
ePubWU Institutional Repository

Harald Badinger and Peter Egger

Estimation and Testing of Higher-Order Spatial Autoregressive Panel Data
Error Component Models

Article (Accepted for Publication)
(Refereed)

Original Citation:
Badinger, Harald and Egger, Peter (2013) Estimation and Testing of Higher-Order Spatial
Autoregressive Panel Data Error Component Models. Journal of Geographical Systems, 15 (4).
pp. 453-489. ISSN 1435-5930

This version is available at: http://epub.wu.ac.at/5468/
Available in ePubWU: March 2017

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates
referee comments.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/84318706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/5468/
http://epub.wu.ac.at/


 1 

 

 

Estimation and Testing of Higher-Order Spatial Autoregressive  

Panel Data Error Component Models  

 

 

Harald Badinger 

Department of Economics, Vienna University of Economics and Business 

 

Peter Egger 

Department of Management, Technology, and Economics at ETH Zürich; CEPR 

 

 

May 2012 

 

 

Abstract: This paper develops an estimator for higher-order spatial autoregressive panel data 

error component models with spatial autoregressive disturbances, SARAR(R,S). We derive 

the moment conditions and optimal weighting matrix without distributional assumptions for a 

generalized moments (GM) estimation procedure of the spatial autoregressive parameters of 

the disturbance process and define a generalized two-stage least squares estimator for the 

regression parameters of the model. We prove consistency of the proposed estimators, derive 

their joint asymptotic distribution, and provide Monte Carlo evidence on their small sample 

performance. 
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I. Introduction 

This paper considers the estimation of panel data models with higher-order spatially 

autocorrelated error components and spatially autocorrelated dependent variables (SARAR). 

Spatial interactions in data may originate from various sources such as strategic interaction 

between jurisdictions (to attract firms or other mobile agents) and firms (in their price, 

quantity, or quality setting) or general equilibrium effects which disseminate with spatial 

decay due to their transmission through trade flows, migration, or input-output relationships.
1
 

 

Data sets used in empirical studies often share two features: first, they are available in the 

form of panel data, with a large cross-sectional and a small time series dimension. Second, 

spatial interactions of various kinds co-exist – such as geography-related, trade-related, 

migration-related interactions – or the decay function of a single spatial interaction is 

unknown. The estimator proposed here addresses these two features in a unified framework 

and provides a flexible setup for applied work, allowing specification tests, estimation, and 

inference in higher-order random effects panel data models.  

 

There are two main motivations for the use of higher-order models. First, the distance 

between two cross-sectional units is not necessarily (only) geographical in nature, a point 

prominently made in the political science literature by Beck, Gleditsch, and Beardsley (2006). 

Possible candidates for channels of spatial dependence beyond adjacency or geographical 

distance between units (such as countries) relate to i) economic distance (e.g., trade, cross-

border lending, migration, input-output relationships, profit shifting of multinational firms), 

ii) socio-economic distance (e.g., differences in per capita income, age structure, ethnic 

composition of population), iii) cultural distance (language, index of individualism, religion), 

or iv) political/institutional distance (electoral systems, degree of federalism, voting in 

international organisations). A higher-order approach allows including several weights 

matrices that are based on alternative concepts of distance, whose relative importance to each 

other is unknown. Apart from the fact that assessing the relevance of alternative transmission 

channels of spillovers is of interest in itself, wrongly imposing a first-order spatial regressive 

process may misattribute part of the spatial dependence in the data (due to omitted 

transmission channels) to the single transmission channel included in the model. As a 

consequence, the estimates of the spatial regressive parameters and their standard errors will 

then be biased and inconsistent.  

 

Second, even with only one channel of interdependence (e.g., related to geographical 

distance), the functional form of the true distance decay function, reflected in the elements of 

the weights matrix, is typically unknown. The standard approach to assume a known spatial 

                                                 
1
 See Anselin (2007) and Pinkse and Slade (2010) for surveys on the past, present, and future 

of spatial econometrics. A recent textbook on the matter is Le Sage and Pace (2009). 
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weights matrix with binary elements (e.g., for nearest neighbours) or elements that are 

specified as a decreasing function of distance (with known functional form and known 

distance decay parameter) seems highly restrictive. In fact, the distance decay function may 

exhibit discontinuities (e.g., border effects for interactions between units of different 

jurisdictions or countries) or a decay which is different from the one that is assumed by the 

researcher. Then, allowing subsets of the elements of the weights matrix to bear different 

spatial regressive parameters may significantly reduce the bias rooting in the assumption of an 

inadequate, preimposed decay function in a single weights matrix  

 

The specification of higher-order models introduces non-trivial issues regarding the 

specification, interpretation, and estimation of these models. See Elhorst, Lacombe, and Piras 

(2012) and LeSage and Pace (2012) for a discussion of potential pitfalls in the use of higher-

order models. However, these complications can be dealt with, while the alternative to stick 

with a misspecified first-order model for the sake of simplicity may result in inferior 

estimates. At the very least, the robustness of the results from a first order specification 

should be thoroughly explored, not only against variations in the specification of a single 

weights matrix (as is common in applied work), but also against the inclusion of further 

weights matrices, whenever economic theory suggests various channels of interdependence.  

 

Estimation and testing of both random and fixed effects spatial regressive panel data models 

has been considered in the recent literature by Baltagi, Song, and Koh (2003) and Lee and Yu 

(2010) in a maximum likelihood framework and by Kapoor, Kelejain and Prucha (2007) as 

well as Mutl and Pfaffermayr (2011) using the generalized moments (GM) approach 

introduced by Kelejian and Prucha (1999). Obvious advantages of GM over ML estimation 

are that it does not rely on distributional assumptions and its computational simplicity. 

Moreover, comprehensive (cross-sectional) Monte Carlo Evidence by Arraiz, Drukker, 

Kelejian and Prucha (2010) shows that the large sample distribution provides a good 

approximation to the actual small sample distribution of the GM estimators of spatial 

regressive models. 

 

The present paper builds on Kapoor, Kelejian, and Prucha (2007). They propose a GM 

estimator for the parameters of the spatial regressive error process in a random effects panel 

data model without endogenous explanatory variables (such as spatial lags of the dependent 

variable), derive a simplified weighting matrix for the moment conditions under the 

assumption of normally distributed error components, and prove consistency of the GM 

estimates. They also establish the asymptotic distribution of the regression parameters of the 

feasible generalized least squares (FGLS) estimates of the parameters of the main equation.  

 

The present paper extends the estimation framework in Kapoor, Kelejian, and Prucha (2007) 

in several respects. In particular, it makes the following contributions: 

 First, we do not only prove consistency of the proposed estimators but also derive the 

joint asymptotic distribution of the feasible generalized (two-stage) least squares 



 4 

estimates of the regression parameters and the GM estimates of the parameters of the 

spatial regressive disturbance process. 

 Second, we allow for endogenous variables, including spatial lags of the dependent 

variable in the main equation, which is shown to affect the optimal weighting matrix 

for the moment conditions and the distribution of the GM estimates.  

 Third, we dispense with the assumption of normally distributed error components, 

used by Kapoor, Kelejian, and Prucha (2007) to derive a simplified weighting matrix 

of the moments, retaining one of the main advantages of the GM approach of 

maximum-likelihood estimation.  

 Fourth, we allow for higher-order rather than only first-order spatial regressive 

processes in both the dependent variable and the error process. This enables a more 

flexible design of the ‘spatial’ interdependence decay function and allows for the co-

existence of more than one mode of interdependence as often suggested by economic 

theory (see Lee and Liu, 2010; and Badinger and Egger, 2011; for a treatment of 

higher-order spatial models with cross-section data).
 
 

 Finally, we provide some Monte Carlo evidence on the small sample performance of 

the proposed estimation procedure.  

 

The remainder of the paper is organized as follows. Section II introduces the basic model 

specification. Section III proposes GM estimators of the parameters of spatial dependence in 

the error components. Section IV derives a two-stage least-squares (TSLS) routine to estimate 

the regression parameters of the model and derives the asymptotic distribution of all model 

parameters. Section V presents the results of a Monte Carlo simulation and section VI 

concludes. The detailed proofs are relegated to a technical appendix. 

 

 

II. Basic Model Specification and Notation 

The basic specification is a generalization of Kapoor, Kelejian, and Prucha (2007), who 

consider a panel data error components model with nonstochastic explanatory variables and 

first-order spatial autoregressive disturbances, i.e., a SAR(1) model. The present paper allows 

for an R-th order spatial autoregressive process in the dependent variable and an S-th order 

spatial process in the disturbances, i.e., we consider a SARAR(R,S) panel data error 

components model with Ni ,...,1  cross-sectional units and Tt ,...,1  time periods.
2
 For time 

period t, the model reads 

 

                                                 
2
 Except for the ones on error components, the catalogue of assumptions in this paper extends 

to the case of fixed effects estimation (see Mundlak, 1978, for an early treatment of "within" 

parameter estimation in the context of an error components model). 
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 )()()()(
1

,, tttt N

R

r

NNrNrNNN uyWβXy  


 , or  (1a) 

 )()()( ttt NNNN uδZy  , (1b) 

 

where )(tNy  is an 1N  vector with cross-sectional observations of the dependent variable in 

year t, )(tNX  is an KN   matrix of observations on K  non-stochastic explanatory variables, 

i.e., )](),...,([)( ,,1 ttt NKNN xxX   with each 1N  vector )(, tNkx  denoting the observations on 

the k-th explanatory variable. The structure of spatial dependence in )(tNy  is determined by 

the time-invariant NN   matrices Nr ,W , Rr ,...,1 , whose elements Nrijw ,,  are assumed to 

be known (and often specified as decreasing function of geographical distance). The 

expression )()( ,, tt NNrNr yWy   is referred to as the r-th spatial lag of Ny . The specification 

of a higher-order process allows the strength of spatial interdependence in the dependent 

variable (reflected in the spatial autoregressive parameters Nr , , Rr ,...,1 ) to vary across a 

fixed number of R  subsets of relations between cross-sectional units. 

 

In Equ. (1b), the )( RKN   design matrix is given by )](),([)( ttt NNN YXZ  , with 

)](),...,([)( ,,1 ttt NRNN yyY  , and ),(  NNN λβδ , where the 1K  parameter vector of the 

exogenous variables is given by ),...,( ,,1
 NKNN βββ  and the 1R  vector of spatial 

autoregressive parameters of Ny  is defined as ),...,( ,,1
 NRNN λ .  

 

The 1N  vector of error terms ])(),...,([)( ,,1
 tutut NNNNu  is assumed to follow a spatial 

autoregressive process given by  

 

 )()()(
1

,, ttt N

S

m

NNmNmN εuMu 


 , (1c) 

 )()( tt NNN vμε  ,   (1d) 

 

where Nm,  and Nm,M  denote the time-invariant, unknown parameters and the known NN    

matrix of spatial interdependence, respectively. The structure of spatial correlation in the 

disturbances is determined by the S  different, time-invariant NN   matrices Nm,M . The 

expression )()( ,, tt NNmNm uMu   is referred to as the m-th spatial lag of Nu . The 1S  vector 

of the spatial autoregressive parameters of )(tNu  is defined as .),...,( ,,1
 NSNN ρ  

 

Finally, the 1N  vector of error terms )(tNε  consists of two components, Nμ  and )(tNv . As 

indicated by the notation, Nμ  is time-invariant while )(tNv  is not. The typical elements of 
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)(tNε  and )(tNv  are the scalars Nit ,  and Nitv , , respectively, and the 1N  vector of unit-

specific error components is given by ),...,( ,,1
 NNNN μμμ . 

  

Stacking observations for all time periods such that t  is the slow index and i  is the fast index 

with all vectors and matrices, the model reads 

 

 NNNNNN uλYβXy  , or  (2a) 

 NNNN uδZy  , (2b) 

 

with the KNT   regressor matrix ])(),...,1([  TNNN XXX , and ),...,( ,,1 NRNN yyY  , where  

])(),...,1([ ,,,
 TNrNrNr yyy  is the 1NT  vector of observations on the r-th spatial lag of the 

dependent variable Nr ,y . The 1NT  vector of disturbances )](),...,1([ TNNN uuu   for the 

spatial autoregressive process of order S  is given by  

 

 N

S

m

NNmTNmN εuMIu 
1

,, )( , (2c) 

 

where TI  is an identity matrix of dimension TT  . The 1NT  vector ])(),...,1([  TNNN εεε  

is specified as  

 

  NNNTN vμIeε  )( , (3a) 

 

where Te  is a unit vector of dimension 1T  and NI  is an identity matrix of dimension 

NN  . In light of (2c), the error term can also be written as  

 

 



S

m

NNmNmNT

S

m

NNmTNmNN

1

,,

1

,, )()( uMIIuMIuε  . (3b) 

 

It follows that  

 

 



S

m

NNmNmNTN

1

1

,, ])([ εMIIu  , and  (4a) 

 N

R

r

NrNrNTNN

R

r

NrNrNTN t uWIIβXWIIy ])([)(])([ 1

1

,,

1

1

,,









   , (4b) 

 

The following assumptions are maintained throughout this paper.  

Assumption 1.  
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Let T be a fixed positive integer. (a) For all Tt 1  and 1,1  NNi , the error 

components Nitv ,  are identically and (mutually) independently distributed with 0)( , NitvE , 

22

, )( vNitvE  , where  vv b20  , and 
4

,NitvE  for some 0 . (b) For all 

1,1  NNi , the unit-specific error components Ni,  are identically and (mutually) 

independently distributed with 0)( , NiE  , 22

, )(  NiE , where   b20 , and 





4

,NiE  for some 0 . (c) The processes }{ ,Nitv  and }{ ,Ni  are independent of each 

other. Assumption 1 is slightly stronger than that in Kapoor, Kelejian, and Prucha (2007), 

since it requires not only the fourth but also the )4(  -th moments of the error components 

to be finite for some 0 . This is required to invoke the central limit theorem of Kelejian 

and Prucha (2010) in the derivation of the asymptotic distribution in section III.  

 

Assumption 1 implies that  

 

 22

,, )( vNjsNitE     for ji  and st  ,      (5a) 

 2

,, )(  NjsNitE  for ji   and st  ,            (5b) 

 0)( ,, NjsNitE  , otherwise.                                (5c) 

  

As a consequence, the variance-covariance matrix of the stacked error term Nε  reads 

 

 NTvNTNNN E IIJεεΩε

22

, )()(   , (6a) 

 

where TTT eeJ   is a TT   matrix with unitary elements and NTI  is an identity matrix of 

dimension NT  NT. Eq. (6a) can also be written as  

 

 NNvN ,1

2

1,0

2

, QQΩε   , (6b) 

 

where 222

1  Tv  . The two matrices N,0Q  and N,1Q , which are central to the estimation 

of error component models and the moment conditions of the GM estimator, are defined as    

 

 N
T

TN
T

I
J

IQ  )(,0 , (7) 

 N
T

N
T

I
J

Q ,1 . (8) 
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Notice that N,0Q  and N,1Q  are both of order NT  NT, symmetric, idempotent, orthogonal to 

each other, and sum up to NTI .  

 

Assumption 2.  

(a) All diagonal elements of Nr ,W , Rr ,...,1 , and Ns,M , Ss ,...,1 , are zero. Without loss of 

generality, we assume that they are row-normalized in the following. b) The parameters Nr , , 

r = 1, …, R, and Ns, , s = 1, …, S, are finite and contained in the admissible parameter spaces 

),(,
rr

NNNr aa


   and ),(,
ss

NNNs aa


  ; with row-normalized matrices, we have  1
1

, 


R

r

Nr   

and 1
1

, 


S

s

Ns .
3
 

Assumption 2 ensures invertibility of )(
1

,,



S

m

NmNmN MI   and )(
1

,,



R

r

NrNrN WI   and thus 

that Ny  and Nu  are uniquely identified by (4a) and (4b). 

 

We emphasize that all results of the present paper hold under alternative normalizations of the 

weights matrices with corresponding modifications of the admissible parameter space (Lee 

and Liu, 2010). Notice further that the assumptions regarding the admissible parameters space 

given here and in Lee and Liu (2010) are sufficient but not necessary and might be overly 

restrictive. A detailed discussion of a possible relaxation of the constraints on the admissible  

parameter space is provided by Koch (2011a,b), Elhorst, Lacome, and Piras (2012), and 

LeSage and Pace (2012). 

 

Assumption 3.  

The row and column sums of Nr ,W , Rr ,...,1 , Ns,M , Ss ,...,1 , 1

1

,, )( 




R

r

NrNrN WI  , and 

1

1

,, )( 




S

m

NmNmN MI   are bounded uniformly in absolute value.  

 

By Assumptions 1-3 and Remark A.1 in the Appendix, it follows that 0u )( NE  and the 

variance-covariance matrix of Nu  is given by  

 

 






 
S

m

NmNmNT

S

m

NNmNmNTNNN E
1

1

,,

1

,

1

,,, ])([])([)( MIIΩMIIuuΩu   , and (9a) 

                                                 
3
 All results of the present paper hold under alternative normalizations of the weights matrices 

with corresponding modifications of the admissible parameter space (Lee and Liu, 2010). 
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S

m

NmNmN

S

m

NmNmNvNN ttE
1

1

,,

1

1

,,

22 )())(()]()([ MIMIuu   . (9b) 

 

All variables (including NX ) and parameters except for the variances of the error components 

are allowed to depend on sample size N. As a result, the model specification in Eqs. (1a)-(1c) 

allows for higher-order spatial dependence in the dependent variable, the explanatory 

variables, and the disturbances. 

 

III. GM Estimation of a SAR(S) Model 

Below, we derive GM estimators for the spatial autoregressive parameters of the disturbance 

process (1c) and the asymptotic joint distribution of all model parameters.  

 

1. Moment Conditions  

With an S-th order process (SAR(S), with 1S ), GM estimators of NSN ,,1 ,..., , 2

v , and 2

1  

are obtained by recognizing that – under Assumptions 1 and 2 – the moment conditions used 

by Kapoor, Kelejian, and Prucha (2007) hold for each matrix Ns,M , Ss ,...,1 . Define for 

each Ns,M , Ss ,...,1  

 

])()[()(
1

,,,,, 



S

m

NNmTNmNNsTNNsTNs uMIuMIεMIε  . (10) 

 

The moment conditions are then given by 

 

Ma  
2

,0,0 ]
)1(

1
[]

)1(

1
[ vNNNNNN

TN
E

TN
E 





vQvεQε , (11)    

M1,s  )(
1

])(
)1(

1
[]

)1(

1
[ ,,

2

,0,,,0,,0, NsNsvNNNsNsTNNNsNNs tr
NTN

E
TN

E MMvQMMIQvεQε 





 , 

M2,s  0])(
)1(

1
[]

)1(

1
[ ,0,,0,0, 





NNNsTNNNNNs

TN
E

TN
E vQMIQvεQε , 

Mb  
2

1,1,1 )
1

(])(
1

[)
1

( 
NNNNNTTNNNN

N
E

N
E

N
E vQvμIeeμεQε ,  

M3,s ])(
1

[])(
1

[)
1

( ,1,,,1,,,,1, NNNsNsTNNNNsNsTTNNsNNs
N

E
N

E
N

E vQMMIQvμMMeeμεQε   

 )(
1

,,

2

1 NsNstr
N

MM  , 

M4,s  0])(
1

[])(
1

[)
1

( ,1,,1,,1, 
NNNsTNNNNsTTNNNNs

N
E

N
E

N
E vQMIQvμMeeμεQε , 

 



 10 

where 222

1  Tv  . The moment conditions associated with matrices Ns,M , Ss ,...,1 , 

through (10), are indexed with subscripts 1 to 4. The remaining two moment conditions are 

independent of s  and denoted as Ma and Mb. For an S-th order process as in (2c), we thus 

have ( 24 S ) moment conditions.  

 

It is apparent that under Assumptions 1-3 from M1,s and M3,s that there are potentially 

)1( SS  further moment conditions, namely 

 sstr
NTN

E NsNsvNsNNs



  ),(

1
]

)1(

1
[ ,,

2

,,0, MMεQε   from M1,s and 

 sstr
NN

E NsNsNsNNs


  ),(
1

)
1

( ,,

2

1,,1, MMεQε   from M3,s
4
. For simplicity, we use only the 

moment conditions in (11) below, which are always available for weights matrices satisfying 

Assumptions 1 and 2. However, the results carry over to the more general estimator using all 

2)1(4  SSS  moment conditions. 

 

Substituting (3b), (10), and (1c) into the 24 S  moment conditions (11) yields a ( 24 S ) 

equation system in ),,,...,( 2

1

2

,,1  vNSN , which can be written as    

 

 0Γγ  NNN b ,   (12) 

 

where Nb  is a 1]22/)1(2[  SSS  vector, given by 

 

 ),,,...,,...,,,..., ,,...,( 2

1

2

,,1,,1,2,1

2

,

2

,1,,1
   vNSNSNSNNNNSNNSNNb ,  

 

i.e., Nb  contains S linear terms Nm, , Sm ,...,1 , S quadratic terms 2

, Nm , Sm ,...,1 , 

2/)1( SS cross products NlNm ,,  , SmlSm ,...,1  ,1,...,1  , as well as 2

v  and 2

1 . For 

later reference, we define the 1)2( S  vector of all parameters as 

), ,,...,(),,( 2

1

2

,,1

2

1

2   vNSNvNN ρθ . 

 

Nγ  is a 1)24( S  vector with elements ][ ,Ni , )24(,...,1  Si , and NΓ  is a 

)24( S  ]22/)1(2[  SSS  matrix with elements ][ ,, Nji , )24(,...,1  Si , 

                                                 
4
 The efficiency gain from using these additional moment conditions depends on the 

properties of the weights matrices. If two weights matrices are orthogonal, i.e., 0MM 
 NsNs ,, , 

the corresponding moment condition is trivially satisfied for any set of (finite) parameter 

values and does not add any information. 
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]22/)1(2[,...,1  SSSj . The elements Ni,  and Nji ,,  will be defined below. The row-

index of the elements Nγ  and NΓ  will be chosen such that the equation system (12) has the 

following order. The first four rows correspond to moment restrictions M1,1 to M4,1 associated 

with matrix N,1M  through (10); rows five to eight correspond to M1,2 to M4,2 associated with 

matrix N,2M , and so forth; rows )4( S  to S4  correspond to the M1,S to M4,S associated with 

matrix NS ,M . Finally, rows )14( S  and )24( S  correspond to moment conditions Ma and 

Mb, respectively, which are independent of s.  

 

The sample analogue to (12) is given by  

 

 )(
~~

NNNNN θΓγ  b ,  (13) 

 

where the elements of Nγ
~  and NΓ

~
 are equal to those of Nγ  and NΓ  with the expectations 

operator suppressed and the disturbances Nu  replaced by (consistent) estimates Nu~ .  

 

GM estimates of parameters NSN ,,,1 ..., , 2

v  and 2

1 are then obtained as the solution to  

 

 )](
~

)([)]
~~(

~
)

~~[(minarg
2
1

2
21 ,,,..,,

NNNNNNNNNNNN

vS

 θΘθΓγΘΓγ 


 bb ,  (14) 

 

i.e., the parameter estimates can be obtained from a (weighted) non-linear least squares 

regression of Nγ
~  on the columns of NΓ

~
. The optimal choice of the )24()24(  SS  

weighting matrix NΘ  will be discussed below.  

 

Below, we define the elements of Nγ  and NΓ , grouped by the corresponding moment 

conditions, using  

 

 NNsTNs uMIu )( ,,  , Ss ,...,1 , and  (15a) 

 NNmNsTNNmTNsTNsm uMMIuMIMIu )())(( ,,,,,  , Ss ,...,1 , Sm ,...,1 . (15b) 

 

M1,s delivers Ss ,...,1  rows 1)1(4 s  in (12): 

 
)1(

1
,1)1(4




TN
Ns  )( ,,0, NsNNsE uQu , (16a)     

 )(
)1(

2
,,0,,,1)1(4 NsmNNsNms E

TN
uQu


 , Sm ,...,1 , 
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 )(
)1(

1
,,0,,,1)1(4 NsmNNsmNmSs E

TN
uQu


 , Sm ,...,1 , 

 )(
)1(

2
,,0,,2/)1()1(,1)1(4 NslNNsmNmlmmmSs E

TN
uQu


 , 1,...,1  Sm , Sml ,...,1 , 

 )(
1

,,,12/)1(2,1)1(4 NsNsNSSSs tr
N

MM ,  

0,22/)1(2,1)1(4  NSSSs . 

 

M2,s consists of Ss ,...,1  rows 2)1(4 s  in (12): 

 )(
)1(

1
,0,,2)1(4 NNNsNs E

TN
uQu


 , (16b)      

 )(
)1(

1
,,0,,0,,,2)1(4 NmNNsNNNsmNms E

TN
uQuuQu 


 , Sm ,...,1 ,   

 )(
)1(

1
,,0,,,2)1(4 NmNNsmNmSs E

TN
uQu


 , Sm ,...,1 ,   

 )(
)1(

1
,,0,,,0,,2/)1()1(,2)1(4 NlNNsmNmNNslNmlmmmSs E

TN
uQuuQu 


 , 1,...,1  Sm , 

 Sml ,...,1 , 

 0,12/)1(2,2)1(4  NSSSs , 

 0,22/)1(2,2)1(4  NSSSs . 

 

M3,s corresponds to Ss ,...,1  rows 3)1(4 s  in (12): 

 
N

Ns

1
,3)1(4  )( ,,1, NsNNsE uQu , (16c)  

 )(
2

,,1,,,3)1(4 NsmNNsNms E
N

uQu , Sm ,...,1 , 

 )(
1

,,1,,,3)1(4 NsmNNsmNmSs E
N

uQu , Sm ,...,1 , 

 )(
2

,,1,,2/)1()1(,3)1(4 NslNNsmNmlmmmSs E
N

uQu , 1,...,1  Sm , Sml ,...,1 ,   

 0,12/)1(2,3)1(4  NSSSs , 

)(
1

,,,22/)1(2,3)1(4 NsNsNSSSs tr
N

MM . 

 

M4,s represents Ss ,...,1  rows 4)1(4 s  in (12): 

 )(
1

,1,,4)1(4 NNNsNs E
N

uQu , (16d)    

 )(
1

,,1,,1,,,4)1(4 NmNNsNNNsmNms E
N

uQuuQu  , Sm ,...,1 ,   
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 )(
1

,,1,,,4)1(4 NmNNsmNmSs E
N

uQu , Sm ,...,1 ,   

 )(
1

,,1,,,1,,2/)1()1(,4)1(4 NlNNsmNmNNslNmlmmmSs E
N

uQuuQu  , 1,...,1  Sm , Sml ,...,1 ,   

 0,12/)1(2,4)1(4  NSSSs , 

 0,22/)1(2,4)1(4  NSSSs . 

 

Ma reflects the equation in row ( 14 S ) of (12): 

 )(
)1(

1
,0,14 NNNNS E

TN
uQu


 , (16e)   

 )(
)1(

2
,0,,,14 NNNmNmS E

TN
uQu


 , Sm ,...,1 ,    

 )(
)1(

1
,,0,,,14 NmNNmNmSS E

TN
uQu


 , Sm ,...,1 ,    

 )(
)1(

2
,,0,,2/)1()1(,14 NlNNmNmlmmmSS E

TN
uQu


 , 1,...,1  Sm , Sml ,...,1 ,   

 1,12/)1(2,14  NSSSS ,  

 0,22/)1(2,14  NSSSS . 

 

Mb is associated with row )24( S  of (12): 

 )(
1

,1,24 NNNNS E
N

uQu , (16f)   

 )(
2

,1,,,24 NNNmNmS E
N

uQu , Sm ,...,1 ,    

 )(
1

,,1,,,24 NmNNmNmSS E
N

uQu , Sm ,...,1 ,    

 )(
2

,,1,,2/)1()1(,24 NlNNmNmlmmmSS E
N

uQu , 1,...,1  Sm , Sml ,...,1 ,   

 0,12/)1(2,24  NSSSS , 

 1,22/)1(2,24  NSSSS . 

 

For future reference, we define the 1)12( S  vector 0

Nγ  as the sub-vector containing rows 

s  and )1( s , Ss ,...,1  and row )14( S of Nγ , corresponding to M1,s, M2,s, and Ma. 

Moreover, we define the )12( S  ]12/)1(2[  SSS  matrix 0

NΓ  as the sub-matrix 

containing rows s  and )1( s , Ss ,...,1 , and row )14( S  of NΓ , corresponding to M1,s, 

M2,s, and Ma. 
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Analogously, we define the 1)12( S  vector 1

Nγ  as the sub-vector containing rows s2 , 

)12( s , Ss ,...,1 , and row )24( S  of Nγ , corresponding to M3,s, M4,s, and Mb. Finally, we 

define the )12( S  ]12/)1(2[  SSS  matrix 1

NΓ  as the sub-matrix containing rows s2 , 

)12( s , Ss ,...,1 , and )24( S  of NΓ , corresponding to M3,s, M4,s, and Mb. 

 

2. Definition of GM Estimators  

We next define three alternative GM estimators for the spatial autoregressive parameters of 

the disturbance process given by (1c) and the variances of the error components.
5
  

 

2.1. Initial GM Estimation 

The initial GM estimator is a special case of (14), using the identity matrix as weighting 

matrix NΘ  and a subset of moment conditions (Ma, M1,s and M2,s) only. It is based on 0

Nγ  and 

0

NΓ . Define 0

Nθ  as the corresponding parameter vector that excludes 2

1 , i.e., 

),,...,(),( 2

,,1

20

vNSNvN   ρθ , and accordingly 

),,...,,...,,,..., ,,...,( 2

,,1,,1,2,1

2

,

2

,1,,1

0   vNSNSNSNNNNSNNSNN b . 

 

The initial GM estimator is then obtained as the solution to  

 }],0[, ),()(min{arg),,...,(
2

,

00002

,,1, vNvNNNNNvNSN b  
aρaθθ


, (17a)  

with  ),()(
2000

vNN  ρθ )
~~(

000 bNN Γγ  .      

 

Using these initial estimates of ),...,( ,,1 NSN   and 2

v , 2

1  can be estimated from moment 

condition Mb: 

 

 



S

m

NmNmNN

S

m

NmNmNN
N 1

,,,1

1

,,

2

,1 )
~~()

~~(
1

uuQuu 


 (17b) 

 ...~~...~~ 2

,11,24,,24,11,2424 NSSNSSSNSS γγγγ 


   

 .~...~~
,,12/)1(2,24,2,112,24

2

,2,24 NSNSSSSSNNSSNSSS γγγ 


   

 

2.2. Weighted GM Estimation 

While the initial GM estimator as defined in (17) is consistent, it is inefficient. First, it ignores 

the information contained in moment conditions (Mb, M3,s and M4,s). Second, as is known 

from the literature on GMM-estimation, it is optimal to use as weighting matrix the inverse of 

the (properly normalized) variance-covariance matrix of the moments, evaluated at true 

                                                 
5
 See Kapoor, Kelejian, and Prucha (2007) for analogous conditions under SARAR(0,1) 

estimation, assuming only nonstochastic regressors in equation (1a). 
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parameter values. Denote the optimal weighting matrix, which will be derived in Subsection 

3.2, by 1

NΨ  and its estimate by 1~ 

NΨ . The optimally weighted GM estimator is based on all 

)24( S  moment conditions and uses 1~~  NN ΨΘ  as the weighting matrix. It is defined as 

  

 }],0[],,0[, ),(
~

)({ minarg)~,~,~,...,~(
2

1

22

1,

2

,,1, cbvvNNNNNvNSN   
aρaθΘθ ,   

 with Tbbc v  , and  ),,()(
2

1

2
 vNN ρθ )

~~( bNN Γγ  . (18)  

 

As already mentioned, the optimal weighting matrix is derived without distributional 

assumptions and involves third and fourth moments of the error components Nitv ,  and Ni, . 

Kapoor, Kelejian, and Prucha (2008) use the assumption that Nitε ,  is normally distributed to 

obtain a simplified weighting matrix as an approximation of the true optimal weighting 

matrix. For comparison, we also consider such a weighting matrix, which is a special case of 

1

NΨ  (see the Appendix) and referred to as 1)( 
NΨ . The simplified weighted GM estimator is 

defined as the weighted GM estimator given in (18), using 1)
~

(
~  

NN ΨΘ . 

 

3. Asymptotic Properties of the GM Estimator for Nθ  

3.1 Consistency  

For proving consistency, the following additional assumptions are introduced: 

 

Assumption 4.  

Assume that NNNN ΔDuu ~ , i.e., NNiNiNi uu Δd .,,,
~  , for NTi ,...,1 ,

6
 where ND  is an 

PNT   matrix, the P1  vector Ni.,d  denotes the i-th row of ND  and NΔ  is a 1P  vector. 

Let Nijd ,  be the j-th element of Ni.,d . For some 0 , we assume that 


dNij ctdE
2

, )( , 

where dc  does not depend on N, and that )1(2/1

pN ON Δ . 

 

Assumption 4 will hold in many settings, e.g., if model (1a) contains endogenous variables 

(such as spatial lags of Ny ) and is estimated using 2SLS. In that case, NΔ  denotes the 

difference between the parameter estimates and the true parameter values and Ni.,d  is the 

(negative of the) i-th row of the design matrix NZ  (compare Lemma 1 in Subsection 2 of 

Section IV).  

 

Assumption 5. 

                                                 
6
 Note that we use single indexation NTi ,...,1  to refer to the elements of the vectors that are 

stacked over time periods.  
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(a) The smallest eigenvalues of 00

NN ΓΓ   and 11

NN ΓΓ   are bounded away from zero, i.e., 

0)( *min   i

N

i

N ΓΓ  for i = 1, 2. (b) )1(
~

pNN oΘΘ , where NΘ  are )24()24(  SS  

nonstochastic, symmetric, positive definite matrices. (c) The largest eigenvalues of NΘ  are 

bounded uniformly from above, and the smallest eigenvalues of NΘ  are bounded uniformly 

away from zero. 

Assumption 5 implies that the smallest eigenvalues of NNΓΓ  and NNN ΓΘΓ  are bounded 

uniformly away from zero, ensuring that the true parameter vector Nθ  is identifiable unique. 

Moreover, by the equivalence of matrix norms, it follows from Assumption 5 that NΘ  and 

1

NΘ  are O(1). 

 

Assumptions 1-5 ensure consistency of the GM estimators for ),,( 2

1

2  vNN ρθ   as 

summarized in the following theorems (see Appendix B for a proof).  

 

Theorem 1a. Consistency of Initial GM Estimator 
0~
Nθ  

Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter 

space, the initial GM estimators ),,...,( 2

,,1

0  NvSNN ρρ 


θ  defined by (17a), and 2

,1 N


, defined 

by (17b) are consistent for NSN ,1, ,..., , 2

v , and 2

1 , i.e.,  

 0  ,s,

p

NsN  


, Ss ,...,1 ,   0  22

,

p

vNv 


, and 0  2

1

2

,1

p

N 


 as N . 

 

Theorem 1b. Consistency of Weighted GM Estimator Nθ
~

 

Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter 

space, the weighted GM estimators ])
~

(~),
~

(~),
~

(~),...,
~

(~[)
~

(
~ 2

,1

2

,,,1
 NNNNvNNSNNNN ρρ ΘΘΘΘΘθ   

defined by (18) are consistent for ,,,..., 2

,1, vNSN   and 2

1 , i.e.,  

 0  )
~

(~
,s,

p

NsNN   Θ , Ss ,...,1 ,  0  )
~

(~ 22

,

p

vNNv  Θ , and 0 )
~

( ~ 2

1

2

,1

p

NN  Θ  as N . 

 

This result holds for an arbitrary weighting matrix (satisfying Assumption 5). Hence, it 

applies to both the optimally weighted GM estimator defined by (18) with 1)
~

(
~  NN ΨΘ and 

its simplified variant 
Nθ

~
 with 

1)
~

(
~  

NN ΨΘ .  

 

3.2 Asymptotic Distribution of GM Estimator for Nθ   

In the following we consider the asymptotic distribution of the optimally weighted GM 

estimator Nθ
~

. To establish asymptotic normality of )~,~ ,~(
~ 2

,1

2

, NNvNN ρθ  , we introduce some 

additional assumptions. 
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Assumption 6. 

Let ND  be defined as in Assumption 4, such that NNNN ΔDuu ~ . For any real NTNT   

matrix NA , whose row and column sums are bounded uniformly in absolute value, it holds 

that )1()(11

pNNNNNN oENN  
uADuAD . 

 

A sufficient condition for Assumption 6 is, e.g., that the columns of ND  are of the form 

NNN εΠπ  , where the elements of Nπ  are bounded uniformly in absolute value and the row 

and column sums of NΠ  are bounded uniformly in absolute value (see Kelejian and Prucha, 

2010, Lemma C.2). This will be the case in many applications, e.g., for the model in Eq. (1a), 

if ND  equals (the negative of) matrix NZ  (compare Lemma 1 in Section IV). 

 

Assumption 7. 

Let NΔ  be defined as in Assumption 4. Then, 

  

 )1()()( 2/12/1

pNNN oNTNT  
ξTΔ , with ),( ,,

 NNvN TTT , ),(  NNN μvξ , i.e., 

 )1()()()( ,

2/1

,

2/12/1

pNNNNvN oNTNTNT  
μTvTΔ  ,  

 

where NT  is an PNNT  )( -dimensional real nonstochastic matrix whose elements are 

bounded uniformly in absolute value; Nv,T  is of dimension )( PNT   and N,T  is of 

dimension )( PN  . As remarked above, NΔ  typically denotes the difference between the 

parameter estimates and the true parameter values. Assumption 7 will be satisfied by many 

estimators. In Section IV, we verify that it holds if the model in Eq. (1a) is estimated by TSLS 

or feasible generalized TSLS (FGTSLS).  

 

The limiting distribution of the GM estimator of Nθ will be shown to depend on (the inverse 

of) the matrix NNN JΘJ  and the variance-covariance matrix of a vector of quadratic forms in 

Nv  and Nμ , denoted as Nq . We consider each of these expressions in the following. The 

)2()24(  SS  matrix NJ  of derivatives of the 1)24( S  vector of moment conditions in 

(11) is given by   

 

 
θ

Γγ
θJ






)(
)( NNN

NN

b
),,,...,( ,,,,,,,1, 1 NiNiNSiNi jjjj

v  , with (19a) 

 Nsij ,,

s

NNiNi



 )( .,., bΓγ
, )24(,...,1  Si , Ss ,...,1 , 
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Ni v
j ,,

v

NNiNi



 )( .,., bΓγ
, )24(,...,1  Si , 

Nij ,, 1

1

.,., )(



 NNiNi bΓγ
, )24(,...,1  Si , 

 

where Ni.,γ  and Ni.,Γ  denote the i-th row of Nγ  and NΓ  respectively. 

 

Using 0
θ

γ




 N  and ignoring the negative sign, we have  

 

NNNNN Bb ΓΓ
θ

ρJ 



)( ,   (19b) 

 

where NΓ  is defined above and of dimension )24( S  ]22/)1(2[  SSS  and NB  is a  

)2(]22/)1(2[  SSSS  matrix of the form  

 

 ),,,( ,4,3,21
 NNNN BBBBB ,  (20a) 

 

with ),( 21  SS 0IB , )]),2([ 2,1,2  SNs

S

sN diag 0B , and 

],),...,[( 22/)1(,1,3,1,3,3 
 SSNSNN 0BBB  is an )2(2/)1(  SSS  matrix. The )1( S  

vertically arranged blocks, Nm,,3B , )1(,...,1  Sm , have the following structure:  

 

 ),,( ,,,,,3 NmNmNmNm EdCB  , (20b) 

 

where Nm,C  is a )1()(  mmS  matrix of zeros,
7
 Nm,d  is a 1)( mS  vector, defined as 

),...,( ,,1,
  NSNmNm d , and mSNmNm  I,, E . Finally, N,4B  is a )2(2  S matrix, defined 

as  

 

 













1,

0,1,

11

1

,4

S

S

N
0

0
B . (20c) 

 

We next consider the vector Nq  and its limiting distribution. First, define ),( NNN Δθq  as the 

1)24( S  vector of sample moments as given by (11) with the expectation operator 

suppressed, evaluated at the true parameter values, and ignoring the deterministic constants: 

                                                 
7
 I.e., there is no block N,1C  in N,1,3B .  
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),( NNN Δθq































































NNbN

NNaN

NNSN

NNSN

NNSN

NNSN

NNN

NNN

NNN

NNN

N

uCu

uCu

uCu

uCu

uCu

uCu

uCu

uCu

uCu

uCu

~~

~~

~~

~~

~~

~~
.

~~

~~

~~

~~

,

,

,,4

,,3

,,2

,,1

,1,4

,1,3

,1,2

,1,1

1
 ,    (21) 

 

  where 

 

 






S

m

NmNmNTNNsNsTN

S

m

NmNmNTNs
T 1

,,,0,,,0

1

,,,,1 )]([)()]([
)1(

1
MIIQMMIQMIIC  , 

 






S

m

NmNmNTNNsNsTN

S

m

NmNmNTNs
T 1

,,,0,,,0

1

,,,,2 )]([)]([)]([
)1(2

1
MIIQMMIQMIIC  ,

 



S

m

NmNmNTNNsNsTN

S

m

NmNmNTNs

1

,,,1,,,1

1

,,,,3 )]([)()]([ MIIQMMIQMIIC  , 

 



S

m

NmNmNTNNsNsTN

S

m

NmNmNTNs

1

,,,1,,,1

1

,,,,4 )]([)]([)]([
2

1
MIIQMMIQMIIC  , 

 






S

m

NmNmNTN

S

m

NmNmNTNa
T 1

,,,0

1

,,, )]([)]([
)1(

1
MIIQMIIC  , 

 



S

m

NmNmNTN

S

m

NmNmNTNb

1

,,,1

1

,,, )]([)]([ MIIQMIIC  . (22) 

 

By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the 

symmetric NTNT   matrices Nsp ,,C , 4,...,1p , Ss ,...,1 , Na,C , and Nb,C  are bounded 

uniformly in absolute value. Also, note that Ns,,3C , Ns,,4C , Nb,C  differ from Ns,,1C , Ns,,2C , 

Na,C  only by the normalization and the use of N,1Q  versus N,0Q . 

 

In light of (21) and Lemma B.1 (see Appendix B), the elements of ),(2/1

NNNN Δρq  can be 

expressed as  
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 ),(2/1

NNNN Δθq )1(

.

2/1

,,

2/1

2/1

,,

2/1

2/1

,,4,,4

2/1

2/1

,,3,,3

2/1

2/1

,,2,,2

2/1

2/1

,,1,,1

2/1

2/1

,1,4,1,4

2/1

2/1

,1,3,1,3

2/1

2/1

,1,2,1,2

2/1

2/1

,1,1,1,1

2/1

p

NNbNNaN

NNaNNaN

NNSNNSN

NNSNNSN

NNSNNSN

NNSNNSN

NNNNN

NNNNN

NNNNN

NNNNN

o

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN





















































































ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

ΔαuCu

, (23) 

 

where )(2 ,,

1

,, NNspNNsp EN uCDα   , 4,...,1p , Ss ,...,1 , )(2 ,

1

, NNaNNa EN uCDα   , and  

)(2 ,

1

, NNbNNb EN uCDα   . By Lemma B.1 the elements of the 1P  vectors Nsp ,,α , 

4,...,1p , Ss ,...,1 , Na,α  and Nb,α  are bounded uniformly in absolute value.  

 

Using (22), (3c), Assumption 7, and NNNN vQεQ ,0,0   we obtain:  

 

 ),(2/1

NNNN Δθq )1(

)1(

1

.

)]([
2

1

)(

)]([
)1(2

1

)(
)1(

1

,,1

,,0

,,4,1,,,1

,,3,1,,,1

,,2,0,,,0

,,1,0,,,0

2/1

p

NNbNNN

NNaNNN

NNsNNNsNsTNN

NNsNNNsNsTNN

NNsNNNsNsTNN

NNsNNNsNsTNN

o

T

T

T

N 




















































 

ξaεQε

ξavQv

ξaεQMMIQε

ξaεQMMIQε

ξavQMMIQv

ξavQMMIQv

,  (25) 

 

for Ss ,...,1 . The 1)(  NNT  vector ),(  NNN μvξ , NspNNsp T ,,

1

,, αTa
 , 4,...,1p , 

Ss ,...,1 , NaNNa T ,

1

, αTa
 , and NbNNb T ,

1

, αTa
 , which can also be written as  

 

])(,)[(),( ,,,,,,

1

,,,,,,
 

NspNNspNvNsp

v

NspNsp T αTαTaaa 
 , Ss ,...,1 , 4,...,1p , and  

])(,)[(),( ,,,,

1

,,,
 

NaNNaNvNa

v

NaNa T αTαTaaa 
 ,  

])(,)[(),( ,,,,

1

,,,
 

NbNNbNvNb

v

NbNb T αTαTaaa 
 . 
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Observe that the elements of Nsp ,,a , 4,...,1p , Ss ,...,1 , Na,a , and Nb,a  are bounded 

uniformly in absolute value by Assumption 7 and Lemma B.1. Utilizing 

  (26) 

 NNNsNsTNN εQMMIQε ,1,,,1 )(   NNNsNsTNN vQMMIQv ,1,,,1 )]([    

      NNsNsTNNNsNsNT μMMevμMMμ )]([2)( ,,,,
 . 

 
NNNsNsTNN εQMMIQε ,1,,,1 )]([

2

1
NNNsNsTNN vQMMIQv ,1,,,1 )]([{

2

1
  

     })]([2)( ,,,, NNsNsTNNNsNsNT μMMevμMMμ  , 

 

 NNN εQε ,1


NNTNNNNNN T μIevμμvQv )(2,1  , 

  

we have 

  (27) 

 

)1(

)(2

)1(

1

.

)]([)(
2

)]([
2

1

)]([2)(

)]([
)1(2

1

)(
)1(

1

),(

,,1

,,0

,,4,,,,,1,,,1

,,3,,,,,1,,,1

,,2,0,,,0

,,1,0,,,0

2/1

2/1

p

NNbNNTNNNNNN

NNaNNN

NNsNNsNsTNNNsNsNNNNsNsTNN

NNsNNsNsTNNNsNsNNNNsNsTNN

NNsNNNsNsTNN

NNsNNNsNsTNN

NNN

o

T

T

T

T

T

T

N

N


























































ξaμIevμμvQv

ξavQv

ξaμMMevμMMμvQMMIQv

ξaμMMevμMMμvQMMIQv

ξavQMMIQv

ξavQMMIQv

Δθq

 

 )1()1(*2/1

pNpN ooN   qq .   

 

Next, consider the 1)24( S vector  

 

 























 

*

,

*

,

*

,

*

,1

2/1*2/1

.

Nb

Na

NS

N

NN NN

q

q

q

q

qq .  (28) 

 

Each element 
*

,Nsq , Ss ,...,1 , is a 14  vector, given by  
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*

,,4

*

,,3

*

,,2

*

,,1

*

,

Ns

Ns

Ns

Ns

Ns

q

q

q

q

q , (29) 

                                                   

where *

,, Nspq , 4,...,1p , Ss ,...,1 , *

,Naq , and *

,Nbq  can be written as linear quadratic forms in 

the 1)(  NNT  vector ),(  NNN μvξ , i.e., we have  

 

 NNspNNspNNsp ξaξAξ ,,,,

*

,,
q , 4,...,1p , Ss ,...,1 ,    (30) 

 NNaNNaNNa ξaξAξ ,,

*

,
q , and  

 NNbNNbNNb ξaξAξ ,,

*

,
q . 

 

 We consider each of these terms in the following.  

 

NNsNNsNNs ξaξAξ ,,1,,1

*

,,1
q , where (31) 
































NNNTN

NNTNNsNsTN

Ns

v

Ns

v

Ns

v

Ns

Ns T

00

0QMMIQ

AA

AA
A ,0,,,0

,,1

,

,,1

,

,,1,,1

,,1

)(
)1(

1

)( 



 , and  

 ),( ,,1,,1,,1
 

Ns

v

NsNs aaa , 

 

and the 0  terms denote zero-matrices, whose dimensions are indicated by the subscript.   

 

NNsNNsNNs ξaξAξ ,,2,,2

*

,,2
q , where 
































NNNTN

NNTNNsNsTN

Ns

v

Ns

v

Ns

v

Ns

Ns T

00

0QMMIQ

AA

AA
A ,0,,,0

,,2

,

,,2

,

,,2,,2

,,2

)]([
)1(2

1

)( 



, and  (32a) 

 ),( ,,2,,2,,2
 

Ns

v

NsNs aaa . 

 

 NNsNNsNNs ξaξAξ ,,3,,3

*

,,3
q , where  

 
























NsNsNsNsT

NsNsTNNsNsTN

Ns

v

Ns

v

Ns

v

Ns

Ns
T ,,,,

,,,1,,,1

,,3

,

,,3

,

,,3,,3

,,3
)]([

)]([)(

)( MMMMe

MMeQMMIQ

AA

AA
A





, and (32b) 

 ),( ,,3,,3,,3
 
Ns

v

NsNs aaa . 

NNsNNsNNs ξaξAξ ,,4,,4

*

,,4
q , where  
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,,,,

,,,1,,,1

,,4
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,,4
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,,4,,4

,,4
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NsNsTNNsNsTN

v

Ns

v

Ns

v

Ns

v

Ns

Ns T
MMMMe

MMeQMMIQ

AA

AA
A





, and (32c) 

 ),( ,,4,,4,,4
 

Ns

v

NsNs aaa . 

 

 NNaNNaNNa ξaξAξ ,,

*

,
q , where  

 






























NNNTN

NNTN

Na

v

Na

v

Na

v

Na

Na T

00

0Q

AA

AA
A ,0

,

,

,

,

,,

, )1(

1

)( 



, and  (32e) 

 ),( ,,,
 
Na

v

NaNa aaa . 

 

 NNbNNbNNb ξaξAξ ,,

*

,
q , where  

 
























NNT

NTN

Nb

v

Nb

v

Nb

v

Nb

Nb
TIIe

IeQ

AA

AA
A

)(

)(

)(

,1

,

,

,

,

,,

, 



, and  (32f) 

 ),( ,,,
 
Nb

v

NbNb aaa . 

 

Note that the row and column sums of the symmetric )()( NNTNNT   matrices 

NsNs ,,4,,1 ,...,AA , Ss ,...,1 , Na,A , and Nb,A , are bounded uniformly in absolute value by 

Assumption 3 and Remark A.1. Moreover, the elements of the ),(  NNN μvξ  are 

independently distributed by Assumption 1. Hence, the variance-covariance matrix of Nξ  is  

 

 

















NNTN

NNTNTv

N
I0

0I
Ωξ 2

2

,




. (33) 

 

In order to calculate the variance-covariance matrix of Nq , denoted as NΨ , we invoke 

Lemma A.1 in Kelejian and Prucha (2010). It is given by )( **1  NN

-

N EN qqΨ , which is a 

symmetric )24()24(  SS  matrix, and takes the following form: 

 

 )( ,, NsrN EΨ , 1,...,1,  Ssr , i.e.,  (34a) 

 



























NSSNSSNS

NSSNSSNS

NSNSN

N

,1,1,,1,1,1

,1,,,,1,

,1,1,,1,1,1

..

.

EEE

EEE

EEE

Ψ .  (34b) 

 

Observe that the matrix NΨ  contains three parts. 
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i) The upper left block is of dimension SS 44  , consisting of 2S  blocks of dimension 4  4, 

which are defined as   

 

 )()( ,

,

*

,

*

,

1

,,

qp

srNsNrNsr EN E  qqE , Ssr ,...,1,  , 4,...,1, qp .   (34c) 

 

The elements qp

Nsr

,

,,E , 4,...,1, qp , Ssr ,...,1,   are defined as  

 

 ),( *

,,

*

,,

1,

,, NsqNrp

qp

Nsr CovN qqE   (34d)  

 ])[(4)(2)(2 ,

,,

,

,,

122

,,,,

14

,,,,

14 



  v

Nsq

v

NrpvNsqNrp

v

Nsq

v

Nrpv TrNTrNTrN AAAAAA    

 
 NsqNrpN

v

Nsq

v

Nrpv NN ,,,,

12

,,,,,

12
aaaa  

 






 
N

i

NiisqNiirp

NT

i

v

Niisq

v

Niirpvv aaNaaN
1

,,,,,,

14)4(

1

,,,,,,

14)4( )3()3( 
   

 






 
N

i

NisqNiirpNiisqNirp

NT

i

v

Nisq

v

Niirp

v

Niisq

v

Nirpv aaaaNaaaaN
1

,,,,,,,,,,,,

1)3(

1

,,,,,,,,,,,,

1)3( )()( 

 , 

 

where v

Niirpa ,,,  and 
Niirpa ,,,  denote the i-th main diagonal element of the matrices  v

Nrp ,,A  and 


Nrp ,,A , respectively, and v

Nirpa ,,,  and v

Nirpa ,,,  denote the i-th element of the vectors v

Nrp ,,a  and 


Nrp ,,a  respectively. The terms )3(

v , )3(

  and )4(

v , )4(

  denote the third and fourth moment 

of Nitv ,  and Nit , , respectively. 

 

ii) The last two rows and columns are matrices of dimension )42( S  and )24( S , 

respectively, each of which is made up by S  blocks of dimension  )42(   )24(  , defined as  

 

 ),()( *

,,

*

,

1,

,,1,,1 NsqNp

qp

NsSNsS CovN qq

  EE , bap , , 4,...,1q , and Ss ,...,1 , (34e) 

 

and )( ,11,
  sSSs EE , Ss ,...,1 . The elements qp

NsS

,

,,1E  are defined as in (34d), using the 

corresponding indexation.   

 

iii) Finally, the lower right block of dimension 2  2, is defined as  

 

 ),()( *

,

*

,

1,

,1,1,1,1 NqNp

qp

NSSNSS CovN qq

  EE , baqp ,,  ,  (34f) 

 

where the elements 
qp

NsS

,

,,1E  are defined as in (34d), using the corresponding indexation. 
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The expression given by (34d) holds generally. Part of the elements of NΨ  can be stated in 

simpler terms. E.g., due to the orthogonality of N,0Q  and N,1Q , the terms in the first line drop 

out when N,0Q  and N,1Q  meet in the trace expression. Moreover, if Nv  and Nμ  are normally 

distributed, the terms involving the third and fourth moments of Nv  and Nμ  drop out for all 

elements of NΨ .  

 

To derive the asymptotic distribution of Nq  and Nθ
~

 we invoke the central limit theorem for 

vectors of linear quadratic forms given by Kelejian and Prucha (2010, Theorem A.1) and 

Corollary F4 in Pötscher and Prucha (1997). We summarize the results regarding the 

asymptotic distribution of Nθ
~

 in the following Theorem, which is proved in Appendix B.  

 

Theorem 2. (Asymptotic Normality of Nθ
~

) 

Let Nθ
~

 be the GM estimator defined by (18). Suppose Assumptions 1-7 hold and, 

furthermore, that 0)( *

min  ΨΨ cN . Then, provided the optimization space contains the 

parameter space, we have  

 

 )1()()
~

( 2/112/1

pNNNNNNNNN oN  
ξΨΘJJΘJθθ , with  

 NNNNN Bb ΓΓ
θ

J 



 ,  and 

 ),0( 24

2/1



  S
d

NNN N IΨξ q , 

 

where )( NNN E qq Ψ  and ))(( 2/12/1  NNN ΨΨΨ . 

 

Furthermore )1()
~

(2/1

pNN ON θθ  and 

 

 11
~ )()()(   NNNNNNNNNNNN

N

JΘJJΘΨΘJJΘJΘΩ
θ

, 

 

where 
Nθ

Ω~  is positive definite. 

 

Theorem 2 implies that the difference between the cumulative distribution function of 

)
~

(2/1

NNN θθ   and that of ),0( ~
N

N
θ

Ω  converges pointwise to zero, which justifies the use of 

the latter as an approximation of the former.
8
 

 

                                                 
8
 Compare Corollary F4 in Pötscher and Prucha (1997). 
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Note that 111
~ )()(   NNNN

N

JΨJΨΩ
θ

and that )()( 1
~~

 NN
NN

ΨΩΘΩ
θθ

 is positive semidefinite. 

Thus, using a consistent estimator of 1

NΨ  (which will be derived below) as weighting matrix 

NΘ  leads to the efficient GM estimator.  

 

3.3 Estimation of the Variance-Covariance Matrix of Nθ
~

 

In the following, we develop a consistent estimator for the variance-covariance matrix of Nθ
~

. 

Define   

 

 NNN B
~~~

ΓJ  . (35) 

 

We next specify estimators for NspNNsp ,,,, αTa  , 4,...,1p , Ss ,...,1 , NaNNa ,, αTa  , and 

NbNNb ,, αTa  . The matrix NT  will often be of the form 

 

 NNN PFT    with ),( ,,
 NNvN FFF ,   (36a) 

which can also be written as  

 

 ),( ,,
 NNvN TTT  with NNvNv PFT ,,  , NNN PFT ,,   ,  

 

and  

 

 N

S

m

NmNmNTNv HMIIF 



1

1

,,, ])([  ,  (36b) 

 N

S

m

NmNmNTNTN HMIIIeF 



1

1

,,, ])()[(  , 

 

or, alternatively,  

 

 N

S

m

NmNmNTNNv HMIIΩF ε 


 
1

,,

1

,, )]([  ,  (36c) 

 N

S

m

NmNmNTNTN HMIIIeF 


 
1

,,

2

1, )]()][([  , 

 

where Nv,F  is a real nonstochastic *PNT   matrix, N,F  is a real nonstochastic *PN   matrix, 

NH  is a real nonstochastic *PNT   matrix of instruments, and NP  is a real nonstochastic 

PP *  matrix, with P as in Assumption 7.  
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To be more specific, when Eq. (1a) is estimated using two-stage least squares (TSLS), 

)
~

( NNN δδΔ   and the matrix NP  will be of the structure as defined above and can be 

estimated consistently by some estimator NP
~

 (see Section IV).  

 

The estimators for NT  are defined as  

 

 NNvNv PFT
~~~

,,  ,  NNN PFT
~~~

,,   ,  (37a) 

 N

S

m

NmNmNTNv HMIIF 



1

,,, ])~([
~

 , or                 (37b) 

 N

S

m

NmNmNTNTN HMIIIeF 



1

,,, ])~()[(
~

 ,        

 

or  

 

 N

S

m

NmNmNTNNv HMIIΩF ε 


 
1

,,

1

,, )]~([
~~

 ,          (37c) 

 N

S

m

NmNmNTNTNN HMIIIeF 


 
1

,,

2

,1, )]~()][(~[
~

 .           

 

The estimators of NspNNsp ,,,, αTa  , bap ,,4,...,1 , Ss ...,1 , NaNNa ,, αTa  , and 

NbNNb ,, αTa   are then given by 

 

 NspNNsp ,,,,
~~~ αTa   (38) 

  

with )~~
(2~

,,

1

,, NNspNNsp N uCDα   , and the matrices Nsp ,,

~
C , 4,...,1p , Ss ,...,1 , Na,

~
C , and 

Nb,

~
C  are given by (22) with Nρ  replaced by Nρ

~ .  

 

The elements of the estimated )24()24(  SS  matrix NΨ
~

 are defined in (34d), with Nv,  

and N,  replaced by Nv,
~  and Nv,

~ . The third and fourth moments of Ni,  and Nitv , , 

denoted as 
)3()3( , v   and 

)4()4( , v  , can be estimated consistently as follows (see Appendix B 

for a proof): 

 

 
 


N

i

T

t

NitN
NT 1 1

3

,

)3(

,
~1~   , (39a) 
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N

i

it

T

s

T

st
t

NisN
TNT 1

2

1 1

,

)3(

,
~~

)1(

1~   ,  (39b)  

 )3(

,

)3(

,

)3(

,
~~~

NNNv    , (39c) 

 

as well as  

 


 





N

i

T

s

T

st
t

NitNisN
TNT 1 1 1

3

,,

)4(

,
~~

)1(

1~    (40a) 

)~~

)1(

1~1
(~~

)1(

3

1 1 1

,,

1 1

2

,

1 1 1

,, 
 


  


 





N

i

T

s

T

st
t

NitNis

N

i

T

t

Nit

N

i

T

s

T

st
t

NitNis
TNTNTTNT

 , (40b) 


 


  


N

i

T

s

T

st
t

NitNis

N

i

T

t

NitNv
TNTNT 1 1 1

3

,,

1 1

4

,

)4(

,
~~

)1(

1~1~   (40c) 

)~~

)1(

1~1
(~~

)1(

3

1 1 1

,,

1 1

2

,

1 1 1

,, 
 


  


 





N

i

T

s

T

st
t

NitNis

N

i

T

t

Nit

N

i

T

s

T

st
t

NitNis
TNTNTTNT

 , 

where 



S

m

NNmNmNTN

1

,,
~)~(~ uMIIε  .

9
 Based on NΨ

~
, we can now define the estimator for 

Nθ
Ω~  as  

 

    )
~~~

(
~~~~~

)
~~~

()
~

(
~

~ NNNNNNNNNNNN
N

JΘJJΘΨΘJJΘJΘΩ
θ

. (41) 

 

The following theorem establishes the consistency of NΨ
~

 and 
Nθ

Ω~
~

. 

 

Theorem 3. Variance-Covariance Matrix Estimation 

Suppose all of the assumptions of Theorem 2, apart from Assumption 5, hold and that 

additionally all of the fourth moments of the elements of ND  are bounded uniformly. Suppose 

furthermore (a) that the elements of the nonstochastic matrices NH  are bounded uniformly in 

absolute value, (b) 1sup
1

, 


S

s

NsN   and that the row and column sums of NM  are bounded 

uniformly in absolute value by one and some finite constant respectively, and  

(c) )1(
~

pNN oPP  with )1(ON P . Then, )1(
~

pNN oΨΨ  and )1(
~ 11

pNN o 
ΨΨ . 

Furthermore, if Assumption 5 holds, then also )1(
~

~~ po
NN


θθ

ΩΩ . 

                                                 
9
 Compare Gilbert (2002) for the estimation of third and fourth moments in error component 

models without spatial lags and without spatial autoregressive disturbances. 
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3. Joint Distribution of the GM Estimator for Nθ  and Estimators of Other Model 

Parameters  

Note that both )
~

(2/1

NNN θθ   and NNT Δ
2/1)( , and thus also NN Δ

2/1  are asymptotically 

linear in Nξ . Hence, the joint distribution of the vector ])
~

(,[ 2/12/1 
NNN NN θθΔ  can be 

derived invoking the central limit theorem for vectors of quadratic forms by Kelejian and 

Prucha (2010). 

 Consider the 1)24( *  SP  vector of linear and linear quadratic forms in Nξ :  

 

 






 




N

NN

N

NT

q

ξF
w

2/1)(
.     (42) 

 

Its variance-covariance matrix is of dimension )24()24( **  SPSP  and given by: 

 

 

















NNNNN

NNNNNNN

NoN
NT

NTNT
EVar

qqq

q

Fξ

ξFFξξF
Ψw

2/1

2/11

,
)(

)()(
)( 
















NN

NN

ΨΨ

ΨΨ

,

,,




 , (43a) 

 

where the )24()24(  SS  matrix NΨ  is defined above, N,Ψ  is of dimension ** PP   and 

defined as  

 

 )()(])[( ,,

2

,,

211

, NNNvNvvNNNNN NTNTE  FFFFFξξFΨ  

 , (43b) 

 

and the )24(*  SP  matrix N,Ψ  is given by  

 

 ])[( 2/1

, NNNN NTE q 

 ξFΨ   (43c) 

 ),...,()([)( ,1,1

2)3(

,,1,1

2)3(

,

2/12/1

,1,1,1,1


   NN

v

NvvNv
N

v
N

NNT aκFaκF
AA

   

 ),()(..., ,

2)3(

,,

2)3(

,
,,


   NaN

v

NavvNv
Na

v
Na

aκFaκF
AA

  

 )()( ,

2)3(

,,

2)3(

,
,,


   NbN

v

NbvvNv
Nb

v
Nb

aκFaκF
AA

 , 

 

where v
Nqp ,,A

κ  and 
Nqp ,,A

κ  are 1NT  and 1N  vectors, whose i-th element corresponds to the 

i-th main diagonal element of 
v

Nqp ,,A  and 


Nqp ,,A , respectively.  

As we demonstrate in Appendix B, the matrix No,Ψ  can be estimated consistently by  
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NN

NN

No
ΨΨ

ΨΨ
Ψ ~~

~~
~

,

,,

,



 , where (44) 

 ]
~~~~~~[)(

~
,,

2

,,

21

, NNNvNvvN NT  FFFFΨ  

 ,  

 ),...,~~~(
~

)~~~(
~

[)(
~

,1,1

2)3(

,,1,1

2)3(

,

2/12/1

,
,1,1,1,1


   NN

v

NvvNvN
N

v
N

NNT aκFaκFΨ
AA

 

  

 ),~~~(
~

)~~~(
~

..., ,

2)3(

,,

2)3(

,
,,


   NaN

v

NavvNv
Na

v
Na

aκFaκF
AA

  

 )]~~~(
~

)~~~(
~

,

2)3(

,,

2)3(

,
,,


   NbN

v

NbvvNv
Nb

v
Nb

aκFaκF
AA

 . 

Regarding the joint limiting distribution of )
~

(2/1

NNN θθ   and NNT Δ
2/1)( , we now have the 

following result.  

 

Theorem 4. Joint Distribution of Nθ
~

 and Other Model Parameters 

Suppose all assumptions used in Theorem 3 hold and 0)( *

,min 
o

cNo ΨΨ . Then,   

 

 )1(
)()

~
(

,

2/1

,1

2/1

2/1

2/1

pNoNo

NNNNN

N

NN

N o
T

N

N























 



ξΨ
ΘJJΘJ0

0P

θθ

Δ
, with  

 ),(],[
24

2/12/1

,, * 

 
SP

d
NNNNoNo NN I0FξΨξ q , 

 































1

2/1

,1

2/1

,
)()( NNNNN

N

No

NNNNN

N

No

TT

JΘJJΘ0

0P
Ψ

ΘJJΘJ0

0P
Ω , and  

 































)
~~~

(
~~

~
~

~~
)

~~~
(

~
~

2/1

,

2/1

,

NNNNN

N
No

NNNNN

N
No

TT

JΘJJΘ0

0P
Ψ

ΘJJΘJ0

0P
Ω .  

 

Moreover,  

 

 )1(
~

,, pNoNo oΨΨ , )1(
~

,, pNoNo oΩΩ , and )1(, ONo Ψ , )1(, ONo Ω . 

 

Theorem 4 implies that the difference between the joint cumulative distribution function of 

])
~

(,[ 2/12/1 
NNN NN θθΔ  and that of ),( ,NoN Ω0  converges pointwise to zero, which justifies 

the use of the latter distribution as an approximation of the former. The theorem also states 

that  No,

~
Ω  is a consistent estimator of No,Ω . The proof of Theorem 4 is given in Appendix B.  
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Remark 1. 

As in Kelejian and Prucha (2010, p. 17), Theorem 4 can also be used to obtain the joint 

distribution of )
~

( NN θθ   and some other estimator **

NΔ , where 

)1()()( **2/1**2/1

pNNN oNTNT  ξTΔ , ******

NNN PFT  , ****** ~~~
NNN PFT  , assuming that analogous 

assumptions are maintained for this estimator. In particular, the results remain valid, but with 

NF , NP  replaced by **

NF , **

NP , and NF
~

, NP
~

 replaced by **~
NF , **~

NP , in the definitions of N,Ψ , 

N,Ψ , N,

~
Ψ , and N,

~
Ψ . 

 

 

IV. Two-Stage Least Squares (TSLS) Estimator for Nδ   

1. Instruments  

It is evident from model (1), that 0Yu  )( NNE . In line with Kelejian and Prucha (2010), we 

consider a TSLS procedure to obtain consistent estimates of the parameters Nδ . The 

following assumptions are maintained. 

 

Assumption 8. 

The regressor matrix NX  has full column rank (for N large enough) and uniformly bounded 

elements in absolute value. 

 

Assumption 9. 

The instrument matrix NH  has full column rank RKP *  (for N  large enough) and 

uniformly bounded elements in absolute value.  

 

Assumption 10. 

 ])[(lim 1

NNN NT HHQHH
 

  and ])[(plim 1

NNN NT ZHQHZ
 

  are finite and 

nonsingular. 

   

Regarding the choice of instruments, note that 

 

 }])({[)()( 1

1

,,

1

,

1

,

1

, NN

R

r

NrNrNT

R

r

NrN

R

r

Nr

R

r

NNr EEE βXWIIWyWyW








     

 NN

i

i
R

r

NrNrNT

R

r

Nr βXWIIW  


 






1 1

,,

1

, ]})([{  , (45) 
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provided that 1
1

,, 




R

r

NrNr W . The matrices NH  are used to instrument ),( NNN YXZ   in 

terms of their predicted values NN N
ZPZ Hˆ , where NNNNN

HHHHPH
 1)( . In light of (45) 

NH  may include NX  and a subset of the linearly independent columns of terms of the sum  

 

 N

Q

i

i
R

r

NrT XWI  
 


1 1

, ])([ , (46) 

 

where Q  is some predefined constant. Such specification of NH  complies with the second 

part of Assumption 9 (by Assumptions 3 and 8).  

 

2. Definition of TSLS Estimator and Asymptotic Results 

Estimation of (1) proceeds in three steps. In the first step, (1a) is estimated by TSLS using 

instruments NH . In the second step, NSN ,,1 ,..., , 2

v , and 2

1  are estimated using the GM 

estimators defined in Section III in (17) and (18), based on consistent estimates of Nu  from 

the first step. In the third step, the model is re-estimated by feasible generalized TSLS 

(FGTSLS), which is equivalent to TSLS on transformed Eq. (1). This approach allows for 

testing joint hypotheses about Nδ  and Nθ .  

 

The TSLS estimator of model (1a) is defined as  

 

 NNNNN yZZZδ   ˆ)ˆ(
~ 1 , where (47) 

 )ˆ,(ˆ
NNNN N

YXZPZ H  , and   

 NN N
YPY Hˆ .  

 

In the second step, the parameters Ns, , Ss ,...,1 , 2

v , and 2

1 , are estimated using the GM 

estimator defined by (18), based on the first step residuals NNnN δZyu
~~  . As above these 

estimators are denoted as Ns,
~ , Ss ,...,1 , 2

,
~

Nv , and 2

,1
~

N . 

 

The following lemma shows that the various assumptions maintained in Section III are 

automatically satisfied by the TSLS estimator Nδ
~

 and the corresponding residuals Nu~ . A 

proof is given in Appendix C. 
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Lemma 1.
10

  

Suppose that Assumptions 1-3 and 8-10 hold and  bNN βsup . Let NN ZD  , then, the 

fourth moments of the elements of ND  are bounded uniformly in absolute value, Assumption 

6 holds, and  

(a)  )1()()()1()()
~

()( ,

2/1

,

2/12/12/1

pNNNNvpNNNN oNTNToNTNT  
μTvTξTδδ  , where  

 ),(  NNN μvξ , ),( ,,
 NNvN TTT ,  

NNvNv PFT ,,  , NNN PFT ,,   , 

 111 )(   HZHHHZHZHH QQQQQPN ,  

 N

S

m

NmNmNTNv HMIIF 



1

1

,,, ])([  , and 

 N

S

m

NmNmNTNTN HMIIIeF 



1

1

,,, ])()[(  . 

(b) )1()( 2/1

pNN ONT 
ξT ; 

(c) )1(pN OP  and )1(
~

pNN oPP  for  

11111111 ]})[(])][()]{[()[(])[(
~   NNNNNNNNNNN NTNTNTNTNT ZHHHHZZHHHP . 

 

Condition  bNN βsup  is trivially satisfied if ββ N . Note that (a) and (b) together 

imply that Nδ
~

 is a 2/1N -consistent estimator of Nδ . 

 

Regarding Assumption 4, we now have NNNN ΔDuu ~ , where NN ZD   and 

NNN δδΔ 
~

. Lemma 1 shows that under Assumptions 1-3 and 8-10 the TSLS residuals 

automatically satisfy Assumptions 4, 6, and 7 with respect to ND , NΔ , and NT . Hence, 

Theorems 1 and 2 apply to the GM estimator Nθ
~

 based on TSLS residuals. The lemma also 

establishes that the elements of ND  are bounded uniformly in absolute value, gives explicit 

expressions for NP  and NP
~

, and verifies that the conditions concerning these matrices made 

in Theorems 3 and 4 are fulfilled. Hence, Theorems 3 and 4 cover the GM estimator Nθ
~

 and 

the TSLS estimator Nδ
~

. In particular, Theorem 4 gives the joint limiting distribution of 

)
~

(2/1

NNN θθ   and )
~

(2/1

NNN δδ  , where NN ZD  , the matrices NN PP
~

, , Nv,F , N,F  are as 
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 Compare Kelejian and Prucha (2008) for analogous results in case of a cross-section 

SARAR(1,1) model and Badinger and Egger (2011) in case of a cross-section SARAR(R,S) 

model.   
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in Lemma 1, N

S

m

NmNmNTNv HMIIF 



1

,,, ])~([
~

  and 

N

S

m

NmNmNTNTN HMIIIeF 



1

,,, ])~()[(
~

 . 

 

We now turn to the third step of estimation. Consider the transformed model (1b), with 

 

 ******

NNNN uδZy  ,  (48) 

 

where 
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    , 

N
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m

NmNmNTN HMIIH 



1

,,

* )]([  ,   

 ****1********** )(ˆ
** NNNNNNN

N

ZHHHHZPZ
H

  . 

 

The generalized TSLS (GTSLS) estimator, denoted as Nδ̂ , is then obtained as a TSLS 

estimator applied to the transformed model (56), using the transformed instruments 





S

m

NNmNmN

1

,,

** )( HMIH  , i.e., 

 

 ****1**** ˆ)ˆ(ˆ
NNNNN yZZZδ   . (49) 

 

The FGTSLS estimator, denoted as Nδ
~̂

, is defined analogously, after replacing Nρ  by Nρ
~  

( N,εΩ  by N,

~
εΩ ), i.e.,  

 

 
****1**** ~~̂

)
~~̂

(
~̂

NNNNN yZZZδ  
, (50) 

 

where 
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~

** ~~̂
** NN
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)

~~
(

~
NNNNN
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 N

S

m

NmNmNTNN HMIIΩH ε 


 
1

,,

2/1

,

** )]~([
~~

 ,  

 N

S

m

NmNmNTNN ZMIIΩZ ε 


 
1

,,

2/1

,

** )]~([
~~

 , 

 N

S

m

NmNmNTNN yMIIΩy ε 


 
1

,,

2/1

,

** )]~([
~~  . 

 

 

Kelejian and Prucha (2010) and Arraiz, Drukker, Kelejian and Prucha (2010) use the 

untransformed instrument matrix NH  in FGTSLS estimation of cross-section SARAR(1,1) 

models. In light of (45), the ideal instruments matrix for **

NY  in the transformed model is 

given by **

NH .  

 

The following lemma shows that the various assumptions maintained in Section III are 

automatically satisfied by (F)GTSLS estimator Nδ
~̂

 and the corresponding residuals. The proof 

is given in Appendix C. 

 

Lemma 2.   

Suppose the Assumptions of Lemma 1 hold,
11

 and define Nδ
̂

 as in Eq. (50), where Nθ


 is any 

2/1N -consistent estimator of Nθ  (such as the GM estimator Nθ
~

 based on TSLS residuals). 

Then 

(a) )1()()()1()()( **

,

2/1**

,

2/1**2/1**2/1

pNNNNvpNNN oNTNToNTNT  
μTvTξTΔ  , where  

),(  NNN μvξ , ),( **

,

**

,

**  NNvN TTT ,    

****

,

**

, NNvNv PFT  , 
****

,

**

, NNN PFT   , 

1

****

1

************

1

**

** )(**

  ZHHHZHZHHH
QQQQQPN ,  

N

S

m

NmNmNTNNNNvNv HMIIΩHQQF ε 


 
1

,,

1

,

*

,1

2

1,0

2**

, )]([)(  ,  

N

S

m

NmNmNTNTNNTN HMIIIeHIeF 


 
1

,,

2

1

*2

1

**

, )]()][([)]([  . 
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 In light of the properties of 




S

m

NmNmN

1

,, )( MI   and N,εΩ , this implies that Assumptions 9 

and 10 will also be satisfied for the transformed instruments **

NH . 
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(b) )1()( **2/1

pNN ONT 
ξT ; 

(c) )1(** ON P  and )1(****

pNN oPP


 for  

1****11****1****1****11****1** ]})[(])][(){[(])[(])[(   NNNNNNNNNNN NTNTNTNTNT ZHHHHZZHHHP


. 

 

In light of Lemmata 1 and 2 the joint limiting distribution of the (F)GTSLS estimator Nδ
̂

 and 

the GM estimator Nθ


 follows from Theorem 4 and the discussion thereafter, with 

NNN δδΔ 
ˆ**


. The asymptotic variance-covariance matrix and its corresponding estimator 

are provided in Theorem 4 with the modifications as described in Remark 1 thereafter. 

 

 

V. Monte Carlo Evidence 

To illustrate the based performance of the proposed estimation procedure, we consider a 

limited Monte Carlos experiment for a SARAR(3,3) specification and restricted versions 

thereof. We assume that NN MW   and that the matrix NX  includes two explanatory 

variables.  To economize on notation, let us suppress subscript N  to indicate triangular arrays 

in the remainder of this section. Hence we have
12

  

 

 uyWIxxy  


3

1

2211 )(
r

rTrββ  , (51a) 

 εuWIu 


3

1

)(
s

sTs . (51b) 

 

We consider two sample sizes: 100N  and 500N  and assume 3T  throughout. The 

explanatory variables 1x  and 2x  are generated as random draws from a standard normal 

distribution, scaled with a factor of five, and treated as fixed in repeated samples. Their 

parameters 1  and 2  are assumed to be unity in all Monte Carlo experiments considered.  

 

For our basic setup of the weights matrix, we follow Kelejian and Prucha (1999) and use a 

binary ‘up to 9 ahead and up to 9 behind’ contiguity specification. This means that the 

elements of the time-invariant, raw weights matrix 0W  are defined such that the i-th cross-

section element is related to the 9 elements after it and the 9 elements before it.  

 

The unnormalized NN   matrix 0W  consists of three NN   matrices 0

1W , 0

2W , and 0

3W , 

where 00

3

0

2

0

1 WWWW  . The matrices 0

1W , 0

2W , and 0

3W  are specified such that they 

                                                 
12

 For simplicity of notation, the subscript N  is suppressed in the following.  
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contain the elements of 0W  for a different band of neighbours each. Otherwise, they have 

zero elements. We choose a design, where 0

1W  corresponds to an ‘up to three ahead and up to 

three behind’ specification, 0

2W  corresponds to a ‘four to six ahead and four to six behind’ 

specification, and 0

3W  corresponds to a ‘seven to nine ahead and seven to nine behind’ 

specification. 0

1W , 0

2W , and 0

3W  have typical elements 0

,1 ijw , 0

,2 ijw , and 0

,3 ijw , respectively, 

where subscripts i  and j  indicate that the corresponding element captures the possible 

contiguity of unit i  with j . 0

,1 ijw , 0

,2 ijw , and 0

,3 ijw  are either unity or zero. By design, at most 

one of the three elements, 0

,1 ijw , 0

,2 ijw , or 0

,3 ijw , can be unity. The final weights matrices 1W , 

2W , and 3W  are obtained by separately row-normalizing 0

1W , 0

2W , and 0

3W , that is, by 

dividing their typical elements 0

,1 ijw , 0

,2 ijw , and 0

,3 ijw  through the corresponding row sum, 

respectively.  

 

With row-normalized matrices 1W , 2W , and 3W , the parameter space for λ  and ρ  must 

satisfy 10 321    and 10 321   . We consider three parameter 

constellations. In parameter constellation (1) there is third order spatial dependence in both 

the dependent variable and the disturbances, which is non-increasing in the order of 

neighbourhood, i.e., 321    and 321   . In (2), there is first order spatial 

dependence in both y  and u . Finally, constellation (3) considers zero dependence parameters 

for all spatial lags in y  and u , i.e., a non-spatial model.  

 

 < Table 1 here > 

 

Regarding the choice of instruments, we include linearly independent terms of up to the 

second order in Eq. (30b). In particular, the matrix of untransformed instruments H  contains 

18 columns and is given by  

).)(,)(

,)(,)(,)(,)(,)(,)(,(

3221

2

3

2

2

2

1321

XWWIXWWI

XWIXWIXWIXWIXWIXWIXH





TT

TTTTTT   (52) 

 

We assume further that the error components itv  and it  are drawn from a standard normal 

distribution with zero mean and unit variance, i.e., itvitv ,   and iit ,   where each itv,  

and i,  are i.i.d. )1,0(N . One of the merits of spatial GM estimators relative to spatial 

maximum likelihood estimators is their suitability for non-normally distributed disturbances. 

This is not specific, however, to higher- versus lower-order or panel versus cross-section 

models. Hence, we refer readers interested in the performance of spatial GM versus spatial 

maximum likelihood panel data estimators to the Monte Carlo results in Lee and Yu (2010) or 

Baltagi, Egger, and Pfaffermayr (2012). 
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For each Monte Carlo experiment, we consider 1000 draws. Results for the estimates of 

,, ,2,1 NN   and N,3  are obtained by the GM estimator defined in Eq. (18), using the optimal 

weighting matrix under normality 1)
~

( 
NΨ . The estimates reported for the regression 

parameters are FGTSLS estimates as defined in (50) using the transformed set of instruments 

**~
H .  

 

For each coefficient, we report the average bias and root mean squared error (RMSE) for each 

parameter constellation and the rejection rates for the test that the coefficient is equal to the 

true parameter value. Under parameter constellation (2) we also test the SARAR(3,3) against 

the SARAR(1,1) model, using 0: 3232

,*,

0  H . For the non-spatial model under 

parameter constellation (3), we report results for the tests of the joint hypothesis 

0: 321321

,

0  H . 

 

Table 2 reports the results of the Monte Carlo analysis for the two sample sizes considered.
13

 

In terms of bias and RMSE, the estimator performs well, even at 100N . Across all 

parameter constellations, the bias and RMSE amount to 0.0007 and 0.0229 for the estimates 

of ),...,( 31
 λ  and to 0.0054 and 0.1096 for the estimates of ),...,( 31

 ρ . With an 

average rejection rate of 0.0082, the performance of the single hypothesis tests referring to λ  

and ρ  is satisfactory. The actual size of the joint hypothesis tests, however, differs 

significantly from the nominal size with an average rejection rate of 0.1395.  

 

< Table 2 > 

 

However, performance improves quickly with growing sample size. For 500N , the bias 

virtually disappears and the average RMSE of the estimates of ),...,( 31
 λ  shrinks to 

0.0010, that of the estimates of ),...,( 31
 ρ  shrinks to 0.0440. Also, the size of the tests 

improves and approaches the nominal size of 5 percent. Regarding the GM estimates of ρ , 

the average size of the tests involving only one parameter amounts to 0.0089, that for the 

FGTSLS estimates of λ  to 0.053. The average size of the joint hypothesis amounts to 0.084 

for joint tests.  

 

Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably 

well in terms of bias and RMSE, even in very small samples. Regarding the estimates of the 

variance-covariance matrix of the parameter estimates and implied tests of single and joint 

hypothesis, some care is warranted in the interpretation of the results in small samples, though 

                                                 
13

 Results for the variances of the error components are very similar and thus omitted for the 

sake of brevity. 
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the difference to the true size of the tests is moderate at least for the single hypothesis tests. 

Hence, in small samples it might be worth exploiting additional moment conditions as 

outlined in footnote 3. As the sample size increases, the rejection rates of single and joint 

hypothesis tests converge reasonably quickly to the true size such that they may be 

recommended for specification tests about the lag- and error-structure and the order of spatial 

dependence in medium to large samples.  

 

 

VI. Conclusions and Suggestions for Future Research 

This paper derives GM and FGTSLS estimators for the parameters of SARAR(R,S) models 

allowing the applied econometrician to study the strength and pattern of spatial 

interdependence quite flexibly. We study the asymptotic properties of the proposed two-step 

estimators of the model parameters and derive their joint asymptotic distribution. This enables 

tests of the fairly general SARAR(R,S) model against restricted alternatives such as 

SARAR(0,S) and SARAR(R,0) or SARAR(1,1) with panel data. 

 

One suggestion for future research is to extend the analysis of tests towards a study of 

conditional and unconditional tests on the relevance of error components and spatial 

interaction. In particular, a comprehensive Monte Carlo study of GM estimators using 

alternative weighting schemes of the moments and alternative distributional assumptions may 

be instructive. 
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Table 1. Parameter Constellations in Monte Carlo Experiments 

Parameter constellation 
1  2  3  

1  2  3  

(1) 0.5 0.3 0.1 0.4 0.25 0.1 

(2) 0.5 0 0 0.4 0 0 

(3) 0 0 0 0 0 0 

Note: 121    under all parameter constellations. 

 

Table 2. Monte Carlo Results  

Parameter 

constellation1) 

 N = 100   N = 500  

(1) (2) (3) (1) (2) (3) 

1 0.5 0.4 0 0.5 0.4 0 

Bias 0.0004 0.0014 0.0013 0.0005 0.0000 0.0003 

RMSE 0.0203 0.0230 0.0244 0.0088 0.0100 0.0099 

Rej. Rate 0.0540 0.0590 0.0490 0.0590 0.0710 0.0380 

2 0.3 0 0 0.3 0 0 

Bias 0.0008 0.0001 0.0001 -0.0002 0.0000 -0.0001 

RMSE 0.0213 0.0226 0.0251 0.0094 0.0097 0.0104 

Rej. Rate 0.0490 0.0520 0.0620 0.0620 0.0410 0.0480 

3 0.1 0 0 0.1 0 0 

Bias -0.0003 -0.0005 0.0010 0.0001 -0.0002 0.0000 

RMSE 0.0213 0.0232 0.0250 0.0093 0.0102 0.0101 

Rej. Rate 0.0520 0.0490 0.0690 0.0630 0.0530 0.0490 

1 1 1 1 1 1 1 

Bias 0.0001 -0.0004 -0.0003 0.0001 0.0000 0.0000 

RMSE 0.0134 0.0132 0.0138 0.0061 0.0060 0.0061 

Rej. Rate 0.0560 0.0500 0.0560 0.0550 0.0600 0.0480 

2 1 1 1 1 1 1 

Bias -0.0007 -0.0002 -0.0001 0.0001 -0.0001 0.0002 

RMSE 0.0130 0.0142 0.0133 0.0060 0.0058 0.0059 

Rej. Rate 0.0460 0.0740 0.0550 0.0500 0.0520 0.0510 

1 0.4 0.3 0 0.4 0.3 0 

Bias -0.0050 -0.0064 -0.0073 0.0013 0.0025 0.0027 

RMSE 0.0946 0.1037 0.1261 0.0385 0.0426 0.0496 

Rej. Rate 0.1070 0.1200 0.1330 0.0890 0.0910 0.0940 

2 0.25 0 0 0.25 0 0 

Bias -0.0091 -0.0036 -0.0047 -0.0007 0.0002 0.0008 

RMSE 0.1077 0.1107 0.1214 0.0444 0.0433 0.0477 

Rej. Rate 0.1180 0.1090 0.1140 0.0870 0.0810 0.0790 

3 0.1 0 0 0.1 0 0 

Bias -0.0079 -0.0020 -0.0028 -0.0027 0.0002 -0.0003 

RMSE 0.1005 0.1044 0.1169 0.0404 0.0423 0.0475 

Rej. Rate 0.0900 0.0980 0.0920 0.0790 0.0780 0.0860 

Joint Tests 2)       

Rej. Rate  - 0.1280 0.1510 - 0.0790 0.0880 

Note: 1) Each column corresponds to one parameter constellation (see Table 1). 2) Rejections rates for the 

following hypotheses: (2): 0: 3232

,*,

0  H ; (3): 0: 321321

,

0  H .   

 


