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Regional Income Convergence in Europe, 1995-2000:
A Spatial Econometric Perspective
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Abstract. Questions of convergence have received increasing attention in recent years, 
in light of the pressure for greater integration and enlargement of the European Union 
[EU] to countries in Central and Eastern Europe [CEE]. This paper looks at the 
evidence for convergence of per capita income between regions in Europe in the second 
half of the 1990s, when economic recovery in CEE gathered pace. The analysis is based 
on the simplest of the models, the unconditional ß-convergence model and shows that 
the classical test methodology is ill-designed due to two reasons. First, it cannot identify 
groupings of regional economies that are converging. Second, it neglects spatial effects 
that represent interregional interactions and spatial spillovers. The paper suggests a 
much richer and theoretically more satisfactory approach that is in line with both the 
notions of club convergence and spatial dependence, and reflects recent developments 
in spatial econometrics. The two-club spatial error convergence model with groupwise 
heteroskedasticity is found to be most appropriate for the data at hand. Two empirical 
key findings are worthwhile to note. The first is that the data provide much support for 
unconditional ß-convergence in Europe. The second is that the usual convergence 
conclusions hold. But they do so for reasons that are not revealed by the classical test 
equation that is typical in mainstream economics literature.
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1 Introduction

At the beginning of the century, questions of convergence have become a matter of 
increasing concern for policy makers in Europe, not only within the EU-15, but also in 
the accession countries in Central and Eastern Europe. Measuring the extent to which 
convergence exists is far from straightforward due to several reasons. First, there are 
measurement problems. In particular, there is a lack of reliable GDP figures for CEE 
regions. This comes partly from the change in accounting conventions now used in CEE 
economies. More important, even if reliable estimates of the change in the volume of 
output produced did exist, these would be impossible to interpret meaningfully because 
of the fundamental change of production, from a centrally planned to a market economy 
system. As a consequence, figures for gross regional product [GRP] are difficult to 
compare between CEE and EU regions until the mid 1990s (European Commission 
1999).

Second, there does not exist a consensus methodological framework to guide empirical 
work on testing for regional convergence. Instead, several distinct types of convergence 
have been suggested in the literature, each implying different test equations. Broadly 
considered, empirical tests fall into three categories. The first and dominating type of 
test studies analyses the cross-section correlation between per capita output levels and 
subsequent growth rates for countries or regions. A negative correlation is taken as 
evidence of convergence as it implies that – on average – economies with low per capita 
initial incomes are growing faster than those with higher initial per capita incomes. This 
form of convergence has been termed ß-convergence.

The second type of test studies investigates whether the cross-section variance of per 
capita output levels tends to decrease over time. This form of convergence has been 
called -convergence. It is important to recognise that the existence of ß-convergence is 
a necessary, but not sufficient condition for -convergence (see Bernard and Durlauf 
1996, Quah 1996). The third type of tests focuses attention on the long-run behaviour of 
differences in per capita output across economies. These tests interpret convergence to 
mean that these differences are transitory in the sense that long-run forecasts of the 
difference between any pair of economies converge to zero as the forecast horizon 
grows. Convergence in this sense is called time series forecast convergence (Bernard 
and Durlauf 1996).

Contemporary expectations of catch-up in Europe largely rest on the implicit acceptance 
of models of ß-convergence. This motivates to analyse whether regional economies 
exhibit ß-convergence and if so to estimate the time needed to attain equilibrium. The 
study considers the behaviour of output differences across 256 regions embracing all the 
EU-15 countries and the CEE accession countries1. The study refers to the time interval 

1 Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia.
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1995-2000 and equates convergence with the tendency to narrow. Output is measured in 
terms of per capita GRP. While the study shares ideas with much convergence analysis 
in mainstream economics2, it differs from most studies in two major aspects. First, it 
adopts a spatial econometric perspective to allow for spatial interactions and spillovers 
between regions and, thus, goes beyond the neoclassical diminishing returns to capital 
convergence mechanism. Second, it relaxes the implicit assumption of a single steady-
state growth path which seems out of tune with the reality of empirical dynamics (see 
Quah 1993). Instead the study allows groupings of regional economies [so-called 
convergence clubs in the sense of Baumol 1986] to form so that regional economies 
within a group interact more with each other than with those outside.

The rest of the paper is structured as follows. It is natural to start in Section 2 with a 
definition of the notion of convergence and a brief outline of the test methodology for 
classical cross-section ß-convergence analysis. We call the methodology classical 
because it was the first in the literature, uses conventional techniques of classical 
econometrics only and is widely spread in mainstream economics. Regions are 
considered as isolated entities, as if their geographical location and potential in the 
regional linkages would not matter. Section 3 extends the classical test methodology to 
escape the criticism of assuming independently distributed observational units and to 
more fully treating spatial effects in convergence processes. Section 4 continues to 
describe the data and the empirical procedure suggested for identifying clubs of regional 
economies from a spatial econometric perspective. Section 5 presents the estimation 
results of the spatial econometric models in comparison to those of the classical models 
of unconditional ß-convergence. We conclude the paper with a brief summary and some 
further thoughts. 

2 Convergence and Cross-Section Tests

The cross-section approach to convergence analysis considers the behaviour of the 
output differences between regional economies over a fixed time interval and equates 
convergence with the tendency of the difference to narrow. Following Bernard and 
Durlauf (1996) we say regional economies j and j' converge over the time period (t, t+ )
if the (log) per capita output disparity at t is expected to decrease in value.

Let yjt denote the log per capita gross-regional product [GRP] of region j at t and t all 
information available at this time then convergence between a pair of regional 
economies (j, j') can be defined as follows: If yjt > yj't then

' '|jt j t t jt j tE y y y yF . (1)

2 Recent surveys of the literature can be found in Durlauf and Quah (1999), Temple (1999) and Fingleton (2003).
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This definition can easily be extended to convergence between a set of N regional 
economies by requiring that every pair (j, j') within the set exhibits convergence. It is 
worthwhile to note that in the context of the current paper the conditional expectation is 
taken with respect to the linear space generated by current and lagged regional income 
differences rather than in a general t sense. Therefore the definition is equivalent to 
require that yjt - yj't is a linearly regular process.

Classical convergence tests, used by Baumol (1986), Barro (1991), Barro and Sala-i-
Martin (1991, 1992) and many others, investigate on the basis of the above definition 
how an economy's average income growth co-moves with initial income. Defining the 
average growth rate

1
j jt jtg y y (2)

for a set of N regional economies then the basic test used has the following form3

j jt jg y (3)

for j=1, …, N, where is a fixed time horizon and E[ j | tF ]=0, y is the variable [log per 
capita GRP] being tested for convergence, a white noise error term, and and 
parameters to be estimated. Empirical work using Equation (3) as testing framework has 
equated convergence with a negative estimate of ß, treating ß 0 as the no convergence 
null hypothesis.

By drawing on reasoning given by Bernard and Durlauf (1996) the requirement may be 
written as a constraint on the mean of output differences between two time series. 
Observing that

1

1
j jt

t
g y (4)

where yjt = yjt+1– yjt then Equation (3) implies that

3 In some formulations of cross-section convergence tests, Equation (3) is modified to include a set variables allowing 
for differences in steady-states and asymmetric shocks (see, just to cite a few examples, Barro, and Sala-i-Martin 
1991, 1992 and 1995, Sala-i-Martin 1996): 

j jt jt j
g y x , where xjt is a vector of variables that 

holds the steady-state of regional economy j constant. A negative ß means then that convergence holds conditional 
on a set of exogenous variables such as savings and population growth for region j (conditional ß-convergence). 
While potentially important in practice, for the discussion in this paper the differences between conditional and 
unconditional convergence do add neither conceptual insights nor difficulties in modelling the spatial dimension of 
the convergence process. Thus, we will not consider conditional convergence further in this paper.
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1 1

1 1
.jt j t jt j t jt j t

t t
y y y y' ' ' (5)

If yjt– yj't is positive, then the requirement that ß is negative implies that the expected 
value of the left hand side of Equation (5) is negative. From the perspective of bivariate 
comparisons, the cross-section ß-test, thus, analyses whether the average change in per 
capita GRP of an initially poorer region exceeds that of an initially richer one (Bernard 
and Durlauf 1996). Recall that the ordinary least squares estimator ß̂ can be written as

1

ˆ
N

j j
j

ß (6)

where

2 2

1

N

j jt jt jt jt
j

y y y y (7)

j j j jt jtg g y y (8)

with

1

1

N

jt jtN
j

y y (9)

1

1

N

j jN
j

g g (10)

then it is evident that ß̂ equals a weighted average of the ratio of differences of growth 
rates from the sample means to differences of initial incomes from the sample mean. 
Thus, cross-section tests require that a weighted average of regional economies with 
above average initial incomes grow at a slower rate than the mean growth of the cross-
section. In equating convergence with the neoclassical growth model, the testable 
restriction of the model as analysed in cross-section tests implies that the first moments 
of the stochastic processes governing growth rates differ for initially rich and poor 
economies (Bernard and Durlauf 1996).
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Suppose that the estimate of ß is negative. Since ß̂ is a weighted average of j 's [see 
Equations (6)-(10)], a negative estimate means that the output differences between some 
pairs of regional economies have declined over the sample. Thus, for tF consisting 
exclusively of a constant, some pairs of regions are converging in the sense of the above 
convergence definition. But, the cross-section test defined by Equation (3) cannot 
identify groupings of regions that are converging.

In equating convergence with the neoclassical growth model4 with its diminishing 
returns to capital convergence mechanism (see Barro and Sala-i-Martin 1992, Mankiw, 
Romer and Weil 1992 among others), the constant term, , in Equation (3) can be 
interpreted as an equilibrium rate of income growth, and ß is related to the rate of 
convergence (say, ß*) to a region's steady-state, a measure of how fast regions attain 
their long-run equilibrium path:

*1 1 exp( ) . (11)

Estimating Equation (3) jointly with Equation (11) constitutes the canonical
ß-convergence analysis in a neoclassical world5.

The existence of the equilibrium in a neoclassical world is due to the assumption that 
there are diminishing returns to capital determined by the capital share coefficient in the 
Cobb-Douglas production function. Whether or not convergence happens is a matter of 
assumptions on the form of the production function and not of interactions across 
economies (Durlauf and Quah 1999). Canonical ß-convergence analysis does not take 
into account other equilibrating mechanisms such as capital flows, labour migration or 
technological spillovers across regional economies. Regions are treated as 'isolated 
islands' (Quah 1993, Martin 2001, Rey 2001 among others). 

3 A Spatial Econometric Approach to Convergence Analysis

A key limitation of the majority of empirical analyses of cross-sectional regional growth 
has been that the assumption of a single steady-state has to hold for all regional 

4 Barro and Sala-i-Martin (1992) have shown that the growth regression Equation (3) may be derived – as a log-
linear approximation – from the transition path of the neoclassical growth model for closed economics. Many 
studies of convergence empirics share this neoclassical underpinning. The assumption of diminishing returns that 
drives the neoclassical convergence process is one that is particularly questionable for regional economies. But 
there are solid empirical reasons why it makes sense to fit growth regression models in which there is a significant 
convergence process even if the reasons for this convergence may be debated.  

5 Instead of estimating Equation (3) and using Equation (11) to compute the speed, ß*, one can estimate a non-linear 
least squares [NLS] relation directly.
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economies in the sample (Durlauf 2001). If regional economies, for example, differ in 
their basic growth parameters (such as technological innovativeness, human capital 
development, etc.), or knowledge spillovers between them are weak, they may not 
converge to a common per capita income, but instead to different economic-specific 
equilibrium levels of per capita income. Different regional economies may be 
converging to different long-run growth rates, just because of different initial 
conditions. Under such circumstances there might be convergence among similar types 
of economies (club convergence), but little or no convergence between such clubs 
(Martin 2001). 

This motivates to adopt a framework that enables testing for club convergence. We 
allow 'natural groupings' of regional economies to form, in the sense that regional 
economies within a group interact more with each other than with those outside. Club 
identification in this study is performed with the help of exploratory spatial data 
analysis [ESDA] focusing on the explanatory variable that defines the initial conditions 
of the convergence process. This technique is a convenient way of detecting spatial 
regimes in the data (for more details see Section 4). The virtue of the procedure lies in 
its ability to uncover spatial effects and spillovers among regional economies on the 
basis of initial incomes.

The discussion that follows will be easier to understand if one keeps in mind that the 
basic test equation, the classical (unconditional) convergence model, can be 
reformulated in matrix form as

g Y (12)

where g is a (N, 1)-vector of observations on the dependent variable [average log of per 
capita GRP growth rates] for the N regions. The (2, 1)-vector consists of two 
components: and in the notation of Equation (3). The second component is the 
coefficient of the explanatory variable: log of initial per capita GRP. The coefficient 
is a constant term and can be interpreted as the coefficient of an exogenous 
(explanatory) variable which takes the unit value for each of the N observations. Thus, Y
is a (N, 2)-matrix of observations on the two exogenous variables. is a (N, 1)-vector of 
random disturbance terms. For the data-generating process it is assumed that the 
elements of the random vector are identically and independently distributed (i.i.d.).
Thus, the error variance-covariance matrix is E[ ']= 2 IN, where the scalar is 2 

unknown, IN a Nth-order identity matrix and ' denotes the transpose of . The 
parameter can be estimated by means of ordinary least squares [OLS].

It is straightforward to adopt this standard cross-section growth regression framework to 
account for club convergence. For matter of representation let us consider two clubs 
only, indicated by the indices A and B. These clubs correspond to subsets of the 
observations for which the regression model follows a different set of coefficients. Each 
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club may be represented by a different cross-sectional equation. Then the two-club 
growth regression model can formally be expressed as

0
0

A A A A

B B B B

g Y
g Y

(13)

where gA and gB are the dependent variables; YA and YB the explanatory variables; A

and B the coefficients; and A and B the errors in the respective clubs A and B of 
regions. Let NA and NB denote the number of observations in club A and club B,
respectively. Then N=NA+NB.

The simple block structure of the two-club model (13) can be expressed more succinctly 
in one equation 

* * * *g Y (14)

where the boldface variables without subscript refer to combined variable, coefficient 
and error matrices.

Since the full set of elements of the error variance matrix =E[ * *'] is generally 
unknown and cannot be estimated from the data due to a lack of degrees of freedom, it 
is necessary to impose a simplifying structure. The most straightforward assumption is a 
model with a constant error variance over the whole set of observations:

2
NI (15)

where 2 is the constant error variance. This specification leads to the so-called 
classical two-club convergence model that conforms to the standard assumptions of the 
classical test methodology.

But this assumption may be overly restrictive. Assuming an error variance that is 
different in each of the clubs of regions results in a special form of heteroskedasticity

2

2

0
0

A A

B B

I
I

(16)

where 2
A and  2

B denote the club-specific constant error variances, IA and IB are 
identity matrices of dimensions NA and NB. This specification results into the two-club 
growth regression model with groupwise heteroskedasticity. Estimation and testing can 
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be carried out by means of fairly straightforward iterative techniques [so-called 
estimated GLS] or in a maximum likelihood framework (Anselin 1990).

In both cases, the homoskedastic version and the heteroskedastic version of the two-club 
convergence model, spatial error dependence6 is likely to be a problem. It can arise due 
to several reasons. First, if there is a lack of independence between the observational 
units. Second, spatial error dependence may reflect important aspects of phenomena 
such as capital flows, labour migration or technological spillovers in the regional 
growth process. Third, spatial dependence can also arise from a variety of measurement 
problems, such as boundary mismatching between the administrative boundaries used to 
organise the data series and the actual boundaries of the economic processes believed to 
generate regional convergence or divergence. Finally, it should be noted that any 
parsimonious regression model, in particular the club-specific version of the canonical 
equation of ß-convergence leaves out many factors that would – from the perspective of 
economic theory – be likely to affect the parameter of the initial income. When there are 
omitted variables that are spatially autocorrelated, regression analysis will produce 
spatially dependent residuals, given that the omitted variables are relevant and the 
dependent variable is itself spatially autocorrelated.

When spatial dependence is present in the error term, the above two-club convergence
models are misspecified. Spatial autocorrelation may be modelled by specifying a 
spatial process for the disturbance terms *. Different spatial processes lead to different 
error covariances, with varying implications about the range and extent of spatial 
interaction and spillovers in the model. The most common specification is a spatial 
autoregressive [SAR] process in the error terms *:

* *W (17)

where W is the spatial weights matrix7 of dimension N by N, is a scalar spatial 
autoregressive coefficient for the spatial error lag W *, and is a vector of i.i.d errors 
with variance 2 . The combination of Equation (14) and Equation (17) makes up the 
two-club spatial error convergence model. The resulting error covariance will be non-
spherical. Thus, ordinary least squares estimation of this model would yield unbiased 
estimates for the convergence parameter ß, but a biased estimate of the parameter's 
variance. Therefore, inferences about the convergence process have to be based on the 
model estimated via maximum likelihood [ML] or general methods of moments 
[GMM].

6 Spatial error dependence is the situation where the error term at each region is correlated with values for the error 
term at other regions. We use the terms spatial dependence and spatial autocorrelation interchangeable in this 
paper.

7 The spatial weights matrix consists of positive elements for pairs of locations (i, j), with wij 0 for 'neighbours' 
and wij =0 for others. By convention, the diagonal elements wii are set to zero. For an extensive discussion see 
Anselin (1988). In practice, the derivation of spatial weights from the location and spatial arrangements of 
observation is carried out by means of a geographic information system.
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As is well-known in spatial econometrics Equation (17) can be rewritten as

* 1A (18)

with

.NA I W (19)

Depending on the structure of the error variance in club A and club B, two model forms 
of two-club growth regression may be distinguished. In the first, the homoskedastic 
error case:

2
NE I' (20)

and the overall variance-covariance matrix takes the form

-12 A A' . (21)

If the spatial structure is not constant across the geography, heteroskedasticity may 
result, even though the initial process (17) is not heteroskedastic. In this case, the 
heteroskedastic error case, it is reasonable to assume that the two clubs have different 
error variances 2 2var var

A BA B . Then the covariance matrix for the -
terms becomes

2

2

0
0
A

B

A

B

E
I

I
' . (22)

4 Data, Spatial Weights Matrix and Spatial Clubs

The data on real per capita GRP used in this study are cross-section data in logarithmic 
form. They are based on the European System of Accounts. The growth rate is observed 
as an average over 1995 to 2000 rather than at a point of time. Data availability 
constrains the analysis to the NUTS-2 level8. NUTS-2 regions are formal (that is, 

8 The European Commission uses NUTS regions as targets for the convergence process and has defined NUTS-2 as 
the spatial level at which to measure convergence or divergence.
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administrative or political) rather than functional spatial units which represent the 
boundaries of economic processes believed to generate regional convergence or 
divergence.

Our sample includes 256 NUTS-2 regions across 25 countries in Europe:

The member states of the European Union: Austria [9 regions], Belgium [11 
regions], Denmark [1 region], Finland [6 regions], France [22 regions], Germany [40 
regions], Greece [13 regions], Ireland [2 regions], Italy [20 regions], Luxembourg [1 
region], The Netherlands [12 regions], Portugal [5 regions], Spain [16 regions],
Sweden [8 regions], and UK [37 regions]; and

the accession countries in CEE: Bulgaria [6 regions], The Czech Republic [8 
regions], Estonia [1 region], Hungary [7 regions], Latvia [1 region], Lithuania [1
region], Poland [16 regions], Romania [8 regions], The Slovak Republic [4 regions],
and Slovenia [1 region].

Spatial Weights Matrix

A spatial weights matrix is a N by N positive and symmetric matrix W which expresses 
for each observation (row) those regions (columns) that belong to its neighbourhood set 
as non-zero elements. The specification of which elements are non-zero is a matter of 
considerable arbitrariness. We use the traditional approach that is based on the 
geography of the observations, designating regions as 'neighbours' when they are within 
a given distance of each other, i.e. wij=1 for dij and i j, where dij is the great circle 
distance between the capital cities of region i and j, and is a distance cut-off value 
[distance-based contiguity]. The spatial weights matrix W* is, thus, defined by the 
following equation

*

0 if
1 if for
0 if for .

ij ij

ij

i j
w d i j

d i j
(23)

For ease of interpretation, the matrix is standardized so that the elements of a row sum 
to one. Therefore, the elements of the row-standardized spatial weights matrix W equal 
to 

*

*

1

, 1, ...,ij
ij N

ij
j

w
w i j N

w
. (24)
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This ensures that all weights are zero or one. , the critical cut-off value9, is chosen as 
350 km on the basis of exploratory analysis and theoretical considerations.

Spatial Clubs

Economic theory does not provide guidance as to either the number of clubs or the way 
in which the explanatory variable defining the initial conditions determines clubs 
(Durlauf and Johnson 1995). Thus, it is reasonable to allow patterns of cross-section 
interaction – clustering together in convergence clubs – to endogenously emerge. A
convergence club is a group of regional economies that interact more with each other 
than with those outside and that exhibit initial conditions which are near enough to
converge towards the same long-run equilibrium. We use the Getis-Ord statistic *

itG , a 
measure of spatial clustering, to determine clubs of regions on the basis  of spatial 
association in per capita GRP 1995 where spatial association reflects spatial 
externalities among regions j within a distance of region i. The statistic allows to 
identify spatial regimes in the data by use of the concept called proximal space (Getis 
and Ord 1992, Ord and Getis 1995) and is formally defined as

*

1

N

ij jt
j i

it N

jt
j

w y
G

y
(25)

where ijw are the elements of a spatial weights matrix as defined in (23)-(24), with 
ones for all links defined as being within distance of a region i, all other links are 
zero. The numerator is the sum of all yjt (t=1995) within of i.

A positive [significant] *
itG -value indicates a spatial cluster of high values, whereas 

a negative one indicates a cluster of low values. The information obtained from this 
statistic for all i=1, ..., N is taken to determine two spatial clubs according to the 
following simple rule: If *

itG is positive, region i is allocated to spatial club A; and if 
*
itG is negative, region i becomes a member of spatial club B. The result of this 

procedure outlined in Figure 1 seems – overall considered – quite reasonable. Richer 
regions tend to be clustered in club A and poorer regions in club B.

Spatial club A consists of 173 regions and includes all the EU-15 regions except those 
in Greece and Portugal, some Spanish regions [Galicia, Extremadura, Andalucia], some 
Southern Italian regions [Calabria, Apulia and Sicilia], regions located in Eastern 
Austria [Upper Austria, Lower Austria, Vienna, Burgenland, Styria], and Dresden and 
Berlin; plus two regions located in CEE [Slovenia and the most Western region in the 
Czech Republic]. 

9 This means that above the critical value of 350 km spatial interactions are assumed to be negligible.
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Spatial club B [83 regions] is made up of all NUTS-2 regions in Central and Eastern 
Europe, except Slovenia and the most Western Czech region [Jihozapad]; and, 
furthermore, all the Greek and Portuguese regions; the Italian regions Calabria, Apulia, 
and Sicilia; the Spanish regions Galicia, Extremadura and Andalucia; Upper Austria, 
Lower Austria, Vienna, Burgenland, and Styria; Dresden and Berlin. 

Figure 1: Two spatial regimes identified by using the Getis-Ord 
statistics *

itG [GRP per capita 1995]

5 Convergence Regression Results

Table 1 present the results of the classical test methodology to convergence analysis of 
the 256 regional economies in Europe. The first column relates to the classical ß-
convergence test equation [see Equation (12)] and the second to the two-club model 
specification [see Equations (13) and (15)]. Recall that both test equations assume iid
zero mean error terms. All estimation and specification tests were carried out with 
SpaceStat Software (Anselin 1999).

Spatial Club A
Spatial Club B
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The results of both models provide much support for ß-convergence in Europe as the 
regressions yield highly significant and negative coefficients for the starting income 
levels. The classical convergence model estimates an annual rate of 1.9 percent of 
convergence. Note that this rate of convergence is slow in the sense that it would take 
36.4 years (95 percent bounds: 29.9 – 46.4 years) to get half-way toward this steady-
state level. This result is accordance with most studies that have yielded (un)conditional 
convergence rates for European regions of the order one to two percent per year (see
Martin 2001 for a survey).

We should, moreover, emphasise that this result does not mean that the distribution of 
income is shrinking ( -convergence). What this evidence says is that regional 
economies in Europe seem to approach some long-run level of income, the growth rate 
falls as the regional economy approaches this long-run level and on average regional 
economies tend to grow faster than richer ones. This result is interesting because it 
suggests that regional economies that are predicted to be richer in a few decades from 
now on are not the same regions that are wealthy today (ß-convergence).

Recall, however, that the results of the classical convergence model are based on the 
assumption of a single steady-state for all regions which is largely at odds with reality. 
The second column in Table 1 reports the results obtained by the classical test 
methodology for the case of two clubs of regions as identified in the previous section. 
The regression yields highly significant and negative coefficients for the starting income 
levels ( ˆ

A =–0.21 with s.d.=0.004 and ˆ
B =–0.0054 with s.d.=0.007) confirming the 

view of two-club convergence in Europe. Regions in club B saw faster GRP per capita 
growth over the period 1995-2000, as one expects from neoclassical growth theory. The 
estimated speed of club B convergence is 4.8 percent per year and suggests that it will 
take 14.5 years (95 percent bounds: 11.7-19.2 years) for half of the distance between the 
initial level of income and the club B-specific steady-state level to vanish. In the case of 
club A the model estimates an annual convergence rate of 2 percent. The associated 
half-time is 34.7 years with approximate 95 percent bounds of 25.6-54.1 years.

The bottom portion of Table 1 reports three diagnostics for the presence of spatial 
effects10: a Moran's I test and two Lagrange multiplier tests. Moran's I of 0.517 (second 
column) yields a standardized z-value of 22.517 which is very significant (p=0.000)11.
The test indicates strong evidence of spatial dependence and, thus, misspecification of 
the two-club convergence model. Unfortunately, it does not allow to discriminate 
between spatial lag and spatial error forms of misspecification. But – as evidenced in 

10 The Jarque-Bera (19987) test that follows a 2-square distribution with two degrees of freedom indicates that the 
non-normality requisite for the heteroskedasticity in spatial dependence test is not achieved in the current 
analysis.

11 Anselin and Rey (1991) show that Moran's I tends to be a catchball with power against a range of alternatives 
including not only spatial dependence, but also non-normality and heteroskedasticity.
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Anselin and Rey (1991) – the joint use of the Lagrange multiplier tests for a spatial lag 
and spatial error provide good guidance since the Lagrange multiplier error exceeds the 
Lagrange multiplier lag, the two tests point to the presence of spatial error 
autocorrelation rather than spatial lag. While there is very strong evidence for spatial 
dependence, the Koenker-Bassett (1992) test for heteroskedasticity is not significant. 
Thus, we consider the spatial error specification of the two-club convergence model 
next.

Table 1: Convergence Regression Results for the 256 European Regions, 1995-2000:
The Classical Test Methodology

The Classical 
Convergence Model

[OLS]

The Classical Two-Club 
Convergence Model 

[OLS]

Parameter Estimates
(p-values in brackets)

Intercept
Club A
Club B

Beta
Club A
Club B

0.248 (0.000)

-0.020 (0.000)

0.250 (0.000)
0.580 (0.000)

-0.021 (0.000)
-0.054 (0.000)

The Time to Convergence
Annual Convergence Rate
(in percent)

Club A
Club B

Half-Distance to the Steady-State 
(in years, 95% bounds in brackets)

Club A
Club B

1.9

         36.4 (29.9-46.4)

2.0
4.8

34.7 (25.6-54.1)
14.5 (11.7-19.2)

Performance Measures
R2

Log likelihood
Sigma sq.

0.239
513.949
0.00106

0.307

0.00098

Diagnostics Tests
(p-values in brackets)

Normality
Jarque-Bera

Heteroskedasticity
Koenker-Bassett 

Spatial Error Dependency
Moran's I
Robust Lagrange Multiplier

Spatial Lag Dependency
Robust Lagrange Multiplier

27.197 (0.000)

1.928 (0.165)

26.523 (0.000)
144.911 (0.000)

1.529 (0.216)

22.274 (0.000)

0.717 (0.397)

22.517 (0.000)
45.082 (0.000)

24.268 (0.000)
Notes: Rho [ ] is the parameter of the autoregressive error process, Beta [ß] the convergence coefficient, R2 squared correlation 
[ML] or R2 adjusted [OLS, GMM], Sigma sq. the error variance. The speed of convergence per year is computed as 

*ˆ ˆln(1 ) / with * *ˆ ˆ ˆ. .( ) . .( ) / exp( )s e s e , where is the length of time. The half-distance to the steady-state 
is computed as 

*ˆln(2) / with the approximate confidence interval defined as * * .ˆ ˆln(2) /( 2 . .( ))s e
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Column 1 in Table 2 reports the estimation results for the spatial error specification of 
the two-club convergence model as defined by Equation (14) in combination with 
Equation (17). Relative to the OLS regression estimates, the spatial error model 
achieves a better fitting as expected, given the findings of the various diagnostic tests 
from Table 1 and the high significance of the spatial autoregressive coefficient 
( ˆ =0.908 with p=0.000). This highlights that the classical convergence test suffers 
from a misspecification due to omitted spatial dependence.

The principal finding from the club convergence point of view is that modelling spatial 
interactions and spillovers among regional economies drastically increases the size of 
the ß-convergence coefficient for club B ( ˆ

B =–0.016 with s.d.=0.006), while only 
slightly increasing that for club A ( ˆ

A =–0.026 with s.d.=0.004). This implies an annual 
convergence rate of 2.4 percent for regional economies belonging to club A and a 
convergence rate of only 1.5 percent per year for those in club B. Regional economies in 
Central and Eastern Europe seem to take 45 years (95 percent bounds: 26.8-141.4 years) 
for the half of the distance between the initial level of income and the club B-specific 
steady-state level to vanish. In the case of club A the spatial error convergence model 
estimates an annual convergence rate of 2.4 percent. The associated half time is 14.5 
years with approximate 95 percent bounds of 11.7-19.2 years.

The Lagrange multiplier test on residual spatial lag dependence and the Likelihood ratio 
test on the common factor hypothesis12 are not significant, indicating that the spatial 
error model specification is appropriate. But there is one further point to consider, 
which suggests further elaboration of the spatial error model. The Breusch-Pagan 
(1979) heteroskedasticity test against the regime variable indicates some 
heteroskedasticity of the µ-term, although no residual spatial dependence. One way to 
model heteroskedasticity is to assume 2 2

A B
(see Equation (22)). The second 

column in Table 2 gives the GMM estimates and summarizes the results of fitting the 
two-club spatial error convergence model with club-wise (group-wise) 
heteroskedasticity, indicating no improvement in fit as a result of modelling 
heteroskedasticity. The estimates of ßA and ßB are identical to those obtained by the 
spatial error model with homoskedastic error.

The extent to which the differences between the ß-coefficients in the two clubs are 
statistically significant is indicated by the asymptotic Wald statistic constructed out of 
the spatial version of the Chow (1960) test (Anselin 1990). Table 2 shows that the null 
hypothesis on the joint equality of coefficients ( A= B, ßA=ßB) cannot be rejected. Its 
value of 1.956 is not extreme for 2-distribution with two degrees of freedom. The same 
indication is provided by the tests on the individual coefficients. In other words, there is 
no significant difference between the convergence parameters in each of the two clubs. 
The convergence appears to be not so different across the clubs.

12 See Burridge (1981) for technical details.
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Table 2: Convergence Regression Results for the 256 European Regions, 1995-2000:
Spatial Error Specifications of the Two-Club ß-Convergence Model

The Two-Club Spatial Error Convergence Model 

The Homoskedastic Case
[ML]

The Heteroskedastic Case
[GMM]

Parameter Estimates
(p-values in brackets)

Intercept
Club A
Club B

Beta
Club A
Club B

Rho

0.297 (0.000)
0.204 (0.001)

-0.026 (0.000)
-0.016 (0.004)
0.908 (0.000)

0.296 (0.000)
0.206 (0.000)

-0.026 (0.000)
-0.016 (0.001)
0.905 (0.000)

The Time to Convergence
Annual Convergence Rate
(in percent)

Club A
Club B

Half-Distance to the Steady-State 
(in years, 95% bounds in brackets)

Club A
Club B

2.4
1.5

14.5 (11.7-19.2)
45.0 (26.8-141.4)

2.4
1.5

14.5 (11.7-19.2)
45.0 (26.8-141.4)

Performance Measures
R2

Log likelihood
Sigma sq.

0.351
633.671
0.00037

0.345

Diagnostics Tests
(p-values in brackets)

Heteroskedasticity
Breusch-Pagan

Spatial Error Dependency
Likelihood Ratio

Spatial Lag Dependency
Lagrange Multiplier

Common Factor hypothesis
Wald

Structural Instability for the Two 
Regimes

Chow-Wald
Stability of Individual Coefficients

Constant
Beta

23.635 (0.000)

215.738 (0.000)

5.881 (0.015)

2.138 (0.343)

1.936 (0.380)

1.764 (0.184)
1.900 (0.168)

1.956 (0.376)

1.816 (0.178)
1.847 (0.174)

Notes: Rho [ ] is the parameter of the autoregressive error process, Beta [ß] the convergence coefficient, R2 squared correlation 
[ML] or R2 adjusted [OLS, GMM], Sigma sq. the error variance. The speed of convergence per year is computed as 

*ˆ ˆln(1 ) / with * *ˆ ˆ ˆ. .( ) . .( ) / exp( )s e s e , where is the length of time. The half-distance to the steady-state 
is computed as 

*ˆln(2) / with the approximate confidence interval defined as * * .ˆ ˆln(2) /( 2 . .( ))s e
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6 Concluding Remarks

The paper has look at the evidence for regional income convergence in the New Europe 
along neoclassical lines. Convergence has been identified as a property of the relation 
between initial income and growth over the sample period 1995-2000. Admittedly, this 
is a short time period, while growth and convergence are long-run processes. But the 
unavailability of longer homogenous time series data for the set of CEE regions 
prevented such an analysis at the present time. Many cross-sectional analyses of 
regional growth variations have detected significant evidence of (un)conditional 
convergence of EU-regions. But the vast majority of such studies fail to consider and 
model spatial dependence and heterogeneity [with very few exceptions such as 
Fingleton (1999)], although it is evident from the current study that such an approach 
may be necessary.

The focus has been on the simplest of the convergence models, the unconditional ß-
convergence model. In contrast to current practice we rejected the assumption of a
single stable steady-state in favour of a multiple-regime [club] alternative in which 
different regional economies obey different linear convergence models when grouped 
according to initial conditions. The use of the Getis-Ord statistics produced a grouping 
that seems overall quite reasonable. We defined club convergence as the club-specific 
process by which each region belonging to a club moves from a disequilibrium position 
to its club-specific steady-state position. At the steady-state the growth rate is the same 
across the regional economies of a club.

There are four major lessons to be gained from the paper. First, there is clear evidence 
for unconditional ß-convergence in Europe for the time period of observation. The 
sample of regional economies belonging to club A converges in an unconditional sense 
at a speed of 2.4 percent per year and those belonging to club B (regional economies in 
CEE and Southern Europe) at a speed of 1.5 percent. It is important to emphasise that a 
speed of 1.5 or 2.4 percent per year is very small. It suggests that it will take, for 
example, 14.5 years in club A and 34.7 years in club B for half of the distance between 
the initial level of income and the steady-state level to vanish.

Second and closely related, this convergence process across regional economies is an 
interesting finding. It suggests that regional economies in a club that are predicted to be 
wealthier in a few decades from now on are not the same regions in the club that are 
wealthy today (ß-convergence). This result does not mean, however, that the club-
specific distribution of income is shrinking ( -convergence).

Third, the study illustrates that the classical convergence test methodology that has been 
the work-horse of most previous convergence studies in mainstream economics is ill-
designed to analyse regional convergence due to several reasons. First, it cannot identify 
groupings of regional economies that are converging at different speed. Second, it 
neglects spatial effects that represent spatial interactions and spillovers among the 
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regional economies. The paper suggests a much richer and theoretically more 
satisfactory approach that incorporates spatial effects or externalities directly into the 
model and reflects recent developments in spatial econometrics. The two-club spatial 
error convergence model with club-wise heteroskedasticity appears to be the most 
appropriate specification in the face of the data now available.

This leads to the final point to note, namely that ignoring the presence of spatial error 
autocorrelation in convergence analysis carried out with cross-sectional data can lead to 
wrong conclusions, for example, with respect to the assessment of convergence speed. 
Thus, testing for the presence of spatial autocorrelation (heterogeneity) by means of 
appropriate diagnostics and implementing alternative specifications of the convergence 
test equation when needed are crucial issues in income convergence analysis.
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APPENDIX: List of the NUTS-Level 2 Regions by Country

Country Region Country Region

Austria Burgenland
Niederösterreich
Wien
Kärnten
Steiermark
Oberösterreich
Salzburg
Tirol
Vorarlberg

Belgium Région Bruxelles-Capitale
Antwerpen
Limburg (B)
Oost-Vlaanderen
Vlaams Brabant
West-Vlaanderen
Brabant Wallon
Hainaut
Liège
Luxembourg (B)
Namur

Bulgaria Severozapadan
Severoiztochen
Severozapad
Yugozapaden
Yuzhen Tsentralen
Yugoiztochen

Czech Republic Praha
Stredni Cechy
Jihozapad
Severozapad
Severovychod
Jihovychod
Stredni Morava
Moravskoslezsko

Denmark Denmark

Estonia Estonia

Finland Itä-Suomi
Väli-Suomi
Pohjois-Suomi
Uusimaa
Etelä-Suomi
Åland

France Île de France

Champagne-Ardenne
Picardie
Haute-Normandie
Centre
Basse-Normandie
Bourgogne
Nord-Pas-de-Calais
Lorraine
Alsace
Franche-Comté
Pays de la Loire
Bretagne
Poitou-Charentes
Aquitaine
Midi-Pyrénées
Limousin
Rhône-Alpes
Auvergne
Languedoc-Roussillon
Provence-Alpes-Côte d'Azur
Corse

Germany Stuttgart
Karlsruhe
Freiburg
Tübingen
Oberbayern
Niederbayern
Oberpfalz
Oberfranken
Mittelfranken
Unterfranken
Schwaben
Berlin
Brandenburg
Bremen
Hamburg
Darmstadt
Gießen
Kassel
Mecklenburg-Vorpommern
Braunschweig
Hannover
Lüneburg
Weser-Ems
Düsseldorf
Köln
Münster
Detmold
Arnsberg
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Country Region Country Region

Koblenz
Trier
Rheinhessen-Pfalz
Saarland
Chemnitz
Dresden
Leipzig
Dessau
Halle
Magdeburg
Schleswig-Holstein
Thüringen

Greece Anatoliki Makedonia, 
Thraki

Kentriki Makedonia
Dytiki Makedonia
Thessalia
Ipeiros
Ionia Nisia
Dytiki Ellada
Sterea Ellada
Peloponnisos
Attiki
Voreio Aigaio
Notio Aigaio
Kriti

Hungary Közép-Magyarország
Közép-Dunántúl
Nyugat-Dunántúl
Dél-Dunántúl
Észak-Magyarország
Észak-Alföld
Dél-Alföld

Ireland Border, Midland and 
Western

Southern and Eastern

Italy Piemonte
Valle d'Aosta
Liguria
Lombardia
Trentino-Alto Adige
Veneto
Friuli-Venezia Giulia
Emilia-Romagna
Toscana
Umbria
Marche
Lazio
Abruzzo

Campania
Puglia
Basilicata
Calabria
Sicilia
Sardegna

Latvia Latvia

Lithuania Lithuania

Luxembourg Luxembourg

The Netherlands Groningen
Friesland
Drenthe
Overijssel
Gelderland
Flevoland
Utrecht
Noord-Holland
Zuid-Holland
Zeeland
Noord-Brabant
Limburg (NL)

Poland Dolnoslaskie
Kujawsko-Pomorskie
Lubelskie
Lubuskie
Lódzkie
Malopolskie
Mazowieckie
Opolskie
Podkarpackie
Podlaskie
Pomorskie
Slaskie
Swietokrzyskie
Warminsko-Mazurskie
Wielkopolskie
Zachodniopomorskie

Portugal Norte
Centro (P)
Lisboa e Vale do Tejo
Alentejo
Algarve

Romania Nord-Est
Sud-Est
Sud

ctd.
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Molise

Country Region Country Region

ctd.
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Sud-Vest
Vest
Nord-Vest
Centru
Bucuresti

Slovenia Slovenia

Slovak Republic Bratislavský kraj
Západné Slovensko
Stredné Slovensko
Východné Slovensko

Spain Galicia
Principado de Asturias
Cantabria
Pais Vasco
Comunidad Foral de 

Navarra
La Rioja
Aragón
Comunidad de Madrid
Castilla y León
Castilla-la Mancha 
Extremadura
Cataluña
Comunidad Valenciana
Islas Baleares
Andalucia
Región de Murcia

Sweden Stockholm
Östra Mellansverige
Sydsverige
Norra Mellansverige
Mellersta Norrland
Övre Norrland
Småland med öarna
Västsverige

UK Tees Valley & Durham

Cumbria
Cheshire
Greater Manchester
Lancashire
Merseyside
East Riding & North 
Lincolnshire
North Yorkshire
South Yorkshire
West Yorkshire
Derbyshire & 
Nottinghamshire
Leicestershire, Rutland &
Northamptonshire
Lincolnshire
Herefordshire, 
Worcestershire & Warkwick
Shropshire & Staffordshire
West Midlands
East Anglia
Bedfordshire & Hertfordshire
Essex
Inner London
Outer London
Berkshire, Buckinghamshire 
Oxfordshire
Surrey, East & West Sussex
Hampshire & Isle of Wight
Kent
Gloucestershire, Wiltshire &
N. Somerset
Dorset & Somerset
Cornwall & Isles of Scilly
Devon
West Wales & The Valleys
East Wales
North Eastern Scotland
Eastern Scotland
South Western Scotland
Highlands and Islands
Northern Ireland

APPENDIX: List of the NUTS-LEVEL 2 Regions by Country and Data [1995, 2000]
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Country Region GRP 1995 GRP 2000

Austria Burgenland 3,970.2 4,548.0
Niederösterreich 27,345.8 33,339.7
Wien 50,273.3 56,410.0
Kärnten 10,732.1 12,074.8
Steiermark 22,498.9 25,749.3
Oberösterreich 29,054.7 33,722.3
Salzburg 13,142.0 15,109.4
Tirol 14,844.9 16,878.1
Vorarlberg 7,978.4 9,206.0

Belgium Région Bruxelles-Capitale 40,144.5 47,030.4
Antwerpen 39,915.6 46,211.3
Limburg (B) 13,818.4 16,140.2
Oost-Vlaanderen 24,503.9 28,677.4
Vlaams Brabant 20,440.0 25,621.6
West-Vlaanderen 21,528.2 25,031.6
Brabant Wallon 6,273.6 7,941.4
Hainaut 18,087.3 20,355.2
Liège 16,689.2 18,725.3
Luxembourg (B) 3,742.8 4,246.2
Namur 6,407.4 7,488.5

Bulgaria Severozapadan 622.3 915.3
Severoiztochen 1,293.7 1,804.6
Severozapad 1,445.4 2,024.3
Yugozapaden 3,494.8 4,729.4
Yuzhen Tsentralen 2,306.7 2,869.4
Yugoiztochen 856.0 1,391.1

Czech Republic Praha 8,574.8 13,838.7
Stredni Cechy 3,318.1 5,049.4
Jihozapad 4,327.6 5,958.3
Severozapad 4,079.6 5,005.8
Severovychod 5,007.5 6,916.6
Jihovychod 5,714.5 7,834.3
Stredni Morava 4,073.1 5,385.6
Moravskoslezsko 4,709.2 5,765.9

Denmark Denmark 137,793.4 173,889.0

Estonia Estonia 2,728.3 5,575.4

Finland Itä-Suomi 10,603.8 12,417.7
Väli-Suomi 11,569.1 14,497.2
Pohjois-Suomi 9,848.9 12,417.7
Uusimaa 33,498.1 48,400.5
Etelä-Suomi 32,778.6 42,538.7
Åland 599.8 873.3

France Île de France 335,628.3 402,824.2
Champagne-Ardenne 24,734.8 29,366.2
Picardie 31,215.2 35,514.7
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Haute-Normandie 33,234.5 39,407.2
Centre 44,856.6 51,521.3
Basse-Normandie 24,083.4 28,203.4
Bourgogne 29,357.6 34,570.7
Nord-Pas-de-Calais 63,338.0 74,780.4
Lorraine 39,984.1 44,676.0
Alsace 35,505.7 41,731.8
Franche-Comté 19,750.5 22,722.3
Pays de la Loire 55,459.3 67,784.8
Bretagne 47,721.7 58,379.7
Poitou-Charentes 26,869.2 31,656.0
Aquitaine 50,815.9 61,283.6
Midi-Pyrénées 44,006.5 52,754.9
Limousin 11,599.3 13,483.8
Rhône-Alpes 111,645.9 135,893.1
Auvergne 21,761.2 26,217.4
Languedoc-Roussillon 34,105.2 41,769.9
Provence-Alpes-Côte d'Azur 81,055.0 95,584.3
Corse 3,748.8 4,592.6

Germany Stuttgart 107,619.2 122,236.8
Karlsruhe 70,183.0 78,025.0
Freiburg 46,768.3 52,021.7
Tübingen 40,816.4 45,022.2
Oberbayern 123,699.1 145,301.0
Niederbayern 24,765.0 26,478.0
Oberpfalz 23,389.1 26,933.3
Oberfranken 25,358.9 26,769.7
Mittelfranken 43,936.2 49,407.4
Unterfranken 29,213.0 32,115.9
Schwaben 40,676.1 43,662.9
Berlin 80,783.1 75,113.2
Brandenburg 38,238.2 41,911.5
Bremen 20,602.9 21,935.7
Hamburg 66,235.5 72,043.5
Darmstadt 117,499.6 128,691.1
Gießen 21,779.7 23,439.4
Kassel 28,034.0 29,815.6
Mecklenburg-Vorpommern 27,218.7 28,707.0
Braunschweig 36,358.4 41,077.1
Hannover 50,998.3 54,180.3
Lüneburg 29,289.8 30,352.5
Weser-Ems 47,936.2 50,589.7
Düsseldorf 137,506.3 147,870.4
Köln 108,212.0 114,431.8
Münster 51,373.1 53,148.4
Detmold 46,503.6 50,238.0
Arnsberg 83,037.7 88,155.2
Koblenz 29,772.6 31,530.6
Trier 9,701.4 10,122.0
Rheinhessen-Pfalz 45,072.0 48,775.9
Saarland 23,708.4 24,040.0
Chemnitz 23,876.3 24,949.1
Dresden 27,090.8 28,573.1
Leipzig 18,942.2 19,045.5
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Dessau 7,744.6 8,164.0
Halle 13,541.7 14,135.5
Magdeburg 17,498.0 19,483.8
Schleswig-Holstein 59,759.8 62,103.5
Thüringen 35,467.5 39,402.5

Greece Anatoliki Makedonia, Thraki 4,071.5 5,306.5
Kentriki Makedonia 14,843.7 21,168.9
Dytiki Makedonia 2,481.4 3,514.6
Thessalia 5,523.6 7,870.3
Ipeiros 2,046.0 3,051.0
Ionia Nisia 1,450.7 2,092.5
Dytiki Ellada 5,015.9 6,521.0
Sterea Ellada 7,046.7 8,734.1
Peloponnisos 4,480.9 6,666.2
Attiki 34,220.5 45,924.1
Voreio Aigaio 1,427.4 2,070.1
Notio Aigaio 2,559.2 3,756.0
Kriti 4,720.8 6,446.2

Hungary Közép-Magyarország 3,372.2 5,612.1
Közép-Dunántúl 13,954.9 21,799.2
Nyugat-Dunántúl 3,433.7 5,647.1
Dél-Dunántúl 2,720.0 3,671.3
Észak-Magyarország 3,156.8 4,125.5
Észak-Alföld 3,673.1 4,863.4
Dél-Alföld 3,808.0 4,852.4

Ireland Border, Midland and Western 10,253.8 19,760.0
Southern and Eastern 40,582.1 83,150.0

Italy Piemonte 73,937.6 101,242.1
Valle d'Aosta 2,346.9 2,931.1
Liguria 25,128.7 34,576.3
Lombardia 173,808.8 242,192.7
Trentino-Alto Adige 17,708.0 25,372.6
Veneto 76,416.5 106,677.0
Friuli-Venezia Giulia 20,040.7 26,776.2
Emilia-Romagna 73,652.2 102,166.3
Toscana 56,215.9 79,502.2
Umbria 11,858.7 16,687.7
Marche 21,059.2 29,596.5
Lazio 86,176.1 118,138.5
Abruzzo 15,863.9 21,166.7
Molise 3,637.5 5,088.2
Campania 53,242.8 74,529.6
Puglia 38,537.5 54,153.7
Basilicata 6,084.6 8,763.7
Calabria 18,001.1 25,067.3
Sicilia 47,467.4 65,574.5
Sardegna 17,857.6 24,564.0

Latvia Latvia 3,378.2 7,775.6



28

Lithuania Lithuania 4,606.8 12,218.0

Luxembourg Luxembourg 13,827.7 20,815.0

The Netherlands Groningen 13,606.6 15,953.2
Friesland 10,459.5 13,046.0
Drenthe 7,851.0 9,434.5
Overijssel 18,552.2 23,226.4
Gelderland 33,689.0 42,319.7
Flevoland 4,187.4 5,869.0
Utrecht 26,145.8 35,494.6
Noord-Holland 58,298.9 74,789.0
Zuid-Holland 71,229.7 89,677.5
Zeeland 7,284.0 8,277.3
Noord-Brabant 45,680.1 59,168.7
Limburg (NL) 20,339.0 25,343.1

Poland Dolnoslaskie 7,821.4 13,601.3
Kujawsko-Pomorskie 5,243.8 8,331.0
Lubelskie 4,356.2 6,767.5
Lubuskie 2,508.5 4,061.5
Lódzkie 6,181.1 10,386.4
Malopolskie 7,095.4 12,740.0
Mazowieckie 15,854.9 33,981.0
Opolskie 2,719.8 4,106.2
Podkarpackie 4,100.1 6,693.2
Podlaskie 2,330.4 4,016.4
Pomorskie 5,461.3 9,759.2
Slaskie 15,229.0 23,645.0
Swietokrzyskie 2,662.3 4,580.0
Warminsko-Mazurskie 2,913.4 4,832.6
Wielkopolskie 8,249.5 15,831.8
Zachodniopomorskie 4,451.5 7,563.5

Portugal Norte 24,850.0 33,664.8
Centro (P) 11,613.7 15,887.5
Lisboa e Vale do Tejo 36,097.7 51,525.9
Alentejo 3,694.0 4,746.7
Algarve 2,900.6 4,156.7

Romania Nord-Est 3,618.3 4,784.0
Sud-Est 3,475.2 4,671.9
Sud 4,016.7 5,104.9
Sud-Vest 2,794.2 3,631.6
Vest 2,708.9 3,766.7
Nord-Vest 3,236.6 4,737.1
Centru 3,443.9 5,048.5
Bucuresti 3,806.4 8,427.8

Slovenia Slovenia 14,343.1 19,531.8

Slovak Republic Bratislavský kraj 3,361.0 5,201.1
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Západné Slovensko 4,799.0 6,882.0
Stredné Slovensko 3,173.6 4,513.6
Východné Slovensko 3,304.9 4,735.8

Spain Galicia 25,102.0 32,593.7
Principado de Asturias 10,813.9 13,854.0
Cantabria 5,584.6 7,872.7
Pais Vasco 28,249.9 38,886.7
Comunidad Foral de Navarra 7,617.3 10,507.3
La Rioja 3,416.5 4,484.4
Aragón 14,614.3 19,068.2
Comunidad de Madrid 75,126.2 105,130.6
Castilla y León 27,296.8 34,792.9
Castilla-la Mancha 15,772.6 21,220.9
Extremadura 7,695.2 10,565.5
Cataluña 84,558.2 113,942.0
Comunidad Valenciana 42,277.3 59,395.4
Islas Baleares 10,281.6 14,412.3
Andalucia 59,984.5 82,170.4
Región de Murcia 10,248.3 14,342.5

Sweden Stockholm 45,301.0 73,658.5
Östra Mellansverige 29,376.6 37,497.9
Sydsverige 24,718.7 34,631.3
Norra Mellansverige 17,965.9 20,817.4
Mellersta Norrland 8,667.2 10,044.4
Övre Norrland 11,265.5 12,938.0
Småland med öarna 16,596.6 21,275.9
Västsverige 35,996.7 49,256.8

UK Tees Valley & Durham 14,223.4 23,144.9
Cumbria 17,808.6 29,131.1
Cheshire 7,366.6 11,728.0
Greater Manchester 16,770.2 29,377.6
Lancashire 34,526.4 59,597.6
Merseyside 18,304.0 30,216.0
Cumbria 15,059.9 25,783.4
Cheshire 12,583.4 21,833.7
Greater Manchester 10,124.3 18,425.4
Lancashire 14,145.1 25,442.0
Merseyside 28,825.5 50,578.9
East Riding & North Lincolnshire 26,235.7 47,192.8
North Yorkshire 23,214.6 41,725.8
South Yorkshire 7,678.4 13,928.1
West Yorkshire 17,025.3 30,921.1
Derbyshire & Nottinghamshire 18,396.1 33,624.3
Leicestershire, Rutland & Northamptonshire 37,645.1 63,735.3
Lincolnshire 33,531.6 62,672.6
Herefordshire, Worcestershire & Warkwick 23,662.9 44,871.5
Shropshire & Staffordshire 20,860.9 39,576.2
West Midlands 94,341.1 177,346.4
East Anglia 54,503.7 101,994.2
Bedfordshire & Hertfordshire 37,491.0 72,186.3
Essex 36,231.3 71,368.1
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Inner London 25,536.2 50,904.2
Outer London 21,806.5 38,846.9
Berkshire, Buckinghamshire & Oxfordshire 33,661.0 59,850.2
Surrey, East & West Sussex 14,972.8 26,953.2
Hampshire & Isle of Wight 4,552.2 8,400.5
Kent 12,880.2 22,276.1
Gloucestershire, Wiltshire & Na Somerset 20,135.8 34,610.2
Dorset & Somerset 16,098.8 27,391.6
Cornwall & Isles of Scilly 10,154.3 16,079.8
Devon 29,518.7 49,698.0
West Wales & The Valleys 33,510.6 56,421.7
East Wales 4,428.4 7,206.5
North Eastern Scotland 19,932.9 34,351.6


