved wind directions and speeds coincide well with

anemometer measurements. However, this method is more suitable for wind informa-

tion retrieval from a fixed platform than from a moving platform, since wind-induced

streaks are difficult to be identified from data collected on moving platforms such as

ships [21].

In 2012, a method for wind information retrieval from shipborne radar data was

proposed by Lund et al. [21]. This method is based on the fact that for HH-polarized

radar operating at grazing incidence, radar backscatter intensities exhibit a single

peak in the upwind direction [41,42]. In [21], after averaging of the radar intensities in

each azimuth, a sinusoidal function is used to least-squares fit the averaged intensities

according to azimuth directions. The wind direction is determined as the peak of

the fitted curve. For wind speed, a third-order polynomial is utilized to relate the

average intensity of the whole image to the measured wind speed. This method could

be applied to data collected by a fixed or moving platform, and even with partly-

shadowed images. Another method for retrieving wind information from shipborne

data was proposed in 2013 by Vicen-Bueno et al. [43]. In that method, radar images
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are first integrated and smoothed every 2 minutes. Then, a specific intensity is

selected as the intensity threshold. The range distance corresponding to the specific

intensity is calculated in each azimuth direction. Wind direction is determined as

the direction which has the maximum range distance. Wind speed is retrieved by

relating the maximum range distances to the measured wind speeds using a third-

order polynomial. Compared with Lund’s method, the wind direction and speed

retrieved using this method has a slightly higher accuracy. However, this method is

more complex than Lund’s method.

All the above wind retrieval methods show satisfactory results for radar images

collected under rain-free conditions. However, large discrepancies appear when ap-

plying these methods to rain-contaminated images [44]. Rain has dual effects on wind

waves, causing additional waves in the capillary-gravity/capillary wave range [45,46]

and damping waves in gravity wave range [47–49]. The effect of rain can be different

under different wind speeds [50–54]. The interaction between electromagnetic waves

and the additional rain-induced waves enhance radar backscatter. Moreover, the peak

of the radar backscatter in the upwind direction may be contaminated and difficult

to be identified. As a result, the accuracy of the retrieved wind direction will drop,

and wind speeds will be overestimated using existing methods [44].

To improve wind speed retrieval accuracy under rain conditions, Huang et al. [55]

proposed an algorithm that separately trains third-order polynomials with rain-free

and rain-contaminated data. To some extent, this algorithm improved the accuracy

of the retrieved wind speeds from rain-contaminated images. However, the retrieved

wind speeds still have large discrepancies in rain-contaminated periods, since rain-

induced backscatter may not increase linearly with wind speed. Moreover, using two
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sets of data for training may not be efficient for practical application. Finally, since

the method is designed for wind speed, no improvement regarding wind direction was

made.

1.3 The Scope of the Thesis

The main content of this thesis is to present methods for retrieving wind information

from X-band marine radar data collected under rain conditions. With an aim of

mitigating the limitations of existing methods under rain conditions, a wind direction

retrieval method is proposed. The method results in an improvement of 25.1◦ in

the wind direction retrieval from rain-contaminated images and maintains the same

accuracy as the curve fitting method in [21] under rain-free conditions. In addition,

two approaches for improving the wind speed retrieval accuracy under rain conditions

are presented. In order to verify these methods, X-band marine radar data collected

by Defence Research and Development Canada (DRDC) in 2008 were employed.

The thesis is organized as follows:

In Chapter 2, the new wind direction retrieval algorithm, which involves wavenum-

ber domain analysis, is presented and compared with a method in [21].

Two wind speed retrieval algorithms are presented in Chapter 3. One of them is

an extension of the wavenumber-domain-based wind direction approach discussed in

Chapter 2. The other algorithm involves the mitigation of the rain effects by applying

the gamma correction [56] on rain-contaminated images. Both of these algorithms are

compared with the wind speed retrieval method in [21] using shipborne data collected

under rain and rain-free conditions.

7



A summary of the thesis and a few suggestions for future work are presented in

Chapter 4.
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Chapter 2

Wind Direction Retrieval from

X-band Marine Radar Data

In this chapter, a new algorithm which can be used to retrieve wind direction from

both rain-contaminated and rain-free radar images is proposed. An overview of the

data used in this chapter is shown in Section 2.1. A brief review of the traditional

curve-fitting based method which will be used for the purpose of comparison is pre-

sented in Section 2.2. The new wind direction retrieval method is introduced in

Section 2.3. In Section 2.4, experimental results are presented and discussed. A

chapter summary is given in Section 2.5.

2.1 Data Overview

The data utilized in this chapter were collected by a shipborne radar named Decca.

The dataset contain 48,004 images, and was provided by Defence Research and De-

velopment Canada (DRDC). The experiments were conducted on the Canadian Navy

9



Table 2.1: Decca Radar Parameters

Parameters Values

Frequency 9.41 GHz

Sampling Frequency 20 MHz

Range Resolution 7.5 m

Measurement Range 240 - 2160 m

Antenna Rotation Period 2 s

research ship CFAV Quest during Nov. 26-29, 2008. The location of the experiment

was about 220 km from the coast of Halifax (42◦30′ N, 62◦5′ W), with a water depth

of about 200 m. The 9.41 GHz HH-polarized Decca radar and two anemometers

were installed on the ship. The radar was mounted 54 ft above the sea surface. The

sampling frequency of the radar was 20 MHz. The data was recorded for the range of

240 m to 2160 m from the radar, with a range resolution of 7.5 m. The parameters of

the Decca radar are summarized in Table 2.1. The radar was connected to the Wave

Monitoring System (WaMoS II) [60]. This system digitizes radar backscatter into

8-bit binary numbers corresponding to image intensity from 0 to 255. The antenna

rotation speed of the Decca radar is 28 rpm. Thus, the system collected one image

every two seconds. An image from the Decca dataset is shown in Fig. 2.1 (a).

2.2 Curve Fitting Based Method

The curve-fitting-based method [21] is one of the most widely used methods for re-

trieving wind information from X-band marine radar images, such as that shown in

10
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Figure 2.1: (a) A radar image collected under rain-free conditions (obtained on 01:23,

Nov. 28, 2008); (b) curve fitting results according to the curve fitting method in [21] for the

image shown in (a).

Fig. 2.1 (a). According to this method, radar image intensities are first averaged

according to each azimuth direction. The average intensity of each azimuth direction

is shown as the blue dots in Fig. 2.1 (b). These average intensity data are then curve

fitted by the sinusoidal function [21]

σθ = a0 + a1cos
2(0.5(θ − a2)) (2.1)

where σθ is the average intensity in azimuth direction θ, and a0, a1, and a2 are

parameters that may be determined by the least-squares fitting. The fitted curve is

shown in red in Fig. 2.1 (b). Wind direction is determined as the peak of the fitted

curve, and in this figure the direction is almost 296◦.
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Figure 2.2: Wavenumber spectrum of data in one azimuth

2.3 Wavenumber-domain-based Method

Unlike existing methods, the proposed algorithm is based on the analysis of radar

backscatter in the wavenumber domain rather than the spatial domain. The backscat-

ter samples in each azimuth are Fourier transformed into the wavenumber domain to

generate the wavenumber spectrum [57, 58]

Eθ(k) =

N−1
∑

n=0

Iθ(n)e
−j 2π

N
kn (2.2)

where N is the total number of backscatter samples (i.e. image pixels intensities)

in one azimuth, Iθ(n) is nth pixel intensity in azimuth direction θ, and Eθ(k) is the

spectral value of wavenumber k. An example of the wavenumber spectrum for one

azimuth is shown in Fig. 2.2. Two different kinds of information may be obtained

from this spectrum. One of them is |Eθ(0)|, the spectral magnitude for k = 0. From

Eq. (2.2), it can be inferred that |Eθ(0)| represents the summation of Iθ(n). In other

words, the spectral value of the zero wavenumber component equals to the pixel

intensity sum in azimuth direction θ. Another kind of information is associated with

12



the spectral components over wavenumber range [0.01, 0.2] rad/m, corresponding to

waves with wavelengths between 31 m to 628 m (λ = 2π/k). These spectral points

result from intensity variation and could be a reflection of surface wave signatures. It

should be noted that any wavenumber range containing the most significant spectral

points excluding the zero-wavenumber component is valid. The range is set to be

[0.01, 0.2] since it yields satisfactory results.

As has been found in the literature, the effect of rain is different according to dif-

ferent wind speeds [50–54]. Thus, different spectral components should be employed

for wind direction retrieval from different kinds of images. The details follow.

2.3.1 Low Wind Speed Rain Cases

A rain-contaminated image collected under low wind speeds is shown in Fig. 2.3

(a). After performing the Fourier transform on the data along each azimuth, full

wavenumber spectra may be obtained for all azimuth directions. For the image shown

in Fig. 2.3 (a), spectral points with k ∈ [0.01, 0.2] are selected and shown in Fig. 2.3

(b). To simplify further calculation, a normalization process is then implemented by

dividing every spectral value with the maximum spectral value at wavenumber zero

of all azimuths in the image.

As it has been found previously [44], for rain-contaminated radar images collected

under low wind speed conditions, the dependence between backscatter intensity and

azimuth is reduced. Thus, the intensity might not have a single peak in the upwind

direction, in which case |Eθ(0)| cannot be utilized for wind direction retrieval. On

the other hand, surface wave signatures may still be observed in the upwind direction

13



(see Fig. 2.3 (a)). Similarly, high spectral values present themselves in the upwind

direction in the wavenumber spectrum with k ∈ [0.01, 0.2] (see Fig. 2.3 (b)). To iden-

tify surface wave signatures in the wavenumber domain, an integral of the normalized

spectra over the wavenumber range [0.01, 0.2] is calculated for each azimuth direction.

For azimuth direction θ,

Sθ =

0.2
∫

0.01

|Eθ(k)| dk. (2.3)

|Eθ(k)| is the spectral magnitude of wavenumber component k. Then, Sθ is curve-

fitted by the sinusoidal function

Sθ = a0 + a1cos
2(0.5(θ − a2)) (2.4)

proposed in [21], where a0, a1, and a2 are parameters which may be determined by

least-squares fitting. The fitted result for the data shown in Fig. 2.3 (a) is displayed in

Fig. 2.3 (d). Wind direction is determined at the peak of the fitted curve and found to

be 254◦, a difference of 12◦ from the anemometer-measured wind direction. However,

wind direction retrieved using the curve fitting based method in [21] is 87◦ (shown in

Fig. 2.3(c)). This may be because the radar image in Fig. 2.3 (a) was significantly

affected by rain and the dependence of backscatter intensity on wind direction has

been altered.

A large deviation from the general trend in the average intensities (blue dots) is

seen near 310◦ in Fig. 2.3 (c). This deviation always appears between the beginning

and the end of the scan of an image. Since the time gap between these two pulses

is about 2 seconds, the corresponding scattering may vary, especially under rain

conditions. The deviation in rain-free data is not so obvious since purely wave-induced

scattering varies little within 2 seconds.

14



0°

90°

180°

270°

−2 km 0 km 2 km

Wind

(a) (b)

0 100 200 300 400
40

50

60

70

80

Azimuth direction / degree

A
ve

ra
ge

 in
te

ns
ity

 

 

Average intensity
Fitted curve

r=0.42

(c)

0 100 200 300 400
0.5

1

1.5

2

Azimuth direction / degree

In
te

gr
al

 o
f |

E θ(k
)|

, k
∈

[0
.0

1,
0.

2]

 

 

S
θ

Fitted curve

r=0.71

(d)

Figure 2.3: (a) A rain-contaminated image collected at low wind speed conditions (obtained

on 05:24, Nov. 27, 2008), wind direction measured by anemometers: 266◦; (b) wavenumber

spectra with k ∈ [0.01, 0.2] for the image shown in (a); (c) curve fitting results using the

curve fitting method in [21] for the image shown in (a) (the retrieved wind direction is 87◦);

(d) curve fitting results using the proposed method for the image shown in (a) (the retrieved

wind direction is 254◦). r represents correlation coefficient. The correlation coefficient is a

measure of the strength of the linear relationship between two variables, and is defined as

the covariance of the variables divided by the production of their standard deviations.
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Figure 2.4: (a) An image partly contaminated by rain (rain does not cover the upwind

direction), collected under low wind speeds on 01:53, Nov. 27, 2008; wind direction measured

by anemometers: 89◦; (b) wavenumber spectra with k ∈ [0.01, 0.2] for the image shown in

(a); (c) curve fitting results using the curve fitting method in [21] for the image shown in (a)

(the retrieved wind direction is 162◦); (d) curve fitting results using the proposed method

for the image shown in (a) (the retrieved wind direction is 89◦). r represents correlation

coefficient.
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Figure 2.5: (a) An image partly contaminated by rain (rain covers the upwind direction),

collected under low wind speeds on 18:34, Nov. 28, 2008; wind direction measured by

anemometers: 131◦; (b) wavenumber spectra with k ∈ [0.01, 0.2] for the image shown in

(a); (c) curve fitting results using the curve fitting method in [21] for the image shown in

(a) (the retrieved wind direction is 144◦); (d) curve fitting results using the proposed method

for the image shown in (a) (the retrieved wind direction is 70◦). r represents correlation

coefficient.

17



It may be observed that the image shown in Fig. 2.3 (a) is comprehensively

contaminated by rain, i.e. rain appears in all azimuth directions. In actual mea-

surements, there are images partly contaminated by rain. The performance of the

proposed method on such images depends on the locations of the rain areas. For ex-

ample, for the partly contaminated image shown in Fig. 2.4 (a), where rain appears

in the down wind direction instead of the upwind direction, the result of the proposed

method is very promising (see Fig. 2.4 (d)). However, when the image is partly rain-

contaminated and rain occurs in the upwind direction only (shown in Fig. 2.5 (a)),

the accuracy of the retrieved wind direction using the proposed method decreases (see

Fig. 2.5 (d)). A possible reason for this is that when rain occurs in the upwind direc-

tion only, it reduces the wave signatures as well as the upwind peak of Sθ. Sθ in the

upwind direction becomes lower than in other directions, and its peak is difficult to

identify since wave signatures in other directions are not contaminated significantly.

Fortunately, partly contaminated images exist within the first or last three minutes

of the rain period. The method works for most rain-contaminated images collected

under low wind speeds (more details are given in Section 2.3.3).

2.3.2 High Wind Speed Rain Cases

Under high wind speeds, the upwind-downwind radar return ratio may decrease to

less than 1.5 [59]. Since wind forcing dominates the generation of surface roughness

in this case [49, 54], rain can cause additional radar backscatter but may not blur

surface wave signatures. Instead, signatures in the downwind direction may become

comparable to the upwind direction (see Fig. 2.6 (a)). A possible reason for this
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Figure 2.6: (a) A rain-contaminated image collected at high wind speed conditions (obtained

on 09:50, Nov. 27, 2008); wind direction measured by anemometers: 317◦; (b) wavenumber

spectra with k ∈ [0.01, 0.2] for the image shown in (a); (c) curve fitting results using the

curve fitting method in [21] for the image shown in (a) (the retrieved wind direction is

317◦); (d) curve fitting results using the proposed method for the image shown in (a) (the

retrieved wind direction is 317◦). r represents correlation coefficient.
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may be that rain causes additional wave breaking in downwind direction. On the

corresponding wavenumber spectrum with k ∈ [0.01, 0.2], high spectral values may

present in the upwind direction as well as the downwind direction (see Fig. 2.6 (b)).

Thus, Sθ can not be utilized for wind direction retrieval in this case. On the other

hand, since wind force dominates, the intensity dependence on the azimuth direction

may not be altered. Thus, the spectral values at zero wavenumber, i.e. |Eθ(0)|, are

chosen for curve-fitting, i.e.,

|Eθ(0)| = a0 + a1cos
2(0.5(θ − a2)) (2.5)

It should be noted that this scheme is analogous to the curve fitting based method

in [21], since |Eθ(0)| represents the normalized pixel intensity sum of azimuth direction

θ. In [21], the averaged pixel intensity along θ was used in the left-hand side of

Eq. (2.5). For the rain-contaminated image shown in Fig. 2.6 (a), the fitted results

using the curve fitting method in [21] and the new method are shown in Fig. 2.6 (c)

and Fig. 2.6 (d), respectively. The retrieved wind directions using both methods are

317◦, which are exactly the same as the anemometer-measured results.

2.3.3 Rain-free Cases

For rain-free cases, the wind force dominates. Both Sθ and |Eθ(0)| have single peaks

in the upwind direction and may be used for wind direction retrieval (see Fig. 2.7 (a),

(b)). After applying the new method with Sθ and |Eθ(0)| to all rain-free data in this

study, it was found that the root mean square error (RMSE) in the wind direction

retrieved using |Eθ(0)| is 4
◦ lower than that with Sθ. Thus, |Eθ(0)| is recommended

for wind direction retrieval from rain-free data. For the rain-free image shown in

20



0°

90°

180°

270°

−2 km 0 km 2 km

Wind

(a) (b)

0 100 200 300 400
10

20

30

40

50

60

Azimuth direction / degree

A
ve

ra
ge

 in
te

ns
ity

 

 

Average intensity
Fitted curve

r=0.88

(c)

0 100 200 300 400
0.2

0.4

0.6

0.8

1

Azimuth direction / degree

|E
θ(0

)|

 

 

|E
θ
(0)|

Fitted curve

r=0.88

(d)

Figure 2.7: A rain-free image (obtained on 00:51, Nov. 27, 2008); wind direction measured

by anemometers: 90◦; (b) wavenumber spectra with k ∈ [0.01, 0.2] for the image shown in

(a); (c) curve fitting results using the curve fitting method in [21] for the image shown in

(a) (the retrieved wind direction is 91◦); (d) curve fitting results using the proposed method

for the image shown in (a) (the retrieved wind direction is 91◦). r represents correlation

coefficient.
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Fig. 2.7 (a), the retrieved wind directions using the curve fitting based method in [21]

and |Eθ(0)| are 91◦ (see Fig. 2.7 (c), (d)), with a 1◦ difference from the anemometer-

measured wind direction.

2.4 Results

2.4.1 Image Classification

Before applying the proposed method, it is first necessary to classify the radar images.

Rain-contaminated images may be identified based on zero pixel percentage (ZPP)

[21], which is defined as the percentage of the overall number of image pixels with

intensities below 5. If the ZPP of an image is smaller than 10%, such an image will

be regarded as a rain-contaminated image [61]. According to this classification, five

periods in the selected radar sequence were found to be rainy periods. In order to

distinguish the rain-contaminated images collected under low wind speeds from those

under high wind speeds, a parameter referred to as the high pixel percentage (HPP)

is defined as the percentage of the overall number of pixals with intensities higher

than 100. If the HPP of a rain-contaminated image is lower than 15%, the image

will be identified as belonging to the low wind speed rain cases, otherwise it will be

classified as rain-contaminated data under high wind speeds. This HPP threshold

approximately corresponds to a wind speed of 8 m/s. It should be noted that the

wind speeds are only classified as low or high, and no transitional range is used in

this study. The ZPP and HPP results are shown in Fig. 2.8 (a). The data from 03:32

to 03:44 Nov. 27 and from 23:40 Nov. 28 to 01:16 Nov. 29 yielded low-clutter images
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Table 2.2: Image Classification Results

Image type Number Percentage

Low wind speed rain cases 4,861 10.12%

High wind speed rain cases 4,050 8.44%

Low clutter images 1,907 3.97%

Rain-free non-low-clutter images 37,186 77.45%

(ZPP higher than 60 %). No data was collected from 04:05 to 11:15 Nov. 28.

Based on the classification method described above, the number and percentage

of different categories of images are shown in Table 2.2. By excluding the low-clutter

images due to system error or very low wind speeds, the numbers of rain-free and

rain-contaminated images were found to be 37,186 and 8,911, respectively. Among

the rain-contaminated data, 4,861 images are identified as low wind speed cases, cor-

responding to data in the time periods of 01:47-03:30 and 04:44-05:48 Nov. 27, 16:50-

19:23 Nov. 28, and 06:35-09:04 Nov. 29. These classification results coincide with the

anemometer-measured wind speeds (see Fig. 2.9 (a)) and rain gauge-measured rain

rates (see Fig. 2.9 (b)).

2.4.2 Wind Direction Retrieval Results

Both the curve fitting based method in [21] and the proposed method were applied

to the aforementioned radar data. To obtain better accuracy, data utilized for low

wind speed rain cases and other cases are in the range of 540-2160 m and 690-2160 m,

respectively. The averaged wind directions of the two anemometers were utilized as a
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Figure 2.8: Results: (a) Zero Pixel Percentage (ZPP) and High Pixel Percentage (HPP);

(b) retrieved wind directions, RMSE of the curve fitting based method in [21] (CF) for

low-wind-speed rain-contaminated images: 46.7◦, RMSE of the wavenumber-domain-based

method (WM) for low-wind-speed rain-contaminated images: 21.6◦.
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Figure 2.9: (a) Measured wind speeds; (b) Measured rain rates

reference for comparison with radar results. Retrieved wind directions were averaged

every ten minutes and are shown in Fig. 2.8 (b).

From Fig. 2.8 (b), it can be seen that the wind directions retrieved using the

curve fitting based method in [21] agree well with anemometer data except for the

four periods associated with rain and low wind speeds (see Figs. 2.8- 2.9). The root

mean square error (RMSE) of wind direction derived using the curve fitting based

method for these periods is 46.7◦ while the RMSE using the new method is only 21.6◦

(see Table 2.3). Wind direction retrieval accuracy for low-wind-speed rain cases has

been improved by 25.1◦ with the new method. It should be noted that satisfactory

wind directions were obtained using the proposed method from 4,733, i.e. 97.4%, of

the 4,861 rain-contaminated images. The errors in the wind direction results obtained

from the remaining 128 images are relatively large since only surface wave signatures

in the upwind direction are contaminated. For rain-contaminated images collected
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Table 2.3: Wind Direction Retrieval Error Statistics: RMSEs

Methods/ Data type Rain-contaminated Data Rain-free Data

Curve Fitting Based Method in [21] 46.7◦ 14.9◦

The Wavenumber-domain-based Method 21.6◦ 14.9◦

under high wind speed conditions and rain-free images, retrieved wind directions using

the two methods are the same. For all the data considered in this study, the RMSEs of

the curve-fitting-based method and the wavenumber-domain-based method are 20.3◦

and 15.8◦, respectively.

2.5 Chapter Summary

A new method for retrieving wind direction from both rain-contaminated and rain-free

X-band nautical radar images has been proposed. The method is designed based on

the analysis of radar backscatter in the wavenumber domain. For rain-contaminated

images collected under low wind speeds (i.e. less than 8 m/s), spectral points corre-

sponding to wavenumber components in the range of [0.01, 0.2] rad/m are used for

wind direction retrieval. For rain-free and rain-contaminated data collected under

high wind speeds, the spectral points at wavenumber zero are employed.

The new method has been applied to 48,004 X-band radar images collected in

the North Atlantic Ocean. The radar-derived wind directions are compared with

those measured by anemometers. The comparison shows that the RMSE of the wind

direction retrieved from rain-contaminated data associated with low wind speeds is

reduced by 25.1◦ with the new method. For rain-free images and high wind speed
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rain cases, this method maintains the same accuracy as the curve fitting method

in [21]. Based on the data available, no definite relationship between the rain rate

and the spectral strengths at wavenumber 0 or above 0.2 rad/m has been observed

since backscattering intensity depends on both wave and rain conditions.
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Chapter 3

Wind Speed Retrieval from

X-band Marine Radar Data

In this chapter, two new approaches for wind speed retrieval from rain-contaminated

and rain-free images are presented. Firstly, an overview of the data used in this

chapter is provided in Section 3.1. Then, the traditional curve fitting based method

for wind speed estimation is briefly reviewed in Section 3.2. The first new wind

speed retrieval method, which is based on the analysis in the wavenumber domain, is

introduced in Section 3.3. In Section 3.4, another wind speed retrieval method which

is based on the gamma correction in the spatial domain is introduced. Results and

comparison of these methods are shown in Section 3.5. The summary of this chapter

is shown in Section 3.6.
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3.1 Data Overview

Two datasets collected by Decca and Furuno radars were used to verify the proposed

methods. Both of them were provided by Defence Research and Development Canada

(DRDC). A detailed description of the Decca dataset is found in Section 2.1. The

Furuno dataset contains 68,992 images, which were also collected by a HH-polarized

shipborne radar operating at 9.41 GHz. The radar was mounted 72 ft above the

sea surface. The radar’s measurement range is from 240 m to 2160 m, with a range

resolution of 7.5 m. The WaMoS II system was connected to the radar and was

used to digitize radar backscatter into 8-bit unsigned integers ([0, 255]). The Furuno

system differs from the Decca in two aspects. Firstly, the antenna rotation speed of

the Furuno system is 40 rpm while the rotation speed is 28 rpm in Decca system.

Thus, the Furuno system collected one image every 1.5 seconds. Another difference

between the Furuno and Decca systems is that in the former the data were processed

by a rain-filter. Thus, the overall intensity of an image in the Furuno dataset is lower

than that in the Decca dataset. The parameters of the Furuno radar are shown in

Table 3.1. An image from the Furuno dataset is shown in Fig. 3.1. It may be seen

that its intensities are much lower than those shown in Fig. 2.1 (a) or Fig. 2.7 (a).

In this chapter, the Decca dataset is used to test and compare the performance of

the two proposed wind speed retrieval methods with the curve-fitting-based method in

[21]. The Furuno dataset is only employed to test the performance of the wavenumber

domain method. The reason for this is that the rain effect in pre-filtered images is

not as obvious as that in non-filtered images. Thus, rain-contaminated image in the

Furuno dataset may not be correctly selected using ZPP. As a result, the gamma-
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Table 3.1: Furuno Radar Parameters

Parameters Values

Frequency 9.41 GHz

Sampling Frequency 20 MHz

Range Resolution 7.5 m

Measurement Range 240 - 2160 m

Antenna Rotation Period 1.5 s

0°

90°

180°

270°

−2 km 0 km 2 km

Figure 3.1: An image in Furuno dataset, collected on 12:30, Dec. 01, 2008.
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correction-based method, which requires correct identification of rain-contaminated

images, could not be applied to the Furuno dataset.

3.2 Curve-fitting-based Method

Sea surface wind information retrieval from X-band marine radar data is based on the

observation that the normalized radar backscatter is related to the sea surface wind

vector. The curve-fitting-based method proposed in [21] relates the average radar

backscatter intensity of an image to the measured wind speed using a third-order

polynomial. The average intensity σws is defined as

σws =
1

2π

2π
∫

0

(

a0 + a1cos
2(0.5(θ − a2))

)

dθ. (3.1)

It may be seen that σws is actually the average of σθ shown in Eq. 2.1. The relationship

between σws and wind speed w may be written as

σws = b0 + b1w + b2w
2 + b3w

3 (3.2)

where b0, b1, b2 and b3 are parameters to be determined by least-squares fitting.

An example of the fitted relationship for σws and wind speed is shown in Fig. 3.2.

The limitation of this method is that it can be applied to rain-free images only. The

retrieved wind speeds are usually higher than the measured ones, since rain introduces

additional backscatter.
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Figure 3.2: A scatter plot of wind speed and average intensity. (Rain-free data with wind

speeds > 2 m/s for the time periods 12:00 p.m. - 23:00 p.m. Nov. 27 and 00:30 a.m. - 07:00

a.m. Nov. 29 were used for training

3.3 Wavenumber-domain-based Method

Unlike existing algorithms, the first new wind speed retrieval method is implemented

based on the analysis of wavenumber spectra rather than image intensity directly [62].

As for the wind direction retrieval method introduced in Chapter 2, image inten-

sities in each azimuth direction are Fourier transformed into the wavenumber domain

by Eq. 2.2. As illustrated in Fig. 2.2, the spectral value at zero wavenumber |Eθ(0)|

reflects the intensity information, since it is a summation of all the pixel intensities

in azimuth direction θ. Other components, i.e. |Eθ(k)| when k 6= 0, reflect intensity

variation.

To see the difference between the zero wavenumber component and the nonzero

wavenumber components, |Eθ(k)| for k 6= 0 in all directions are summed and then
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averaged to obtain Snonzero as

Snonzero =
1

2π

2π
∫

0

kN
∫

k1

|Eθ(k)| dkdθ (3.3)

where kN is the Nyquist wavenumber, which can be calculated according to the radar

range resolution ∆r using

kN =
π

∆r
. (3.4)

k1 is the first nonzero wavenumber, which can be calculated according to [7]

k1 =
2π

N∆r
. (3.5)

It may be seen that Snonzero is the average of the nonzero components in the wavenum-

ber spectra. Thus, it represents the overall intensity variation information of an image.

|Eθ(0)| is also averaged with respect to azimuth direction to obtain Szero,

Szero =
1

2π

2π
∫

0

|Eθ(0)| dθ. (3.6)

Szero actually represents the overall average radar backscatter intensity of an image

and it has been used to obtain wind speeds from rain-free images [21, 55]. A scatter

plot of Szero and Snonzero is shown in Fig. 3.3. It can be seen that the relation-

ship between Szero and Snonzero is almost linear for rain-free data. This means wind

speed may be retrieved using either Szero or Snonzero. However, no linear relationship

between Szero and Snonzero can be found for rain-contaminated data. It has been

confirmed that wind speed will be overestimated if only Szero, i.e. the intensity infor-

mation, is used [21,44]. Thus, Snonzero, i.e. the intensity variation information, needs

to be considered for wind speed estimation from rain-contaminated data.
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Figure 3.3: Scatter plot of Szero and Snonzero.

In this study, both Szero and Snonzero are employed. After obtaining the wavenum-

ber spectrum in every azimuth direction, an integral of |Eθ(k)| is calculated with

respect to azimuth directions and wavenumbers by

S =
1

2π

2π
∫

0

kN
∫

0

|Eθ(k)| dkdθ. (3.7)

It may be seen that the obtained S equals to the sum of Szero and Snonzero. S

involves both intensity as well as intensity variation information. Besides, S is very

large (a value around ten thousand in our case). To make the further fitting easy,

a normalization process, in which S is divided by a scaling factor to reduce it to a

value around two or three hundred, is suggested. The scale factor is selected as the

maximum pixel intensity 255 in this study.

Another difference in the proposed method from previous methods is that the

third-order polynomial is not used as the training function. Although a third-order

polynomial could be used to describe the relationship between the radar backscatter

intensity and wind speed, it is possible that it will yield incorrect relationships. An

example is shown in Fig. 3.4, where the fitted third-order polynomial function de-
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Figure 3.4: Incorrect relationship obtained with a third-order polynomial. (Rain-free data

with wind speeds > 2 m/s for the time periods 12:00 p.m. - 21:00 p.m. Nov. 27 and 00:30

a.m. - 07:00 a.m. Nov. 29 were used for training.)

creases when the wind speed is higher than 13 m/s. This contradicts what is seen in

actual measurements. Moreover, ambiguity exists in the retrieved wind speeds using

such a curve, since two wind speeds (within the meaningful range) will be obtained

for each intensity value. In [63], it was found that the cube law fits data collected

under low rather than high wind speeds. Instead, a logarithmic function has been

used to relate radar backscatter with both low and high wind speeds [64–67]. Thus, a

logarithmic function is employed here. The relationship between the spectral integral

S and wind speed w can be written as

S = a0 + a1 ln(w + a2) (3.8)

where a0, a1, a2 are parameters that can be determined by least-squares fitting S and

the reference wind speeds. The fitted curve is then used to determine wind speeds

from further measurement of S.
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3.4 Gamma Correction Method

The second new wind speed retrieval method investigates radar images in the spatial

domain [68]. As noted in Section 3.2, rain causes additional radar backscatters. Thus,

the influence of rain should be mitigated in order to retrieve wind speed. The main

difficulty of mitigating the rain effect is that it is a nonlinear process. Rain may

dampen sea surface waves in the gravity range and enhance waves in the capillary-

gravity/capillary range [47–49]. Moreover, the influence of rain varies with wind

speeds [50–54]. To reduce the nonlinear effect of rain, the proposed method employs

the gamma correction [56]. The detailed process follows.

As shown in Section 2.3.2, rain-contaminated images can be identified using the

zero pixel percentage (ZPP) [21, 61]. Two rain-contaminated images collected un-

der low and high wind speeds are shown in Fig. 3.5 (a) and (c), respectively. It is

found that under low wind speeds, rain drops blurred sea surface wave signatures (see

Fig. 3.5 (a)). Under high wind speeds, the additional rain-induced scatters may make

the wave signatures noisy (see Fig. 3.5 (c)). After the rain-contaminated images are

identified, a normalization process in which the image intensities are divided by the

maximum intensity Imax (255 in this study) is applied.

To mitigate the rain influence, a nonlinear correction, i.e. gamma correction,

was applied. The gamma correction is typically used in coding and decoding the

luminance and tristimulus values in video or image data. For the luminance image

data in this study, the gamma corrected intensity Iout is expressed as [56]

Iout(i, j) = (Iin(i, j))
γ (3.9)

where Iin is the normalized image intensity, and i and j represent the row and column
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Figure 3.5: (a) A low wind speed (4.7 m/s) rain-contaminated image collected on 05:30,

Nov. 27, 2008; (b) image after gamma correction for the image shown in (a); (c) a high

wind speed (9.5 m/s) rain-contaminated image collected on 08:36, Nov. 27, 2008; (d) image

after gamma correction for the image shown in (c).
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Figure 3.6: The blue line is gamma correction curve where γ = 1.35, the dot dash line is

shown for comparison.

number of the pixel, respectively. The correction factor γ should be selected to reduce

the additional scatters caused by rain. Thus, γ should be larger than 1. Besides, the

value of γ should not be larger than 1.5 to avoid any over correction. After comparing

the result images using different γ values, it was found that the optimal result occurred

when γ equals 1.35. This value was selected and used in this study. The relationship

between the intensities before and after the gamma correction is shown in Fig. 3.6.

For the low and high wind-speed rain-contaminated images shown in Fig. 3.5 (a) and

(c), the images obtained after applying the gamma correction are shown in Fig. 3.5

(b) and (d). It may be observed that the rain influence has been reduced in both

cases.

The average intensity of the rain-contaminated image is calculated from the gamma-

corrected image, and the average of Iout is multiplied by Imax. The average intensity

of the rain-free image is directly calculated from the original image.

Similar to the wavenumber-domain-based method in Section 3.2, a logarithmic
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Figure 3.7: A flow chart of the gamma correction method.

function [64–66] is used to relate the average intensity Iave to wind speed w. The

logarithmic function may be written as

Iave = a0 + a1 ln(w + a2) (3.10)

where a0, a1, a2 are parameters to be determined by least-squares fitting. The fitted

curve is then used to determine wind speeds from further collected radar images. The

overall flow chart of the gamma correction method is shown in Fig. 3.7.
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3.5 Results

3.5.1 Wind Speed Retrieval Results of Decca Dataset

Firstly, both the wavenumber-domain-based wind speed retrieval method and the

method incorporating the gamma correction were applied to 48,004 images in the

Decca dataset. For the purpose of comparison, the curve-fitting-based method in [21]

was also applied. Seventeen and a half hours of rain-free data (obtained under wind

speeds higher than 2 m/s) were used to train the relationship between radar backscat-

ter intensities and anemometer-measured wind speeds. These data correspond to the

time periods from 12:00 p.m. to 23:00 p.m. on Nov. 27 and 00:30 a.m. to 07:00

a.m. on Nov. 29. The best-fit curves derived using a third-order polynomial accord-

ing to the curve-fitting-based method in [21] and logarithmic functions according to

methods in Section 3.2 and 3.3 are shown in Fig. 3.8 (a), (b) and (c), respectively.

The remaining 35.5 hours of data (rain-free and rain-contaminated) were utilized as

validation.

The wind speeds retrieved using all three methods, as well as the anemometer

measured wind speeds, were averaged every ten minutes and are shown in Fig. 3.9

(a) and (b). The rain rate measured by a rain-gauge is shown in Fig. 3.9 (c). The

rain periods include: 01:47-03:30 a.m., 04:44-05:48 a.m. and 07:45-11:32 a.m. on

Nov. 27, 16:50-19:23 p.m. on Nov. 28, 06:35-a.m. on Nov. 29. The root mean square

errors (RMSEs) of the retrieved wind speeds using all three methods are shown in

Table 3.2. Compared with the anemometer-measured wind speeds in these rain pe-

riods, the RMSEs of the wind speeds retrieved using the curve-fitting-based method

in [21], the proposed wavenumber-domain-based method and the proposed gamma
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Figure 3.8: (a) Scatter plot showing the anemometer wind speed, the corresponding radar

backscatter intensity, and the best-fit third-order polynomial based on the curve fitting

method in [21]; (b) scatter plot showing the anemometer wind speed, the corresponding

spectral integration of image intensity, and the best-fit logarithmic function based on the

proposed method in Section 3.2; (c) scatter plot showing the anemometer wind speed, the

corresponding radar backscatter intensity (with gamma correction on rain-contaminated

cases), and the best-fit logarithmic function based on the proposed method in Section 3.3.
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Figure 3.9: Results: (a) Wind speeds results using the curve fitting method in [21] (CF)

and the wavenumber-domain-based method in Section 3.2 (WM); (b) wind speeds results

using the curve fitting method in [21] (CF) and the gamma correction method in Section

3.3 (GCM); (c) measured rain rates.

Table 3.2: Wind Speed Retrieval Error Statistics: RMSEs

Methods/ Data type Rain-contaminated Data Rain-free Data

Curve Fitting Method in [21] 7.5 m/s 1.5 m/s

Wavenumber-domain-based Method 1.6 m/s 1.6 m/s

Gamma Correction Method 2.1 m/s 1.5 m/s
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Figure 3.10: (a) Scatter plot of wind speed measured by anemometer and estimates obtained

from radar images based on the curve fitting based method in [21] (CF); (b) scatter plot

of wind speed measured by anemometer and estimates obtained from radar images based

on the wavenumber-domain-based method (WM); (c) scatter plot of wind speed measured

by anemometer and estimates obtained from radar images based on the gamma correction

method (GCM).
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correction method are 7.5 m/s, 1.6 m/s and 2.1 m/s, respectively. The wind speed

retrieval accuracy for rain-contaminated images has been improved by 5.9 m/s with

the wavenumber-domain-based method, 5.4 m/s with the gamma correction method.

For the rain-free images used for validation, the RMSEs of wind speeds retrieved

using the curve fitting method in [21], the wavenumber-domain-based method and

the gamma correction method are 1.5 m/s, 1.6 m/s and 1.5 m/s, respectively. The

performance of the proposed two methods is almost the same as that of the curve

fitting method in [21] under rain-free conditions. The scatter plots of the anemome-

ter data and radar results obtained using the curve fitting method in [21] and the

proposed two methods are shown in Fig. 3.10 (a), (b) and (c), respectively. From

Fig. 3.10, it can be seen that the correlation coefficient between the radar-derived

and the anemometer-measured wind speeds is improved by 0.1 and 0.08 using the

proposed methods.

It should be noted that rain-contaminated data were not included in training the

relationship between radar measurements and reference wind speeds. This has been

done to ensure that the training and validating data sets for all the three methods

were exactly the same, since the training process of the curve fitting method in

[21] requires the elimination of rain-contaminated data. However, it was found that

rain-contaminated data could be included for training in the proposed two methods

without decreasing the performance.
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Figure 3.11: Results: (a) retrieved wind speeds for data in Furuno dataset using the curve

fitting based method in [21] (CF) and the wavenumber-domain-based method (WM); (b)

measured rain rates for the Furuno dataset.

3.5.2 Wind Speed Retrieval Results of Furuno Dataset

The wavenumber-domain-based method and the curve fitting based method were ap-

plied to the Furuno dataset. As shown in Section 3.4.1, images in the Furuno dataset

were pre-filtered. Thus, the traditional image classification method cannot correctly

identify all rain-contaminated images. That’s why the gamma correction method as

well as the wind direction retrieval method introduced in Section 2.2 were not applied

to the Furuno dataset. The wavenumber-domain-based wind speed retrieval method

does not require the separation of rain-contaminated images from rain-free images.

Thus, it was also applied to the Furuno dataset to test whether it can be used to

improve wind speed retrieval accuracy for pre-filtered images. The retrieved wind
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speeds using the curve-fitting-based method in [21] and the wavenumber-domain-

based method are averaged over a ten-minute sliding window and shown in Fig. 3.11

(a). The rain rates obtained from the rain gauge are shown in Fig. 3.11 (b). For all

images in this dataset, the RMSEs of retrieved wind speeds using the curve-fitting-

based method in [21] and the proposed wavenumber-domain-based method are 2.9

m/s and 2.4 m/s. The proposed wavenumber-domain-based method improved the

overall wind speed retrieval accuracy by 0.5 m/s for the Furuno dataset. However,

the improvement is not large compared with that for the Decca dataset.

3.6 Chapter Summary

Two methods, the wavenumber-domain-based method and the gamma correction

method, for determining wind speeds from X-band nautical radar images have been

proposed. The methods can be applied to both rain-contaminated and rain-free im-

ages. Comparison with the curve fitting method in [21] based on the Decca dataset

shows that the wind speed retrieval accuracy from rain-contaminated images has been

improved by 5.9 m/s using the proposed wavenumber-domain-based method, and 5.4

m/s using the proposed gamma correction method. The correlation coefficient for

the wind speeds retrieved from radar data and measured by anemometers has been

increased by 0.1 and 0.08 using the proposed wavenumber-domain-based method and

the gamma correction method, respectively.

The wind speed results from the Furuno dataset show that the improvement of

the proposed wavenumber-domain-based method on pre-filtered data is limited. Thus,

non-pre-filtered radar data are suggested before applying the proposed two methods.
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Chapter 4

Conclusions

4.1 General Synopsis and Significant Results

In this thesis, research for wind information retrieval from X-band marine radar data

has been presented. Firstly, a wavenumber-domain-based method for wind direction

retrieval from both rain-contaminated and rain-free marine radar images was pre-

sented. Secondly, two methods for improving wind speed retrieval accuracy from

rain-contaminated data were proposed. The first approach was developed based on

the analysis in the wavenumber domain. The second approach was designed by mit-

igating the effects of rain with a gamma correction in the space domain.

The main contribution of the proposed wind direction retrieval method is that it

allows wind direction to be retrieved from rain-contaminated images. Unlike tradi-

tional methods [20,21,43], which use intensity information only, the proposed method

employs both intensity and intensity variation information. This is achieved by ap-

plying a one-dimensional Fourier Transform to radar backscatter in each azimuth

47



direction. An advantage of the proposed method is that it has a good compatibility

with the traditional curve-fitting-based method in [21]. As shown in Chapter 2, inten-

sity information could be well represented by the zero wavenumber component of the

wavenumber spectra. By selecting the zero wavenumber component under rain-free

conditions, the proposed method can be used to obtain exactly the same results as

the curve-fitting-based method in [21].

The proposed wind direction retrieval algorithm was applied to 48,004 radar im-

ages in the Decca dataset. The results show that the wind direction retrieval accuracy

for rain-contaminated data has been improved by 25.1◦ using the proposed method.

As for rain-free data, the proposed method maintains the same accuracy as the curve-

fitting-based method in [21].

In addition, the wavenumber domain analysis has been extended to improve wind

speed retrieval accuracy for rain-contaminated radar images. This forms the first

wind speed retrieval method in this thesis. An advantage of this method is that

it can be directly applied to radar images, without classifying them as being rain-

contaminated or rain-free. The reason for this is that the method takes all spectral

components into consideration, including the components associated with intensity

variation, which have been ignored in previous methods. Another advantage of this

method is its stability. Unlike traditional methods which utilize third-order poly-

nomials to relate the radar backscatter to the measured wind speeds, the proposed

method employs a logarithmic function. The advantage of the logarithmic model is

that it is a monotonically increasing function and will not decrease under high wind

speeds. Moreover, both rain-contaminated and rain-free data may be used in training

the proposed algorithm.
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The second wind speed retrieval method is performed in the spatial domain. The

main contribution of this method is that it can mitigate the nonlinear rain effects

to some extent. By applying the gamma correction to rain-contaminated images,

both the uniform rain scatter (low-wind-speed rain cases) and the non-uniform rain-

induced noise (high-wind-speed rain cases) are reduced. The logarithmic function is

also employed in this method.

The two proposed wind speed retrieval methods were applied to 48,004 radar

images in the Decca dataset. Compared with curve-fitting-based method in [21],

these two methods improve wind speed retrieval accuracy from rain-contaminated

cases by 5.9 m/s and 5.4 m/s, respectively. Moreover, it is suggested that the proposed

methods should be applied to non-pre-filtered radar images.

4.2 Suggestions for Future Work

It has been noted that the images utilized in Decca dataset are neither pre-filtered

nor pre-thresholded. Such images are suggested to be used for retrieving sea sur-

face wind information since they contain more detail of radar backscatter from sea

surface. For wind direction retrieval, the proposed method works for 97.4% of the

rain-contaminated images. However, the results of the remaining 2.6% are not very

good. These images may be partly contaminated by rain with rain appearing in up-

wind directions only, or they may contain no wave pattern because the rain is too

heavy. More experiments and investigations are needed for these images.

This study employed the gamma correction to mitigate rain effects and to improve

wind speed retrieval accuracy. However, the application of the gamma correction may
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not be limited to wind information only. For example, it also been known that sea

surface wave information retrieval is negatively influenced by rain. It may be possible

to improve wave information retrieval accuracy using gamma-corrected images. It is

expected that the such investigations may provide a better understanding of rain-

contaminated X-band marine radar images.
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