
ePubWU Institutional Repository

Vera Hemmelmayr

Sequential and parallel large neighborhood search algorithms for the periodic
location routing problem

Article (Accepted for Publication)
(Refereed)

Original Citation:
Hemmelmayr, Vera (2015) Sequential and parallel large neighborhood search algorithms for the
periodic location routing problem. European Journal of Operational Research, 243 (1). pp. 52-60.
ISSN 0377-2217

This version is available at: http://epub.wu.ac.at/5572/
Available in ePubWU: June 2017

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates
referee comments. There are differences in punctuation or other grammatical changes which do not
affect the meaning.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/84318769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/5572/
http://epub.wu.ac.at/


Sequential and Parallel Large
Neighborhood Search Algorithms for

the Periodic Location Routing
Problem

Vera C. Hemmelmayr

WU (Vienna University of Economics and Business),
Welthandelsplatz 1, 1020 Vienna, Austria

vera.hemmelmayr@wu.ac.at

We propose a large neighborhood search (LNS) algorithm to solve the
periodic location routing problem (PLRP). The PLRP combines loca-
tion and routing decisions over a planning horizon in which customers
require visits according to a given frequency and the specific visit days
can be chosen. We use parallelization strategies that can exploit the
availability of multiple processors. The computational results show that
the algorithms obtain better results than previous solution methods on
a set of standard benchmark instances from the literature.
Keywords: location routing, large neighborhood search, parallel meta-
heuristics

1 Introduction

The periodic location routing problem (PLRP) is an important problem in supply
chain management that combines location decisions with routing decisions and visit
day assignment. A set of customers has to be served with a predefined frequency
from a set of capacitated depots. Although the frequency is given, the exact service
days have to be determined. Furthermore, there is a fixed cost that has to be paid
for each vehicle used over the planning horizon. The objective is to minimize travel
costs, opening costs of the depots and fixed costs of the used vehicles.

Solving location and routing decisions simultaneously is particularly appealing
in problems where these two decisions are on the same decision level. This is fre-
quently the case in problem settings where location decisions are easier to modify,
for example, when they involve rented locations or do not require big investments.
Furthermore, in many problem settings the depot costs can be broken down to the
considered planning horizon so that they are at the same order of magnitude as the
routing costs. Location routing problems are also interesting from a strategic point
of view where building detailed routes can give a better approximation of future

1



routing costs. An extensive literature review including a description of different ap-
plications for location routing and a classification scheme is given in Nagy and Salhi
(2007). More recent surveys can be found in Prodhon and Prins (2014), Drexl and
Schneider (2013) and Lopes et al. (2013).

The PLRP was first introduced in Prodhon (2008) and it is related to the pe-
riodic vehicle routing problem (PVRP) and the location routing problem (LRP).
The PVRP deals with serving a set of customers over a given planning horizon.
Customers have predefined frequencies and a related set of predefined visit combi-
nations.

The PVRP is a well-studied problem and a number of mainly heuristic solution
methods have been proposed to solve it. A recent exact method was proposed in Bal-
dacci et al. (2011a). Recent meta-heuristic approaches can be found in Gulczynski
et al. (2011), where integer programming and the record-to-record travel algorithm
were combined, and in Cordeau and Maischberger (2012), where a parallel iterated
tabu search heuristic was proposed. Finally, in Vidal et al. (2012) evolutionary
search, local search and elaborate population-diversity management schemes were
combined.

When the visit frequency is not given, but must be decided, the problem results in
a PVRP with service choice (Francis et al. 2006). However, in this paper we assume
that the visit frequencies are given and only the particular visit days can be chosen
from a set of visit day combinations.

Moreover, the PLRP can be seen as an extension of the LRP to a planning horizon.
In the LRP, a set of possible capacitated depots is given to serve customer demand.
The goal is to simultaneously select a subset of these depots to open and to solve the
corresponding multi-depot vehicle routing problem (MDVRP) such that the routing
cost and the opening cost of the depots are minimized. Recent heuristic methods for
the LRP with capacitated depots and vehicles include Hemmelmayr et al. (2012),
Contardo et al. (2013b), Escobar et al. (2013) and Ting and Chen (2013). Exact
solution methods were developed in Baldacci et al. (2011b), Belenguer et al. (2011)
and Contardo et al. (2013a).

There are only a few papers in the literature that combine location and routing
decisions over a planning horizon in which customers have to be served multiple
times. Albareda-Sambola et al. (2012) tackled a multiperiod location routing prob-
lem where location and routing decisions are made at different time scales. In this
problem, decisions regarding facility location can only be made in selected time pe-
riods of the planning horizon and cannot be changed during time periods between
them. Furthermore, unlike in the PLRP, the customer specifies the exact time pe-
riods of service.

Previous solution methods for the PLRP include an iterative heuristic (Prodhon
2008), a memetic algorithm with population management (Prodhon and Prins 2008)
and an ELS with path relinking (Prodhon 2009). These methods are outperformed
in Prodhon (2011) by a later method, an hybrid evolutionary algorithm (HELS).
In this algorithm, an evolutionary local search (ELS) works on the selection of visit
day combinations. The ELS is hybridized with a randomized extended Clarke and
Wright algorithm (RECWA), which was originally designed for the LRP (Prins
et al. 2006). It is used for each day separately. Then, the depots that are opened for
all days of the planning period are chosen according to different ratios that measure

2



the suitability of opening a depot based on the percentage of daily use and the
percentage of total demand satisfied per depot.

Pirkwieser and Raidl (2010) developed a variable neighborhood search (VNS) al-
gorithm combined with ILP-based very large neighborhood searches for the LRP
and the PLRP. The VNS uses neighborhoods that change visit combinations for
customers, exchange segments of customers between routes of the same and of dif-
ferent depots and change the location decisions by opening or closing depots. They
introduced three different ILP-based large neighborhood searches. The first neigh-
borhood search, V1, operates on a route level, in which depots can be opened or
closed and routes can be relocated to different depots on the same day. The second
approach, V2 , also allows changing the visit day combinations of customers. The
routes used in V2 come from a set of feasible solutions of the VNS. The third ap-
proach is similar to ILP-based refinement techniques (De Franceschi et al. 2006).
It removes sequences of customers from given routes and an ILP is used to find the
optimal insertion points. This approach is solved for each day. These results were
further improved in the thesis (Pirkwieser 2012) by adapted parameter settings, for
instance a longer runtime.

Parallel computing enables the development of fast and robust solution meth-
ods for instance by exploiting the availability of multiple processors on computing
clusters or multi-core processors. In the following, we will describe the most re-
cent parallelization strategies for vehicle routing problems. For further information
on parallel metaheuristics, we refer to the book of Alba (2005) and to the survey
of Crainic and Toulouse (2010). Moreover, a survey with a focus on vehicle routing
problems that covers heuristic and exact parallel solution methods can be found
in Crainic (2008).

Crainic and Nourredine (2005) introduced a classification for parallel metaheuris-
tics along three dimensions. The first dimension indicates whether the search is con-
trolled by a master process (1C) or by several processes together (pC). The second
dimension indicates the quantity and the quality of information exchanged. There
is rigid (RS) and knowledge synchronization (KS) for synchronous communication
and collegial (C) and knowledge collegial (KC) for asynchronous communication,
where the respective difference is the amount and quality of information exchanged.
The third dimension can be classified as SPSS, SPDS, MPSS or MPDS standing for
same or multiple starting point and same or different search strategies used by the
processes.

Cordeau and Maischberger (2012) proposed a parallel iterated tabu search heuris-
tic for four different routing problems: the VRP, the PVRP, the MDVRP, and the
site dependent VRP with and without time windows. In their parallel algorithm,
each process starts from a different initial solution. Some of the parameters of the
iterated tabu search are chosen independently in the processes. At given points,
knowledge about the solutions is shared. Each process p ∈ {1, 2, ..., N} decides
whether to accept its working solution with a probability 1 − (λ/η)2, where λ is
the current iteration and η the total number of iterations, or go to the j-th best
solution, where j = b√pc. Therefore, most working solutions will be accepted in the
beginning, while towards the end the best solutions will be accepted, so that the
processes can focus on trying to improve the best solution. The authors can show
that the algorithm yields very good results for several variants of vehicle routing

3



problems.
Groër et al. (2011) developed a parallel algorithm for the VRP that combines

integer programming and heuristic search. A master process is used to control the
search, while the remaining processes can be either heuristic solvers or set covering
solvers. The heuristic solvers run a metaheuristic based on the record-to-record
travel algorithm and the set covering solvers solve set covering problems with routes
taken from the heuristic solvers.

Jin et al. (2012) designed an algorithm that achieves very competitive results for
the VRP. They use four tabu search threads that each use different neighborhoods.
The best solutions found are exchanged periodically through the use of a solution
pool.

Lahrichi et al. (2012) developed integrative cooperative search (ICS) that can
tackle multi-attribute combinatorial optimization problems. ICS performs a de-
composition of the problem in partial problems that are solved by partial solvers.
Integrators select partial solutions and combine them to complete solutions. These
complete solutions are sent to the complete solver group. In this work, they apply
the method to the MDPVRP and get results that improve upon previous methods.

In the context of parallel computing, it is also important to mention GPU based
computing. It takes advantage of the rapid increase in GPU performance. Modern
commodity PCs include a multi-core CPU and one or more GPUs. For this parallel,
heterogeneous architecture, solution methods are developed. An introduction to
modern computer architectures and GPU programming is given in Brodtkorb et al.
(2013), which is part one of a survey in two parts. Part two (Schulz et al. 2013)
gives a broad overview of the existing literature on parallel computing in discrete
optimization aimed at modern PCs. The survey has a strong focus on routing
problems. The authors conclude that GPU computing in discrete optimization is still
in its infancy. The development of solution methods that exploit the heterogeneity
of modern PCs efficiently is still an open research field that is interesting and highly
relevant.

In this paper, we propose sequential and parallel variants of a large neighborhood
search algorithm (LNS) to solve the PLRP. The computational results show that
our algorithm outperforms previous solution methods in terms of solution quality.
We can show that for standard benchmark instances from the literature, substan-
tial improvements are possible both in the average solution quality as well as in
the quality of best known solutions found. Moreover, we also develop two parallel
versions of the algorithm that make use of the availability of clusters of computers.
We propose a simple methodology for parallelization that can easily be applied to
other problems and algorithms.

The remainder of this paper is organized as follows. Section 2 gives a detailed
problem description, in Section 3 the solution method is outlined, while in Section 4,
the computational experiments are described. Finally, Section 5 concludes the paper.

2 Problem Description

The PLRP can be defined on an undirected graph G = (V,E), where V is the set
of nodes and E is the set of edges. The set V consists of two subsets of nodes: the
subset I of possible depot locations and the subset J of customers. Each depot has

4



a capacity Wi and an opening cost Oi, that is charged once in the planning horizon
when the depot is opened. The traveling cost cij between node i and node j is given.

A planning period of several days H is considered in which customer demand has
to be satisfied. Each customer j has a given visit frequency fj . Associated with this
visit frequency is a set of service day combinations Cj , i.e., the specific days on which
the customer can be visited. For example, in a five day planning period, a customer
with frequency one can be visited either on day one, two, three, four or five. For
each customer, the total demand over the planning horizon, which is assumed to be
cyclic, is given. The demand of customer j on day t of service combination r ∈ Cj
is given by djtr, which is the accumulated demand since the last service.

There is a maximum number of vehicles K. Vehicles are homogenous, capacitated
and each vehicle is with a fixed cost when it is used. The vehicle cost is charged
if a vehicle is used at least one time in the horizon. Each vehicle can only make
a single route per day and must come back to its depot of departure. Let Rit be
the number of routes assigned to depot i on day t, then the fleet size Ni of depot
i is Ni = max{Rit : t ∈ H}. The total number of vehicles required is

∑
i∈I Ni.

Consider for example a solution with two open depots and two days, in which, on
the first day, two routes originate from depot one and one from depot two, while on
the second day, one originates from depot one and two from depot two. In that case
four vehicles are necessary since for both depots, the number of vehicles required is
two respectively.

In the PLRP the following decisions have to be made: selecting which depots
to open, which service combination must be assigned to each customer and how
many vehicles to assign to each depot such that customer demand is satisfied. The
objective function considers the minimization of the sum of the routing cost, of
the vehicle cost, and of opening cost of depots. Finally, the capacity constraints of
depots and vehicles are respected, and customers are visited on feasible visit day
assignments.

3 Solution Method

We developed a LNS algorithm to solve the problem. LNS was proposed by Shaw
(1998), and is similar to the ruin and recreate principle proposed in Schrimpf et al.
(2000). An overview of the LNS heuristic and its variants and extensions can be
found in Pisinger and Ropke (2010).

The general idea of LNS is the usage of large neighborhoods that are usually
composed of destroy and repair operators. A destroy operator ruins part of the
solution while a repair operator is used to reconstruct it. In case of the PLRP, the
destroy operators remove customers and put them to the temporary customer pool.
Then the customers are reinserted in the partial solution by the repair operators.
An extension of LNS, adaptive large neighborhood search (ALNS) was proposed
by Ropke and Pisinger (2006) for the pickup and delivery problem. The difference
is that the operators are chosen based on a score that reflects the past success of
these operators.

We use several different types of destroy and repair operators that are explained
below. Contrary to ALNS, in our LNS implementation, the operators are chosen
randomly in each iteration no matter how successful or unsuccessful they were in

5



previous iterations.
The initial solution is constructed by assigning each customer a random combi-

nation, and by opening a random depot. The number of depots to be opened is a
random number between the total demand divided by the average depot capacity,
which should reflect an estimation of the minimum number of depots needed, and
the total number of depots. Then, customers are assigned one by one to their closest
depot and for each depot a set of routes is constructed by using Clarke and Wright
(1964) Savings Algorithm. The depot capacity constraint can be violated in this
step.

We allow the constraints on the number of vehicles, the depot capacity and the
vehicle capacity to be violated. Therefore, a weighted penalty function is applied.
The objective function is given by f(s) = c(s)+αd(s)+βe(s)+γg(s). The travel cost,
opening cost of depots and fixed cost for each vehicle used over the planning horizon
are captured in c(s). The violations of the vehicle capacity, number of vehicles, and
satellite capacity constraints are d(s), e(s) and g(s) respectively, while α, β and γ
represent the corresponding weights. These weights are adjusted during the search
process. Whenever a violation occurs, the respective weight is multiplied by a factor
δ > 1, when the solution is feasible with respect to the respective constraint, its
weight is divided by δ as long as the weight remains in the interval [ι;κ]. In a
feasible solution d(s), e(s) and g(s) equal zero.

3.1 Destroy operators

Each operator l removes a number of ql customers, where ql is a random uniformly
distributed integer between ρl and τl. We use in total eight destroy operators that
can be differentiated by the level on which they operate. There are three destroy
operators that change the depot configuration (close-depot, open-depot, swap-depot).
There are two destroy operators that assign new visit day combinations to customers
(change-combination, multiday-route-removal) and finally there are three destroy
operators that only operate on a given day (related-removal, worst-removal, route-
removal).

The operator close-depot closes a random depot and moves all customers currently
assigned to it to the customer pool. The operator open-depot opens a randomly
selected depot among the ones currently closed and the ql closest customers to this
depot are moved to the customer pool. In the operator swap-depot one depot is
closed, while another one is opened. All customers assigned to the closed depot are
removed. The new depot to be opened is chosen in a roulette wheel selection based
on the inverse distance to the closed depot.
Change-combination and multiday-route-removal remove ql customers and reas-

sign new visit day combinations to them. While change-combination removes ran-
dom customers, multiday-route-removal tries to decrease the number of vehicles used
by removing routes and assigning customers previously associated with these routes
to new visit days. The vehicle to be removed is the vehicle that is needed the least
number of days, where ties are broken arbitrarily. All customers that are assigned
to these routes are removed and are assigned new visit day combinations.

The remaining three destroy operators only operate per day, i.e., customers are
not assigned a new visit combination, but are simply removed from their current
position on a given day. For these operators, a day is chosen randomly in a roulette

6



wheel selection. The probability that a day is chosen is proportional to the total
demand on that day.

In related-removal, a random customer is picked as a seed customer and the q− 1
closest customers are removed from their positions on the given day. The q worst
customers are removed from their positions in worst-removal. Worst refers to cus-
tomers for which the difference in cost of the solution with the customer to the
solution without the customer is high. This difference, the so-called removal cost,
is divided by the average travel cost of the ingoing arcs of the corresponding node.
Furthermore, the removal cost is perturbed by a factor d ∈ [0.8, 1.2] to randomize
the search. The operators related-removal and worst-removal are modified versions
of the operators suggested in Ropke and Pisinger (2006). In route-removal, a route
is chosen randomly and all assigned customers are removed. The opening of a new
route at that depot, on that day is forbidden, unless it is the only open depot. Pre-
liminary experiments showed that all these operators are useful and needed to obtain
good solutions. The operators change-combination and multiday-route-removal are
new, the operators that change the depot configuration were previously introduced
in Hemmelmayr et al. (2012) and the operators that only operate per day were also
previously introduced in Hemmelmayr et al. (2012) and are slight modifications of
the ones used in Ropke and Pisinger (2006).

3.2 Repair operators

The repair operators insert customers that have been removed by the destroy op-
erators in the partial solution. We use one main operator, greedy-insertion and
variations of it. It is based on the one in Ropke and Pisinger (2006).

The operator greedy-insertion inserts a customer in a new or existing route that
minimizes the insertion cost, i.e., the sum of travel cost, depot opening cost and
vehicle usage cost. This operator is a faster version of the one suggested in Ropke
and Pisinger (2006). While in their paper, customers are ordered according to the
minimum insertion cost, we use a random order because we wanted to have a fast
and simple but still efficient operator. Hence, after the insertion of one customer,
there is no need to update the insertion cost of the customers remaining in the list.
There are two variations of the basic greedy-insertion operator. The operator greedy-
insertion-perturbation uses a perturbation in the insertion cost as a diversification
mechanism. Therefore, the insertion cost is perturbed by a factor d ∈ [0.8, 1.2]. After
the change-combination and multiday-route-removal operators, the greedy-insertion-
multiday version can be selected that computes the best insertion over all visit day
combinations.

3.3 Local search

A local search procedure is performed for promising solutions, i.e, solutions that are
within a threshold θ of the best found solution. The following operators are used for
local search: move, swap and 2-opt. The operators are performed sequentially for the
daily VRPs of each open depot. Therefore, the assignment of customers to depots
and also the assignment of visit day combinations are not changed during the local
search phase. They are used in a first-improvement fashion as long as improvements
can be realized. The move and swap operators are used inter-route and intra-route,

7



while 2-opt is used intra-route. Move tries to relocated single customers. Swap
exchanges two segments of customers. Segment lengths of one to three customers
are possible and the two segments exchanged can have different lengths.

3.4 Parallelization strategies and different versions

We developed four different versions of the algorithm: two sequential and two par-
allel. The first version is the regular sequential version (LNS-S), which is shown in
Algorithm 1. It starts from an initial solution. In each iteration, a destroy and a
repair operator are chosen randomly until the stopping condition is reached. For the
acceptance decision simulated annealing (SA) is used as a mechanism to also accept
non-improving solutions. The parameters such as the temperature and the cooling
scheme are described in section 4.1.

Algorithm 1 Basic steps of LNS-S

1: s, s∗ ← InitialSolution
2: repeat
3: s′ ← DestroyAndRepair(s, D, R)
4: if f(s′) < (1 + θ)f(s∗) then
5: s′ ← LocalSearch(s′)
6: end if
7: if AcceptanceDecision(s, s′) then
8: s← s′

9: s∗ ← min(s∗,s)
10: end if
11: until stopping condition is met
12: return s∗

The second version is a hierarchical version (LNS-HIER-S). Algorithm 2 shows
the basic steps. It is similar to LNS-S except that the problem is decomposed in two
levels. The first decision level decides which depots to open, while in the second level
the resulting MDPVRP is solved, with depots fixed to open or close according to the
first stage decision. In the first level only destroy neighborhoods of the set Df , that
change the depot configuration, are applied. These are swap-depot, open-depot and
close-depot. In the second level only the remaining destroy operators are used. The
repair operators can be used in either level. The algorithm starts from the initial
solution, performs one LNS iteration in the first level and fixes the depots to open
or close accordingly. Then the second stage LNS is performed until the maximum
number of second-stage iterations is reached and the solution is returned to the first
level. Finally, in the first level, it is decided whether to accept the new incumbent or
not and the next iteration starts. The acceptance decision in the first level is based
on SA, while in the second level only improving solutions are accepted. The main
idea of this version is that it follows a decomposition of the problem in a location
part and a (MDPVRP) routing part.

The third version is a parallel hierarchical version (LNS-HIER-P) that parallelizes
the second level of LNS-HIER-S. The first stage is computed by only one process, the

8



Algorithm 2 Basic steps of LNS-HIER

s, s∗ ← InitialSolution
repeat

s̃← DestroyAndRepair(s,Df , R)
repeat

s′ ← DestroyAndRepair(s̃, D \Df , R)
if f(s′) < (1 + θ)f(s̃) then

s′ ← LocalSearch(s′)
end if
s̃← min(s̃,s′)

until second level stopping condition is met
if AcceptanceDecision(s, s̃) then

s← s̃
s∗ ← min(s∗, s)

end if
until first level stopping condition is met
return s∗

master process, while the second stage is computed by all processes in parallel. In the
first stage, the solution is destroyed with an operator from the set Df and repaired
again. Using this solution as a starting solution, each process solves the resulting
MDPVRP in the second stage until the maximum number of second stage iterations
is reached. Once all processes are finished, the best solution among all processes is
taken and returned to the first stage. There it is decided whether to accept it or
not and the next iteration starts. Algorithm 3 shows a pseudocode for LNS-HIER-
P in which P represents the number of processes. According to the classification
in Crainic and Nourredine (2005) this is a 1C/KS/SPSS algorithm. There is 1-
control by the master process and knowledge Synchronization (KS) because the
master delegates a larger part of its work. Moreover, the algorithm uses same initial
point, same search strategy, which means that the processes start from the same
initial solution and use the same algorithm. This is a synchronous parallelization
strategy in which all processes stop at predefined intervals to exchange information.

Finally, the fourth version is a parallelization of LNS-S called LNS-P, which is
displayed in Algorithm 4. The processes start from different, randomly generated
initial solutions and they all use different starting temperatures. Whenever a new
best solution is found, it is communicated to central memory. After κ iterations
without improvement, a new search segment starts. Then each process either con-
tinues with its current working solution or requests the current best solution from
central memory. The working solution is kept with probability 1−(λ/η)2, where λ is
the current iteration and η the total number of iterations. This acceptance decision
is the same as in Cordeau and Maischberger (2012), but unlike them we do not con-
sider the j-th best, but the global best solution. This makes sure that in the early
stages of the algorithm, the processes are more likely to continue with their working
solution, while in the end all processes try to improve the best solution. Moreover,
towards the end of the search, after κ′ iterations, the temperature is increased to

9



Algorithm 3 Basic steps of LNS-HIER-P

s, s∗ ← InitialSolution
repeat

s̃← DestroyAndRepair(s,Df , R)
for each p = 1, ..., P do in parallel

s̃p ← s̃
repeat

s′p ← DestroyAndRepair(s̃p, D \Df , R)
if f(s′p) < (1 + θ)f(s̃p) then

s′p ← LocalSearch(s′p)
end if
s̃p ← min(s′p, s̃p)

until second level stopping condition is met
end for
s̃← minp=1,...,P (s̃p)
if AcceptanceDecision(s, s̃) then

s← s̃
s∗ ← min(s∗,s)

end if
until first level stopping condition is met
return s∗

the initial temperature whenever a new search segment is started so that the search
can escape from local optima in the final stages of the algorithm. To speed up the
search and prevent that too much unnecessary information is being sent, a new best
solution is only sent to central memory after an initial of 200 iterations and there
is a minimum of 100 iterations after which a new best solution is send to central
memory. This algorithm classifies (Crainic and Nourredine 2005) as pC/C/MPDS
with p-control and an asynchronous collegial cooperation model through the use of
a shared memory. Multiple points different strategies are used since each process
uses its own starting solution and the strategies use a different parameter for the
SA temperature. In this asynchronous communication each process is responsible
for its own search and for the communication with other processes.

4 Computational Experiments

We have tested our algorithm on the set of 30 instances proposed in Prodhon
(2008). The instances differ in the number of depots m ∈ {5, 10}, the number of
customers n ∈ {20, 50, 100, 200}, vehicle capacity Q ∈ {70, 150} and the number of
clusters β ∈ {0, 2, 3}, where 0 corresponds to a uniform distribution. The instances
are named accordingly: n-m-β-[a, b], where a refers to the low capacity case (80)
and b to the high capacity case (130). The planning horizon consists of five working
days and two idle days. Each customer has a predefined visit frequency. There are
three different possible frequencies: one, two or three. The corresponding visit day
combinations for frequency one are {{1},{2},{3},{4},{5}}, for frequency two {{1,3}

10



Algorithm 4 Basic steps of LNS-P

s∗ ← DummyInitialSolution
for each p = 1, ..., P do in parallel

sp, s
∗
p ← InitialSolution, Tp ← initializeTemperature

repeat
if κ iterations without improvement then

if iter ≥ κ′ then
Tp ← reheatTemperature()

end if
if requestGlobalBestCondition(λ, η) then

sp ← requestGlobalBestSolution() /* get s∗ */
end if

end if
s′p ← DestroyAndRepair(sp, D, R)
if f(s′p) < (1 + θ)f(s∗p) then

s′ ← LocalSearch(s′p)
end if
if AcceptanceDecision(sp, s

′
p) then

sp ← s′p
end if
if f(sp) < f(s∗p) then

s∗p ← sp
sendToCentralMemory(s∗p) /* update s∗ if improving */

end if
iter ← iter + 1

until stopping condition is met
end for
return s∗

{1,5}{2,5}} and for frequency three {1,3,5}. The demand djrt of customer j on day
t depends on the combination r chosen. We refer to Prodhon (2011) for a detailed
description of how to compute djrt and for further details on the instances.

The algorithm was implemented in C++, compiled with Intel compiler v12.0 and
run on a cluster of Intel Xeon X5670 at 2.93Ghz. The parallel versions were run
with OpenMPI version 1.4.3. Four processors were used by LNS-HIER-P and seven
by LNS-P.

We compared the algorithm to the best solution methods from the literature.
These are the HELS proposed by Prodhon (2011) and the VNS with ILP-based
neighborhoods of Pirkwieser and Raidl (2010) and Pirkwieser (2012).

4.1 Parameter Settings

The parameter settings were decided according to experiments on a subset of in-
stances. The number of customers to remove in the destroy phase depends on the
operator chosen. In every iteration, it is a random integer between ρl and τl, except

11



for the operators close-depot, swap-depot, multiday-route-removal and route-removal.
For these operators the customers that are removed are the customers assigned to
the depots or routes that will be closed. For the operator open-depot, the num-
ber is chosen between 0.2#V isits

T and 0.6#V isits
T , where #V isits represents the total

number of visits, which is the number of customers multiplied by their respective
frequency, and T is the number of days in the planning period. For the operator
change-combination, ql is selected between 1 and 0.5Nc, where Nc represents the
customers that have more than one visit combination and hence can be considered
in the operator change-combination. Finally, for the operators related-removal and
worst-removal, ql is between one and the number of customers visited on that day.
These operators can remove a fairly large number of customers. Preliminary tests
showed that removing a smaller number of customers yields worse results.

For the weighted penalty function the following parameters were chosen: δ was
set to 1.1, ι to 5 and κ to 10,000. Our tests showed that changes in these parameters
have only a minor influence on the performance of the algorithm.

The stopping condition of the algorithm is 5×106 iterations. The parallel version
stops after every process has finished this number of iterations. For the hierarchial
version, 500 iterations on the upper level and 10,000 iterations on the lower level are
performed. The threshold θ that identifies a promising solution that will undergo
local search is set to 5%.

The parameters used for the SA acceptance decision are set such that solutions
that are worse than w% of the initial solution are accepted with a probability of
0.5, where w is set to 0.1. In the parallel implementation, LNS-P, the different
processes select their w randomly between 0.01 and 0.3. The cooling is performed
in a way that in every iteration the temperature T is decreased by Tstart

η , where η is
the total number of iterations. Preliminary experiments showed that the algorithm
is insensitive to the cooling scheme used, but that it is necessary to use a mechanism
that allows acceptance of non-improving solutions.

Moreover, a tabu list is used that forbids that an operator is used to open or close
a depot that has just recently been opened or closed. The size of the tabu list is
d0.1me, where m is the number of depots. So for the instances with 5 depots, there
is no tabu list, for instances with 10 depots, the size of the tabu list is 1.

In the LNS-P algorithm, the number of iterations without improvement, κ, after
which a new solution can be requested is set to 5000 and the number of iterations
after which the temperature is increased to the initial temperature, κ′, is 0.8η.

4.2 Results on the benchmark instances for the PLRP

We compare our solution method to the HELS algorithm of Prodhon (2011) and to
the best performing method of Pirkwieser and Raidl (2010), which is the VNS+V1,2.
We will also use the results of Pirkwieser (2012), which are newer results of an
improved version of the algorithm in Pirkwieser and Raidl (2010). These methods
will be denoted as P (Prodhon 2011), PR (Pirkwieser and Raidl 2010) and PT
(Pirkwieser 2012) in the sequel. In Prodhon (2011), the best value of the objective
function over 10 runs is reported, while in Pirkwieser and Raidl (2010), the average
solution over 30 runs is shown and in Pirkwieser (2012) the average cost over 10 runs
as well as the minimum out of these 10 runs is given. The results for our algorithms
are the average and minimum over 5 runs.

12



Concerning runtimes, the following computing environments were used: Pirk-
wieser and Raidl (2010) coded their algorithm in C++, compiled it with Intel com-
piler v12.0 and executed it on a single core of a Intel Core2 Quad Q9550 at 2.83
GHz with 8GB RAM. In Pirkwieser (2012), the algorithms were compiled with GCC
4.5 and executed on a single core of a 2.53 GHz Intel Xeon E5540 with 3GB RAM
dedicated per core. Finally, Prodhon (2011) used an Intel Centrino 2 at 1.2 GHz
and 1 GB of RAM for the experiments.

We will show the average and minimum results, if available, of the algorithms P,
PR and PT and of our algorithm (version LNS-S). Table 1 shows the percentage gap
to the new best known solutions for the average and the minimum of the respective
algorithms. Furthermore, T ∗, the time needed to find the best solution in each
run, and T , the duration of one run of the algorithm until the maximum number of
iterations, are given. Both T and T ∗ are averaged over five runs. From the previous
algorithms, P is outperformed by PT and PR. As mentioned above, PT are newer
results of a slightly improved version of PR with longer runtime. It yields better
results than PR in terms of solution quality, but needs a longer runtime. LNS-S can
achieve better results than PT. LNS-S needs a longer runtime, but it can reduce the
average gap to the best known solutions substantially from 3.76% to 0.74%.

Table 1: Comparison of the algorithms P (Prodhon 2011), PR (Pirkwieser and Raidl
2010), PT (Pirkwieser 2012) and LNS-S in terms of %-gap to the best known
solutions and runtime in seconds.

P PR PT LNS-S

%gapavg – 6.80 3.76 0.74
%gapmin 8.49 – 2.47 1.77
T ∗ 104.3 – – 271.4
T 165.3 10.7 91.9 354.4

Table 2 shows an analysis of the insertion operators and local search. The table
shows the % gap to a version of the algorithm that uses all the insertion operators
and θ equals 5% (row LS: θ 5) and the runtime in seconds. The tests were performed
for a subset of instances and results are averaged over these instances.

We tested different versions of the algorithm by varying the insertion operators
used. By keeping everything else the same, there is one version without greedy-
insertion, one without greedy-insertion-perturbation and one without greedy-insertion-
multiday. The results show that the solution quality deteriorates slightly and the
runtime increases slightly when the operators greedy-insertion and greedy-insertion-
perturbation are left out. Omitting greedy-insertion-multiday results in a deteriora-
tion of 1% and is therefore not recommendable.

We also tested a version where the regret-insertion operator was used additionally
to the three standard insertion operators. Regret-insertion was proposed in Ropke
and Pisinger (2006). It computes a regret value that expresses the regret of not
placing a customer in the best positions, but in the second best or third best and so
on. Customers are then sorted according to their regret values in decreasing order,
so that customers with a high regret are inserted earlier to avoid that their best
insertion position is no longer available. After each insertion of a customer from the

13



list of untreated customers, the regret values of the remaining customers have to
be updated by taking the respective changes of the insertion positions into account.
This operator is more sophisticated than greedy-insertion, but it also needs a longer
runtime to incorporate the updates performed. We saw that using regret-insertion
does not improve the solution quality, but increases the runtime. Therefore, it was
decided to omit this operator since its role can be replaced by LS.

Moreover, we also experimented with the usage of LS. LS is performed for any
solution with an objective value less than or equal to (100 + θ) % of the best found
solution so far. The table shows results for θ equals 0, 3, 5, and 10%. Please
note that 5 is the default version. As can be seen, a solution where there is no LS
performed, yields quite bad results. Moreover, there is a trade-off between runtime
and solution quality that has to be considered when deciding for a more time-
consuming insertion operator or to perform more LS. We found that θ equals 5 is a
good parameter setting.

Table 2: Insertion operator and local search analysis

%gap T

no greedy-perturbation 0.10 494.4
no greedy 0.09 518.0
no greedy-multiday 1.00 417.8
with regret 0.04 1195.1

LS: θ 0 1.47 317.8
LS: θ 3 0.16 368.2
LS: θ 5 (default) 0.00 480.4
LS: θ 10 0.08 886.0

Table 3 shows results for the sequential and parallel variants compared to the
best performing method by Pirkwieser (2012). LNS-HIER-P is run on four parallel
processors and LNS-P is run on 7 parallel processors where one of the processors
is managing the central memory. The total number of iterations is 5,000,000. We
also report results for a shorter version of LNS-P with 714,500 iterations, where the
number of iterations multiplied by the number of processors used roughly matches
the number of iterations of the sequential version. The time T indicates wall-clock
time, i.e., the time needed from start to the end of the parallel algorithm.

The hierarchical versions follow a natural decomposition of the problem. However,
these versions are outperformed by their non-hierarchical counterparts. They need
a longer runtime and have an inferior solution quality. In the upper level, the depot
configuration is fixed while in the lower level the problem is solved for this given
configuration. One disadvantage of this method is that it also explores “bad” depot
configurations and hence wastes computation time exploring these regions. More-
over, the parallel version uses synchronous communication. Synchronous strategies
have the disadvantage that there is a larger computational overhead, since all pro-
cesses must wait for each other before they can proceed with their tasks.

Comparing the parallel and sequential non-hierarchical versions of LNS, we can see
that LNS-P can obtain a better solution quality than LNS-S. Even for the shorter
version of LNS-P the solution quality is still better than LNS-S so that the use

14



of parallelism is an important advantage. Results show that the parallel versions
perform better than the sequential ones. The main advantage is that it provides
an easy diversification mechanism. With a comparable number of iterations, the
parallel version still outperforms the sequential one. Moreover, we can also see that
the minimum of LNS-S is worse than LNS-P with 5000k iterations, so it can show
the value of communication used in the parallel version.

Detailed results can be found in Table 5 in the Appendix. All four versions
can obtain a solution quality that is between 1.5 and 3% better than the results
of Pirkwieser (2012). However, they have a smaller runtime, with 91.9 seconds on
average.

Table 3: Comparison to the method of Pirkwieser (2012)

PT LNS-HIER-S LNS-HIER-P LNS-S LNS-P

#iterations 5000k 5000k 5000k 714.5 k 5000k
%-gap to PT 0 -1.50 -2.47 -1.89 -2.44 -3.02

min -2.09 -2.99 -2.88 -2.96 -3.42
T (sec) 91.9 2685.5 1755.3 354.4 88.2 530.7

Table 4 gives the new found best known solutions compared to the previously best
found solutions. These are the best solutions identified during all the experiments.
The previous solutions were found by Pirkwieser (2012) except for instance 20-5-1b
for which the solution was reported in Prodhon (2011). Our algorithm finds new
best know solutions or ties in all but one instance. On average, the new best found
solutions are more than 2% better than the previous ones.

5 Conclusion

We have presented new sequential and parallel algorithms for the PLRP. The PLRP
is an important problem, but has not received much attention in the literature so
far. Our algorithms can outperform previous solution methods in terms of solution
quality. Compared to the best performing algorithm so far, a VNS with ILP-based
neighborhood searches (Pirkwieser 2012), our algorithms are between 1.5 and 3%
better. We can also find new best known solutions or ties for all 30 instances but
one with an average improvement of 2.17%.

Moreover, we proposed a simple methodology for parallelization that can easily
be adopted to other algorithms and problems and showed that it can improve se-
quential versions. So whenever multiple processes are available it pays off to use
parallelization to get better solutions in a shorter time.

Future work will focus on improving the parallel version of the algorithm. One
direction is to not only exchange the best solution, but several and include diversity
metrics when accepting a new solution. Another interesting approach is to run dif-
ferent searches in parallel. At the moment only the initial temperature is different for
the processes, but by running more different algorithms in parallel the performance
can probably be improved.

15



Table 4: Previous best known solutions and our best know solutions

Instance previous BKS best %-gap

P20.5.0a 78477 78477 0
P20.5.0b 75554 76102 0.73
P20.5.2a 77784 77784 0
P20.5.2b 62133 62133 0
P50.5.0a 145639 143327 -1.59
P50.5.0b 134997 133076 -1.42
P50.5.2a 138486 137187 -0.94
P50.5.2b 110526 109030 -1.35
P50.5.2a’ 168721 165849 -1.7
P50.5.2b’ 100836 97845 -2.97
P50.5.3a 152530 152067 -0.3
P50.5.3b 108790 107770 -0.94
P100.5.0a 335702 327987 -2.3
P100.5.0b 223757 216266 -3.35
P100.5.2a 257710 253831 -1.51
P100.5.2b 162799 156240 -4.03
P100.5.3a 214118 210196 -1.83
P100.5.3b 166726 160694 -3.62
P100.10.0a 255630 250988 -1.82
P100.10.0b 207326 199488 -3.78
P100.10.2a 255345 248925 -2.51
P100.10.2b 166703 160234 -3.88
P100.10.3a 253280 246550 -2.66
P100.10.3b 188678 185300 -1.79
P200.10.0a 431131 416089 -3.49
P200.10.0b 359182 346872 -3.43
P200.10.2a 374016 366098 -2.12
P200.10.2b 308316 291456 -5.47
P200.10.3a 521229 508605 -2.42
P200.10.3b 339142 323136 -4.72
avg. -2.17

16



Acknowledgments

The author would like to thank two anonymous referees for their valuable comments
that helped to improve the quality of this paper.

References

Alba, E. (2005). Parallel metaheuristics: a new class of algorithms. Wiley Series on
Parallel and Distributed Computing. Wiley.

Albareda-Sambola, M., Fernández, E., and Nickel, S. (2012). Multiperiod location-
routing with decoupled time scales. European Journal of Operational Research,
217(2):248–258.

Baldacci, R., Bartolini, E., Mingozzi, A., and Valletta, A. (2011a). An exact algo-
rithm for the period routing problem. Operations research, 59(1):228–241.

Baldacci, R., Mingozzi, A., and Wolfler-Calvo, R. (2011b). An exact method for the
capacitated location-routing problem. Operations Research, 59:1284–1296.

Belenguer, J.-M., Benavent, E., Prins, C., Prodhon, C., and Wolfler Calvo, R. (2011).
A branch-and-cut method for the capacitated location-routing problem. Comput-
ers & Operations Research, 38(6):931–941.

Brodtkorb, A., Hagen, T., Schulz, C., and Hasle, G. (2013). GPU computing in
discrete optimization. part I: Introduction to the GPU. EURO Journal on Trans-
portation and Logistics, 2(1-2):129–157.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to
a number of delivery points. Operations Research, 12:568–581.

Contardo, C., Cordeau, J.-F., and Gendron, B. (2013a). An exact algorithm based
on cut and column generation for the capacitated location-routing problem. IN-
FORMS Journal on Computing. to appear.

Contardo, C., Cordeau, J.-F., and Gendron, B. (2013b). A GRASP + ILP-based
metaheuristic for the capacitated location-routing problem. Journal of Heuristics.
to appear.

Cordeau, J.-F. and Maischberger, M. (2012). A parallel iterated tabu search heuristic
for vehicle routing problems. Computers & Operations Research, 39(9):2033–2050.

Crainic, T. and Nourredine, H. (2005). Parallel metaheuristics applications. In Alba,
E., editor, Parallel Metaheuristics, pages 447–494. Wiley.

Crainic, T. G. (2008). Parallel solution methods for vehicle routing problems.
In Golden, B., Raghavan, S., and Wasil, E., editors, The Vehicle Routing
Problem: Latest Advances and New Challenges, volume 43 of Operations Re-
search/Computer Science Interfaces, pages 171–198. Springer US.

17



Crainic, T. G. and Toulouse, M. (2010). Parallel meta-heuristics. In Gendreau,
M. and Potvin, J.-Y., editors, Handbook of Metaheuristics, volume 146 of Inter-
national Series in Operations Research & Management Science, pages 497–541.
Springer US.

De Franceschi, R., Fischetti, M., and Toth, P. (2006). A new ILP-based refinement
heuristic for vehicle routing problems. Mathematical Programming, 105(2-3):471–
499.

Drexl, M. and Schneider, M. (2013). A survey of location-routing problems. Tech-
nical Report LM-2013-03, Gutenberg School of Management and Economics, Jo-
hannes Gutenberg University, Mainz.

Escobar, J. W., Linfati, R., and Toth, P. (2013). A two-phase hybrid heuristic
algorithm for the capacitated location-routing problem. Computers & Operations
Research, 40(1):70–79.

Francis, P., Smilowitz, K., and Tzur, M. (2006). The period vehicle routing problem
with service choice. Transportation Science, 40(4):439–454.

Groër, C., Golden, B., and Wasil, E. (2011). A parallel algorithm for the vehicle
routing problem. INFORMS Journal on Computing, 23(2):315–330.

Gulczynski, D., Golden, B., and Wasil, E. (2011). The period vehicle routing prob-
lem: New heuristics and real-world variants. Transportation Research Part E:
Logistics and Transportation Review, 47(5):648–668.

Hemmelmayr, V. C., Cordeau, J.-F., and Gabriel Crainic, T. (2012). An adap-
tive large neighborhood search heuristic for two-echelon vehicle routing problems
arising in city logistics. Computers & Operations Research, 39:3215–3228.

Jin, J., Crainic, T. G., and Løkketangen, A. (2012). A parallel multi-neighborhood
cooperative tabu search for capacitated vehicle routing problems. European Jour-
nal of Operational Research, 222(3):441–451.

Lahrichi, N., Crainic, T., Gendreau, M., Rei, W., Crisan, G., and Vidal, T. (2012).
An integrative cooperative search framework for multi-decision-attribute combina-
torial optimization. Technical Report CIRRELT-2012-42, Université de Montréal.

Lopes, R. B., Ferreira, C., Santos, B. S., and Barreto, S. (2013). A taxonomical anal-
ysis, current methods and objectives on location-routing problems. International
Transactions in Operational Research, 20(6):795–822.

Nagy, G. and Salhi, S. (2007). Location-routing: Issues, models and methods. Eu-
ropean Journal of Operational Research, 177:649–672.

Pirkwieser, S. (2012). Hybrid Metaheuristics and Matheuristics for Problems in
Bioinformatics and Transportation. PhD thesis, Vienna University of Technology.

Pirkwieser, S. and Raidl, G. R. (2010). Variable neighborhood search coupled with
ILP-based very large-neighborhood searches for the (periodic) location-routing
problem. In Hybrid Metaheuristics - Seventh International Workshop, HM 2010,
volume 6373 of Lecture Notes in Computer Science, pages 174–189, Vienna.

18



Pisinger, D. and Ropke, S. (2010). Large neighborhood search. In Gendreau, M. and
Potvin, J.-Y., editors, Handbook of Metaheuristics, volume 146 of International
Series in Operations Research & Management Science, pages 399–419. Springer
US.

Prins, C., Prodhon, C., and Wolfler Calvo, R. (2006). Solving the capacitated
location-routing problem by a GRASP complemented by a learning process and
a path relinking. 4OR: A Quarterly Journal of Operations Research, 4:221–238.

Prodhon, C. (2008). A metaheuristic for the periodic location-routing problem.
In Kalcsics, J. and Nickel, S., editors, Operations Research Proceedings 2007,
volume 2007 of Operations Research Proceedings, pages 159–164. Springer Berlin
Heidelberg.

Prodhon, C. (2009). An ELSxpath relinking hybrid for the periodic location-routing
problem. In Blesa, M., Blum, C., Gaspero, L., Roli, A., Sampels, M., and Schaerf,
A., editors, Hybrid Metaheuristics, volume 5818 of Lecture Notes in Computer
Science, pages 15–29. Springer Berlin Heidelberg.

Prodhon, C. (2011). A hybrid evolutionary algorithm for the periodic location-
routing problem. European Journal of Operational Research, 210(2):204–212.

Prodhon, C. and Prins, C. (2008). A memetic algorithm with population manage-
ment (MA| PM) for the periodic location-routing problem. In Blesa, M., Blum,
C., Cotta, C., Fernández, A. J., Gallardo, J. E., Roli, A., and Sampels, M., edi-
tors, Hybrid Metaheuristics, volume 5296 of Lecture Notes in Computer Science,
pages 43–57. Springer.

Prodhon, C. and Prins, C. (2014). A survey of recent research on location-routing
problems. European Journal of Operational Research, 238(1):1 – 17.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,
40:455–472.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record
breaking optimization results using the ruin and recreate principle. Journal of
Computational Physics, 159(2):139–171.

Schulz, C., Hasle, G., Brodtkorb, A., and Hagen, T. (2013). GPU computing in
discrete optimization. part II: Survey focused on routing problems. EURO Journal
on Transportation and Logistics, 2(1-2):159–186.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In Principles and Practice of Constraint Programming
– CP98, pages 417–431. Springer.

Ting, C.-J. and Chen, C.-H. (2013). A multiple ant colony optimization algorithm
for the capacitated location routing problem. International Journal of Production
Economics, 141(1):34–44.

19



Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A
hybrid genetic algorithm for multidepot and periodic vehicle routing problems.
Operations Research, 60(3):611–624.

Appendix

20



Table 5: Detailed results for the comparison to the method of Pirkwieser (2012)

P
T

L
N
S
-H

IE
R
-S

L
N
S
-S

L
N
S
-H

IE
R
-P

L
N
S
-P

L
N
S
-P

-s
h
o
rt

a
v
g

T
a
v
g

T
%
-g

a
p

a
v
g

T
%
-g

a
p

a
v
g

T
%
-g

a
p

a
v
g

T
%
-g

a
p

a
v
g

T
%
-g

a
p

P
2
0
.5
.0
a

7
8
8
2
8

1
8
.9

7
8
6
0
2
.8

9
6
.4

-0
.2
9

7
8
7
3
8
.4

5
3
.2

-0
.1
1

7
8
5
7
4
.4

7
0
.8

-0
.3
2

7
8
4
7
7

1
3
2
.0
3
2
3
4
3

-0
.4
5

7
8
6
0
5
.8

1
7
.8

-0
.2
8

P
2
0
.5
.0
b

7
7
1
9
6
.1

1
9
.7

7
6
1
0
2

9
0
.2

-1
.4
2

7
6
8
8
7
.8

5
5
.8

-0
.4

7
6
1
8
2
.2

6
8
.6

-1
.3
1

7
6
1
0
2

1
4
6
.4
9
2
8
6
7

-1
.4
2

7
6
1
0
2

2
2

-1
.4
2

P
2
0
.5
.2
a

7
8
3
4
7

1
8
.6

7
8
5
3
3
.2

9
1
.6

0
.2
4

7
9
0
4
1

5
4
.8

0
.8
9

7
8
3
7
9
.6

7
0
.2

0
.0
4

7
7
7
8
4

1
5
8
.8
2
6
7
0
4

-0
.7
2

7
7
9
6
2
.8

2
3
.8

-0
.4
9

P
2
0
.5
.2
b

6
2
5
3
6
.4

1
8
.9

6
2
3
1
1
.2

8
6
.2

-0
.3
6

6
3
9
5
9
.6

5
7
.6

2
.2
8

6
2
3
1
4
.8

6
6
.6

-0
.3
5

6
2
3
1
3
.8

1
5
2
.8
5
9
0
7
1

-0
.3
6

6
2
5
6
0
.6

2
6
.9

0
.0
4

P
5
0
.5
.0
a

1
4
8
4
6
5

4
3
.9

1
4
4
1
2
2
.2

2
6
3
.6

-2
.9
3

1
4
5
7
8
2
.6

1
0
4

-1
.8
1

1
4
4
5
4
5
.2

1
6
0
.2

-2
.6
4

1
4
3
7
0
8
.2

3
4
3
.5
5
5
6
5

-3
.2

1
4
3
7
1
5
.8

3
9
.8

-3
.2

P
5
0
.5
.0
b

1
3
8
6
1
8
.9

4
5
.7

1
3
5
6
1
6
.6

2
9
8
.4

-2
.1
7

1
3
6
9
7
6
.6

1
1
3
.8

-1
.1
8

1
3
4
4
4
2
.8

1
7
9
.2

-3
.0
1

1
3
3
9
5
0
.6

2
7
8
.9
1
4
9
0
2

-3
.3
7

1
3
5
0
4
7
.2

4
5
.1

-2
.5
8

P
5
0
.5
.2
a

1
4
0
0
2
8
.5

4
3

1
3
7
4
1
4

3
0
3
.2

-1
.8
7

1
3
8
8
0
1
.2

1
1
3
.4

-0
.8
8

1
3
7
5
8
9
.8

2
0
7
.4

-1
.7
4

1
3
7
3
8
5
.4

3
0
6
.4
8
1

-1
.8
9

1
3
7
6
1
7
.6

4
8
.6

-1
.7
2

P
5
0
.5
.2
b

1
1
2
0
2
8
.6

4
2
.9

1
1
0
0
8
7
.8

3
8
6
.6

-1
.7
3

1
1
1
0
2
7
.6

1
1
4

-0
.8
9

1
0
9
9
9
7
.6

2
9
5
.8

-1
.8
1

1
0
9
9
3
8
.4

1
9
4
.9
6
1
7
7
9

-1
.8
7

1
1
0
2
0
6
.6

3
0
.8

-1
.6
3

P
5
0
.5
.2
a
’

1
7
0
1
6
0
.1

3
4
.3

1
6
6
8
1
9
.2

4
2
7

-1
.9
6

1
6
7
2
4
0
.6

1
5
7
.2

-1
.7
2

1
6
7
2
9
2

3
4
7
.4

-1
.6
9

1
6
7
2
8
0
.2

3
5
8
.1
1
2
1
6

-1
.6
9

1
6
7
2
4
4
.6

4
2
.3

-1
.7
1

P
5
0
.5
.2
b
’

1
0
2
1
0
0
.4

3
6
.4

9
7
8
5
3
.4

3
5
9
.4

-4
.1
6

9
7
8
4
5

1
2
5

-4
.1
7

9
7
8
4
5

2
8
4
.6

-4
.1
7

9
7
8
4
7
.2

1
9
0
.7
4
3
4
6
5

-4
.1
7

9
7
8
7
1
.2

3
1
.8

-4
.1
4

P
5
0
.5
.3
a

1
5
4
0
9
9
.6

4
0
.7

1
5
3
3
4
6
.6

3
3
5
.4

-0
.4
9

1
5
5
9
0
7
.8

1
3
0
.2

1
.1
7

1
5
2
6
2
3
.6

2
0
8

-0
.9
6

1
5
2
3
4
9
.4

3
9
5
.3
6
0
2
9
6

-1
.1
4

1
5
2
4
2
2
.6

5
2

-1
.0
9

P
5
0
.5
.3
b

1
1
0
3
3
1
.9

4
2

1
0
8
4
6
4

3
6
2
.2

-1
.6
9

1
0
9
5
9
9
.2

1
0
8
.2

-0
.6
6

1
0
9
0
8
1

2
3
4
.6

-1
.1
3

1
0
8
2
4
2
.4

2
5
9
.6
4
3
2
9

-1
.8
9

1
0
8
9
5
6
.8

4
2

-1
.2
5

P
1
0
0
.5
.0
a

3
4
2
9
4
5
.9

6
5
.7

3
3
8
8
3
8
.8

1
0
6
0
.4

-1
.2

3
3
0
3
5
0
.4

2
8
4
.6

-3
.6
7

3
3
5
5
4
1
.2

8
2
3
.4

-2
.1
6

3
2
9
8
0
8
.4

5
8
2
.7
6
2
9
2
4

-3
.8
3

3
3
2
5
6
3
.4

7
6
.5

-3
.0
3

P
1
0
0
.5
.0
b

2
2
7
7
0
1
.3

7
7
.2

2
2
5
0
7
7
.6

1
3
6
6
.2

-1
.1
5

2
2
1
0
1
6
.8

2
7
8
.2

-2
.9
4

2
2
1
0
9
8

8
7
1

-2
.9

2
1
7
6
8
0
.4

3
1
0
.5
3
1
9
6
8

-4
.4

2
1
9
5
5
2
.8

6
7
.1

-3
.5
8

P
1
0
0
.5
.2
a

2
6
1
3
9
4
.9

6
6

2
5
6
8
0
2
.8

1
2
9
9
.4

-1
.7
6

2
5
5
4
1
9
.8

4
0
5
.8

-2
.2
9

2
5
4
7
3
4
.4

1
0
5
8
.2

-2
.5
5

2
5
4
2
0
5

5
1
6
.4
6
6
3
1
6

-2
.7
5

2
5
5
1
2
4
.6

1
0
4
.5

-2
.4

P
1
0
0
.5
.2
b

1
6
4
4
9
4
.6

6
2
.5

1
5
9
2
2
5
.6

1
4
3
6
.2

-3
.2

1
5
8
0
4
6
.6

2
6
9
.4

-3
.9
2

1
5
8
0
6
7

9
5
7
.4

-3
.9
1

1
5
8
0
3
6
.2

2
8
7
.4
5
6
2
7
1

-3
.9
3

1
5
8
6
1
0
.4

6
3
.3

-3
.5
8

P
1
0
0
.5
.3
a

2
1
9
2
1
5

7
1

2
1
1
5
9
1
.4

9
7
2
.4

-3
.4
8

2
1
1
8
5
6

2
6
0
.2

-3
.3
6

2
1
1
0
5
1
.8

6
7
2
.2

-3
.7
2

2
1
0
8
7
6
.6

3
7
6
.1
5
7
2
2
7

-3
.8

2
1
2
3
0
3
.4

6
5
.2

-3
.1
5

P
1
0
0
.5
.3
b

1
7
1
3
8
1
.9

8
5
.8

1
6
5
4
6
5
.2

1
0
0
0

-3
.4
5

1
6
2
8
7
6
.8

2
2
2
.2

-4
.9
6

1
6
1
2
2
5
.6

6
1
2
.6

-5
.9
3

1
6
1
7
7
2
.8

3
9
6
.0
6
4
0
1
7

-5
.6
1

1
6
3
3
4
4
.6

6
7
.9

-4
.6
9

P
1
0
0
.1
0
.0
a

2
5
9
2
0
1
.3

1
5
9
.4

2
6
0
3
6
5
.8

9
3
5
.6

0
.4
5

2
5
5
1
2
0
.8

2
5
3
.2

-1
.5
7

2
5
4
5
2
6
.4

6
2
6

-1
.8

2
5
2
6
0
5
.2

5
8
9
.6
4
6
4
2
6

-2
.5
4

2
5
4
9
7
7
.8

8
4
.7

-1
.6
3

P
1
0
0
.1
0
.0
b

2
0
8
5
6
8
.5

1
4
6
.7

2
0
9
7
9
1
.4

1
1
1
6

0
.5
9

2
0
3
7
6
8

2
4
6
.8

-2
.3

2
0
4
2
8
4

7
5
7

-2
.0
5

2
0
2
2
6
0
.6

3
5
8
.8
6
5
5
2
4

-3
.0
2

2
0
3
9
5
9
.2

6
9

-2
.2
1

P
1
0
0
.1
0
.2
a

2
5
9
4
6
8
.8

1
0
5
.7

2
5
3
8
9
8
.4

1
4
6
4
.2

-2
.1
5

2
5
0
5
9
1
.2

3
6
4

-3
.4
2

2
5
0
6
4
8
.2

1
2
7
8

-3
.4

2
5
0
1
2
3

6
1
6
.4
6
1
3
9
7

-3
.6

2
5
1
8
0
5
.4

8
5
.3

-2
.9
5

P
1
0
0
.1
0
.2
b

1
6
9
6
2
3
.4

9
3
.6

1
6
3
4
3
2
.4

1
3
4
2

-3
.6
5

1
6
3
1
3
3
.4

2
7
5
.2

-3
.8
3

1
6
0
5
1
7
.4

1
0
1
7
.2

-5
.3
7

1
6
1
2
3
0
.2

3
3
7
.1
8
8
6
6
2

-4
.9
5

1
6
2
8
6
1
.4

5
2
.2

-3
.9
9

P
1
0
0
.1
0
.3
a

2
5
6
9
0
7
.6

1
3
1
.5

2
5
3
2
3
5
.2

8
8
6

-1
.4
3

2
4
9
6
5
2
.4

3
0
3
.8

-2
.8
2

2
5
0
1
1
1
.4

7
1
1
.8

-2
.6
5

2
4
7
9
4
9

4
7
1
.0
5
9
4
5
2

-3
.4
9

2
4
9
8
8
5

8
1

-2
.7
3

P
1
0
0
.1
0
.3
b

1
9
2
0
2
2
.6

1
2
0
.5

1
9
1
2
2
6
.6

1
3
2
4
.4

-0
.4
1

1
9
0
9
1
3

3
0
4
.6

-0
.5
8

1
8
6
8
6
1
.2

1
0
4
5
.8

-2
.6
9

1
8
6
7
3
4
.4

4
2
0
.9
8
1
9
5
4

-2
.7
5

1
8
7
6
8
2
.4

6
3
.5

-2
.2
6

P
2
0
0
.1
0
.0
a

4
3
3
0
3
0
.7

2
1
6
.2

4
2
8
0
2
9
.8

3
0
3
7
.8

-1
.1
5

4
2
0
5
6
0

7
8
8
.8

-2
.8
8

4
2
6
4
6
2
.4

2
1
5
6
.8

-1
.5
2

4
1
8
9
6
2
.6

1
3
3
5
.7
9
5
5
4

-3
.2
5

4
2
3
7
9
7
.2

2
1
0
.2

-2
.1
3

P
2
0
0
.1
0
.0
b

3
6
7
6
5
0

2
4
0
.1

3
6
5
6
3
5
.8

3
9
2
4
.2

-0
.5
5

3
5
1
2
4
9

7
7
8
.8

-4
.4
6

3
5
6
7
3
1
.4

2
9
9
7
.8

-2
.9
7

3
4
8
7
0
6

8
6
7
.2
4
6
1
5
8

-5
.1
5

3
5
3
4
1
5
.6

1
8
0
.2

-3
.8
7

P
2
0
0
.1
0
.2
a

3
7
8
3
5
0
.9

1
6
8

3
7
5
0
1
3

3
4
8
0
.4

-0
.8
8

3
7
9
8
1
5
.4

1
1
5
2
.2

0
.3
9

3
7
0
2
4
6

2
5
9
0
.6

-2
.1
4

3
7
1
2
7
0
.8

1
3
9
7
.5
7
4
7
6

-1
.8
7

3
7
3
1
7
8

2
5
9
.4

-1
.3
7

P
2
0
0
.1
0
.2
b

3
1
1
7
9
6
.9

1
8
2
.5

3
0
4
5
5
9
.2

3
7
9
4
9
.8

-2
.3
2

2
9
9
5
5
6
.2

1
0
2
4
.4

-3
.9
3

2
9
8
0
0
4
.8

2
2
9
9
8
.4

-4
.4
2

2
9
5
1
2
7
.2

1
3
7
1
.1
4
7
3
1

-5
.3
5

2
9
7
3
9
9
.4

2
2
2
.2

-4
.6
2

P
2
0
0
.1
0
.3
a

5
2
8
4
1
2
.1

1
7
9
.4

5
2
9
3
4
7
.8

6
1
6
6
.5

0
.1
8

5
2
3
1
7
1
.8

1
2
6
3
.2

-0
.9
9

5
2
2
6
0
4
.2

4
4
9
1
.4

-1
.1

5
1
1
7
6
7
.4

1
6
5
8
.8
5
4
0
1

-3
.1
5

5
1
6
4
0
2
.4

2
9
3

-2
.2
7

P
2
0
0
.1
0
.3
b

3
4
3
9
2
3
.6

1
8
0
.2

3
4
1
8
1
0
.4

8
7
0
3
.3

-0
.6
1

3
3
7
8
7
9
.4

9
6
9
.6

-1
.7
6

3
3
1
0
1
0
.2

4
7
9
9
.8

-3
.7
5

3
2
7
1
9
9

1
1
0
7
.3
9
8
8
6

-4
.8
6

3
3
2
4
0
4
.2

1
7
8
.3

-3
.3
5

a
v
g

2
1
5
6
2
7
.6
8

9
1
.9
0

2
1
2
7
5
4
.0
1

2
6
8
5
.5
0

-1
.5
0

2
1
0
8
9
2
.8
1

3
5
4
.4
1

-1
.8
9

2
1
0
0
8
6
.4
5

1
7
5
5
.2
9

-2
.4
7

2
0
8
3
8
9
.7
8

5
3
0
.6
5

-3
.0
2

2
0
9
9
1
9
.3
6

8
8
.2
2

-2
.4
4

21


