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Abstract This paper considers a real world waste collection problem in which glass,
metal, plastics, or paper is brought to certain waste collection points by the citizens
of a certain region. The collection of this waste from the collection points is therefore
a node routing problem. The waste is delivered to special sites, so called intermediate
facilities (IF), that are typically not identical with the vehicle depot. Since most waste
collection points need not be visited every day, a planning period of several days has
to be considered. In this context three related planning problems are considered. First,
the periodic vehicle routing problem with intermediate facilities (PVRP-IF) is con-
sidered and an exact problem formulation is proposed. A set of benchmark instances
is developed and an efficient hybrid solution method based on variable neighborhood
search and dynamic programming is presented. Second, in a real world application
the PVRP-IF is modified by permitting the return of partly loaded vehicles to the de-
pots and by considering capacity limits at the IF. An average improvement of 25% in
the routing cost is obtained compared to the current solution. Finally, a different but
related problem, the so called multi-depot vehicle routing problem with inter-depot
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routes (MDVRPI) is considered. In this problem class just a single day is considered
and the depots can act as an intermediate facility only at the end of a tour. For this
problem several instances and benchmark solutions are available. It is shown that the
algorithm outperforms all previously published metaheuristics for this problem class
and finds the best solutions for all available benchmark instances.

Keywords Reverse logistics · Metaheuristics · Solid waste collection · Periodic
vehicle routing problems · Multi-depot vehicle routing problems

1 Introduction

Waste collection is an interesting class of rich vehicle routing problems that is of
high practical relevance. Many different optimization problems have been proposed
in this context. Basically, there are two broad classes of models. In the collection of
normal residual waste, the citizens usually deposit their waste in special bags or bins
in front of their house on the day of collection. Hence, collection is done along the
streets. This type of waste collection problem is therefore modeled as some kind of
arc routing problem. This case is not considered in this paper. We are concerned with
a second class of waste collection models, in which more valuable material such as
glass, metal, plastics, or paper is brought to waste collection points by the citizens of a
certain region. In this case the collection of the waste from theses collection problems
is a node routing problem. Typically, most waste collection points need not be visited
every day, and therefore a planning period of several days has to be considered. Due
to social regulations on working hours, each tour is subject to a maximum duration
constraint for every day. The basic model here is therefore the periodic vehicle rout-
ing problem (PVRP) proposed by Cordeau et al. (1998). In waste collection, however,
the waste is delivered to special sites, so called intermediate facilities (IF), that are
typically not the same as the vehicle depot. A more appropriate model class is there-
fore the Periodic Vehicle Routing Problem with Intermediate Facilities (PVRP-IF).
This problem was proposed by Angelelli and Speranza (2002b) without providing a
formal model.

We present a MIP formulation for the PVRP-IF, that extends the formulation
for the PVRP, that was provided in Cordeau et al. (1998). Furthermore, a set of
benchmark instances is proposed, that essentially extends the MDVRPI instances
by Crevier et al. (2007) with the visit day combinations of the PVRP instances by
Cordeau et al. (1998). This is possible because the set of customers is the same for
both data sets. We propose an efficient hybrid solution method based on variable
neighborhood search and dynamic programming. More precisely, the basic mecha-
nism for the PVRP is the variable neighborhood search (VNS) while the insertion of
the intermediate facilities is done by dynamic programming. Various design decisions
concerning the set of neighborhoods and the method of inserting the intermediate fa-
cilities in connection with local search are investigated.

The second contribution of this paper is a real world application, in which the
PVRP-IF is modified by certain additional constraints requested by our industrial
partners. The first modification concerns the collection of waste types such as glass,
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that are not inflammable and that do not cause any putrid smell. In this case some
municipalities do not require the vehicles to visit an intermediate facility at the end
of the day. Rather, the vehicles can return to the depots partly loaded and hence start
their trip partly loaded in the next morning. Using the set of PVRP-IF instances men-
tioned above, we show that this option permits some cost savings that are, however,
on average not very significant (less than 1%). In our real world case we also have to
consider capacity limits at the depots. Due to long range contracts between the collec-
tion company and the operators of the intermediate facilities, the quantities that must
be delivered to each intermediate facility are roughly fixed, with certain tolerances.
We perform an evaluation of this constraint using the benchmark instances for the
PVRP-IF. It turns out that an even distribution of the quantities leads to average cost
increases of about 6% compared to the unrestricted case. If the distribution is biased,
i.e. if one facility is large and the others small, then the average cost increase is about
13% which is more than twice as large. Our algorithm is also compared to a few real
world instances for which manual solutions are available. Compared to this manual
solution, an average reduction of 25% in the routing cost is obtained. A further minor
modification in the real world application refers to tour length restrictions that may
vary from day to day and from vehicle to vehicle. This is because the vehicles do not
have different compartments, and each tour is dedicated to the collection of a single
type of waste. Hence, we can decompose the problem and solve it for each type of
waste separately. Each type of waste is collected by a separate vehicle on a separate
tour. However, the same vehicle can collect different types of waste on different days,
or even on the same day, e.g., glass in the morning and paper in the afternoon. The
availability of vehicles for a given type of waste can therefore be different for each
vehicle, e.g., 8 hours or 4 hours. Currently this is exogenously given.

Finally, this paper also solves a different but related problem, the so called multi-
depot vehicle routing problem with inter-depot routes (MDVRPI). In this problem
class, just a single day is considered and the depots can act as an intermediate facility
only at the end of a tour. The term multi-depot refers to the intermediate facilities.
The MDVRPI was first introduced by Crevier et al. (2007): They also presented a tabu
search (TS) algorithm to generate various different routes, which were then combined
by a set partitioning approach. The same problem was also solved recently by Taran-
tilis et al. (2008). They proposed a three-step algorithmic framework, in which TS is
used as a local search procedure within the VNS, and then guided local search (GLS)
is used in a post-optimization phase to remove low-quality features from the solution.
For this problem three different sets of benchmark instances are available. We show
that our hybrid VNS algorithm (developed for the PVRP-IF) is also efficient for the
MDVRPI after minor modifications. It is shown that the algorithm outperforms all
previously published metaheuristics for this problem class and finds the best solu-
tions for all available benchmark instances.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
three models, i.e. the PVRP-IF, the real world variant, and the MDVRPI. Section 3
presents a survey on related work on waste collection. In Sect. 4, first the basic con-
cept of the solution methods is introduced for the PVRP-IF, and then the modifica-
tions for the other two problem classes are presented. The numerical results for all
problems can be found in Sect. 5 and Sect. 6 concludes the paper.
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Since we consider three different types of problems, we decided to take the fol-
lowing sequence for Sects. 2, 4 and 5. We will first describe the PVRP-IF, then the
MDVRPI and finally the real world extensions of the PVRP-IF.

2 Problem description

2.1 The PVRP with intermediate facilities (PVRP-IF)

The basic model considered in this paper is the periodic vehicle routing problem
with intermediate facilities (PVRP-IF). The periodic vehicle routing problem (PVRP)
extends the vehicle routing problem to a t day planning horizon. A set of customers
(in our case the waste collection points) requires regular visits during the planning
horizon. The exact days of the visits are not given, but every customer has a certain
visit frequency ei that must be respected. Depending on this frequency, for every
customer a set Ci of allowable visit combinations is precalculated. For example if
2 visits are required, ei = 2, we have a given set of periodic combinations Ci =
{{1,4}, {2,5}, {3,6}}, i.e. these visits can take place either on days 1 and 4, or on
days 2 and 5, or on days 3 and 6. The demand delivered to the customers is the
daily demand multiplied by the number of days in between two consecutive visits.
Since we only consider periodic combinations, which means that there is always the
same number of days in between two consecutive visits, the demand delivered to
a given customer does not depend on the visit day combination chosen. A fixed,
homogeneous fleet of vehicles is given for every day.

The vehicles are placed at a single depot from where they start their trip and where
they go back to at the end of the day. There is a set of intermediate facilities (IF) where
vehicles unload the waste. After visiting an IF, the empty vehicles can continue their
trip to collect more waste. Note that only at the IF the vehicle can be emptied and that
the vehicle must return empty to the depot. The objective is to minimize total time
traveled over the planning period. There is a capacity and a tour length restriction
that have to be respected. Figure 1 shows an example solution to a VRP- IF (for one
day), where the triangles represent the IFs and the large dot represents the depot. The
vehicles start from the depot, collect waste, then drop it at one of the IF and continue
their trip afterwards. In the example in the picture they have to unload before they are
going back to the depot.

The PVRP-IF was introduced by Angelelli and Speranza (2002b) without provid-
ing a formal model.

We now propose a MIP formulation for the PVRP-IF, that extends the formulation
for the PVRP, that was provided in Cordeau et al. (1998). A description of the vari-
ables and parameters used is given in Table 1. A complete graph G = (V ,A) is given,
where V = 0,1, . . . , n + s is the set of vertices and A is the set of arcs. Vertex 0 rep-
resents the depot, vertices 1, . . . , n represent the customers from where the waste is
collected and vertices n + 1, . . . , n + s represent the intermediate facilities where the
waste is dumped. Furthermore, a nonnegative cost cij , representing the travel time or
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Fig. 1 PVRP-IF solution to a
1-day problem

Table 1 Notation

Variables

xijkl a 0–1 variable indicating whether vehicle k visits node j immediately after node i on day l

yir a 0–1 variable indicating whether visit combination r ∈ Ci is assigned to customer i

zpkl a 0–1 variable indicating whether vehicle k unloads at intermediate facility p on day l

fijkl a real variable indicating the load of vehicle k on arc ij on day l (only used for real world
extensions)

Parameters

cij travel time from node i to node j

arl binary constant equal to 1 if day l belongs to visit combination r , 0 otherwise

Q capacity of a vehicle

D maximum permitted travel time per vehicle

qi amount of waste collected from customer i

di service duration at customer i

t planning period

n number of customers

m number of vehicles

s number of intermediate facilities

Ci set of allowable visit day combinations for customer i

ei given service frequency for customer i

I set of intermediate facilities

Pp capacity limit for IF p (for real world extensions)

cost, is given for each arc (i, j ). Each customer i (i = 1, . . . , n) has a nonnegative
demand di , that will be delivered from the depot by one of m identical vehicles.

min
n+s∑

i=0

n+s∑

j=0

m∑

k=1

t∑

l=1

cij xijkl
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subject to
∑

r∈Ci

yir = 1 ∀i = 1, . . . , n (1)

n+s∑

j=0

m∑

k=1

xijkl −
∑

r∈Ci

arlyir = 0 ∀i = 1, . . . , n, l = 1, . . . , t (2)

n+s∑

i=0

xihkl −
n+s∑

j=0

xhjkl = 0 ∀h = 0, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t (3)

n∑

j=1

x0jkl ≤ 1 ∀k = 1, . . . ,m, l = 1, . . . , t (4)

n+s∑

i=0

n+s∑

j=0

(cij + di)xijkl ≤ D ∀k = 1, . . . ,m, l = 1, . . . , t (5)

∑

i∈S

∑

j∈S

xijkl ≤ |S| − r(S) ∀k = 1, . . . ,m, l = 1, . . . , t,∀S ⊆ V \ I, |S| ≥ 2 (6)

∑

i∈S

∑

j /∈S

xijkl ≥ zpkl ∀k = 1, . . . ,m, l = 1, . . . , t,p = n + 1, . . . , n + s,

∀S ⊆ V,0 ∈ S,p /∈ S (7)

xpjkl ≤ zpkl ∀p = n + 1, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t, j = 0, . . . , n + s

(8)

xi0kl = 0 ∀i = 1, . . . , n, k = 1, . . . ,m, l = 1, . . . , t (9)

xijkl ∈ {0,1} ∀i = 0, . . . , n + s, j = 0, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t (10)

yir ∈ {0,1} ∀i = 1, . . . , n, r ∈ Ci (11)

zpkl ∈ {0,1} ∀p = n + 1, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t (12)

The objective is to minimize the total travel cost, which is proportional to the total
travel time over all days. Constraints 1 state that every customer must be assigned one
feasible visit combination. Constraints 2 ensure that a customer is visited exactly on
the days specified by the assigned combination. Constraints 3 guarantee that if a vehi-
cle visits a customer on one day, it also leaves that customer on that day. Constraints 4
say that every vehicle can be used at most once every day and tour length restrictions
are ensured by constraints 5. Constraints 6 are capacity and subtour elimination con-
straints, where r(S) is the minimum number of trips needed to serve S in order to
meet the capacity constraints. Constraints 7 ensure the connectivity with the IF, so
that every tour contains the depot plus at least one IF. Constraints 8 state that only
when we use IF p in vehicle k on day l, it can be used for unloading. Constraints 9
ensure that before we go back to the depot, we unload at an IF. Finally, constraints 10,
11 and 12 enforce binary values on decision variables. Clearly the above formulation
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can be extended to a formulation with heterogenous vehicles similar to the one in
Cordeau et al. (1998).

2.2 The MDVRPI

The MDVRPI was studied in Crevier et al. (2007) and Tarantilis et al. (2008). There
are two differences to the PVRP-IF. The first is that it only considers a single day.
The second difference is that in the MDVRPI the depot can also act as an IF, but only
at the end of the day. This means that the vehicles do not have to visit an IF at the end
of the day in order to unload, but they can go back directly to the depot and unload
there.

2.3 Additional real world constraints

In addition to the above classical PVRP-IF we also consider a model variant with two
additional real world constraints. One constraint concerns the assignment of waste to
the IFs. There are two possibilities: The first option is that waste can be delivered to
any IF, as assumed in the above model. The second option is that a specific part of
waste has to go to each IF. For example if we have three IFs, 20% of the total waste
has to go to the first IF, 10% to the second and 70% to the third.

We extend our model formulation above to deal with that case. We introduce new
variables fijkl that represent the amount of goods transported from node i to node j

on day l by vehicle k. As additional data we need the maximum amount of waste Pp

that can be brought to an intermediate facility. Constraints 6 can be omitted.

fijkl ≤ Qxijkl ∀i = 0, . . . , n + s, j = 0, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t

(13)

n+s∑

i=0

fijkl + qj

n+s∑

i=0

xijkl =
n+s∑

i=0

fjikl ∀j = 1, . . . , n, k = 1, . . . ,m, l = 1, . . . , t (14)

fpjkl = 0 ∀p = n + 1, . . . , n + s, j = 0, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t

(15)

f0jkl = 0 ∀j = 0, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t (16)

n+s∑

i=0

m∑

k=0

t∑

l=1

fipkl ≤ Pp ∀p = n + 1, . . . , s (17)

fijkl ≥ 0 ∀i = 0, . . . , n + s, j = 0, . . . , n + s, k = 1, . . . ,m, l = 1, . . . , t (18)

Constraints 13 ensure that the capacity constraint of the vehicle is respected and
they also link fijkl with xijkl . Constraints 14 guarantee that the outbound flow of cus-
tomer j equals the inbound flow plus the waste collected from customer j and there-
fore forbid subtours. Constraints 15 guarantee that the flow out of every IF is zero,
while constraints 16 state that the initial flow out of the depot is zero. Finally, con-
straints 17 ensure that the capacity limit at the IFs is respected and constraints 18 are
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the non-negativity constraints. Note that the model without constraints 17 is equiva-
lent to the previous PVRP-IF model.

A second modification suggested by our industrial partner was to relax the con-
straint that the vehicles have to return empty to the depot.

The model is modified accordingly. We omit constraints 9 because now it is al-
lowed to go to the depot directly after a customer. Furthermore, we replace con-
straints 16 by 19 which state that the initial flow out of the depot has to be only zero
at the first day of the planning period. We also introduce constraints 20 that ensure
that the vehicle leaves on day l + 1 with the load that it carried when it returned to
the depot on day l. Finally, constraints 21 ensure that there is no waste delivered to
the depot on the last day.

f0jk0 = 0 ∀j = 0, . . . , n + s, k = 1, . . . ,m (19)

n+s∑

j=0

f0jkl =
n+s∑

j=0

fj0kl−1 ∀k = 1, . . . ,m, l = 2, . . . , t (20)

fi0kt = 0 ∀i = 0, . . . , n + s, k = 1, . . . ,m (21)

Moreover, the tour length varies from day to day, depending on the availability of
the vehicle for the type of waste considered. This means that the fleet is not homo-
geneous anymore. Therefore, the maximum permitted travel time per vehicle, D, is
changed to Dkl in constraints 5, since it depends on the vehicle and on the day.

3 Related work

Angelelli and Speranza (2002b) were the first to our knowledge that have consid-
ered the PVRP-IF. They have developed a TS method for solving the problem. This
problem setting is closely related to our problem setting. However, unfortunately the
instances are not available, therefore we cannot compare the performance of our al-
gorithm to theirs. In Angelelli and Speranza (2002a) they extend their algorithm to
measure the operating cost of three different waste-collection systems.

The PVRP has been studied by Cordeau et al. (1998) and Alegre et al. (2007).
Crevier et al. (2007) were the first to study the MDVRPI. A TS algorithm is

used to generate different routes, which are then combined by a set partitioning ap-
proach. The TS generates MDVRP, VRP and inter-depot routes. In the end a post-
optimization phase is performed. In Tarantilis et al. (2008) an algorithm is proposed
that is able to improve the results by Crevier et al. (2007) on the benchmark instances.
They propose a three-step algorithmic framework, which consists of a VNS, a TS and
a GLS. The TS is used within the VNS as a local search procedure and the GLS is
used for postoptimization to remove low quality features from the solution.

An early paper on waste collection was published by Beltrami and Bodin (1974)
which at the same time was the first description of a PVRP. In a case study on waste
collection, Golden et al. (2001) distinguish between commercial collection, residen-
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tial collection and roll-on-roll-off problems. While the first ones involve the collec-
tion of containers at commercial locations and are therefore node routing problems,
residential collection involves collecting household refuse along a street network and
are therefore arc routing problems. Roll-on-roll-off problems occur when large con-
tainers or trailers have to be picked up at construction sites and then transported and
unloaded. In our case however residential collection is also modeled as a node rout-
ing problem, because waste is not collected along the street network, but from certain
waste collection points.

Tung and Pinnoi (2000) study a vehicle routing and scheduling problem to solve
a waste collection problem in Hanoi, Vietnam. The problem is composed of several
stages. Waste is first picked up by handcarts and delivered to gather sites. Then the
waste has to be unloaded from the handcarts and loaded onto the tipper. The handcarts
start their next round, but they are only allowed to come back after a certain period
of time, the minimum time required between pick-ups. From there vehicles pick up
the waste and deliver it to a landfill. There are time windows at the gather sites. At
the moment the vehicles visit the gather sites in the same sequence all the time. The
authors study the improvement of allowing flexible routing of the vehicles, allowing
them to visit sites in any sequence, while leaving the handcart operations out of scope.
As a solution method they use a modified construction and improvement heuristic.

In Bodin et al. (2000) the roll-on-roll-off VRP is studied, where tractors move
large trailers between locations and a disposal facility. The tractors can only move
one trailer at a time. They propose a mathematical programming formulation, two
lower bounds and four heuristic algorithms.

Baptista et al. (2002) study the collection of recycling papers in the Almada mu-
nicipality in Portugal. Their problem is modeled as a PVRP. However, unlike in the
classical PVRP the visit frequency is not fixed, but a decision of the model. The
problem was solved by a heuristic based on the method by Christofides and Beasley
(1984). First initial frequencies and visit day combinations are assigned followed by
an interchange procedure that tries to find better visit day combinations.

Teixeira et al. (2004) also solve a PVRP in the waste collection context. They
deal with a long planning period and incorporate the collection of different types of
waste. A three-phase heuristic was developed. First the problem is partitioned into
geographic zones. Then for each zone and for each work shift the decision on which
type of waste to collect is taken, where they try to distribute shifts of the same type
regularly in time. Finally, the sites to collect are defined and the according routing
problem is solved.

Eisenstein and Iyer (1997) study the scheduling of garbage trucks in the city of
Chicago. In the current system a truck collects waste for a fixed amount of time and
visits the disposal site afterwards, even though different city blocks usually produce
different amounts of waste. In their paper they develop a more flexible system by
using a dynamic solution method based on Markov decision process.

Archetti and Speranza (2004) consider the so-called 1-skip collection problem,
which is a generalization of the roll-on-roll-off VRP. A fleet of vehicles must trans-
port skips of waste, one at a time, from its location to one of different disposal sites,
depending on the kind of waste contained in the skip. A number of real world con-
straints apply like time windows, shift-time, different kinds of skips, a limit on the
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number of drivers and priorities. They propose a heuristic that first constructs a fea-
sible solution based on the nearest neighbor heuristic and improves it afterwards.

While the works presented above dealt with node routing problems, the following
waste collection problems are modeled as arc routing problems.

Mourão and Almeida (2000) study a waste collection problem in a quarter of Lis-
bon by solving a capacitated arc routing problem (CARP) with side constraints. More
precisely, the vehicle collects waste, delivers it to a recycling facility, then collects
waste again and so on. This problem is similar to the problem that we study, except
that they solve an arc routing problem while we solve a node routing problem. They
have developed two lower-bounding methods and a three-phase heuristic. The same
problem is studied in Mourão and Amado (2005), where they present a new heuristic
method.

In Lacomme et al. (2005) a waste collection problem is modelled as a periodic
capacitated arc routing problem on a mixed graph. Moreover, the demand of an arc
depends on the period or on the date of the previous visit. As a solution method a
memetic algorithm is proposed.

Kulcar (1996) provide a case study about solid waste collection in Brussels. The
problem they consider is modeled by grouping the arcs making up the streets to a set
of points. Moreover, they investigate transportation by vehicle, rail and canal.

Prins and Bouchenoua (2005) define a more generic model, the node, edge and arc
routing problem (NEARP), that generalizes the VRP and the CARP. They problem
is motivated by applications in waste collection. The NEARP tackles mixed graphs
with required nodes, edges and arcs. They develop a memetic algorithm and show its
competitiveness on standard benchmark instances of the VRP and the CARP.

4 Solution techniques

We developed a hybrid solution method that is composed of a VNS using an exact
method to insert the IFs. VNS is based on moving from one solution to the other
by first selecting a random solution from the current neighborhood and then moving
to the local optimum by using a local search phase. Then it is necessary to decide
whether to move to the new solution or not. In the basic VNS, only improving so-
lutions are accepted, but often it is necessary to have more sophisticated acceptance
decisions in order to not get trapped in a local optimum. Figure 1 shows a pseudocode
for VNS. The VNS algorithm starts from an initial solution. In every iteration there
is the so-called shaking phase where a solution is selected randomly from the current
neighborhood, followed by a local search phase and the acceptance decision step.
The algorithm stops when the stopping condition is met which can be the number
of iterations, a number of iterations without improvement or the CPU time. Several
neighborhoods are used in a VNS algorithm and they are ideally nested. That means
that a neighborhood with a higher index should be a superset of the neighborhood
with a lower index. In highly complex real world problems this is typically not possi-
ble. Then a neighborhood with a higher index should at least contain a larger number
of solutions, although other implementations can also be found in the literature. When
a new solution is accepted in an iteration the first neighborhood is used again, other-
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wise the neighborhood index is increased by one. See also Hansen and Mladenovic
(2001) for a more detailed description of VNS.

Algorithm 1 Basic steps of the VNS
s∗ ← InitialSolution, choose Nκ (κ = 1, . . . , κmax)

repeat
κ ← 1
repeat

s′ ← RandomSolution(Nκ(s∗))

s∗′ ← LocalSearch(s′)
if AcceptanceDecision(s∗′, s∗) then

s∗ ← s∗′
κ ← 1

else
κ ← κ + 1

end if
until κ > κmax

until stopping condition is met

In the next sections we explain the design decisions of our implemented VNS.

4.1 Initial solution

To build an initial solution we assign visit combinations randomly to the customers
from the set of feasible visit combinations. Then VRPs are constructed for every
day based on the savings heuristic of Clarke and Wright (1964). The tour length
constraint is respected. Afterwards the intermediate facilities are inserted with the
dynamic programming (DP) procedure explained below.

4.2 Shaking

The different neighborhood operators are described in the following.
The operator move inserts a segment of customers from one route into a different

route. The cross operator exchanges two segments of customers of different routes.
The orientation of the segment(s) and of the route(s) is preserved by the move and
cross operators. The position and the length of each segment are all chosen randomly
where the maximum sequence length depends on the current neighborhood. We have
two versions of each operator, one that moves or swaps segments between two dif-
ferent routes and one that moves or swaps segments between two different trips of
the same route. Note that by trip we refer to a leg between the depot and an IF or
between two IFs. In an intertrip move, a segment of one trip is chosen randomly to
be inserted in another trip of the same route. The segment is inserted in another trip,
yielding the lowest cost and only moves that are feasible with respect to capacity
can be accepted. In the intertrip cross, two segments of randomly chosen routes are
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Fig. 2 The 2-opt* operator

exchanged. Here we just swap segments of random trips, because finding the best fea-
sible insertion position would be too time consuming. Both move and cross are also
performed inter-tour only, i.e. they do not move or exchange segments of one route,
but between different routes. In the inter-tour version of move the position where the
segment is inserted is chosen randomly. For a classification of move and cross see
Kindervater and Savelsbergh (1997).

2-opt* (Potvin and Rousseau 1995) is performed on two randomly chosen routes.
Edges (i, i + 1) and (j , j + 1) are replaced by edges (i, j + 1) and (j , i + 1).
Therefore, the customers located after customer i in the first route are reinserted to be
served after customer j in the second route and the customers after j are inserted after
customer i. Additional to the standard 2-opt*, we have also used a second possibility
to connect the routes. More precisely, the second type of move replaces edges (i,
i + 1) and (j , j + 1) by edges (i, j ) and (i + 1, j + 1) and reverses the direction of
visit between j and the depot as well as between i + 1 and the depot. An illustration
of 2-opt* can be seen in Fig. 2. A move can only be accepted if it is feasible with
respect to the tour length constraint.

The operator change combination assigns a new random visit combination to one
or several customers. Then the customers are deleted from their previous positions
and are inserted in the days of the new visit day combination with best insertion.
While all the other operators perform on a route level only, i.e. they only change the
VRP of a given day, this operator affects more than one day. Therefore, it is not used
in the MDVRPI.

The parameter for neighborhood size for move and cross is given by the maximum
number of customers in the route segments used within the operators, for change
combination by the maximum number of customers for which the visit day combina-
tion is changed as shown in Tables 2 and 3. For 2-opt* we always use two randomly
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Table 2 Set of Neighborhood Structures with κmax = 18 for the PVRP-IF and the real world extensions

κ Operator min. customers max. customers

1 change combination 1 1

2 change combination 1 2

3 change combination 1 3

4 change combination 1 4

5 change combination 1 5

6 change combination 1 6

min. segment length max. segment length

7 intertrip move 1 min(1, n)

8 intertrip move 1 min(2, n)

9 intertrip move 1 min(3, n)

10 intertrip cross 1 min(1, n)

11 intertrip cross 1 min(2, n)

12 intertrip cross 1 min(3, n)

13 intertour move 1 min(1, n)

14 intertour move 1 min(2, n)

15 intertour move 1 min(3, n)

16 intertour cross 1 min(1, n)

17 intertour cross 1 min(2, n)

18 intertour cross 1 min(3, n)

Table 3 Set of neighborhood structures with κmax = 13 for the MDVRPI

κ Operator min. segment length max. segment length

1 intertrip move 1 min(1, n)

2 intertrip move 1 min(2, n)

3 intertrip move 1 min(3, n)

4 intertrip cross 1 min(1, n)

5 intertrip cross 1 min(2, n)

6 intertrip cross 1 min(3, n)

7 2-opt* for 2 random routes

min. segment length max. segment length

8 intertour move 1 min(1, n)

9 intertour move 1 min(2, n)

10 intertour move 1 min(3, n)

11 intertour cross 1 min(1, n)

12 intertour cross 1 min(2, n)

13 intertour cross 1 min(3, n)
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chosen routes. In each neighborhood we choose the number of customers or the seg-
ment length randomly between the minimum and the maximum value. Hence our
choice of neighborhoods is biased toward smaller changes to focus the search rather
close to the incumbent solution. The neighborhoods are ordered in an ascending way,
i.e. we first start with the neighborhoods that only perturb a small part of our solution
and increase this step by step.

4.3 Local search

For the local search we developed different components that can be combined. They
are all based on 2-opt, 3-opt, on DP to insert the IFs exactly and on a greedy insertion
procedure to insert the IFs.

The 2-opt operator was introduced by Croes (1958). Two edges of a tour are
deleted and combined in a different way connecting the first customers of those edges
and the second customers of those edge, which also means that the sequence between
those edges has to be inverted. The local search restarts immediately after an improv-
ing move was found.

We use 2-opt in a way that treats IFs as normal customers and only moves that
are feasible with respect to capacity are considered. We refer to it as 2-opt-only-
feasible (2-opt-of ). Therefore, a move creating a tour that does not fulfil the capacity
restriction cannot be accepted. More precisely, moving too many customers between
two IF visits leads to a violation of the capacity constraint.

To optimize the sequence of customer visits within a trip, we use 3-opt and refer to
it as 3-opt intratrip. 3-opt was introduced by Lin (1965). This operator tries all shifts
of all subsequences to different positions in the same route. More precisely, three
edges are deleted and replaced by three other edges. In our algorithm 3-opt without
sequence inversion, also often denoted as 3-opt*, is used.

In order to optimize the position of the IFs, we developed the following proce-
dure. First we remove all the IFs. Then we have two possibilities of reinserting them.
The first one is an exact procedure for inserting the IFs with DP. The second one
is a greedy procedure that only inserts an IF whenever the capacity is about to be
exceeded. This procedure is only used for the real world extensions.

For the exact procedure, we construct a directed graph that contains the customer
nodes and the depot as the starting and the ending node. An arc represents a trip
between two intermediate facility visits. More precisely, an arc ending in a node
means that an IF is visited before that customer and therefore this customer is the
first customer of the new trip. When we insert an IF we always choose the one that
is closest to the two nodes between which it is inserted. Moreover, we only consider
arcs that are feasible with respect to capacity. By calculating the shortest path we
get the optimal insertion of IFs for a given customer sequence. This method is based
on the one that was first described by Beasley (1983) for a route-first, cluster-second
method for the VRP and it was also used in a genetic algorithm by Prins (2004) for
the VRP.

Figure 3 shows an example with four nodes. The first customer and the depot can
be merged to one node, since there is no need to visit an IF before node 1 is visited.
The arcs show all the possible and feasible trips that can be enumerated. For example
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Fig. 3 Insert the intermediate facilities with dynamic programming. All feasible arcs for a truck capacity
of 9 are enumerated

arc D-1-IF-2 means that we start from the depot, visit customer 1, then unload at the
intermediate facility and proceed to customer 2 with an empty vehicle. IF12 is the
intermediate facility with minimum insertion cost between 1 and 2. We assume that
we have a truck capacity of 9, then we cannot enumerate trip D-1-2-3-IF and D-1-
2-3-4-IF, because the load of 10 or 13 respectively would exceed the capacity. The
shortest path from D-1 to D in the graph represents the optimal insertion of the IFs.
Finding the shortest path is done by DP.

The general local search procedure works as follows. First the IFs are removed
and are then reinserted with the DP procedure. Afterwards 2-opt-of is used. This
local search procedure is used for the PVRP-IF and the MDVRP. However, when real
world constraints apply, it is necessary to adapt it, as described in Sect. 4.7.

4.4 Acceptance decision

The stopping condition in our implementation is the number of iterations. For solu-
tion acceptance we use a condition inspired by Simulated Annealing (SA) (Gelatt and
Vecchi 1983). More precisely, solutions that yield a better objective function value are

always accepted and inferior solutions are accepted with a probability e
−(f (x′)−f (x))

T ,
where f is the objective function, x is the incumbent solution and x′ is the new solu-
tion obtained after shaking and local search. So the acceptance of inferior solutions
depends on the difference between the costs of the new solution and the incumbent
solution and on a given temperature T . We decrease T linearly in η/k stages dur-
ing the search process, where η represents the total number of iterations executed.
Thus, every k iterations T is decreased by an amount T k

η
. We found that this linear

annealing scheme works slightly better than the classical exponential one.
In feasibility in the tour length or capacity constraint is penalized in the objective

function with a constant value.

4.5 Algorithm for the PVRP-IF

The algorithm for the PVRP-IF uses the neighborhoods described in Table 2. The
local search procedure consists of the following steps. First we remove the IFs, then
we insert them again with the DP procedure and afterwards we apply the 2-opt-of
operator.
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4.6 Algorithm for the MDVRPI

The neighborhoods used for the MDVRPI are described in Table 3. The algorithm
is similar to the one for the PVRP-IF, except for two neighborhood operators. The
operator change combination is not used, since the planning period is just one day.
Moreover, 2-opt* proved to be very effective for MDVRPI instances where the aver-
age number of customers per tour is very large.

4.7 Solving the real-world problem

As mentioned above, in the real world problem that we have studied, three modifica-
tion of the PVRP-IF are considered. First, we have investigated the case where it is
not necessary to unload at the end of the day. The vehicles can go back to the depot
partly loaded and perform the unloading operation on the next day.

We do not perform 2-opt-of to improve the tours, but instead we use 2-opt before
the IFs are inserted. For reinserting the IF, we use the DP procedure. In this case
we construct the graph for the DP procedure by adding tours performed by the same
vehicle until it is necessary to unload, which is at the end of the planning period.
More precisely, we consider a giant tour consisting of the sequence of routes of a
given vehicle over the whole planning horizon. This means that the depot node is
also contained in the tour more often than only at the start and the end node.

Second, we consider the assignment of waste quantities to IFs. Changes in the al-
gorithm were necessary to deal with that case. Since we have capacity constraints,
we cannot use the DP procedure any longer in the way we used to. Therefore, the IFs
are not inserted with the DP procedure anymore, but with a greedy procedure that
considers the capacity limit at the IFs. When inserting an IF we always choose the
one that is closest between the two customers where it is inserted. Once the capacity
limit of one IF is exceeded, we close it and do not insert it any more. Afterwards
3-opt-intertrip is performed to reoptimize the visit sequence of the customers. This is
the only algorithm where we use 3-opt-intertrip. The reason is that we do not want to
destroy the assignment of waste to the intermediate facilities due to the capacity re-
strictions. Therefore, we only perform the local search for a small part of the solution,
i.e. the part between two intermediate facilities.

Finally, the tour length may vary from vehicle to vehicle. This is solved by simply
penalizing infeasible solutions in the objective function.

To sum it up, we use different components for the different problems. The algo-
rithms for the PVRP-IF and the MDVRPI are almost the same. The only differences
are the two following shaking operators. The operator change combinations is only
used for the PVRP-IF. The MDVRPI is not a periodic problem and therefore this
operator is not necessary. The operator 2-opt* proved to be very effective for the
MDVRPI instances, while it did not bring an improvent for the PVRP-IF. Therefore,
we decided to only use it for the MDVRPI.

The real world problems on the other hand have the same shaking phase as the
PVRP-IF. However, due to the specific problem characteristics it was necessary to
change the local search phase. The local search phase had to be changed, because with
the current local search feasibility was not guaranteed anymore. Moreover, the idea
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of our VNS implementations is that local search is only performed for a small part of
the solution like a route in the MDVRPI and PVRP-IF implementations. Therefore,
in the case of capacities at the IFs we decided to take a local search that does not
destroy the current assignment of waste to an IF, but only optimizes the routing of
each trip. This is why we chose 3-opt-intertrip. For the case where the vehicle does
not have to unload before going back to the depot, we chose to use 2-opt for each
route before the IFs are inserted, instead of using 2-opt-of after they are inserted.
In this case 2-opt-of cannot be used anymore as a local search that only optimizes
the routing of a given vehicle on a given day because feasibility has to be ensured
over the whole planning period. However, when we add all the routes of a vehicle
over the planning period and perform 2-opt on it then it could happen that a customer
is moved to another day. If this customer has a frequency that is higher than one,
this would result in the necessity of moving all the customer visits to a new combi-
nation and would result in a much more complex and time consuming local search
phase.

5 Computational results

To tune our algorithm, we adapted a set of instances from the literature to test the per-
formance of our algorithm on the PVRP-IF. We also received data from the company
containing the additional real world constraints mentioned above. Moreover, we will
present the results on the standard benchmark instances for the MDVRPI. All results
shown are averaged over 10 runs. Experiments were run on a computer with 2.4 GHz
with 4GB RAM running under Linux.

5.1 Parameter settings

Only a few parameters are needed in our VNS implementation. The number of it-
erations used is 107. For penalizing tour length and capacity restriction violations a
constant value of 1000 is used. The temperature for the SA acceptance criterion is set
to 15 in the beginning for the MDVRPI and the real world instances and to 7 for the
PVRP-IF instances and is decreased every 1000 iterations, in a way that it becomes
0 in the last 1000 iterations. We chose these parameter settings based on the perfor-
mance of the VNS on previous work on the PVRP (see Hemmelmayr et al. 2009) and
also on new extensive parameter tests.

5.2 Results for the PVRP-IF

To test our algorithm we adapted instances by Crevier et al. (2007) for the VRP-IF by
adding visit day combinations of the instances by Cordeau et al. (1998) for the PVRP.
This was possible because the set of customers is the same for both data sets. Table 4
shows the data for the instances. The number of customers (NumCust), the number of
IF (NumIF), the maximum Duration (maxDur) and the maximum Capacity (maxCap)
are taken from the instances by Crevier et al. (2007), while the number of days of the
planning period (NumDays) and the service frequencies are taken from the instances
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Table 4 Instance description for the PVRP-IF

Instance NumVeh NumCust NumIF NumDays maxDur maxCap Service frequencies

f1 f2 f3 f4 f6

pr01 2 48 4 4 600 150 24 12 12

pr02 2 96 4 4 1150 200 48 24 24

pr03 2 144 4 4 1700 250 72 36 36

pr04 2 192 4 4 2250 300 96 48 48

pr05 2 240 4 4 2800 350 120 60 60

pr06 2 288 4 4 3350 400 144 72 72

pr07 2 72 6 6 950 175 18 18 18 18

pr08 2 144 6 6 1800 250 36 36 36 36

pr09 2 216 6 6 2650 325 54 54 54 54

pr10 2 288 6 6 3500 400 72 72 72 72

Table 5 Comparison of the
VNS with the former
neighborhoods used for the
standard PVRP to the VNS that
additionally uses neighborhoods
designed for the PVRP-IF (i.e.
intratrip move and cross).
Runtimes are given in minutes

Instances avg cost CPU avg (minutes)

Old nbhs New nbhs % gap Old nbhs New nbhs

pr01 2273.45 2272.76 −0.03 1.74 1.37

pr02 3551.99 3556.70 0.13 4.80 4.33

pr03 4323.40 4327.40 0.09 11.17 9.55

pr04 4831.02 4802.40 −0.59 19.17 18.68

pr05 4923.22 4916.64 −0.13 35.42 37.21

pr06 5824.40 5786.38 −0.65 51.69 52.38

pr07 4817.19 4810.10 −0.15 4.10 3.33

pr08 5661.06 5661.95 0.02 16.17 15.37

pr09 7685.68 7638.62 −0.61 42.76 42.20

pr10 8722.86 8671.37 −0.59 83.39 80.05

avg. 5261.42 5244.43 −0.25 27.04 26.45

by Cordeau et al. (1998). Since it turned out that the number of vehicles (NumVeh)
was too large, it was set to 2.

We have compared and analyzed different design decisions. Table 5 shows an anal-
ysis of the neighborhoods used in shaking of the VNS. The first approach only uses
the neighborhoods that have been applied for the PVRP (Hemmelmayr et al. 2009).
The second approach additionally uses two neighborhood structures designed for the
problem at hand. More precisely, these are intertrip move and cross that move and
swap customers segments between trips. The two approaches only differ in the set of
neighborhood structures used, while the local search is the same for both approaches.
In both cases, the local search is the new procedure that first removes the IFs, then
reinserts them with DP and then performs 2-opt-of.



A heuristic solution method for node routing based solid waste 147

Table 6 Computational Results on the Instances of Crevier et al. (2007) (CCL). Runtimes are reported in
minutes

Instances avg cost avg CPU Best cost

CCL VNS % gap CCL VNS CCL VNS % gap

a2 1005.16 997.94 −0.72 6.39 1.23 997.94 997.94 0.00

b2 1333.20 1291.19 −3.15 14.72 6.41 1307.28 1291.19 −1.23

c2 1792.46 1715.84 −4.27 61.68 15.01 1747.61 1715.60 −1.83

d2 1898.21 1860.92 −1.96 40.54 30.14 1871.42 1856.84 −0.78

e2 1995.75 1922.81 −3.65 73.78 49.31 1942.85 1919.38 −1.21

f2 2312.15 2233.43 −3.40 162.22 71.24 2284.35 2230.32 −2.37

g2 1185.93 1153.17 −2.76 29.51 3.71 1162.58 1152.92 −0.83

h2 1611.75 1575.28 −2.26 160.79 15.66 1587.37 1575.28 −0.76

i2 1998.20 1922.24 −3.80 322.41 41.92 1972.00 1919.74 −2.65

j2 2325.18 2250.21 −3.22 256.85 73.38 2294.06 2247.70 −2.02

average 1745.80 1692.30 −2.92 112.89 30.80 1716.75 1690.69 −1.37

5.3 Results on the MDVRPI instances

We also compared the results of our algorithms to the results of Crevier et al. (2007)
(CCL) and Tarantilis et al. (2008) (TZK) for the MDVRPI. Note that the best solu-
tions of CCL were identified during sensitivity analysis and the best solutions of TZK
were identified with the standard parameter settings that they have used. The best so-
lutions of our algorithms indicated in the tables are the best solutions obtained in the
10 runs. A list of new best known solutions found throughout the sensitivity analysis
can be found in the Appendix.

Concerning runtimes, CCL used a Prosys, 2 GHz computer and TZK performed
their algorithm on a PentiumIV-2.4 GHz with 512MB of RAM under Windows XP.
Our runs were executed on a computer with 2.4 GHz with 4GB RAM running under
Linux.

There are three data sets. The first data set was proposed by Crevier et al. (2007).
A comparison of our algorithm (VNS) with theirs (CCL) can be found in Table 6. We
show the average solution quality over 10 runs, the CPU time in minutes and the best
solution obtained during the 10 runs. We are able to improve their results by −2.92%
on average. Also the runtime is faster on comparable machines.

Table 7 shows the results for the second data set. It was provided by Crevier et al.
(2007) and solved by them (CCL) and by Tarantilis et al. (2008) (TZK). It also shows
the average solution quality, the average runtime in minutes and the best solution
found during the 10 runs. On average, we are able to improve on the best of the two
benchmark algorithms by −0.99%. The best of our 10 runs improves on the best
found solution of the benchmark algorithms by −0.22% in comparable runtimes.
Moreover, for each instance we are either improving or there is a tie.

Finally, results for the third data set are shown in Table 8. Unfortunately Tarantilis
et al. (2008) have only indicated the best solution found and the time when the best
solution was found. We present the average percentage deviation to the best solutions



148 V. Hemmelmayr et al.

Ta
bl

e
7

C
om

pu
ta

tio
na

lR
es

ul
ts

on
th

e
In

st
an

ce
s

of
C

re
vi

er
et

al
.(

20
07

)
w

ith
th

e
al

go
ri

th
m

by
C

re
vi

er
et

al
.(

20
07

)
(C

C
L

)
an

d
Ta

ra
nt

ili
s

et
al

.(
20

08
)

(T
Z

K
).

R
un

tim
es

ar
e

re
po

rt
ed

in
m

in
ut

es

In
st

an
ce

s
av

g
co

st
av

g
C

PU
B

es
tc

os
t

C
C

L
T

Z
K

V
N

S
%

ga
p

to
m

in
C

C
L

T
Z

K
V

N
S

C
C

L
T

Z
K

V
N

S
%

ga
p

to
m

in

a1
12

11
.2

8
11

89
.7

0
11

80
.5

7
−0

.7
7

4.
58

3.
38

1.
42

11
79

.7
9

11
79

.7
9

11
79

.7
9

0.
00

b1
12

32
.6

7
12

25
.0

8
12

17
.0

7
−0

.6
5

9.
17

7.
80

6.
39

12
17

.0
7

12
17

.0
7

12
17

.0
7

0.
00

c1
18

93
.0

1
18

98
.9

2
18

67
.9

6
−1

.3
2

36
.2

2
34

.2
1

20
.4

0
18

86
.1

5
18

83
.0

5
18

66
.7

6
−0

.8
7

d1
10

76
.3

1
10

64
.2

9
10

59
.4

3
−0

.4
6

8.
55

5.
87

1.
57

10
59

.4
3

10
59

.4
3

10
59

.4
3

0.
00

e1
13

11
.6

13
09

.1
2

13
09

.1
2

0.
00

13
.5

2
8.

62
6.

22
13

09
.1

2
13

09
.1

2
13

09
.1

2
0.

00

f1
16

01
.5

4
15

85
.8

3
15

73
.0

5
−0

.8
1

41
.4

1
38

.8
1

25
.6

0
15

76
.3

3
15

72
.1

7
15

70
.4

1
−0

.1
1

g1
12

02
11

90
.2

1
11

83
.3

2
−0

.5
8

55
.2

2
5.

79
3.

38
11

81
.1

3
11

81
.1

3
11

81
.1

3
0.

00

h1
15

98
.5

1
15

77
.5

4
15

48
.6

1
−1

.8
3

32
.0

7
11

.0
6

14
.6

1
15

47
.2

5
15

47
.2

5
15

45
.5

0
−0

.1
1

i1
19

76
.1

1
19

56
.1

7
19

23
.5

2
−1

.6
7

51
.0

1
42

.5
0

33
.5

8
19

27
.9

9
19

25
.9

9
19

22
.1

8
−0

.2
0

j1
11

61
.7

7
11

28
.8

6
11

15
.7

8
−1

.1
6

58
.9

0
5.

52
2.

78
11

20
.6

5
11

17
.2

0
11

15
.7

8
−0

.1
3

k1
16

18
.4

5
15

91
.7

4
15

77
.9

6
−0

.8
7

64
.6

1
12

.0
7

14
.5

6
15

86
.9

2
15

80
.3

9
15

76
.3

6
−0

.2
6

l1
19

17
.0

8
19

04
.3

9
18

69
.7

0
−1

.8
2

10
4.

27
51

.3
9

35
.4

8
18

84
.9

2
18

80
.6

0
18

63
.2

8
−0

.9
2

av
er

ag
e

14
83

.3
6

14
68

.4
9

14
52

.1
7

−0
.9

9
39

.9
6

18
.9

2
13

.8
3

14
56

.4
0

14
54

.4
3

14
50

.5
7

−0
.2

2



A heuristic solution method for node routing based solid waste 149

Ta
bl

e
8

C
om

pu
ta

tio
na

lR
es

ul
ts

on
th

e
In

st
an

ce
s

of
Ta

ra
nt

ili
s

et
al

.(
20

08
).

In
di

ca
te

d
is

th
e

pe
rc

en
ta

ge
de

vi
at

io
n

of
th

e
be

st
fo

un
d

so
lu

tio
n

du
ri

ng
10

ru
ns

of
th

e
V

N
S

to
th

e
be

st
so

lu
tio

n
ob

ta
in

ed
by

T
Z

K
as

w
el

la
s

th
e

pe
rc

en
ta

ge
de

vi
at

io
n

of
th

e
tim

e
w

he
n

th
e

be
st

so
lu

tio
n

w
as

fo
un

d

In
st

an
ce

%
ga

p
be

st
%

ga
p

ru
nt

im
e

In
st

an
ce

%
ga

p
be

st
%

ga
p

ru
nt

im
e

In
st

an
ce

%
ga

p
be

st
%

ga
p

ru
nt

im
e

50
c3

d2
v

0.
00

−9
9.

88
10

0c
3d

3v
0.

00
−9

3.
72

15
0c

4d
3v

0.
00

11
1.

06

50
c3

d4
v

0.
00

−9
8.

66
10

0c
3d

5v
−0

.1
1

−6
8.

30
15

0c
4d

5v
−0

.4
4

−7
3.

19

50
c3

d6
v

−0
.0

5
−9

8.
36

10
0c

3d
7v

−0
.1

1
−7

1.
21

15
0c

4d
7v

−1
.1

2
−3

8.
15

50
c5

d2
v

0.
00

−9
9.

89
10

0c
5d

3v
0.

00
−9

9.
39

15
0c

6d
3v

0.
00

37
.8

8

50
c5

d4
v

0.
00

−9
9.

92
10

0c
5d

5v
0.

00
−9

9.
58

15
0c

6d
5v

−0
.3

4
67

.9
6

50
c5

d6
v

−0
.0

9
−9

5.
18

10
0c

5d
7v

−0
.1

3
−7

8.
89

15
0c

6d
7v

−1
.2

7
−4

7.
03

50
c7

d2
v

0.
00

−9
4.

83
10

0c
7d

3v
−0

.2
1

13
7.

98
15

0c
8d

3v
−0

.2
7

−8
6.

31

50
c7

d4
v

−0
.0

4
−9

7.
76

10
0c

7d
5v

−1
.0

7
−8

7.
53

15
0c

8d
5v

−0
.9

5
−7

1.
14

50
c7

d6
v

−0
.5

7
−9

8.
54

10
0c

7d
7v

−1
.0

1
−7

9.
56

15
0c

8d
7v

−1
.0

5
−7

6.
05

75
c3

d2
v

0.
00

−9
6.

67
12

5c
4d

3v
−0

.1
0

−8
8.

40
17

5c
4d

4v
−0

.0
7

21
.5

9

75
c3

d4
v

0.
00

−9
8.

91
12

5c
4d

5v
−0

.1
7

−9
8.

17
17

5c
4d

6v
−0

.3
9

−7
3.

64

75
c3

d6
v

−1
.7

6
−7

8.
54

12
5c

4d
7v

0.
13

−7
0.

42
17

5c
4d

8v
−1

.9
0

−5
5.

28

75
c5

d2
v

0.
00

−7
6.

38
12

5c
6d

3v
−0

.0
2

−9
2.

53
17

5c
6d

4v
−0

.5
2

5.
70

75
c5

d4
v

−0
.4

2
−8

7.
84

12
5c

6d
5v

−1
.3

7
−7

7.
07

17
5c

6d
6v

−2
.5

5
−6

8.
40

75
c5

d6
v

−0
.3

3
−7

6.
99

12
5c

6d
7v

−3
.0

3
−7

9.
81

17
5c

6d
8v

−0
.8

7
−8

0.
09

75
c7

d2
v

0.
00

−9
0.

17
12

5c
8d

3v
−0

.4
2

49
.7

4
17

5c
8d

4v
−2

.2
3

−3
5.

27

75
c7

d4
v

−0
.2

2
−9

7.
94

12
5c

8d
5v

−1
.9

6
−5

2.
59

17
5c

8d
6v

−1
.0

7
−6

1.
48

75
c7

d6
v

0.
55

−9
8.

83
12

5c
8d

7v
−1

.5
0

−6
2.

45
17

5c
8d

8v
−2

.4
5

−8
6.

43



150 V. Hemmelmayr et al.

Table 9 Results for the not-
unloading-at-the-end-of-the-day
case, runtime in minutes and the
gap to the case where unloading
at the end of the day is
obligatory

Instances Do not unload % gap to unload Time

pr01 2233.56 −1.72 4

pr02 3490.53 −1.86 9

pr03 4307.45 −0.46 17

pr04 4813.1 0.22 28

pr05 4929.03 0.25 40

pr06 5788.94 0.04 59

pr07 4748.54 −1.28 9

pr08 5703.53 0.73 27

pr09 7582.26 −0.74 58

pr10 8575.17 −1.11 97

avg. 5217.21 −0.59 35

obtained by the VNS in 10 runs to the algorithm of Tarantilis et al. (2008). Also the
deviation to the time when the best solution was found is indicated. Table 11 in the
Appendix lists the results in detail.

A list of the best known solutions found with different parameter settings can be
found in the appendix. Note that these best known solutions are even better than the
solutions provided in Tables 6, 7 and 8.

5.4 Real world constraints

We now explain the findings from the experiments with the real world constraints.
In order to identify the effects of these modifications more clearly, we first introduce
these constraints in the standard benchmark instances and analyze the results. Then
we briefly discuss the real world instances.

5.4.1 Return empty

First, we evaluated the impact of the special real-world constraint that the vehicles
do not have to unload at the end of the day. When we allow that the vehicles return
to the depot partly filled then we can further improve the solution quality by 0.59%
as shown in Table 9. When the legal regulations allow to park the waste collection
vehicle partly filled at the depot the solid waste collection company can further re-
duce the logistics costs. Although the trip scheduling problem, which is the problem
of planning the allocation of the fleet to the different types of waste, can become
more difficult. When the vehicles are partly filled in the morning it is only possi-
ble to collect the same type of waste with the vehicle on the current day as the day
before.

5.4.2 Distribution of waste

In Table 10 we performed a sensitivity analysis of adding different capacity limits to
the different intermediate facilities. The capacity limits are expressed in % of total
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Table 10 Results for the capacity limit at IFs. In the equal distribution case all IFs have the same limit, in
the biased distribution case one IF has a high limit. The gap is computed to the values reported in Table 5

Instance Equal distribution Biased distribution CPU avg

Results % gap to basic case Results % gap to basic case Case 1 Case 2

pr01 2310.01 1.64 2323.66 2.24 5 4

pr02 3676.25 3.36 3833.62 7.79 14 14

pr03 4483.84 3.62 4888.69 12.97 29 30

pr04 4989.47 3.90 5303.45 10.43 53 55

pr05 5196.10 5.68 5406.20 9.96 73 78

pr06 6175.05 6.72 6334.07 9.47 143 148

pr07 4974.95 3.43 5539.50 15.16 13 14

pr08 6139.52 8.43 7185.77 26.91 41 44

pr09 8472.35 10.91 8499.20 11.27 106 107

pr10 9502.79 9.59 10351.32 19.37 183 199

average 5592.03 5.73 5966.55 12.56 66 69

demand. We have studied two cases and compared them to the basic case, which
means that no capacity limit applies (reported in Table 5). The first case corresponds
to an equal capacity limit at each IF. More precisely, we have divided the total demand
by the number of IFs. For the second case we have given a high capacity limit to the
first IF and a low limit to the remaining ones. More precisely, for the case with 4 IFs
we allowed a limit of 70% for the first IF and 10% for the remaining and for the case
with 6 IF we allowed a limit of 75% and 5% respectively. Then we have added 10%
to each limit, because such a strict capacity limit does not make sense in the real life,
it will only lead to bad or infeasible solutions.

The results indicate that capacity limits at the IFs (even if a 10% tolerance is
permitted) increase the routing cost by about 6% on average. In case of a very biased
distribution of the capacities the additional cost is even doubled.

5.4.3 Results on real-world instances

We were also provided with real world data by the company that we collaborated
with. We received data from three different communities. More precisely, the in-
stances range from small to large ones. The biggest one has 387 customers, 2 vehi-
cles, 3 IFs and 5 days. The second instance has 184 customers, 1 vehicle, 1 IF and
5 days, while the last instance has 78 customers, 2 IFs and only one vehicle and one
day.

With the algorithm that we developed, we were able to improve their results by
25% according to the data that we received.

For these three instances, some parameters were changed to perform a sensitivity
analysis.

During these experiments expected results were obtained:

• Some cost reduction can be gained when more visit day combinations can be used,
because the additional degree of freedom is beneficial.
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• Moreover, when the depot acts as an IF, there is further improvement, because at
least the trip from the last IF to the depot is saved. Of course this depends on the
location of the depot and the IFs in the customer setting.

• An increased tour length can provide additional savings.
• Capacity limits at the IFs lead to cost increases

Since these real world experiments are based on very few instances, we refrain
from giving any numbers.

6 Conclusion

In this paper an important problem in reverse logistics was considered—the collec-
tion of solid waste. More precisely, we analyzed the waste collection from public
waste collection points, leading to a node routing problem. We introduced a formal
model for the PVRP-IF and developed a new hybrid algorithm for this problem. The
hybridization was done by combining a VNS algorithm with an exact procedure for
inserting the intermediate facilities. We showed that a sophisticated insertion proce-
dure for intermediate facilities can improve the solution quality if it is combined with
a local search algorithm. Different design decisions were presented and evaluated.

Then, we extended the algorithm to consider additional aspects and constraints
arising in real world solid waste collection. More precisely, we considered the case
where a capacity limit at the IFs has to be observed. In case of an even distribution
of capacities an average cost increase of 6% was identified, while heterogeneous ca-
pacities are more costly. Furthermore, when vehicles can return to the depot partly
loaded at the end of the day minor cost savings can be achieved. When solving some
real world instances with our algorithm, an average cost saving of about 25% was ob-
tained compared to the manual planning. The algorithm is currently being integrated
in a decision support system of a consulting company in Austria.

Finally, we have also shown that the basic concept of the algorithm is very robust
for a larger class of node based waste collection problems. After minor modifica-
tions, it was also applied to a related but different problem, namely the MDVRPI,
where just one day is considered and the depot can be used as an IF at the end of
the day. In three different sets of benchmark instances we were able to improve av-
erage and best known results and outperformed two existing algorithms by showing
an improvement of −0.84% on average. Concerning the new best known solutions
found, our algorithm was able to find new best known solutions for 49 out of the 76
instances while we achieved a tie in the remaining 27 ones.

Future work will focus on the planning decisions that have to be made before the
solution of the problems considered here. On the one hand, this concerns the optimal
number of bins for each waste type at the collection points. Note that fewer bins
require a higher visit frequency, which usually leads to higher routing costs. Due to
the limited space available at most collection points also the total number of bins at
these sites is limited and this scarce resource has to be distributed optimally over the
different types of waste. Furthermore, also the fleet should be used efficiently and
the decision, how many vehicles should collect which type of waste on which day, is
challenging.
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Appendix

Table 11 shows the best solutions obtained by our algorithm and by TZK as well as
the average solution quality of the VNS compared to the best solution found by TZK.
Note that even the average results of our VNS are able to improve their best solutions
by −0.42%. We also show a comparison of the time when the best solution is found
in seconds and the total runtime used by the VNS in seconds. It can be seen that the
VNS also needs lower runtimes.

Table 11 Computational Results on the Instances of Tarantilis et al. (2008) compared to our algorithm.
The average solution quality as well as the best solution found during 10 runs of the VNS are compared to
the best solution found by TZK. Runtimes are in seconds

Instance C best C avg Time best solution found Total time

TZK bks VNS bks % gap best VNS avg % gap avg. TZK VNS VNS

50c3d2v 2209.83 2209.83 0.00 2209.83 0.00 170.80 0.20 397.20

50c3d4v 2368.33 2368.33 0.00 2368.33 0.00 133.90 1.80 105.50

50c3d6v 3000.88 2999.29 −0.05 2999.29 −0.05 164.20 2.70 68.90

50c5d2v 2608.25 2608.25 0.00 2608.25 0.00 92.40 0.10 458.20

50c5d4v 3086.58 3086.58 0.00 3086.58 0.00 124.00 0.10 122.60

50c5d6v 3552.00 3548.88 −0.09 3557.08 0.14 182.40 8.80 76.60

50c7d2v 3353.08 3353.08 0.00 3353.08 0.00 189.70 9.80 846.30

50c7d4v 3381.57 3380.27 −0.04 3380.27 −0.04 201.30 4.50 285.40

50c7d6v 4097.80 4074.44 −0.57 4089.26 −0.21 205.30 3.00 89.70

75c3d2v 2678.80 2678.80 0.00 2678.80 0.00 270.00 9.00 1427.60

75c3d4v 2746.74 2746.74 0.00 2746.74 0.00 202.70 2.20 428.00

75c3d6v 3454.71 3393.89 −1.76 3393.89 −1.76 293.60 63.00 198.30

75c5d2v 3373.69 3373.69 0.00 3373.69 0.00 197.30 46.60 1766.80

75c5d4v 3568.35 3553.46 −0.42 3560.91 −0.21 212.10 25.80 245.30

75c5d6v 4198.61 4184.65 −0.33 4184.80 −0.33 250.80 57.70 190.30

75c7d2v 3569.02 3569.02 0.00 3569.02 0.00 322.50 31.70 1550.60

75c7d4v 3830.43 3822.10 −0.22 3862.82 0.85 330.80 6.80 325.60

75c7d6v 4239.76 4263.24 0.55 4263.24 0.55 257.40 3.00 152.70

100c3d3v 3123.51 3123.51 0.00 3123.51 0.00 420.60 26.40 879.50

100c3d5v 3552.50 3548.75 −0.11 3551.90 −0.02 438.50 139.00 274.70

100c3d7v 4239.83 4235.31 −0.11 4247.37 0.18 397.00 114.30 241.50

100c5d3v 4053.95 4053.95 0.00 4053.95 0.00 472.50 2.90 1453.50
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Table 11 (Continued)

Instance C best C avg Time best solution found Total time

TZK bks VNS bks % gap best VNS avg % gap avg. TZK VNS VNS

100c5d5v 4413.17 4413.17 0.00 4413.17 0.00 432.20 1.80 224.10

100c5d7v 5148.98 5142.52 −0.13 5142.66 −0.12 462.90 97.70 159.90

100c7d3v 4216.47 4207.79 −0.21 4207.79 −0.21 511.80 1218.00 1816.10

100c7d5v 4462.51 4414.69 −1.07 4440.65 −0.49 527.50 65.80 276.00

100c7d7v 4897.47 4847.79 −1.01 4868.14 −0.60 501.10 102.40 199.60

125c4d3v 3920.05 3916.02 −0.10 3916.02 −0.10 523.50 60.70 1877.50

125c4d5v 4315.68 4308.44 −0.17 4308.44 −0.17 540.20 9.90 457.10

125c4d7v 4763.49 4769.75 0.13 4770.99 0.16 503.80 149.00 285.90

125c6d3v 4064.20 4063.25 −0.02 4063.25 −0.02 551.20 41.20 1684.80

125c6d5v 4826.71 4760.47 −1.37 4764.60 −1.29 499.80 114.60 527.50

125c6d7v 5325.28 5164.03 −3.03 5200.20 −2.35 550.70 111.20 227.00

125c8d3v 4553.28 4534.14 −0.42 4541.45 −0.26 613.80 919.10 2379.00

125c8d5v 5045.65 4947.00 −1.96 5041.75 −0.08 578.20 274.10 619.60

125c8d7v 5416.96 5335.79 −1.50 5339.66 −1.43 560.30 210.40 344.60

150c4d3v 4049.48 4049.48 0.00 4054.57 0.13 582.40 1229.20 2765.70

150c4d5v 4638.72 4618.23 −0.44 4625.54 −0.28 491.20 131.70 871.10

150c4d7v 5176.50 5118.41 −1.12 5141.36 −0.68 480.00 296.90 450.30

150c6d3v 4057.09 4057.09 0.00 4057.70 0.01 597.70 824.10 2901.10

150c6d5v 4872.08 4855.29 −0.34 4859.56 −0.26 613.70 1030.80 1834.30

150c6d7v 5768.29 5695.26 −1.27 5695.78 −1.26 643.90 341.10 611.40

150c8d3v 4653.90 4641.30 −0.27 4641.30 −0.27 610.50 83.60 3108.60

150c8d5v 5113.77 5065.11 −0.95 5065.11 −0.95 697.20 201.20 688.60

150c8d7v 5665.23 5605.83 −1.05 5614.64 −0.89 720.30 172.50 303.30

175c4d4v 4706.76 4703.25 −0.07 4709.46 0.06 1304.50 1586.10 2524.90

175c4d6v 4835.64 4816.54 −0.39 4816.99 −0.39 1380.60 363.90 1045.50

175c4d8v 5943.28 5830.63 −1.90 5851.61 −1.54 1104.00 493.70 839.50

175c6d4v 5025.51 4999.43 −0.52 5010.23 −0.30 1290.70 1364.30 3349.50

175c6d6v 5431.34 5292.88 −2.55 5298.15 −2.45 1352.10 427.30 862.80

175c6d8v 6090.01 6037.20 −0.87 6040.99 −0.80 1548.70 308.40 425.50

175c8d4v 5878.58 5747.73 −2.23 5748.19 −2.22 1494.20 967.20 2653.60

175c8d6v 5989.63 5925.40 −1.07 5931.18 −0.98 1512.30 582.60 912.50

175c8d8v 6943.63 6773.77 −2.45 6820.52 −1.77 1601.80 217.30 406.30

average 4342.55 4311.74 −0.58 4319.71 −0.42 572.46 269.58 911.44

Table 12 shows the best solutions that were identified through sensitivity analysis
for the PVRP-IF and Table 13 shows the new best known solutions for the MDVRPI.
For the MDVRPI, the average deviation from the best known solutions found by other
authors is −1.55% for set 1, −0.28% for set 2 and −0.78% for set 3. Note that for
the MDVRPI we are always either improving the best known solution found in the
literature or there is a tie.
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Table 12 Best known solutions
identified through sensitivity
analysis for the PVRP-IF

Instance bks found

pr01 2268.42

pr02 3528.86

pr03 4256.36

pr04 4766.71

pr05 4855.39

pr06 5738.52

pr07 4790.47

pr08 5624.35

pr09 7579.62

pr10 8615.69

Table 13 Best known solutions identified through sensitivity analysis for the MDVRPI

Instance bks found Instance bks found Instance bks found Instance bks found

a2 997.94 j1 1115.78 75c7d4v 3822.10 125c8d7v 5334.92

b2 1291.19 k1 1573.21 75c7d6v 4239.76 150c4d3v 4049.48

c2 1715.6 l1 1863.28 100c3d3v 3123.51 150c4d5v 4612.05

d2 1854.04 50c3d2v 2209.83 100c3d5v 3548.44 150c4d7v 5118.41

e2 1916.69 50c3d4v 2368.33 100c3d7v 4235.31 150c6d3v 4057.09

f2 2230.32 50c3d6v 2999.29 100c5d3v 4053.95 150c6d5v 4855.29

g2 1152.92 50c5d2v 2608.25 100c5d5v 4413.17 150c6d7v 5695.26

h2 1575.28 50c5d4v 3086.58 100c5d7v 5142.52 150c8d3v 4641.3

i2 1919.74 50c5d6v 3548.88 100c7d3v 4207.79 150c8d5v 5065.11

j2 2247.7 50c7d2v 3353.08 100c7d5v 4412.7 150c8d7v 5605.83

a1 1179.79 50c7d4v 3380.27 100c7d7v 4847.79 175c4d4v 4692.54

b1 1217.07 50c7d6v 4074.44 125c4d3v 3916.02 175c4d6v 4816.54

c1 1866.76 75c3d2v 2678.80 125c4d5v 4308.44 175c4d8v 5830.63

d1 1059.43 75c3d4v 2746.74 125c4d7v 4666.9 175c6d4v 4996.29

e1 1309.12 75c3d6v 3393.89 125c6d3v 4063.25 175c6d6v 5291.63

f1 1570.41 75c5d2v 3373.69 125c6d5v 4760.47 175c6d8v 6024.99

g1 1181.13 75c5d4v 3553.46 125c6d7v 5164.03 175c8d4v 5747.73

h1 1545.50 75c5d6v 4184.65 125c8d3v 4534.14 175c8d6v 5914.01

i1 1922.18 75c7d2v 3569.02 125c8d5v 4947 175c8d8v 6772.69
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