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Simple scaling of cooperation in

donor-recipient games

Ulrich Berger

WU Vienna, Department of Economics, Augasse 2-6, 1090 Wien, Austria

Abstract

We present a simple argument which proves a general version of the scaling phe-
nomenon recently observed in donor-recipient games by Tanimoto (2009).

Key words: Prisoner’s Dilemma; Evolutionary Game; Cooperation;
Donor-Recipient Game

1 From Prisoner’s Dilemma to donor-recipient games

Evolution of cooperation has been called a Darwinian puzzle. Since cooper-
ating individuals are prone to exploitation by defectors who never cooperate,
a gene enhancing cooperativeness should be led to extinction in a well mixed
population. Supporting cooperation in equilibrium therefore requires a spe-
cific evolutionary mechanism. Five such mechanisms have been described in
a unifying framework of evolutionary game theory by M.A. Nowak [15]. The
game theoretic model of cooperation is encapsulated in the Prisoner’s Dilemma
game, the general version of which is given by the class of symmetric 2×2 games
with payoff matrix

C D

C R S

D T P

(1)

Here, C stands for the cooperative act and D for a defection. The payoffs are
ordered T > R > P > S, which makes defection a strictly dominant strategy.
Usually, also T + S < 2R is required.
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A subclass of the class of Prisoner’s Dilemma games is given by the constraint
T − R = P − S. In this case the payoff advantage of defection over coopera-
tion is independent of the opponent’s choice. Calling the payoff disadvantage
of cooperation the cost of cooperation, denoted by c, allows an interpretation
of the game as a Donor-Recipient Game 1 (DRG). In a DRG, both players
simultaneously decide whether to donate to the other player or not. A dona-
tion, i.e. a cooperative act, costs the donor c and delivers a benefit of b to the
recipient, where b > c > 0. If a player defects, i.e. if he does not donate, then
he incurs zero costs and his opponent gets no benefit. Benefits and costs are
added to a common background fitness of f . A DRG is therefore represented
by the payoff matrix 2

C D

C b− c + f −c + f

D b + f f

(2)

Since Prisoner’s Dilemma games can be viewed as points in R4 and DRGs are
a subclass defined by an equality constraint, the latter form a 3-dimensional
subspace of the former. Assuming that f = 0 or, equivalently, P = 0, as it is
done in [15] and [17], adds a further equality constraint, reducing the space of
games to a 2-dimensional subspace of the space of Prisoner’s Dilemmas. Under
this additional assumption, DRGs can be represented by just two parameters,
b and c, as the payoff matrix reads

C D

C b− c −c

D b 0

(3)

We call such a game a purified donor-recipient game (pDRG) to distinguish
it from the general version with arbitrary f . It is this class of games which
Nowak [15] worked with and which are discussed by Tanimoto [17].

2 A scaling phenomenon

It might now be conjectured that the equilibrium rate of cooperation of a given
evolutionary mechanism based on a pDRG depends on both these parameters b

1 These games have also been called donation games or mutual aid games.
2 As usual, f is non-negative here. Tanimoto [17] uses f for the negative of the
background fitness and hence adds −f to the entries of the payoff matrix.

2



and c independently. But the results in [15] seem to indicate that there is only
a single decisive parameter which determines the long-run cooperativeness,
viz. the benefit-to-cost ratio b/c. For example, the mechanism of kin selection
requires Hamilton’s rule for cooperation to evolve. This well-known rule states
that for cooperation to evolve, the inverse of the coefficient of relatedness r has
to be smaller than the benefit-to-cost ratio: b/c > 1/r. Similarly, under the
direct reciprocity mechanism, evolution of cooperation requires the inverse
of the probability of another round of interaction to be smaller than this
ratio, b/c > 1/w. Nowak [15] showed that similar rules, all involving the ratio
b/c, determine the success of cooperation in particular versions of indirect
reciprocity, network reciprocity, and group selection. This seems to point to a
“scaling phenomenon”, whereby the “cooperativeness” of a given evolutionary
system does not vary independently with the two parameters b and c, but is
determined by the single parameter b/c.

Tanimoto [17] checked this scaling phenomenon by a number of numerical
experiments implementing a variety of three additional versions of network
reciprocity and a further three versions of indirect reciprocity. In each of these
numerical experiments, he observed that indeed the ratio of cooperation to
defection depends on the single parameter b/c. In total, therefore, the scaling
phenomenon described by [17] has been confirmed for eleven different evolu-
tionary mechanisms based on a purified donor-recipient game.

3 Proving the scaling rule

This successful confirmation suggests that some universal “scaling rule” might
be at work. Two immediate questions then arise:

(a) For which evolutionary mechanisms does this scaling rule hold?

(b) Is this scaling rule the result of some intrinsic property of pDRGs or, more
generally, Prisoner’s Dilemma games, or even more general games?

In answering these questions, we argue that the scaling rule

(a) holds for all evolutionary mechanisms and

(b) applies to arbitrary games,

provided the selection process does not depend on the unit of measurement of
payoffs.

This result does neither require numerical experiments nor sophisticated math-
ematics. It is a simple consequence of the following argument.

Main argument: Let A be the payoff matrix of a symmetric two-player
game which is played repeatedly by members of a population under some evo-
lutionary mechanism. Suppose that the selection process transforming current
payoffs into strategy frequencies in the next generation is invariant to changes
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in the unit of measurement of payoff. Then multiplying the payoff matrix by
k > 0, which amounts to changing the payoff unit by rescaling all payoffs by
the constant factor k, does not change the outcome of evolution.

Applying this argument to the class of purified donor-recipient games is done
by letting k = c−1, which may be interpreted as measuring payoffs in multiples
of cooperation costs c. This leaves us with the rescaled payoff matrix

C D

C b/c− 1 −1

D b/c 0

(4)

Obviously, this payoff matrix has only a single parameter, the benefit-to-cost
ratio b/c, which fully explains the scaling phenomenon observed by Tanimoto
[17] for this class of games.

Note that the analogous scaling phenomenon which Tanimoto [17] shortly
discusses for the Prisoner’s Dilemma game with P = 0 or, analogously, his
“donor-recipient game in general expression” with different costs for donor and
recipient and f = 0, is explained by the same rescaling. Here the remaining
three parameters b, cc, and cd can be reduced to just two parameters by using
k = c−1

c as the scaling factor.

4 Selection processes invariant under positive payoff rescalings

The main argument presented above does neither depend on the particular
structure of the game nor on the particular evolutionary mechanism studied.
It only depends on the nature of the selection process, and the only require-
ment, invariance to changes in the unit of the payoff-measure, is a mild and
natural one which holds for most classes of selection processes usually applied.
Here some of the most widely used continuous-time as well as discrete-time se-
lection processes and three common criteria of evolutionary success are listed
as examples.

(i) The replicator dynamics, defined in [18] and popularized by [16] is given
by

ẋi = xi[(Ax)i − x·Ax], (5)

where xi is the frequency of the i-th strategy and x = (xi) is the (column-)
vector of these frequencies. Substituting A by kA amounts to multiplying ẋi

by the constant k for all i and is tantamount to changing the velocity, but not
the direction, of the vector field. A simple change of the time-scale restores the
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system of differential equations to its original form. The replicator dynamics is
therefore immune to positive payoff rescalings. This property (and additional
invariance properties) are well known for the replicator dynamics, see e.g. [7].

(ii) The best-response dynamics, which is due to Gilboa and Matsui [5] and
Matsui [11], is mathematically equivalent to the continuous-time fictitious play
process (see e.g. [2]) and is given by the differential inclusion

ẋ ∈ B(x)− x, (6)

where B(x) is the set of best responses to x. Since best responses are invariant
under a positive rescaling of payoffs, the same holds for the orbits of this
dynamics.

(iii) Proportional fitness or roulette-wheel selection, introduced by De Jong
[4] makes the probability of an individual i with payoff πi to be chosen for
reproduction among n individuals proportional to its payoff by setting

probi =
πi∑n

j=1 πj

. (7)

(This requires payoffs to be positive.) Obviously, positive rescalings of payoffs
cancel out and render this selection process invariant under such rescalings.

(iv) Clearly, rank relations between payoffs, and therefore all variants of fitness
rank selection and tournament selection as introduced by Brindle [3], which are
often employed in genetic algorithms, are invariant under positive rescalings
of payoffs.

(v) The ESS property of Maynard Smith [12,13] requires certain payoff in-
equality conditions to be met. Since the relation ≤ is invariant under positive
payoff rescalings, the same holds for the ESS condition.

Besides the ESS criterion, Nowak [15] also mentions the following two criteria
as “measures of evolutionary success”.

(vi) For 2×2 coordination games with payoffs as given in (1), cooperation is
risk-dominant in the sense of Harsanyi and Selten [6] iff R + S > T + P . This
relation, and hence the criterion of risk-dominance, is invariant under positive
payoff rescalings.

(vii) For general 2×2 games with payoffs as given in (1), cooperation is ad-
vantageous iff R + 2S > T + 2P . Again this criterion, which derives from the
1/3-rule for stochastic game dynamics (see [14]), is invariant under positive
payoff rescalings.

Note that these examples include, but are not limited to, the five mecha-
nisms studied analytically by Nowak [15] and the six mechanisms approached
numerically by Tanimoto [17]. Nowak uses (i), (v), (vi), and (vii), and Tan-
imoto relies on (iii) in his numerical experiments. Since the given examples
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cover a large set of typical selection processes, the scaling phenomenon can be
expected to prevail in the literature on the evolution of cooperation.

5 Discussion

We have argued that a majority of selection processes and criteria of evolu-
tionary success are invariant to positive rescalings of the payoff matrix in an
evolutionary game and that this fully explains the scaling phenomenon ob-
served by Tanimoto [17]. However, there are instances where this invariance
does not hold or at least requires further assumptions.

A nonlinear variant of roulette wheel selection in a finite population can be
obtained by using a logit choice function (for a recent application see [9]) to
translate individual payoffs πj into the probability of individual i to be chosen
for reproduction. This results in probabilities

probi =
eπi∑n

j=1 eπj
. (8)

Since these probabilities are nonlinear in πi, rescaling the payoff-matrix by k >
0 results in different evolutionary dynamics. If k → 0, probabilities become
uniform and neutral selection obtains, whereas for very large values of k the
process resembles the best-response dynamics.

Another case in point are selection processes which calculate fitness as the sum
of a frequency-independent background fitness f and a strategic interaction
term. 3 If reproduction probabilities are given by

probi =
fi∑n

j=1 fj

, (9)

where fitness fi = f + πi with f > 0, then multiplying the payoff-matrix by
k > 0 does not leave the probabilities invariant. Since results are often derived
in the limit of weak selection, i.e. for f → ∞, those results may still be
invariant to a rescaling of the payoffs (criterion (vii) above is such a case), but
for strong selection typically they are not. 4 Note also, that added background
fitness may even challenge the invariance properties of the replicator dynamics,
if the population is growing ([1]) or is embedded in a network ([10]). So the
scaling phenomenon studied here may well be typical, but it is not universal.

3 Note that Tanimoto [17] assumes P = 0 for a Prisoner’s Dilemma game, which
implies f = 0 for a donor-recipient game, i.e. we have a purified donor-recipient
game.
4 See e.g. [8]. For the frequency-dependent Moran process this is also discussed in
[19].
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