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Abstract 

Context: A common way to represent product lines is with variability modeling. Yet, there are 

different ways to extract and organize relevant characteristics of variability. Comprehensibility 

of these models and the ease of creating models are important for the efficiency of any 

variability management approach.  

Objective: The goal of this paper is to investigate the comprehensibility of two common styles 

to organize variability into models – hierarchical and constrained – where the dependencies 

between choices are specified either through the hierarchy of the model or as cross-cutting 

constraints, respectively.  

Method: We conducted a controlled experiment with a sample of 90 participants who were 

students with prior training in modeling. Each participant was provided with two variability 

models specified in Common Variability Language (CVL) and was asked to answer questions 

requiring interpretation of provided models. The models included 9 to 20 nodes and 8 to 19 

edges and used the main variability elements. After answering the questions, the participants 

were asked to create a model based on a textual description.  

Results: The results indicate that the hierarchical modeling style was easier to comprehend 

from a subjective point of view, but there was also a significant interaction effect with the degree 

of dependency in the models, that influenced objective comprehension. With respect to model 

creation, we found that the use of a constrained modeling style resulted in higher correctness of 

variability models.  

Conclusions: Prior exposure to modeling style and the degree of dependency among elements 

in the model determine what modeling style a participant chose when creating the model from 

mailto:nitzik@campus.haifa.ac.il,%20iris@is.haifa.ac.il
mailto:kathrin.figl@wu.ac.at


natural language descriptions. Participants tended to choose a hierarchical style for modeling 

situations with high dependency and a constrained style for situations with low dependency. 

Furthermore, the degree of dependency also influences the comprehension of the variability 

model.  

Keywords: variability modeling, feature modeling, comprehensibility, hierarchical modeling, 

textual constraints, cognitive aspects, empirical research, product line engineering 

1 Introduction 

Variability management is essential when dealing with similar complex systems. We need to 

manage the variability for several different reasons, such as proper test coverage, flexible 

product portfolio, high degree of reuse, and necessary adaptation to a changing environment. In 

order to make the development process effective and efficient in these cases, reuse needs to be 

done systematically and not ad-hoc. To this end, the similarities as well as the differences 

among the systems have to be analyzed and represented in some comprehensible way for the 

various stakeholders involved in the development process.  

Various approaches to variability modeling have been suggested over the years. Among those 

we can mention feature modeling, orthogonal variability modeling, UML-based variability 

modeling, and decision modeling. Feature modeling in general [12] and Feature-Oriented 

Domain Analysis (FODA) [38] in particular promotes representing variability in feature 

models, which are graphs or trees that describe end-user visible characteristics (features) of 

systems in a product line, illustrating the relationships and constraints (dependencies) between 

them. Orthogonal variability modeling suggests specifying variability in separate models, 

which are linked to the development artifacts, termed base models. Examples of languages in 

this category are Orthogonal Variability Models (OVM) [53] and Common Variability 

Language (CVL) [31]. CVL with its aspiration to become a standard for variability modeling 

could simulate feature models and OVM models, but used different terms. Features of a feature 

model would correspond to choices in CVL. The third category of UML-based variability 

modeling, which includes, for example, PLUS [29] and ADOM [58], extends UML metamodel 



or introduces profiles with stereotypes to describe variability-related terms, such as mandatory 

(kernel), optional, variation point, and variant. Finally, decision modeling is based on 

representation of decisions that “are adequate to distinguish among the members of an 

application engineering product family and to guide adaptation of application engineering work 

products” [16, p. 174]. As opposed to feature modeling which focuses on domain 

representation, decision modeling emphasizes product derivation.  

Even after choosing a specific variability modeling language, different models can be created 

to represent the same variability (i.e., set of differences). These models may differ in the 

characteristics (choices) they contain or the ways in which these choices are organized. We 

examine two common ways to represent variability: hierarchical, where the dependencies or 

constraints between choices are implicitly specified through the hierarchy of the model, and 

constrained, where the dependencies are explicitly specified as constraints (expressed textually 

or via visual edges)1. We use the term “modeling style” to refer to these two types of variability 

representation. This is in line with the way the term modeling style is defined and used in other 

contexts, for instance in a style book on UML: “a standard would involve using a squared 

rectangle to model a class on a class diagram, whereas a style would involve placing subclasses 

on diagrams below their superclass(es)” [2, p. 2]. Note that we are not comparing notations but 

concentrate on the modeling style. We apply CVL [31], but we could have used another notation 

for variability modeling to fulfill the same objective. Galster et al. [26] refer to many studies 

where variability descriptions are applied, but they do not mention any studies where different 

styles of representation have been empirically compared for comprehension. 

To demonstrate differences in style, consider the two models in Figure 1, which specify the 

variability within basic choices of Skoda Yeti cars. Both models use CVL notation. The figure 

labeled (a) follows a hierarchical modeling style, constraining, for example, active diesel cars 

to be manual. Note that this modeling style results in repetition of choices, but repetition of 

choices in variability models is already acknowledged by concepts such as “feature reference” 

                                                 
1 Note, some variability models, such as feature diagrams and CVL models, are always structured hierarchically. 
Hence, by constrained modelling style we refer to situations in which dependencies or restrictions are expressed 
through constraints and not through the diagram hierarchy.  



[18].  The figure labeled (b), on the other hand, specifies the fuel-, gear-, drive-, and gadget 

level-related characteristics in separate branches (although hierarchically in the form of a tree) 

and the dependencies between these characteristics are specified as textual constraints. Thus, 

we consider it as following the constrained modeling style.  

The selection of the modeling style may influence the comprehension of variability and 

consequently the effectiveness and efficiency of variability management. These aspects are 

relevant, regardless of whether the variability models are created manually (by humans) or 

automatically (by generators or reverse engineering tools).  

Prior research has investigated how different variability modeling notations may affect 

comprehension. In  [56], the comprehensibility of two orthogonal variability modeling methods 

– CVL and OVM – has been evaluated in terms of understanding variability models and their 

relations to the development artifacts. In [59], the comprehensibility of a feature-oriented 

notation (CBFM) and a UML-based variability modeling method (ADOM) has been compared 

for different stakeholders (developers and customers/end users). In [57] the comprehensibility 

of CVL models to participants familiar and unfamiliar with feature modeling has been 

examined. These studies focus on different modeling notations or relevant stakeholders. They 

have not addressed the effect of alternative ways (modeling styles) to represent variability 

models after a specific notation and type of stakeholders have been selected. To fill this gap, 

our aim is to investigate what the benefits and limitations of each modeling style are on the 

comprehension of variability. We particularly refer to comprehension in both interpreting 

(reading) and creating (writing) models. Czarnecki et al. [19] have already mentioned the 

importance of considering human cognitive limits for choosing a representation. However, to 

the best of our knowledge, no empirical study has been conducted on the aforementioned 

modeling styles in related areas, including software engineering and conceptual modeling.  



 
(a) 

 
Active and Diesel imply Manual 
Active and Benzin imply 2-wheel-drive 
Adventure implies Diesel and 4x4 
Active and 4X4 imply Diesel and Manual 

 (b) 
CVL notation:

   Choice (feature) Mandatory

   OR relation Optional

   XOR relation

1..*

1..1  
Figure 1. CVL models specifying the variability within basic choices of Skoda Yeti cars:  

(a) hierarchical style and (b) constrained style 

Our research can be characterized as intragrammar evaluation [27], as it compares different 

ways to apply the grammar (CVL) and, in doing so, investigates “principles for improving the 

use of one grammar when used on its own” [10, p. 39]. The main contributions of this paper are 

to pinpoint when the different styles are best applied and what the consequences of the different 

styles are on comprehension. 



The rest of the paper is organized as follows. Section 2 provides an overview of the theoretical 

and technical background relevant to the research. We outline the research framework and 

hypotheses in Section 3 and then describe in Section 4 the design of the experiment we used to 

test our propositions. Section 5 presents our data analysis and the findings of the research. In 

Section 6, we report and discuss the results, and in Section 7 the implications for research and 

practice, as well as the threats to validity, are presented. Finally, Section 8 summarizes the 

findings and outlines future research directions. 

2 Theoretical and Technical Background 

In this section we provide the theoretical background, elaborating on representation of things 

and properties in conceptual modeling (Section 2.1), variability modeling styles and their 

properties (Section 2.2), and cognitive effectiveness of variability modeling styles (Section 2.3). 

We further provide the necessary technical background on variability spaces and CVL in 

Section 2.4. 

2.1 Representation of Things and Properties 

There is a long tradition of research on how to model things and properties. Features, attributes, 

and properties are central to most theories that deal with how humans build classification 

categories of concepts. For instance, defining features can uniquely identify a category as a 

necessary attribute; characteristic features may describe prototypes; or humans may be aware 

of essential, incidental, and accidental features to build a complex mental theory of concepts 

[68]. 

In the context of domain modeling, researchers have predominantly investigated the effect of 

alternative representations of properties in Entity Relationship (ER) diagrams [8, 9, 28, 49] and 

UML diagrams [10, 64] on users’ domain understanding. Most of these works theoretically 

build on the Bunge-Wand-Weber (BWW) framework [75, 76, 77] and good decomposition 

models that adapt ontological theory to conceptual modeling.  



In contrast to domain modeling, variability modeling has a stronger focus on “identifying 

commonality and variability in a domain” rather than “differentiating concepts from features” 

or “describing all details of products” [44, p. 65]. Czarnecki et al. [17] categorize feature 

modeling as a “notational subset of ontologies” or as a specific view on ontologies. Asadi et al. 

[3] suggest a mapping of variability concepts to the BWW framework. Specifically, they claim 

that features refer to natural kind, which is “a kind of things adhering to the same laws.” Based 

on this mapping, they further derive variability patterns and analyze how existing variability 

modeling languages support these types of variability. Their analysis is intergrammatical, as it 

mainly focuses on two variability modeling languages – feature models and OVM [53]. We, on 

the other hand, concentrate in this work on intragrammatical aspects in the form of modeling 

styles. 

2.2 Variability Modeling Styles and their Properties 

The extraction and representation of variability models are the focus of many studies dealing 

with reverse engineering from source code, configurations, or requirements, e.g., [65] and [1]. 

Given the same input, these studies usually generate a single variability model [34], although 

different models may exist for the same case [19]. As noted in the introduction, these models 

may differ in the ways choices are structured. 

Moody [48, p. 766] claims that “to effectively represent complex situations, visual notations 

must provide mechanisms for modularization and hierarchically structuring.” Modularization 

supports dividing large systems into smaller parts or subsystems in order to reduce complexity. 

Supported in cognitive load theory, this mechanism may “improve speed and accuracy of 

understanding” and “facilitate deep understanding of information content.” Hierarchy, on the 

other hand, supports top down understanding and enables controlling complexity by organizing 

elements at different levels of detail, “with complexity manageable at each level.” From a 

cognitive point of view, the ‘framework for assessing hierarchy’ by Zugal et al. [78] gives a 

clear account of possible effects of hierarchy in visual models on the mental effort: while 

‘abstraction’ decreases mental effort due to information hiding and pattern recognition, 



‘fragmentation’ increases mental effort, because users have to switch between fragments and 

integrate information.  

Many variability models, such as feature diagrams and CVL models, represent a hierarchical 

structure to a certain degree. We are less concerned on whether to use hierarchical structuring 

or not, but how to represent variability. Since there are different ways to model variability, effort 

has to be put into understanding the strengths and the weaknesses of different modeling styles. 

In the context of this paper, we are not interested in automatically inferring possible 

configurations, but on inferring configurations in the model reader’s mind. As noted, this paper 

explores two common modeling styles in the context of variability representation: hierarchical 

and constrained.  

Both modeling styles require some kind of classification to organize the choices in a tree 

hierarchy. In general, classification serves two purposes: cognitive economy and support of 

inferences [51]. Applied to the variability modeling domain, this means that the resource 

reduction effect compared to a list of all possible configurations as well as the easiness with 

which correct configurations can be inferred from the model determines the cognitive 

effectiveness of a variability model. The selection of elements (choices) for a variability model 

should therefore balance these two goals [52]. Parsons and Wand [52, p. 253] refer to two main 

principles to reach that goal in class models: completeness (“All relevant information about 

each phenomenon (instance) in a domain should be included”) and efficiency (“Minimize 

resources used in maintaining and processing information”). The efficiency principle includes 

“non-redundancy” because redundancy “might require additional resources in maintenance and 

retrieval and hence will violate the principle of cognitive economy”  [51, p. 6]. In variability 

modeling, redundancy can occur due to repetition of choices to constrain possible 

configurations (see, for example, “4x4” in the model depicted in Figure 1(a) and the same 

element in the graphical model as well as the three last constraints specified in Figure 1(b)).  

Generally, although the repetition of choices is intuitive, it is not obvious how redundancy 

should be formally treated. Batory [5] has explicitly excluded repetitions, but Czarnecki and 

Kim [18] enable some kind of repetition by introducing the concept of “feature reference” to 



increase reuse and support scalability. Repetition of concepts (nodes) in tree structures has been 

proven to be efficient in terms of human comprehension for other purposes including, e.g., 

decision trees [61] and logic trees.  It has recently been described that repeating choices 

represent a language challenge since the repeated choices obviously represent something 

common, while the repetition shows that there are structural differences related to the choices 

[32]. In particular, the challenge becomes evident when repeated choices also appear in explicit 

constraints. Since the intuition is quite clear in these cases, our study does not have to deal with 

the formal interpretation of repeated choices.  

In the same vein, Czarnecki et al. [19] refer to two properties to create models in the area of 

automatic feature extraction: (1) maximality: “the resulting feature model graphically exposes 

maximum logical structure” and (2) minimality: “the resulting feature model avoids redundancy 

in the representation.” It is difficult to fulfill both of these criteria, and empirical evidence is 

missing on how these criteria affect comprehension of the variability models. For instance, 

Figure 1(b), which follows the constrained modeling style, contributes to the maximality 

property by addition of abstract choices “used to structure a feature model that, however, do not 

have any impact at implementation level” [72, p. 191]. The choices “Fuel,” “Gear,” “Drive,” 

and “Gadget Level” are examples of abstract choices in Figure 1(b) that increase the number of 

elements in the graphical model. The figure also fulfills the decomposition principle of 

minimality, as choices are not repeated in the graphical model. Classification focus is put on 

categorizing single choices into real-world-classes (e.g., classifying diesel and benzin as fuel). 

However, overall, the minimality property is violated because choices are redundantly 

mentioned in the textual constraints to specify the allowed configurations. In the hierarchical 

modeling style (see Figure 1(a)), on the other hand, the decomposition principle of minimality 

is violated for the benefit of structural overview of choices, as choices are duplicated in the 

graphical model to implicitly express constraints. The choice “manual,” for example, appears 

three times to constrain active-diesel, active-benzin, and adventure-diesel cars. Classification 

focus in the hierarchical modeling style is on representing the local choices at each node in the 

hierarchical structure.  



In this context, it is interesting that specifying choices in variability modeling is not only based 

on logical structuring, but also on taking “additional ordering and grouping information” [19, 

p. 27] into account.  

2.3 Cognitive Effectiveness of Variability Modeling Styles 

We can now turn to a discussion on possible cognitive effects of different modeling styles as 

the hierarchical vs. constrained modeling styles.  

From a cognitive point of view, working memory is the relevant brain system involved in 

inferring correct configurations from a model [4], and it is a limited resource. The cognitive 

load theory [69] describes how the design of information presentation affects cognitive load in 

working memory. Maximum capacity should be available for germane cognitive load – the 

processing of the information and the construction of schemas based on the information.  

Intrinsic cognitive load is concerned with “the natural complexity of information that must be 

understood.” [70, p. 124]. Complexity is primarily influenced by high element interactivity, 

namely, “elements that heavily interact and so cannot be learned in isolation” [70, p. 124]. To 

compare intrinsic cognitive load in our study, we define a dependence index, which aims to 

measure the degree of interaction between elements in a variability model: the higher the 

dependence index is, the higher the interaction between choices is (“choice interdependency”). 

The dependence index is not influenced by the modeling style and can be calculated for a 

specific problem domain that is characterized by the choices and dependencies to be modeled. 

The exact way to calculate the dependence index is described in Section 4, and noteworthy is 

that the dependence index of the situation modeled in Figure 1 is relatively high irrespectively 

of the chosen modeling style, as “gadget level” implies constraints on “fuel” and “drive”, 

whereas “gadget level” and “fuel” imply constraints on “gear” and “drive”, and so on.  

While it is not possible to change intrinsic cognitive load without changing the choices and their 

dependencies, the presentation of the variability models – e.g., the modeling style – can be 

altered, which might impose additional extraneous cognitive load. Extraneous cognitive load is 

influenced by the way information is represented [40]. In the context of our study, two cognitive 



load effects [70] dependent on extraneous cognitive load are relevant: the split-attention effect 

and the element-interactivity effect. 

The split-attention effect [11] occurs when users have to not only split their attention between 

different sources of information but also to mentally integrate this information based on search-

and-match processes, e.g., when text and diagrams are arranged spatially separated instead of 

in an integrated presentation [37, 46]. Such a split-attention effect might occur in the case of 

combining a model with textual constraints, as is the case in the constrained modeling style 

shown in Figure 1(b). As textual constraints often relate to more than one element in the model, 

there are no appropriate means to directly position them in the model. 

Regarding element-interactivity effect, Sweller [70, p. 134] states that if “element interactivity 

due to intrinsic cognitive load is high, reducing the element interactivity due to extraneous 

cognitive load may be critical.” We argue that if an element is repeated in a model, then the 

user is confronted with higher element interactivity, as more relations of the element to other 

elements have to be considered. The element-interactivity effect gives a clearer account of how 

to explain possible effects of different modeling styles than does the non-redundancy criteria of 

Czarnecki et al. [19] and Parsons and Wand [52] because a repeated use of an element in a 

model may also serve for the correct model definition and does not represent redundancy of 

information. In these cases, repetition should not be considered ‘unnecessary information’ that 

could be eliminated. Repeating elements in a model also heightens the amount of model 

elements per se and will therefore heighten cognitive load, as users need to pay attention to a 

higher number of elements at the same time [40]. 

2.4 Variability Spaces and CVL 

Two variability spaces are commonly distinguished in the literature: problem space and solution 

space. The problem space deals with user goals and objectives, required quality attributes, and 

product usage contexts, whereas the solution space focuses on later development stages and 

refers to the functional dimension (i.e., capabilities and services), the operating environmental 

dimension (e.g., operating systems and platform software), and the design dimension (e.g., 

domain technologies) [39]. Traceability between those spaces is discussed in [6], where a 



conceptual variability model that allows a 1-to-1 mapping of variability between the problem 

space and the solution space is defined.   

Referring to both problem and solution spaces, CVL facilitates the specification and resolution 

of variability over any base model defined by a metamodel. Its architecture consists of 

variability abstraction and variability realization. Variability abstraction supports modeling and 

resolving variability without referring to the exact nature of the variability with respect to the 

base model (the problem space). Variability realization, on the other hand, supports modifying 

the base model during the process of transforming the base model into a product model (the 

solution space).  

In this study we concentrate on the variability abstraction part of CVL, which corresponds 

closely to feature models. The main examined concepts in our study are choices, their 

relationships, and constraints. Choices are technically similar to features in feature modeling. 

CVL offers more concepts for variability modeling, but our study does not apply them. Choice 

children are related to their parents higher in the tree in two different ways: (1) Mandatory or 

optional: The positive resolution of a child may be determined by the resolution of the parent 

(mandatory) or can be independently determined (optional).  (2) Group multiplicity: A range is 

given to specify how many total positive resolutions must be found among the children: 

XOR/alternative – exactly one, OR – at least one.  

Constraints express dependencies between choices of the variability model that go beyond 

what is captured by the tree structure. Two kinds of constraints are applied in our study: (1) A 

implies B – if A is selected, then B should be selected too (this constraint is known as “requires” 

in feature modeling), and (2) Not (A and B) – if A is selected, then B should not be selected and 

vice versa (this constraint is known as “excludes” in feature modeling). 

3 Research Model and Hypotheses 

Our goal is to examine whether the way variability models in general and CVL models in 

particular are organized influences comprehensibility and how. To this end, we refer to the two 

aforementioned modeling styles: hierarchical, in which most constraints are encoded in the tree 



hierarchy of the model, and constrained, which promotes a repetition-free visual classification 

tree, while cross dependencies are specified by textual constraints to restrict the possible set of 

configurations. We examine the ease of interpreting (reading) and creating (writing) the models 

mainly in terms of errors done and time to complete the task, but also by subjective means.  

We summarize our expectations about the effect of modeling styles in two research frameworks: 

one for model interpretation (Figure 2) and one for model creation (Figure 3). In addition to the 

modeling style, we refer to the choice interdependency through the dependence index. As noted, 

this index measures the degree of interaction between choices in a model and is independent of 

the modeling style. 

The first research framework proposes that CVL model comprehension is a function of the 

modeling style (extraneous cognitive load) and the choice interdependency (intrinsic cognitive 

load) – the dependency (or independency) between the involved elements. Highly dependent 

choices cannot be understood in isolation, and readers have to take all their relations with other 

choices into account. The first research framework further specifies that comprehension is 

measured both objectively (using the total score of correct answers and the time to complete the 

task) and subjectively (using users’ scores for difficulty and ease of use). 

In light of the theoretical considerations explained above, we will draw several propositions to 

investigate the effects of using different modeling styles on model readers’ ability to 

comprehend the CVL model. Specifically, we build on cognitive load theory to explain possible 

effects of modeling style. We expect similar effects on objective as well as subjective model 

comprehension measurements and therefore the hypotheses are formulated for both. 

As outlined above, separating textual constraints from the graphical model in the constrained 

modeling style might result in a split-attention effect for users. The split-attention effect 

heightens cognitive load and therefore, comprehension performance is expected to be lowered. 

However, the hierarchical modeling style may also lead to increases in cognitive load based on 

the element-interactivity effect because it might be necessary to integrate information from 

different occurrences of one and the same choice. Based on theory, we cannot determine which 

effect will be stronger. Thus, we want to investigate the hypothesis that: 



H1. The modeling style influences comprehension of variability models. 

Research Framework for Model Interpretation

Model Comprehension

T: Objective Model Comprehension
O:
- Comprehension Effectiveness (Total Score)
- Comprehension Efficiency (Time)

Key:
T – Theoretical Factor
O – Operationalization of Factor

                 H2

T: Subjective Model Comprehension
O:
- Subjective Difficulty of Model
- Perceived Ease of Use of Model

T: Modeling style
O:
- Hierarchical
- Constrained

T: Choice Interdependency
O:
- Low Dependency
- High Dependency

H1

 

Figure 2. Research framework for model interpretation 

Second, we want to discuss in which cases the split-attention effect caused by the constrained 

modeling style might be weaker than the element-interactivity effect of the hierarchical 

modeling style and vice versa. We argue that different levels of choice interdependency suit 

different modeling styles because depending on the situation, one cognitive load effect may be 

stronger than another. While the negative impact of high dependency on comprehension is 

obvious, we are interested in examining the interaction of the choice interdependency and the 

modeling style. Using the constrained modeling style for high dependency, for instance, can 

result in a high number of textual constraints (e.g., Figure 1(b)) and thus in a higher number of 

repetitions leading to higher element interactivity. Such a case might be presented more 

efficiently with a hierarchical modeling style (see Figure 1(a)) with a lower number of 

repetitions. For low dependency, it may be the other way around. Therefore, we propose: 

H2. There is an interaction effect between the choice interdependency (as specified by 

the dependence index) and the modeling style, influencing model comprehension. 

For discussing the expected effects of modeling style on model creation, we developed the 

research framework depicted in Figure 3. This framework suggests that the choice 

interdependency (as specified by the dependence index) and prior exposure to a modeling style 

will influence the selection of the modeling style when creating models. The choice of a 



modeling style and the choice interdependency will result in differences in performance. 

Performance is measured in terms of effectiveness (i.e., correctness of choices, dependencies, 

and overall) and subjective difficulty reported by the users (on every requirement).  

 

Figure 3. Research framework for model creation 

We first turn to the effect of prior exposure to modeling styles on selecting a modeling style for 

model creation. Use of examples prior to a design task can lead to a “functional fixation.” 

Functional fixation is a cognitive bias to use an object the way it is normally used. Duncker 

defines functional fixedness as a "mental block against using an object in a new way that is 

required to solve a problem" [20] (e.g., using a hammer for pounding nails). Jansson and Smith 

[36] found that designers also tend to conform to examples provided to them in a conceptual 

design task. In light of these results, we hypothesize that modelers will also adhere to the 

modeling style exposed to previously:  

H3. Prior exposure to a modeling style in examples leads to a higher subsequent use of 

this modeling style. 

Second, we expect the choice interdependency to influence the selection of the modeling style. 

Modelers perceive that variability problems are of different kinds and this materializes through 

how constrained or hierarchical they make the description. For instance, if dependence is high 

(a high value on dependence index), it might be possible to model the case with a hierarchical 

modeling style using XOR relations similar to a decision tree structure, in which each path from 

the root to the leaf represents a valid choice configuration (see, e.g., Figure 1(a)). In contrast, 

the constrained modeling style would need a variety of crosscutting constraints to represent the 



case correctly. On the other hand, for low dependency, it might be best to use various OR 

relations and only a few crosscutting constraints. Such a case is easier to define in a constrained 

modeling style – giving the whole combination possibilities first and then excluding single 

combinations. In this case, it might seem more difficult for participants to define all needed 

combinations to cover the whole configuration space in a hierarchical way. Thus, we 

hypothesize: 

H4. The choice interdependency (as specified by the dependence index) influences the 

choice of modeling style.  

Finally, we advance a hypothesis on how chosen modeling style might affect performance. We 

argue that the choice interdependency may call for a specific modeling style, and that applying 

the appropriate style implies higher performance (namely, higher quality of the created models 

and lower subjective difficulty). Accordingly: 

H5. There is an interaction effect between the choice interdependency (as specified by 

the dependence index) and the modeling style, influencing the quality of the created 

models and the perceived difficulty.  

4 Experimental Design and Procedure 

4.1 Experimental Design 

To test our hypotheses, we used a between-groups design with one main factor (modeling style) 

with two levels (constrained vs. hierarchical). In each experimental group, participants were 

shown two models describing the variability within different sets of Skoda Yeti choices (basic 

choices as depicted in Figure 1 and extra choices – in Appendix A), both modeled either in the 

constrained or in the hierarchical style. As explained later, the basic and the extra models differ 

in terms of dependency between choices. The participants were asked first to answer 

comprehension questions about these two models without using any supporting tool. We varied 

the order of the two models to control for possible learning effects. Next, the participants had 

to create a CVL model (using a dedicated CVL tool, as explained later) themselves based on a 



short natural language description of the choices in the top-of-the-range Skoda Yeti edition 

without being guided regarding the modeling style.  

4.2 Materials and Measurement of Variables 

We used an online questionnaire with four parts: pre-questionnaire, studying, comprehension 

part, and modeling part. We next elaborate on each part. 

4.2.1 Pre-questionnaire 

The purpose of the pre-questionnaire was to obtain general information about the participants 

and their background, including age, gender, degree and subject of studies, and familiarity with 

feature modeling (this was the only variability modeling approach the participants could be 

exposed to). The familiarity of participants with variability modeling is important, as experts 

develop ‘schemas’ –  language-independent, abstract problem representations – in their mind, 

e.g., for programming [60] or modeling constructs [25]. They therefore have more working 

memory resources available for comprehending the model. To measure (self-rated) familiarity 

with feature modeling, we adopted the three-item modeling grammar familiarity scale of Recker 

[54] with a 7-point Likert scale (from strongly disagree to strongly agree): (1) Overall, I am 

very familiar with feature diagrams, (2) I feel very confident in understanding feature diagrams,  

and (3) I feel very competent in modeling feature diagrams.   

4.2.2 Studying 

After filling in the pre-questionnaire, the participants were presented with slides explaining and 

exemplifying the relevant parts of CVL. The participants were also given hard-copies of these 

slides, which they could consult while answering the questions. The participants had to study 

CVL on their own from the slides and proceed to the main questionnaire.  

4.2.3 Comprehension Part 

4.2.3.1 The Models 

In the comprehension part, each participant received two CVL models following the same 

modeling style describing different sets of choices of Skoda Yeti cars and their variability. One 



model describes basic choices, such as fuel and drive (see Figure 1), and the other describes 

extra choices, such as panorama roof and parking heater (see Figure 5 in Appendix A). Although 

the numbers of choices in those models are quite similar, the choice interdependency differs. 

To calculate the degree of dependency in each modeling situation, we calculate dependence 

indices as follows. For each pair of distinct non-abstract choices (apart from mandatory and 

dead choices2), we count the number of combinations allowed in all valid configurations 

generated from the given model. The maximal number is 4 – ∅, {A}, {B}, {A, B} – to represent 

no selection of the two choices, the selection of A, the selection of B, and the selection of both 

A and B, respectively. Any dependency reduces one or more combinations. The dependence 

index is then calculated as 1 minus the normalized sum of the above numbers for all pairs (where 

each pair is considered once, irrespective of the order of choices)3. Dependence index of 0 

means that all choices are independent of each other, i.e., all the four combinations are feasible 

for each pair of choices. The upper bound of the dependence index is .5 since our process will 

never result in less than two combinations for each pair of choices4. The closer the dependence 

index is to 0, the less dependency between choices exists. Note that the dependence index is not 

influenced by the modeling style, as superfluous choices, e.g., resulting from classification, are 

not included in the calculation. The dependence index of the models in Figure 1 (“basic”) is .19 

(see Appendix B for the calculation details), indicating relatively high dependency between 

choices. The dependence index of the models in Figure 5 in Appendix A (“extra”), on the other 

hand, is clearly lower – .05 – indicating low choice dependency. 

Overall, we had two experimental groups: one in which the two models were specified 

following the hierarchical modeling style and the other in which the two models were specified 

following the constrained modeling style. However, we had four questionnaire variants (as 

                                                 
2 Mandatory choices appear in all valid configurations and hence should not have a contribution to dependency 

calculation. Dead choices do not appear in any configuration and are thus redundant in the specification. As such, 

they should not be taken into consideration in the calculation of the dependence index. 
3 The normalized sum is achieved by dividing the sum by the maximal potential one, i.e., 4×n×(n-1)/2. 
4 It is obvious that no pair of choices can give 0 combinations, since every configuration will give one pair of truth 

values. If the number of truth values is 1, then this means that the two choices in question are constant over the set 

of configurations, but such situations – mandatory choices – have been eliminated by our process.  



indicated in Table 1) because we also varied the order of the two models in each of the two 

experimental groups to control for possible learning effects.   

Table 1. Questionnaire variants 

Experimental group Variant number First Model Second Model 
A 1 Basic, hierarchical Extra, hierarchical 

2 Extra, hierarchical Basic, hierarchical 
B 3 Basic, constrained Extra, constrained 

4 Extra, constrained Basic, constrained 

The CVL models for the experiment were built by Haugen, one of the creators of CVL who is 

familiar with the possible Skoda Yeti configurations from the Norwegian Skoda public web 

pages. All authors checked that the versions of the same model (“basic,” “extra”) fulfill the 

requirement of informational equivalence, meaning that “all information in one [representation] 

is also inferable from the other and vice versa” [43, p. 67]. In the context of variability modeling, 

each pair of models can be described as “equivalent” because their configuration space is equal, 

namely, “the set of all instance descriptions derivable from the first diagram is equal to the set 

of instance descriptions derivable from the other diagram” [15, p. 86]. 

4.2.3.2 Comprehension Tasks 

For both experimental groups, ten questions were asked about each model (“basic,” “extra”), 

examining whether specific configurations of Skoda Yeti cars are allowed (see Appendix C for 

the full list of questions). These questions can be described as surface-level tasks (measuring 

comprehension of models more directly than do deep-level tasks), which require participants to 

work with the models in a usage context [50]. Moreover, as CVL models aim at representing 

variability, comprehending which configurations are valid and which are not is the main task 

for investigation. 

The participants were presented with the model, one question at a time. They had to choose 

between the following answers: Correct, Wrong, Cannot be answered from model, I do not 

know. After answering a question, participants proceeded to the next question, but could not 

return to previous questions. No rigid time constraints were imposed on the participants. 



As noted in Section 3, we measured the cognitive effect of the modeling styles on 

comprehension using two objective measures: comprehension effectiveness – operationalized 

with correctly answered questions on model content – and comprehension efficiency – time 

needed to answer the set of questions regarding the model content. Such measures of 

effectiveness and efficiency are widely used in investigating comprehension of conceptual 

models [33]. 

4.2.3.3 Post Comprehension Questionnaire 

The participants had to fill a post-part questionnaire that collected subjective ratings of the 

comprehension of each model. In particular, we measured perceived ease of use of the model 

with a slightly adapted version of the 4-item scale of [45]. An example item was “Learning how 

to read the model was easy.” We further measured the difficulty in understanding different 

model constructs relevant to variability modeling (mandatory and optional elements, XOR and 

OR relations), with the answering options ranging from 1=very easy to 7=very difficult. In 

addition, the participants could report on difficulties they experienced in open text fields.  

4.2.4 Modeling Part 

After completing the comprehension task, the participants were given a short tutorial of a CVL 

tool including operations such as adding choices, setting groups, and defining constraints. The 

tool was an early stand-alone version of what has now become the BVR Tool5. The participants 

would get immediate help if they had tool problems, but this was extremely rare as the tool 

itself was easy to grasp for our modeling task. In addition, they got a short textual description 

(two paragraphs) of a top-of-the-range edition of Skoda, called Laurin and Klement. The 

modeling task focused on this top-of-the-range edition and on its diesel cars (see Appendix D). 

The choices were quite obvious within the description, so that we will be able to concentrate on 

the organization of the choices into diagrams (in the form of modeling styles) rather than on 

their extraction from the text. Although often variability models are automatically created from 

software development artifacts (for example, from requirements [35]), the aim of this task was 

                                                 
5 http://modelbased.net/tools/bvr-tool/  

http://modelbased.net/tools/bvr-tool/


to check the difficulties humans face when specifying variability models, e.g., in scenarios of 

modifying automatically-generated models due to changes in the variability requirements. 

The participants were given hard copies of the tutorial and the description, and they were free 

to consult the hard copies when creating the model. The only requirement was to apply the 

given tool in order to prevent syntax errors. The constraints could be given either as a parsed 

text in the tool or as a free text separate from the tool. We ignored “simple” syntax errors when 

analyzing the constraints. 

Similar to the comprehension part, the modeling task also referred to basic and extra choices, 

although in a slightly different way from those of the comprehension part. The dependence 

index of the “basic” model was higher than that of its counterpart in the “extra” model (.3 and 

.04, respectively). 

After completing the modeling task, the participants were asked to rate the difficulty of each 

requirement they were requested to model. The rates ranged from 1-very easy to 7-very difficult.  

We measured the quality of model creation in terms of correctness, as well as the reported 

difficulty to do that. As the participants were free to choose any modeling style, we observed 

mixed modeling styles, in addition to the pure ones – constrained and hierarchical. The way we 

chose to handle these cases is elaborated upon later. 

4.3 Sample 

Participants were recruited from four different classes (in three different countries) from 

information systems, informatics, and business curricula with prior training in modeling. In 

each class, the participants were arbitrarily divided into the four combinations of experimental 

groups and experimental orders (see Table 1). To assure sufficient motivation during the 

experiment, participants received approximately 5% course credit for this task, but they could 

decide not to participate in the experiment at all, as this credit was either defined as a bonus or 

could be substituted by another task, depending on the class. Nevertheless, most students chose 

to participate in the experiment. 



We performed a power analysis using the G*Power 3 software [22] to approximate sample size 

requirements for a subsequent ANCOVA (analysis of covariance) with one covariate across 

two groups (modeling style) and expecting medium effect sizes of f(U) > .30 with type-1 error 

probability of α < .05. A sample size of n = 90 was required to reach sufficient statistical power 

(> .80).  

A total of 92 students participated in the study, thus fulfilling the sample size criterion. 

Examining their background, we found that the number of models previously created or read 

was negatively skewed — there were a few very experienced modelers and mostly plain 

novices. We decided to exclude univariate outliers based on the criterion “standardized scores 

in excess of 3.29” [71, p. 73]. Therefore, two participants (who had created or read over 200 

models) were excluded, reducing the sample size to 90 (43 and 47 participants per experimental 

group, respectively). Table 2 gives relevant demographic statistics for both experimental 

groups. We performed t-tests and Χ² tests to screen for possible differences between the 

experimental groups. Results did not suggest significant differences between groups. 

Table 2. Participants’ demographic data (M=mean, SD=standard deviation) 

 Hierarchical 
 (n=43) 

Constrained 
 (n=47) 

Total 
(N=90) 

Statistical Test 

M/ 
Count 

SD/  
Percentage 

M/ 
Count 

SD/  
Percentage 

M/ 
Count 

SD/  
Percentage 

Age 25.42 3.16 25.31 4.38   Tdf=86=0.13; n.s. 
Gender        
Female 18 42% 20 43% 38 42% Χ²df=1=0.004; n.s. 
Male 25 58% 27 57% 52 58%  
Amount of models created or 
read 

31.61 36.86 25.64 35.43   Tdf=88=0.78; n.s. 

Work experience as 
programmer 

       

Yes 7 16% 12 25% 19 21% Χ²df=1=1.15; n.s. 
No 36 84% 35 75% 71 79%  
Familiarity with software 
product line engineering 

       

Yes 17 40% 14 30% 31 34% Χ²df=3=0.95; n.s. 
No 26 60% 33 70% 59 66%  
Familiarity with feature 
modeling (3 items, mean value, 
7-point scale, from 1=strongly 
disagree, 7=strongly agree) 

2.67 2.22 2.45 1.79 2.55 2.00 Tdf=80.78=0.51; n.s 

We further analyzed for differences between the courses where our study took place. As those 

analyses are not related to the main research questions, we present the results in Appendix E. 



5 Results 

Data analysis was carried out with SPSS 20.0. We elaborate next how data were analyzed and 

then detail the results. 

5.1 Model Comprehension 

5.1.1 Data Screening 

To test our first research framework, including hypotheses 1 and 2, we ran four repeated 

measure analyses of covariance (ANCOVAs) with experimental group (constrained vs. 

hierarchical) and experimental order (first or second task) as between-subject variables. The 

dependent variables in the four separate ANCOVAs were comprehension effectiveness 

(correctness), comprehension efficiency (time), subjective difficulty of model, and perceived 

ease of use. Each dependent variable was measured twice (for each of the two models: high 

choice interdependency (basic) and low choice interdependency (extra)), thus constituting a 

within-subjects factor. Familiarity with feature modeling was used as model covariate (a 

controlled variable).  

In a first step, we checked whether assumptions for performing ANCOVAs for repeated 

measures were met based on the procedures proposed in [71]. Shapiro-Wilk tests of the 

dependent variables indicated that the assumption of normality of dependent variables had been 

violated. However, ANCOVAS’ robustness is expected with at least 25 participants per 

experimental condition [63]  and we had over 40 participants per experimental group.  

We sought univariate outliers within each experimental group because they might distort 

statistical analyses [71, p. 72]. Concerning the model with high choice interdependency – basic 

– we had to exclude two univariate outliers in the analyses. Based on the criterion “standardized 

scores in excess of 3.29” [1, p. 73], we excluded two cases for all four analyses (one out of each 

experimental group) because these participants had used a high amount of time for solving 

questions on the basic model (906 and 812 seconds). It is possible that these subjects were 

distracted during the experiment. 



Box’s M tests for homogeneity of variance-covariance matrices indicated potential problems 

with homogeneity of variance for all four analyses. Therefore, we assessed homogeneity of 

variance with Fmax (ratio of largest to smallest cell variance) [71, p. 86]. Since our sample sizes 

were relatively equal and Fmax was lower than 5 in the analyses, we deem this assumption to be 

met.  

5.1.2 Tests of Hypotheses 

Table 3 and Figure 4 give an overview of the results of the ANCOVAs for repeated measures. 

Overall, there was a significant effect of the experimental group (constrained vs. hierarchical) 

on all dependent variables. The modeling style did influence comprehension effectiveness, 

lending support to H1. The hierarchical modeling style was easier to comprehend. However, 

there is also a significant disordinal (crossover) interaction effect of choice interdependency 

and modeling style, indicating that the effect of modeling style differs for the “basic” and 

“extra” models. This means that the type of effect the modeling style has depends on the choice 

interdependency of the models, thus supporting H2 predicting an interaction effect. Therefore, 

the main effect of modeling style cannot be interpreted without taking the choice 

interdependency into account. While participants achieved a higher comprehension of the 

model with high dependency in the hierarchical test condition (F(1,83) = 25.07, p < .001), they 

significantly understood the model with low dependency better in the constrained style (F(1,83) 

= 4.26, p = .04). Similarly, participants took less time for answering questions for the 

hierarchical model with high dependency (F(1,83) = 23.69, p <= 0.001) than for the constrained 

model with high dependency, and took less time for answering questions for the constrained 

model with low dependency (F(1,85) = 8.34, p = .005) than for the hierarchical model with the 

low dependency. These results provide evidence to accept H2 in terms of objective 

comprehension.  

  



Table 3. An overview of the results of the ANCOVAs for repeated measures 

 Effect F (dfHypothesis=84; 
dfError=1) 

Significance Partial 
Eta 

Squared 
Comprehension 
effectiveness  
(Total Score) 

modeling style 4.21 .04 .05 
choice interdependency  n.s.  
choice interdependency * modeling 
style  

36.51 <.001 .30 

experimental order  n.s.  
familiarity with feature modeling 7.50  .01 .08 
choice interdependency * 
experimental order 

4.57 .04 .05 

choice interdependency * familiarity 
with feature modeling 

 n.s.  

Comprehension 
efficiency 
(Time) 

modeling style  n.s.  
choice interdependency 6.64 .01 .07 
choice interdependency * modeling 
style  

43.81 <.001 .34 

experimental order  n.s.  
familiarity with feature modeling 12.08 .001 .13 
choice interdependency * 
experimental order 

34.17 <.001 .29 

choice interdependency * familiarity 
with feature modeling 

 n.s.  

Perceived ease of 
use 

modeling style 24.80 <.001 .23 
choice interdependency  n.s.  
choice interdependency * modeling 
style  

9.21 .003 .10 

experimental order  n.s.  
familiarity with feature modeling 4.92 .03 .06 
choice interdependency * 
experimental order 

 n.s.  

choice interdependency * familiarity 
with feature modeling 

 n.s.  

Subjective 
difficulty of model 

modeling style 4.14 .05 .05 
choice interdependency  n.s.  
choice interdependency * modeling 
style  

 n.s.  

experimental order  n.s.  
familiarity with feature modeling 17.07 <.001 .17 
choice interdependency * 
experimental order 

 n.s.  

choice interdependency * familiarity 
with feature modeling 

 n.s.  
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Figure 4. Results for model comprehension: (a) comprehension effectiveness (total score), (b) 

comprehension efficiency (time), (c) perceived ease of use, and (d) subjective difficulty of model 

Next, we discuss results of the subjective model comprehension. Participants rated the ease of 

use of the hierarchical model higher than that of the constrained model. Additionally, they rated 

the subjective difficulty of the hierarchical model lower for both models. These results support 

H1 concerning the effect of modeling style on subjective comprehension of CVL models. While 

there was an interaction effect of choice interdependency and modeling style for perceived ease 

of use, there was no interaction effect for the subjective difficulty of the model, and thus the 

subjective data did not provide clear support for H2. Concerning ease of use, participants 

perceived hierarchical models easier to use in both models, where in the model with high 

dependency – basic – the differences were even larger with respect to the constrained model. 

As for the controlled variables, the experimental order did not influence comprehension 

directly. However, there were significant interaction effects between the choice 

interdependency and the experimental order for comprehension effectiveness (total score) and 
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efficiency (time). While comprehension scores in the basic model did not depend on the order, 

the extra model was better understood when being second than when being first. Participants 

did answer more questions (83% vs. 77%) on the extra model correctly in cases where they had 

previously worked on the basic model. They did use more time on the first (basic=328.72; 

extra=409.09 seconds), compared to the second model (basic=235.50; extra=313.67 seconds) 

on which they were answering questions, regardless of which model was first – basic or extra.  

There was no effect of experimental order on perceived ease of use nor on subjective difficulty 

of model. 

Familiarity with feature modeling did have an effect on all dependent variables, which is in line 

with prior studies on comprehending variability models by novices and experts [57]. 

Participants with higher familiarity performed better on the comprehension tasks, but they also 

took more time to solve them. They rated the perceived ease of use of the model higher and the 

difficulty to understand different model elements as lower, with respect to participants with 

lower familiarity. 

5.2 Model Construction  

5.2.1 Data Screening and Coding  

The number of different models created for the given natural language description was quite 

large. Therefore, two of the authors of this paper encoded the created models independently. 

Two models belonging to the hierarchical modeling group were missing because the 

participants failed to upload the correct files for their solution. Overall, 88 models were 

analyzed. For each model, the specification of each requirement (a sentence or a part of a 

sentence in the textual description) was separately encoded. Moreover, each requirement was 

decomposed into choices and dependencies among them. Table 4 provides some examples of 

this decomposition.  

The specification of each element (choice or dependency) could be completely correct, partially 

correct, incorrect, or missing (i.e., no evidence that the participant noticed the requirements for 

the element). We assigned 1 point for each correct answer and 0.5 points for a partially correct 



answer. At this stage, we have not differentiated between missing and incorrect specifications. 

The encoders further examined the dependencies among choices as cross-cut (textual) 

constraints or hierarchical dependencies (including OR, XOR, optional, and mandatory 

relations); accordingly, the representation type could be text or model, respectively. The typical 

case was that a single dependency was specified either as a single textual constraint or in the 

model. There were a few cases in which a constraint was modeled as part of another constraint 

(three cases) or as two distinct textual constraints (three cases). These six cases were also treated 

as ‘text’ during the entire procedure.  

Table 4. Examples of decomposing requirements into examined elements 

Requirement Examined Element Element Type 
When it is automatic, only the 4x4 
drive and a 140hp engine are 
possible.  

4x4 Choice 
140 hp Choice 
automatic -> (4x4 and 140 hp) Dependency 

Choosing the parking assistant 
excludes choosing the backing 
sensor. 

parking assistant Choice 
backing sensor Choice 
parking assistant -> not (backing sensor) Dependency 

The encoders further classified the modeling styles used to specify the basic and extra choices 

of Laurin and Klement cars (hierarchical vs. constrained).  

After independently encoding all models, the encoders discussed the differences in their coding 

until they reached full agreement. 

5.2.2 Tests of Hypotheses 

First, we turn to the effect of prior exposure on choice of modeling styles (our third hypothesis 

– H3). To compare experimental groups, we used Chi Square tests (see Table 5 for descriptive 

results and all test values). From the data in Table 5, it is apparent that there is a significant 

influence of prior exposure to modeling style on the style chosen, both for the basic model 

(Χ²df=1=33.76; p<.001) and the extra  model (Χ²df=1=22.57; p<.001), the effects of which can 

be considered large (Phi φ=.62 and .51, respectively). In 76% of the cases, the participants stuck 

to the modeling styles to which they were exposed. If beforehand confronted with constrained 

models in the first part of the experiment (the comprehension task), participants used a 

constrained modeling style more often than using a hierarchical style (83% vs. 17%, overall). 

When confronted with a hierarchical style, participants stuck to the hierarchical style in 68% of 



the cases, while in 32% of the cases they switched the modeling style to a constrained style. 

Overall, the results lend support to hypothesis H3, that prior exposure affects choice of 

modeling style.  

From Table 5 we can derive that it depends on the choice interdependency whether hierarchical 

or constrained modeling styles are chosen: more (60%) participants chose to model the high 

dependency model in a hierarchical style than they did in a constrained style (40%) and vice 

versa for the low dependency model (22% hierarchical style vs. 78% constrained style). Thus, 

the results support H4, that choice interdependency may further influence whether users choose 

a specific modeling style. 

Table 5. Prior exposure and choice of modeling style 

 Prior Exposure: 
Hierarchical 
Style (n=41) 

Prior Exposure: 
Constrained 
Style (n=47) 

Average 
Percentage 
(corrected with 
group size of 
prior 
exposure) 

Statistical Test 

 Count % Count % Χ²df=1 P φ 

Model with High Choice Dependency – Basic Choices 
Hierarchical 38 93% 15 32% 60% 33.76  <.001 .62 
Constrained 3 7% 32 68% 40% 
Model with Low Choice Dependency – Extra Choices 
Hierarchical 18 44% 1 2% 22% 22.57 <.001 .51 
Constrained 23 56% 46 98% 78% 

Next, we turn to the effects of the chosen modeling style and the choice interdependency on the 

resulting model (our fifth hypothesis – H5). To this end, we calculated t-tests for independent 

samples for the basic model and for the extra model. Cohen’s d was calculated in a separate 

tool6 to determine effect sizes for significant effects. Results show a positive overall influence 

of the constrained modeling style on modeling correctness, both for the model with high choice 

dependency (Constrained: M = .89, SD = .17; Hierarchical: M = .82, SD = .16; tdf=86=-1.82, p 

= .07) and the model with low choice dependency (Constrained: M = .89, SD = .09; 

Hierarchical: M = .80, SD = .17; tdf=21=-2.26, p = .04). When looking at a detailed level, we 

note that the constrained modeling style had only a positive influence on choices in the model 

with low choice dependency, but not in the model with high choice dependency. The absence 

                                                 
6 Ref: http://wilderdom.com/301/Cohensd.xls, last retrieved 20/04/2016. 

http://wilderdom.com/301/Cohensd.xls


of a measurable effect for choices in the high dependency model might be due to the fact that 

most choices in this situation were involved in several dependencies and hence were 

unavoidable.  

We further note that the constrained modeling style had a positive influence on correctness of 

dependencies in both situations (although the difference is statistically significant at the α = .05 

level only in the model with high choice dependency). Overall, we deem hypothesis H5 to be 

rejected: the use of a constrained modeling style results in higher model correctness for both 

models. Concerning subjective modeling difficulty, we did not find any significant difference 

– whether hierarchical or constrained modeling style was chosen – and thus H5 was not 

supported by subjective measures either. 

Table 6. Choice of modeling style and correctness of models 

 Hierarchical 
Modeling Style 

Constrained 
Modeling Style 

Statistical Test 

 M/ 
Count 

SD/  
% 

M/ 
Count 

SD/  
% 

Tdf=86 p Cohen’s d 

High Choice Dependency – Basic Choices 
 (n=53) (n=35)  
Correctness 
      Choices 

 
.99 

 
.04 

 
.98 

 
.11 

 
.37 

 
.71 - 

      Dependencies  .58 .38 .75 .31 2.31 .02 -.49; small effect 
      Overall  .82 .16 .89 .17 1.82 .07 .43; small effect 
Subjective difficulty 2.85 1.10 2.61 1.40 .89 .38 - 
Low Choice Dependency  – Extra Choices 
 (n=19) (n=69)  
Correctness 
      Choices  

 
.93 

 
.09 

 
.98 

 
.06 

 
-2.24 

 
.04 

 
-.75; moderate effect  

      Dependencies .57 .34 .73 .22 -1.92 .07 -.65; moderate effect 
      Overall  .80 .17 .89 .09 -2.26 .04 -.82; large effect 
Subjective difficulty 3.11 .99 2.72 1.51 1.05 .30 - 

6 Discussion 

This study set out with the aim to examine hierarchical and constrained styles in variability 

modeling. A main finding of this study is that differences in comprehension and selection of a 

specific modeling style depend on choice interdependency. While for a high choice dependency 

situation, the hierarchical style was easier to understand and also chosen more often to create a 

model, for a low choice dependency situation the constrained version performed better in terms 



of comprehension effectiveness and efficiency and was also chosen more frequently to model. 

Table 7 summarizes the hypotheses testing results. In line with our predictions, these 

combinations of modeling style and choice interdependency led to a lower number of 

occurrences of the (non-abstract) choices in the models and thus a lower element-interactivity 

effect, which would have heightened cognitive load. This is also reflected in additional analyses 

based on comprehension question type (see Appendix E): Question-based redundancy of 

choices was in general higher for the model with high choice dependency in the constrained 

style and for the model with low choice dependency in the hierarchical style. The constrained 

modeling style outperformed the hierarchical style for comprehension questions that lead to 

much lower redundancy in the constrained style, but not in case it leads to equal or higher 

redundancy. Thus, it seems that the effect of element-interactivity was more important than the 

effect of split-attention between textual constraints and the graphical model in the constrained 

modeling style. If the negative effect of the split-attention effect would have been very strong, 

both models should have been easier in the hierarchical style.  

Our results show that the level of choice interdependency has an impact on what style should 

be applied in order to obtain the most comprehensible model. They further indicate that the 

selection of the modeling style depends on the degree of dependency. There seems to be a 

common understanding of modelers as to when to use the different modeling styles, which can 

be seen by how modelers “naturally” chose different styles for different levels of choice 

interdependency (controlled for their tendency to choose the style they were exposed to earlier). 

However, we found two exceptions from this overall pattern, which we discuss below. First, 

the hierarchical modeling style was subjectively rated to be easier in both models. Second, we 

did not find that applying the appropriate modeling style to a specific choice interdependency 

situation would result in better model quality in any of the two models, as models in the 

constrained modeling style had fewer errors.  

 

  



Table 7. Summary of hypothesis testing results 

Hypothesis Dependent Variable Results 
H1. The modeling style 
influences comprehension of 
variability models. 

H1a. Comprehension 
effectiveness 

Supported. The constrained modeling style leads to 
less comprehensible models. There is a significant 
disordinal (crossover) interaction effect of 
dependence index and modeling style.  

H1b. Comprehension 
efficiency 

Not supported.  

H1c. Perceived ease of 
use  

Supported. The constrained modeling style leads to 
lower subjective model comprehension. 

H1d. Subjective 
difficulty of model 

Supported. The constrained modeling style leads to 
higher subjective difficulty. 

H2. There is an interaction effect 
between the choice 
interdependency (as specified by 
the dependence index) and the 
modeling style, influencing 
model comprehension. 
 

H2a. Comprehension 
effectiveness 

Supported. Participants achieved a higher 
comprehension of the model with high dependency 
in the hierarchical style, while they understood the 
model with low dependency better in the 
constrained style 

H2b. Comprehension 
efficiency 

Supported. Participants took less time for 
answering questions for the high dependency model 
in the hierarchical style, and took less time for 
answering questions for the low dependency model 
in the constrained style. 

H2c. Perceived ease of 
use  

Supported. The relative higher rating of perceived 
ease of use of the hierarchical model style is more 
prominent for the case of low dependency than for 
the case of high dependency. 

H2d. Subjective 
difficulty of model 

Not supported. 

H3. Prior exposure to a modeling style in examples leads to 
a higher subsequent use of this modeling style. 

Partly supported. The effect is clear for the 
combinations of basic model (high choice 
interdependency) × hierarchical modeling style and 
extra model (low choice interdependency) × 
constrained modeling style; while in the other two 
combinations switches occur. 

H4. The choice interdependency (as specified by the 
dependence index) influences the choice of modeling style. 

Supported. Hierarchical style was chosen more 
often for the model with high choice dependency, 
the constrained style was chosen more often for the 
model with low choice dependency. 

H5. There is an interaction effect 
between the choice 
interdependency (as specified by 
the dependence index) and the 
modeling style, influencing the 
quality of the created models and 
the perceived difficulty.  

H5a. Model correctness Not supported. The constrained modeling style 
results in higher quality models for both models. 

H5b. Subjective 
difficulty 

Not supported. 

Regarding the subjective model comprehension of the hierarchical modeling style, participants 

interestingly rated it higher for both models. Prior research has demonstrated that preference 

for a representation format might not always correspond to performance in using the 

representation [14]. While objective comprehension values were lower for the hierarchical 

model in the extra task (low choice interdependency), users still rated the comprehensibility 



higher. This result is in line with hypothesis 1, that the modeling style affects comprehension: 

the results suggest that users perceive the split-attention effect between textual constraints and 

model more strongly than the element interactivity effect of repeated choices in the hierarchical 

modeling style; thus they rate comprehensibility lower for the constrained models.  

There could be several different interpretations of the higher subjective comprehension of the 

hierarchical modeling style. The results could be interpreted in light of the “hidden 

dependencies” — users might have had the impression that there were more hidden 

dependencies based on combinations of constraints in the constrained model, while in the 

hierarchical model such dependencies could have been easier to recognize. Haisjackl et al. [30] 

report a similar effect in the area of declarative process models — that “hidden dependencies” 

based on combinations of constraints are a challenge for model comprehension. Another 

possible interpretation of the higher subjective comprehension of the hierarchical modeling 

style can be derived from the ontological literature. Textual constraints (especially those in the 

form “not (A and B)”) presumably have a similarity to the ontological construct “negated 

property – a property a thing does not possess.” [8, p. 387]. Bodart et al. [8] argue that humans 

do not easily perceive such properties. Thus, models expressed in the constrained modeling 

style (including such constraints) might be experienced as being more difficult than hierarchical 

models that visualize all possible options.  

As to why modeling in the constrained modeling style leads to higher model quality independent 

of the choice interdependency, different arguments can be used, e.g., textual constraints can 

directly be taken from the natural language description or separating concerns in graphical and 

textual parts helps modelers to model correctly. In contrast to the comprehension of existing 

CVL models – creating constrained CVL models seems to be less error-prone than is creating 

hierarchical CVL models. The user can first create a redundancy-free hierarchical model of the 

choices and then add missing constraints as textual additions. The split-attention effect is less 

likely to happen if the task is performed in a sequential, rather than in a parallel, order, as in the 

comprehension task. The results may also be caused by a similarity of the constrained modeling 



style with other widespread visualizations that employ “redundancy-free” node-link diagrams, 

in which each concept is only mentioned once, e.g., concept maps [21].  

We are aware that we cannot give a definite answer as to why the constrained modeling style 

proved to be more effective in terms of quality of the resulting models. In future investigations, 

we encourage the exploration of the “process of variability modeling,” e.g., by tracking 

modeling steps by the editor and analyzing them as has been done in other modeling areas. Such 

data would help clarify why modeling in a constrained way seems to be more beneficial than 

comprehending models in a constrained modeling style [67].  

Our results further indicate that for relatively inexperienced users, as in our sample, it is easier 

to get models right using the constrained style; nevertheless, the hierarchical style is easier to 

comprehend from a subjective point of view. We thus postulate that it may be worthwhile to 

put extra effort into making a hierarchical model, since it would be better understood in the 

sequel. It may also be the case that with more experience, variability modelers would be more 

inclined to use the hierarchical style. 

Our results further indicate that the choice of the modeling style depends not only on the degree 

of dependency, but also on the prior exposure of the modelers to modeling styles. Visual 

example models may have a possible constraining effect and lead to inappropriate models, 

because modelers adhere to them. However, we observed that modelers did not blindly adhere 

to given examples, but adapted to the specific circumstances of the given choice 

interdependency. Half of the participants presented with hierarchical style models first, 

switched to the constrained modeling style for modeling a low dependency modeling situation. 

In general, prior exposure seems to be stronger for the constrained modeling style than for the 

hierarchical modeling style, as more participants stick to it. A possible interpretation may be 

that participants might sense in which style they make fewer errors and perform better. 

Switching to the constrained modeling style therefore seems to be a wise decision, as models 

modeled in a constrained style showed a higher correctness, especially for modeling 

dependencies, for both models with high/low choice interdependency. 



7 Implications and Threats to Validity 

7.1 Implications for Research 

In terms of research, the current findings add strength to a growing body of empirical work that 

supports the cognitive load theory in the conceptual modeling field. The fact that the 

appropriateness of a modeling style is highly dependent on the choice interdependency can also 

be seen as an extension of the cognitive fit theory, which postulates that cognitive fit between 

the task type and the information emphasized in the representation leads to more effective and 

efficient problem solving. Thus, even for one and the same task (as model comprehension 

tasks), different representations may be beneficial, depending on the inherent structure of the 

information to be represented. Of course, there are many more aspects of extrinsic cognitive 

load that the present study has not looked into. These range from presentation medium (paper 

versus computer), over primary notation (other notations rather than CVL), notational 

characteristics as semantic transparency and perceptual discriminability of symbols and 

secondary notation − related to aspects not formally defined − as the use of decomposition into 

sub-models, color highlighting or layout of the model and the labels. When modelling in a tool, 

also usability aspects are relevant. These general variables, relevant to any type of conceptual 

model, were held constant for experimental purposes to determine the effect of the variables 

that are of specific interest to variability modeling.  

The study also took a look at whether a split-attention effect (between textual constraints and 

graphical modes) would be stronger than an element-interactivity effect (caused by redundantly 

modelled choices). In our experiment, the element-interactivity effect was stronger. However, 

caution must be applied when generalizing the result we obtained, because we used only two 

different models. Furthermore, it was not possible to compare comprehension questions 

according to their degree of split-attention effect, because all questions lead to a split-attention 

between model and text in the constrained modeling style. Therefore, to meaningfully examine 

the strength of split-attention effects in this context, we advise fellow scholars to systematically 

construct comprehension questions (similar to e.g. [25]) varying the existence and strength of a 

split-attention effect. Future research on cognitive load effects for conceptual models is advised. 



Turetken et al. [74] have for instance investigated such effects in decomposition of models and 

hierarchical structuring. They reported no evidence of increased comprehensibility from using 

abstraction (which would aid comprehension); on the contrary, tasks that required information 

from sub-processes were answered better when this information was not hidden (and, thus, no 

split-attention effect, which would lower comprehension, could occur). While the results cannot 

be compared to the present study, they also demonstrated that it would be important in the future 

to collect data on more modeling cases to be able to specify tradeoff curves between competing 

positive and negative cognitive load effects on comprehension.  

Our study further shows a high conformance with prior model examples in terms of modeling 

style when creating a new model. This study thus extends research on fixation effects in design 

tasks, which have predominately been examined in architectural or mechanical design tasks [13, 

36, 66] to the area of conceptual modeling.  

While choosing a constrained modeling style leads to higher quality of resulting models, it was 

somewhat surprising that models in the constrained modeling style were judged to appear less 

comprehensible. This finding suggests that results of model comprehension tasks cannot 

necessarily be transferred to model creation tasks and vice versa, and researchers have to 

exercise caution when generalizing results in cases where only one task type (model 

comprehension vs. model creation) is considered. 

7.2 Implications for Practice 

The study presented in this paper has implications for modeling practice and is of direct 

practical relevance. First, the results provide indication that modeling dependencies is difficult 

when representing variability. This result is in-line with the findings of Berger et al. [7], 

according to which the proportions of dependencies in industrial models are relatively low. 

Modeling tools may support users by providing them with simulation of variability for a 

specified model (e.g., by representing the valid configurations). This may also help modelers to 

avoid modeling errors which occurred more often in the hierarchical modeling style. Similar to 

contemporary theories on human semantic memory [47], future research on variability 

modeling could also explore higher dimensional (more than 2-D) models in which 



configurations serve as nodes and similarity connection weights as relations between them. 

Prior research has already presented a proposal to visualize large feature trees in 3D to avoid 

scrolling [73]. As soon as models reach a certain size, it also becomes important that tools 

support users to orientate and navigate through model structures and help them mentally 

integrate information. Various visualization strategies for displaying hierarchical model 

structures and interface strategies to navigate between details and their context have been 

investigated for different types of conceptual models [24, 42]. Examples include ‘focus and 

context’ vs. ‘overview and detail strategy’, or interaction strategies for multiple views (e.g., if 

items are selected in one view (“brushing”), they are simultaneously selected and highlighted 

in the other view (“linking”)). Future research could address how such visualization 

opportunities can be used to support users when interacting with variability models in tools. In 

addition, adaptation of visualizations to specific user groups might be pursued. 

Second, the results reinforce the importance of providing good teaching examples. The choice 

of examples in tutorials and courses is relevant, as they influence students’ modeling behavior. 

A fixating, suboptimal example can act as a barrier and be counterproductive to a good model 

design. 

Finally, Table 8 presents the effects of the modeling styles on model comprehension and model 

creation, based on our experimental results. These effects should be acknowledged when 

creating variability models either manually or automatically (via tools). Our advice would be to 

apply constraint-oriented style when creating variability models acknowledging that the 

hierarchical style has higher risk of errors. However, once the variability model is reasonably 

established and it is clear that the situation has high choice interdependency there would be 

comprehension advantages to moving the model into a hierarchical style. Tools should support 

this transformation, but no such automatic tool exists, yet. Existing tools such as Feature IDE7 

provide syntactic support for the variability model notation, and analysis of what configurations 

are allowed. Commercial products like pure::variants8 also may provide support for generating 

                                                 
7 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/ 
8 http://www.pure-systems.com/products/pure-variants-9.html 



the variants (final products) and integrate smoothly with the development environment their 

customers have, but this is not focused on comprehension as such.  

Table 8. Effects of modeling styles, based on our experimental results 

Task Dependency Modeling Style Effect 
Model 
Comprehension  

low/high hierarchical  • easier to understand 
• lower subjective difficulty 
• higher perceived ease of use 

low constrained • less errors 
• less time 

high hierarchical • less errors 
• less time 

Model Creation  low/high constrained  • higher correctness 
low  constrained  • a common choice 
high hierarchical • a common choice 

7.3 Threats to Validity 

There are a number of limitations associated with our experiments that need to be 

acknowledged. We discuss these limitations next and elaborate on the actions taken to reduce 

them. 

The main sources of weakness to external validity include subjects and materials. Although the 

participants were students with little experience in modeling, they had the required knowledge 

and training; thus, we believe that they serve as an adequate proxy for future modelers of 

variability modeling in general, and CVL in particular. The use of students in experiments 

similar to ours – not designed for experts – is deemed to be acceptable [41]. Moreover, one 

should clearly bear in mind that collecting close to a hundred volunteering experts or 

experienced variability engineers to conduct such an experiment would be prohibitively 

impractical. Another problem with such a sample would be a possible bias towards one 

modelling style. Therefore, we deemed it more important to keep the effect of industry 

experience constant (viz. low). This decision is also reflected by the warning of Gemino and 

Wand [27, p. 258] that “it is important to recognize that the use of either ‘experienced’ analysts 

or ‘real’ stakeholders who are very familiar with the application domain, while seemingly 

providing more realistic conditions, might create substantial difficulties in an experimental 

study.”  



As for the materials used in our experiment, we can encounter threats with respect to models, 

tasks, the modeling language (CVL), and the tools. Our experiment did use rather small models, 

and it could be argued that they do not reflect industrial size problems. The tasks needed to be 

manageable within reasonable time. Even with students, there was a limit as to how complex 

we could make the task. However, the comprehension tasks contained the complexities that we 

wanted to investigate. With respect to the modeling task, even though the problem description 

may seem simple, there were hardly any identical solutions in our sample of created models. 

We were surprised by the diversity even for semantically correct models, an observation that 

also supports the need for good style guidelines. Industrial product lines show the same kind of 

complexities, and although the number of choices will be larger, there are often only more 

variants per choice, which should not greatly affect the decision on style. Concerning model 

comprehension, studies have indeed shown that there is an overall negative correlation between 

higher model size and comprehension [55, 62]. While we expect this variable to be an additional 

independent variable adding to higher intrinsic cognitive load, we do not expect it to interact 

with the modelling style.  

Despite the clear support for the hypothesized associations, the generalizability of findings 

reported here should be undertaken with caution, as we could only include two different models 

in the study and we selected a specific variability modeling language – the variability 

abstraction part of CVL. Moreover, we used a modeling language in which dependencies are 

expressed in textual constraints and not visually. Visual representation of the dependencies 

could influence comprehensibility and hence deserve further exploration in the future. As the 

two models included in the comprehension part and the modeling task were typical 

representatives, we argue that they provided a reasonable test of comprehensibility, thus 

assuring construct validity. The selection of the language was done perceiving CVL as an 

emerging standard that systematically includes the main variability modeling concepts. 

Regarding standardization, the CVL submission to the OMG was technically recommended, 

but has not yet been made an OMG technology due to controversies over an American patent 

and its consequences relating to future commercial tooling for CVL.  



With respect to tooling, we applied only one tool in the experiment, and one could imagine that 

the tool could be biased in favor of one of the modeling styles. The CVL tool used requires that 

the diagram is built top down, and this could indicate favoring a hierarchical style, but applying 

a constrained style would only mean that the hierarchy would be shallow. We did not include 

in our experiments any procedures that would control for this potential mild favoring of the 

hierarchical style. 

To improve conclusion validity, we were assured that random influences to the experimental 

setting were low. First, participants were committed to the experiment by giving course credit 

(of about 5%) for participation. Second, the students self-studied CVL, and although conducted 

in different classes, no influence of the lecturers’ capabilities, knowledge, and opinions were 

introduced to the CVL training.  

Although the time taken to complete the whole modeling task was monitored, we could not 

relate it to the modeling style (as commonly different parts of the model were specified 

following different modeling styles), nor to the choice interdependency, because participants 

did work on both basic and extra choices at the same point in time. Thus, we did not include 

modeling efficiency in the second research model on model creation. Further research might 

also look at efficiency of creating models in different styles.  

8 Conclusions and Future Research 

The present study was primarily designed to determine the effect of modeling style on 

comprehension and creation of variability models. We further took the choice interdependency 

into account as an influence factor. Our results are not surprising, as they show that hierarchical 

(tree) structures are useful in suitable situations. This obviously was the belief motivating the 

original FODA approach to define feature trees. Still, our results indicate that expressing 

constraints through hierarchy is not always the most comprehensible option that modelers 

currently believe it is. The results showed that the degree of dependency between choices in a 

model determines what modeling style will be selected when creating a model from natural 

language descriptions. Furthermore, the degree of dependency between choices also influences 



the comprehension of the model. Models with high dependency are best understood with 

hierarchical models, while models with low dependency fit the constrained style. However, 

modeling in a constrained style leads to fewer modeling errors, independent of the choice 

interdependency. Thus, while it is more difficult to create hierarchical models, they offer the 

advantage of higher subjective user acceptance and better comprehension when the model is 

characterized by high dependency of choices. Summarizing, our study provides further 

evidence for the utility of cognitive load theory to aid our understanding of cognitive difficulties 

in variability modeling. These results can be used to generate teaching materials and modeling 

guidelines. 

Another interesting finding was that modelers tended to conform to modeling styles to which 

they had been previously exposed. However, they did not blindly adhere to these styles, for 

instance, it occurred more often that they switched from a hierarchical style to a constrained 

style, rather than vice versa, and their decision of the modeling style was further influenced by 

the choice interdependency. 

Overall, our work denotes an extension to the literature on cognitive aspects of conceptual 

models for the field of variability modeling, and may ultimately lead to more successful 

variability modeling and more comprehensible models for managing product lines in practice. 

Several opportunities for future research emerge from our study. Particularly, further 

experimental investigations with a larger variety of models and different types of participants 

would be required to give a final estimation of the comprehension difficulty of different degrees 

of choice interdependency. Future studies could also extend this work and examine difficulties 

in comprehending and modeling variability using other languages, as well as the variability 

realization part of CVL. Finally, further investigation and experimentation with other modeling 

styles, their ways of extracting and organizing choices into models, and their implications on 

comprehension and modeling would be interesting towards a more integrated understanding of 

cognitive aspects of variability modeling. 



References 

[1] M. Acher, B. Baudry, P. Heymans, A. Cleve and J.-L. Hainaut, Support for reverse 
engineering and maintaining feature models, Proceedings of the Proceedings of the Seventh 
International Workshop on Variability Modelling of Software-intensive Systems, 2013. 

[2] S.W. Ambler, The Elements of UML (TM) 2.0 Style, Cambridge University Press, 2005. 
[3] M. Asadi, D. Gasevic, Y. Wand and M. Hatala, Deriving variability patterns in software 

product lines by ontological considerations, In Conceptual Modeling,  Springer, 2012, pp. 
397-408. 

[4] A.D. Baddeley, Working memory, Science 255 (5044), 1992, pp. 556-559. 
[5] D. Batory, Feature models, grammars, and propositional formulas, Springer, 2005. 
[6] K. Berg, J. Bishop and D. Muthig, Tracing software product line variability: from problem to 

solution space, Proceedings of the Proceedings of the 2005 annual research conference of the 
South African institute of computer scientists and information technologists on IT research in 
developing countries, 2005. 

[7] T. Berger, R. Rublack, D. Nair, J.M. Atlee, M. Becker, K. Czarnecki and A. Wąsowski, A 
survey of variability modeling in industrial practice, Proceedings of the Proceedings of the 
Seventh International Workshop on Variability Modelling of Software-intensive Systems, 
2013. 

[8] F. Bodart, A. Patel, M. Sim and R. Weber, Should Optional Properties Be Used in Conceptual 
Modelling? A Theory and Three Empirical Tests, Information Systems Research 12 (4), 2001, 
pp. 384-405. 

[9] P.L. Bowen, R.A.O. Farrell and F.H. Rohde, An Empirical Investigation of End-User Query 
Development : The Effects of Improved Model Expressiveness vs . Complexity, Information 
Systems Research 20 (4), 2009, pp. 565-584. 

[10] A. Burton-Jones and P. Meso, Conceptualizing Systems for Understanding: An Empirical Test 
of Decomposition Principles in Object-Oriented Analysis, Information Systems Research 17 
(1), 2006, pp. 38-60. 

[11] P. Chandler and J. Sweller, The split‐attention effect as a factor in the design of instruction, 
British Journal of Educational Psychology 62 (2), 1992, pp. 233-246. 

[12] L. Chen, M. Ali Babar and N. Ali, Variability management in software product lines: a 
systematic review, Proceedings of the Proceedings of the 13th International Software Product 
Line Conference, 2009. 

[13] B.T. Christensen and C.D. Schunn, The relationship of analogical distance to analogical 
function and preinventive structure: The case of engineering design, Memory & Cognition 
(pre-2011) 35 (1), 2007, pp. 29-38. 

[14] R.A. Coll, J.H. Coll and G. Thakur, Graphs and tables: a four-factor experiment, 
Communications of the ACM 37 (4), 1994, pp. 76-86. 

[15] K. Czarnecki and U.W. Eisenecker, Feature Modeling, In Generative Programming - Methods, 
Tools, and Applications,  6th (Ed.), Addison-Wesley Longman Publishing Co., Inc. , 2000,  

[16] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid and A. Wąsowski, Cool features and 
tough decisions: a comparison of variability modeling approaches, Proceedings of the 
Proceedings of the sixth international workshop on variability modeling of software-intensive 
systems, 2012. 

[17] K. Czarnecki, C. Hwan, P. Kim and K. Kalleberg, Feature models are views on ontologies, 
Proceedings of the International Software Product Line Conference, 2006. 

[18] K. Czarnecki and C.H.P. Kim, Cardinality-based feature modeling and constraints: a progress 
report, Proceedings of the International Workshop on Software Factories at OOPSLA, San 
Diego, California, USA, 2005. 

[19] K. Czarnecki and A. Wasowski, Feature diagrams and logics: There and back again, 
Proceedings of the Software Product Line Conference, 2007. SPLC 2007. 11th International, 
2007. 

[20] K. Duncker and L.S. Lees, On problem-solving, Psychological monographs 58 (5), 1945, pp. i. 
[21] M.J. Eppler, A comparison between concept maps, mind maps, conceptual diagrams, and 

visual metaphors as complementary tools for knowledge construction and sharing, Information 
Visualization 5 (3), 2006, pp. 202-210. 



[22] F. Faul, E. Erdfelder, A.-G. Lang and B. Axel, G*Power 3: A Flexible Statistical Power 
Analysis for the Social, Behavioral, and Biomedical Sciences, Behavior Research Methods 39 
(2), 2007, pp. 175-191. 

[23] K. Figl, Comprehension of Procedural Visual Business Process Models – A Literature 
Review, Business & Information Systems Engineering, to appear. 

[24] K. Figl, A. Koschmider and S. Kriglstein, Visualising Process Model Hierarchies, 
Proceedings of the ECIS (European Conference on Information Systems), 2013. 

[25] K. Figl and R. Laue, Influence factors for local comprehensibility of process models, 
International Journal of Human-Computer Studies 82, 2015, pp. 96-110. 

[26] M. Galster, D. Weyns, D. Tofan, B. Michalik and P. Avgeriou, Variability in software 
systems—a systematic literature review, IEEE Transactions on Software Engineering 40 (3), 
2014, pp. 282-306. 

[27] A. Gemino and Y. Wand, A Framework for Empirical Evaluation of Conceptual Modeling 
Techniques, Requirements Engineering 9 (4), 2004, pp. 248-260. 

[28] A. Gemino and Y. Wand, Complexity and Clarity in Conceptual Modeling: Comparison of 
Mandatory and Optional Properties, Data &amp; Knowledge Engineering 55 (3), 2005, pp. 
301-326. 

[29] H. Gomaa, Designing Software Product Lines with UML, Proceedings of the SEW Tutorial 
Notes, 2005. 

[30] C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert, J. Pinggera and B. Weber, 
Understanding Declare models: strategies, pitfalls, empirical results, Software & Systems 
Modeling, 2014, pp. 1-28. 

[31] Ø. Haugen, Common Variability Language (CVL) – OMG Revised Submission. OMG 
document ad/2012-08-05,  2012. 

[32] Ø. Haugen and O. Øgård, BVR–Better Variability Results, In System Analysis and Modeling: 
Models and Reusability,  Springer, 2014, pp. 1-15. 

[33] C. Houy, P. Fettke and P. Loos, Understanding Understandability of Conceptual Models – 
What Are We Actually Talking about?, In Conceptual Modeling,  P. Atzeni, D. Cheung and S. 
Ram (Ed.), 7532, Springer Berlin Heidelberg, 2012, pp. 64-77. 

[34] N. Itzik and I. Reinhartz-Berger, Generating feature models from requirements: structural vs. 
functional perspectives, Proceedings of the Proceedings of the 18th International Software 
Product Line Conference: Companion Volume for Workshops, Demonstrations and Tools-
Volume 2, 2014. 

[35] N. Itzik, I. Reinhartz-Berger and Y. Wand, Variability Analysis of Requirements: Considering 
Behavioral Differences and Reflecting Stakeholders Perspectives, Accepted to Transactions on 
Software Engineering, 2016. 

[36] D.G. Jansson and S.M. Smith, Design fixation, Design Studies 12 (1), 1991, pp. 3-11. 
[37] S. Kalyuga, P. Ayres, P. Chandler and J. Sweller, The expertise reversal effect, Educational 

Psychologist 38, 2003, pp. 23-31. 
[38] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak and A.S. Peterson, Feature-Oriented Domain 

Analysis (FODA) Feasibility Study, Software Engineering Institute. Carnegie Mellon 
University,  1990. 

[39] K.C. Kang and H. Lee, Variability modeling, In Systems and Software Variability 
Management,  Springer, 2013, pp. 25-42. 

[40] P.A. Kirschner, Cognitive load theory: implications of cognitive load theory on the design of 
learning, Learning and Instruction 12 (1), 2002, pp. 1-10. 

[41] B. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K. El Emam and J. 
Rosenberg, Preliminary guidelines for empirical research in software engineering, Software 
Engineering, IEEE Transactions on 28 (8), 2002, pp. 721-734. 

[42] A. Koschmider, S. Kriglstein and M. Ullrich, Investigations on User Preferences of the 
Alignment of Process Activities, Objects and Roles, Proceedings of the On the Move to 
Meaningful Internet Systems: OTM 2013 Conferences, 2013. 

[43] J.H. Larkin and H.A. Simon, Why a Diagram is (Sometimes) Worth Ten Thousand Words, 
Cognitive Science 11 (1), 1987, pp. 65-100. 

[44] K. Lee, K.C. Kang and J. Lee, Concepts and Guidelines of Feature Modeling for Product Line 
Software Engineering), 2002, pp. 62-77. 

[45] A. Maes and G. Poels, Evaluating Quality of Conceptual Modelling Scripts Based on User 
Perceptions, Data & Knowledge Engineering 63 (3), 2007, pp. 701-724. 



[46] R.E. Mayer and R. Moreno, Nine ways to reduce cognitive load in multimedia learning, 
Educational Psychologist 38 (1), 2003, pp. 43-52. 

[47] T.P. McNamara and J.B. Holbrook, Semantic Memory and Priming, In Handbook of 
Psychology,  John Wiley & Sons, Inc., 2003,  

[48] D.L. Moody, The “Physics” of Notations: Towards a Scientific Basis for Constructing Visual 
Notations in Software Engineering, IEEE Transactions on Software Engineering 35 (5), 2009, 
pp. 756-779. 

[49] J. Parsons, An Experimental Study of the Effects of Representing Property Precedence on the 
Comprehension of Conceptual Schemas, Journal of the Association for Information Systems 
12 (6), 2011, pp. 401-422. 

[50] J. Parsons and L. Cole, What do the Pictures mean? Guidelines for Experimental Evaluation of 
Representation Fidelity in Diagrammatical Conceptual Modeling Techniques, Data and 
Knowledge Engineering 55 (3), 2005, pp. 327–342. 

[51] J. Parsons and Y. Wand, Classification in Systems Design: Exploiting the Survival Value of 
Categories, 2006. 

[52] J. Parsons and Y. Wand, Extending Classification Principles from Information Modeling to 
Other Disciplines, Journal of the Association for Information Systems 14 (3), 2013. 

[53] K. Pohl, G. Böckle and F. van der Linden, Software Product Line Engineering: Foundations, 
Principles, and Techniques, Springer, 2005. 

[54] J. Recker, Continued Use of Process Modeling Grammars: The Impact of Individual 
Difference Factors, European Journal of Information Systems 19 (1), 2010, pp. 76-92. 

[55] J. Recker, Empirical investigation of the usefulness of Gateway constructs in process models, 
European Journal of Information Systems 22 (6), 2013, pp. 673-689. 

[56] I. Reinhartz-Berger and K. Figl, Comprehensibility of Orthogonal Variability Modeling 
Languages: The Cases of CVL and OVM, Proceedings of the 18th Software Product Line 
Conference, Florence, Italy, 2014. 

[57] I. Reinhartz-Berger, K. Figl and Ø. Haugen, Comprehensibility of Feature Models: 
Experimenting with CVL, Proceedings of the ACM/IEEE 17th International Conference on 
Model Driven Engineering Languages and Systems (MODELS), Valencia, Spain, 2014. 

[58] I. Reinhartz-Berger and A. Sturm, Enhancing UML models: a domain analysis approach, 
Selected Readings on Database Technologies and Applications, 2008, pp. 330. 

[59] I. Reinhartz-Berger and A. Tsoury, Experimenting with the Comprehension of Feature-
Oriented and UML-Based Core Assets, In Enterprise, Business-Process and Information 
Systems Modeling,  T. Halpin, S. Nurcan, J. Krogstie, P. Soffer, E. Proper, R. Schmidt and I. 
Bider (Ed.), 81, Springer Berlin Heidelberg, 2011, pp. 468-482. 

[60] R.S. Rist, Schema creation in programming, Cognitive Science 13 (3), 1989, pp. 389-414. 
[61] L. Rokach and O. Maimon, Top-down induction of decision trees classifiers - a survey, IEEE 

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 35 (4), 
2005, pp. 476-487. 

[62] L. Sánchez-González, F. García, J. Mendling and F. Ruiz, Quality Assessment of Business 
Process Models Based on Thresholds, In On the Move to Meaningful Internet Systems: OTM 
2010,  R. Meersman, T. Dillon and P. Herrero (Ed.), 6426, Springer Berlin Heidelberg, 2010, 
pp. 78-95. 

[63] E. Schmider, M. Ziegler, E. Danay, L. Beyer and M. Bühner, Is it really robust?, 
Methodology, 2015. 

[64] G. Shanks, E. Tansley, J. Nuredini, D. Tobin and R. Weber, Representing Part–Whole 
Relations in Conceptual Modeling: An Empirical Evaluation, MIS Quarterly 32 (3), 2008, pp. 
553-573. 

[65] S. She, R. Lotufo, T. Berger, A. Wasowski and K. Czarnecki, Reverse engineering feature 
models, Proceedings of the Software Engineering (ICSE), 2011 33rd International Conference 
on, 2011. 

[66] S.M. Smith, T. Ward and J. Schumacher, Constraining effects of examples in a creative 
generation task, Memory & Cognition 21 (6), 1993, pp. 837-845. 

[67] P. Soffer, M. Kaner and Y. Wand, Towards understanding the process of process modeling: 
theoretical and empirical considerations, Proceedings of the Business Process Management 
Workshops, 2012. 

[68] R.J. Sternberg, Cognitive Psychology, Wadsworth, Cengage Learning, Belmont, 2009. 
[69] J. Sweller, Cognitive load during problem solving: Effects on learning, Cognitive Science: A 

Multidisciplinary Journal 12 (2), 1988, pp. 257-285. 



[70] J. Sweller, Element interactivity and intrinsic, extraneous, and germane cognitive load, 
Educational Psychology Review 22 (2), 2010, pp. 123-138. 

[71] B.G. Tabachnick and L.S. Fidell, Using Multivariate Statistics, Pearson Education, Inc., 
Boston, 2007. 

[72] T. Thum, C. Kastner, S. Erdweg and N. Siegmund, Abstract Features in Feature Modeling, 
Proceedings of the Software Product Line Conference (SPLC), 2011 15th International, 2011. 

[73] P. Trinidad, A.R. Cortés, D. Benavides and S. Segura, Three-Dimensional Feature Diagrams 
Visualization, Proceedings of the SPLC (2), 2008. 

[74] O. Turetken, T. Rompen, I. Vanderfeesten, A. Dikici and J. van Moll, The effect of modularity 
representation and presentation medium on the understandability of business process models 
in BPMN, Proceedings of the International Conference on Business Process Management, 
2016. 

[75] Y. Wand and R. Weber, An Ontological Model of an Information System, IEEE Transactions 
on Software Engineering 16 (11), 1990, pp. 1282-1292. 

[76] Y. Wand and R. Weber, On the ontological expressiveness of information systems analysis 
and design grammars, Journal of Information Systems 3 (4), 1993, pp. 217-237. 

[77] Y. Wand and R. Weber, On the deep structure of information systems, Information Systems 
Journal 5 (3), 1995, pp. 203-223. 

[78] S. Zugal, P. Soffer, C. Haisjackl, J. Pinggera, M. Reichert and B. Weber, Investigating 
expressiveness and understandability of hierarchy in declarative business process models, 
Software & Systems Modeling, 2013, pp. 1-23. 

 

  



Appendix A: The Second Model used in the Experiment 

 
(a) 

 
(b) 

Figure 5. CVL models specifying the variability within extra choices of Skoda Yeti cars: (a) 

hierarchical style and (b) constrained style 

 



Appendix B: Calculation of the Dependence Index for the first Model 

Table 9. Possible configurations for the model depicted in Figure 1 

Configuration → 
Choice ↓ 

1 2 3 4 5 6 

Diesel T T   T T 
Benzin   T T   
Manual T T T  T  
Automatic    T  T 
2-wheel-drive T  T T   
4x4  T   T T 
Active T T T T   
Adventure     T T 

T – choice selected, empty – choice deselected 

Table 10. Calculation of the dependence index for the model depicted in Figure 1 

Choice A → 
Choice B ↓ 

Diesel Benzin Manual Automatic 2-wheel-drive 4x4 Active Adventure 

Diesel X 2 4 4 3 3 2 3 
Benzin  X 4 4 3 3 3 3 
Manual   X 2 4 4 4 4 
Automatic    X 4 4 4 4 
2-wheel-drive     X 2 3 3 
4x4      X 3 3 
Active       X 2 
Adventure        X 
Sum       91 
Max potential sum       112 
dependence index      0.81 

  



Appendix C: Comprehension Tasks 

“Basic” model: 
A Skoda Yeti car can have the following combination of features: 

    Correct Wrong Cannot be 
answered 

from 
model 

I don’t 
know 

1. Manual and Diesel ○ ○ ○ ○ 
2. Adventure and Benzin ○ ○ ○ ○ 
3. Automatic and 4x4 ○ ○ ○ ○ 
4. Adventure and 2-wheel-drive ○ ○ ○ ○ 
5. Active and Diesel and Automatic ○ ○ ○ ○ 
6. Diesel and Automatic and 4x4 ○ ○ ○ ○ 
7. Active and Benzin and 4x4 ○ ○ ○ ○ 
8. Adventure and Manual and 4x4 ○ ○ ○ ○ 
9. Active and Benzin and Manual and 2-wheel-
drive 

○ ○ ○ ○ 

10. Automatic and Adventure and Benzin and 2-
wheel-drive 

○ ○ ○ ○ 

“Extra” model: 
A Skoda Yeti car can have the following combination of features: 

    Correct Wrong Cannot be 
answered 

from model 

I don’t 
know 

1. Parking-Heater and Styling-Package ○ ○ ○ ○ 
2. Panorama-Roof and Offroad-Styling ○ ○ ○ ○ 
3. Parking-Heater and Offroad-Styling ○ ○ ○ ○ 
4. Parking-Heater and Heated-Front-Pane ○ ○ ○ ○ 
5. Parking-Heater and Styling-Package and 
Offroad-Styling 

○ ○ ○ ○ 

6. Sunset and Parking-Heater and Styling-Package ○ ○ ○ ○ 
7. Heated-Front-Pane and Sunset and Panorama-
Roof 

○ ○ ○ ○ 

8. Sunset and Panorama-Roof and Parking-Heater 
and Offroad-Styling 

○ ○ ○ ○ 

9. Heated-Front-Pane and Sunset and Styling-
Package and Offroad-Styling 

○ ○ ○ ○ 

10. Heated-Front-Pane and Sunset and Panorama-
Roof and Styling-Package 

○ ○ ○ ○ 



Appendix D: The Modelling Task 

Task Description: Skoda Yeti Laurin & Klement 

Skoda has a top-of-the-range edition called Laurin and Klement named after the two founders 

of Skoda, namely, Vaclav Laurin and Vaclav Klement. 

Our modelling task focuses on this top-of-the-range edition and on its diesel cars. 

These cars come with automatic as well as manual gearbox, but when it is automatic, only the 

4x4 drive and a 140hp engine are possible. If the customer opts for a two-wheel drive, s/he must 

choose the manual shift and a 110hp engine. The manual shift and the 4x4 drive give the 

alternatives of both engines (140hp or 110hp). 

The Laurin and Klement range offers as default a lot of luxury features, but there are still some 

features that may be selected as extras. The customer can choose parking assistant, backing 

sensor, double trunk floor or extra wheel. However, choosing the parking assistant excludes 

choosing the backing sensor.  

 

 

  



Appendix E: Supplementary Analyses 

E1 Sub Samples 

To check whether the type of sub sample used influences our results, we ran some analyses 

where the sub sample was defined as an additional independent variable. As noted we had four 

different courses from three universities in our study. As we had used randomization of 

questionnaires, experimental groups were approximately evenly spread over all sub samples. 

The results of these analyses are summarized in Table 11 and differences of courses are depicted 

in Figure 6.  

Adding this new independent variable “sub sample” slightly alters a few results. As would be 

expected the significance level of the variable familiarity with feature modeling was reduced 

and now is insignificant. This can be explained by the different amount of education and training 

on feature modeling at the different universities, which likely leads to differences in self-

reported familiarity. The sub-sample was a significant influence factor for comprehension 

efficiency (time) and subjective difficulty of model. Students of the business modeling course 

in Vienna took less time for solving the tasks than the other groups and rated the models as 

more difficult, while the students of the software modeling course in Haifa took most time and 

rated the models as easiest. It seems possible that the lower time taken is due to “cognitive 

stopping rules”, which researchers have speculated to lead to minimizing effort in 

comprehension tasks if tasks are experienced as too difficult to solve [23]. Overall, the results 

for the courses are in line with the assessment of the researchers that the course in Haifa, whose 

students received the highest total score on average (87%), prepared students very well in terms 

of variability modeling, while for the students of the business modeling course in Vienna 

variability modeling was a completely new field and they performed worst (75%). Due to 

randomization of experimental conditions, the effects of other influence factors did not change 

in any relevant way (only slight shifts in decimal places, not a change in significance of effects.) 



Table 11. An overview of the results of the ANCOVAs for repeated measures 

 Effect F (dfHypothesis=84; 
dfError=1) 

Significance Partial 
Eta 

Squared 
Comprehension 
effectiveness  
(Total Score) 

sub sample (course)  n.s.  
modeling style 4.08 .05 .05 
choice interdependency 
choice interdependency 

 n.s. 
 

 

experimental order  n.s.  
familiarity with feature modeling 2.85  .10 .04 
choice interdependency * 
experimental order 

4.82 .03 .06 

choice interdependency * familiarity 
with feature modeling 

 n.s.  

choice interdependency * modeling 
style  

37.82 <.001 .32 

Comprehension 
efficiency 
(Time) 

sub sample (course) 10.27 .00 .28 
modeling style  n.s.  
choice interdependency 3.62 .06 .07 
experimental order  n.s.  
familiarity with feature modeling  n.s.  
choice interdependency * 
experimental order 

32.76 <.001 .29 

choice interdependency * familiarity 
with feature modeling 

 n.s.  

choice interdependency * modeling 
style  

43.46 <.001 .35 

Perceived ease of 
use 

sub sample (course)  n.s.  
modeling style 24.38 <.001 .23 
choice interdependency  n.s.  
experimental order  n.s.  
familiarity with feature modeling  n.s.  
choice interdependency * 
experimental order 

 n.s.  

choice interdependency * familiarity 
with feature modeling 

 n.s.  

choice interdependency * modeling 
style  

6.35 .004 .10 

Subjective 
difficulty of model 

sub sample (course) 2.84 .04 .10 
modeling style 4.36 .04 .05 
choice interdependency  n.s.  
experimental order  n.s.  
familiarity with feature modeling  n.s.  
choice interdependency * 
experimental order 

 n.s.  

choice interdependency * familiarity 
with feature modeling 

 n.s.  

choice interdependency * modeling 
style  

 n.s.  

 



  

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 6. Results for model comprehension: (a) comprehension effectiveness (total score), (b) 

comprehension efficiency (time), (c) perceived ease of use, and (d) subjective difficulty of model 

E.2 Comprehension Question Type 

In a separate analysis, we took a detailed look at the type of comprehension question. To do so, 

we counted for each comprehension question how often the choices it referred to were 

mentioned in the model in the hierarchical style (respectively in the model and the textual 

constraints in the constrained style). In a second step, we subtracted the number of occurrences 

of choices in the constrained version from the hierarchical model version, resulting in a 

“redundancy” measure per comprehension question. We grouped questions according to this 

“redundancy” measure into 3 groups per model (model with basic/extra choices), respectively. 

The question-based redundancy was in general higher for the model with high choice 

dependency in the constrained style and for the model with low choice dependency in the 

hierarchical style. Figure 5 and Table 11 show an interesting result. It seems that the constrained 

style outperformed the hierarchical style for comprehension questions that lead to much lower 

redundancy in the constrained style. In such cases, in which the constrained style leads to equal 

or higher redundancy, comprehension effectiveness was lower in the constrained style. 
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Table 12. An overview of the results of the ANOVAs  

 Hierarchical 
 (n=43) 

Constrained 
 (n=47) 

Total 
(N=90) 

Statistical Test 

M SD M SD M SD 
Model with High Choice Dependency – Basic Choices 
Much Higher Redundancy in 
Constrained Style (4-6) 98% 0.09 86% 0.28 91% 0.22 Fdf=88=6.89; p=0.010 
Higher Redundancy in 
Constrained Style (2) 92% 0.14 66% 0.32 79% 0.28 Fdf=88=25.22; p=0.000 
Equal Redundancy (0) 97% 0.10 73% 0.30 84% 0.26 Fdf=88=24.73; p=0.000 
Model with Low Choice Dependency – Extra Choices 
Equal Redundancy (0) 95% 0.21 83% 0.38 89% 0.32 Fdf=88=3.54; p=0.06 
Lower Redundancy in 
Constrained Style (-1, -2) 83% 0.24 88% 0.19 86% 0.22 Fdf=88=1.04; n.s. 
Much Lower Redundancy in 
Constrained Style (-3,- 4, -5) 67% 0.26 80% 0.22 74% 0.25 Fdf=88=6.56; p=0.01 

 

 

Figure 7. Redundancy in comprehension question types and comprehension effectiveness 

98% 92% 97% 95%

83% 67%
86%

66%
73%

83%

88%
80%

0%

20%

40%

60%

80%

100%

120%

Much Higher
Redundancy in

Constrained
Style

Higher
Redundancy

Equal
Redundancy

Equal
Redundancy

Lower
Redundancy

Much Lower
Redundancy in

Constrained
Style

High Choice Dependency Low Choice Dependency

Analysis based on Comprehension Question Types

Hierachical

Constrained


	1 Introduction
	2 Theoretical and Technical Background
	2.1 Representation of Things and Properties
	2.2 Variability Modeling Styles and their Properties
	2.3 Cognitive Effectiveness of Variability Modeling Styles
	2.4 Variability Spaces and CVL

	3 Research Model and Hypotheses
	4 Experimental Design and Procedure
	4.1 Experimental Design
	4.2 Materials and Measurement of Variables
	4.2.1 Pre-questionnaire
	4.2.2 Studying
	4.2.3 Comprehension Part
	4.2.3.1 The Models
	4.2.3.2 Comprehension Tasks
	4.2.3.3 Post Comprehension Questionnaire

	4.2.4 Modeling Part

	4.3 Sample

	5 Results
	5.1 Model Comprehension
	5.1.1 Data Screening
	5.1.2 Tests of Hypotheses

	5.2 Model Construction
	5.2.1 Data Screening and Coding
	5.2.2 Tests of Hypotheses


	6 Discussion
	7 Implications and Threats to Validity
	7.1 Implications for Research
	7.2 Implications for Practice
	7.3 Threats to Validity

	8 Conclusions and Future Research
	References
	Appendix C: Comprehension Tasks
	“Basic” model:
	“Extra” model:
	Task Description: Skoda Yeti Laurin & Klement
	Appendix E: Supplementary Analyses
	E1 Sub Samples
	E.2 Comprehension Question Type


