
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Open City Data Pipeline 
 
 
Stefan Bischof 
Benedikt Kämpgen 
Andreas Harth 
Axel Polleres 
Patrik Schneider 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Arbeitspapiere zum Tätigkeitsfeld 
Informationsverarbeitung, Informationswirtschaft und Prozessmanagement 
Working Papers on Information Systems, Information Business and Operations 
 
Nr./No. 01/2017 
ISSN: 2518-6809 
URL: http://epub.wu.ac.at/view/p_series/S1/  
 
Herausgeber / Editor: 
Department für Informationsverarbeitung und Prozessmanagement 
Wirtschaftsuniversität Wien · Welthandelsplatz 1 · 1020 Wien 
Department of Information Systems and Operations · Vienna University of 
Economics and Business · Welthandelsplatz 1 · 1020 Vienna 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/84318683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Open City Data Pipeline

Stefan Bischofa,∗, Benedikt Kämpgenb, Andreas Harthc, Axel Polleresd, Patrik Schneidera

aSiemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria
bFZI Research Center for Information Technology, Karlsruhe, Germany

cKarlsruhe Institute of Technology, Karlsruhe, Germany
dVienna University of Economics and Business, Vienna, Austria

Abstract

Statistical data about cities, regions and at country level is collected for various purposes and from various institutions. Yet, while
access to high quality and recent such data is crucial both for decision makers as well as for the public, all to often such collections of
data remain isolated and not re-usable, let alone properly integrated. In this paper we present the Open City Data Pipeline, a focused
attempt to collect, integrate, and enrich statistical data collected at city level worldwide, and republish this data in a reusable manner
as Linked Data. The main feature of the Open City Data Pipeline are: (i) we integrate and cleanse data from several sources in a
modular and extensible, always up-to-date fashion; (ii) we use both Machine Learning techniques as well as ontological reasoning
over equational background knowledge to enrich the data by imputing missing values, (iii) we assess the estimated accuracy of such
imputations per indicator. Additionally, (iv) we make the integrated and enriched data available both in a we browser interface and as
machine-readable Linked Data, using standard vocabularies such as QB and PROV, and linking to e.g. DBpedia.

Lastly, in an exhaustive evaluation of our approach, we compare our enrichment and cleansing techniques to a preliminary version
of the Open City Data Pipeline presented at ISWC2015: firstly, we demonstrate that the combination of equational knowledge and
standard machine learning techniques significantly helps to improve the quality of our missing value imputations; secondly, we
arguable show that the more data we integrate, the more reliable our predictions become. Hence, over time, the Open City Data
Pipeline shall provide a sustainable effort to serve Linked Data about cities in increasing quality.

Keywords: open data, data cleaning, data integration

1. Introduction

The public sector collects large amounts of statistical data.
For example, the United Nations Statistics Division1 provides
regularly updated statistics about the economy, demographics
and social indicators, environment and energy, and gender on a
global level. The statistical office of the European Commission,
Eurostat,2 provides statistical data mainly about EU member
countries. Some of the data in Eurostat has been aggregated
from the statistical offices of the member countries of the EU.
Even several larger cities provide data in on their own open data
portals, e.g., Amsterdam, Berlin, London, or Vienna.3 Increas-
ingly, such data can be downloaded free of charge and used
under liberal licenses.

Such open data can benefit public administrations, citizens
and enterprises. The public administration can use the data to
support decision making and back policy decisions in a transpar-
ent manner. Citizens can be better informed about government
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1http://unstats.un.org/unsd/
2http://ec.europa.eu/eurostat/
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data.london.gov.uk/, and http://data.wien.gv.at/

decisions, as publicly available data can help to raise awareness
and underpin public discussions. Finally, companies can de-
velop new business models and offer tailored solutions to their
customers based on open data. As an example for making use
of such data, consider Siemens’ Green City Index (GCI) [1],
which assesses and compares the environmental performance
of cities. The CGI is helpful in particular for public aware-
ness, but also demonstrates the potential for investments in more
environmentally friendly technologies.

Inspired by the concrete use case of the GGI, our focus in the
present paper is on collecting and integrating quantitative indicat-
ors about cities, including basic statistics such as demographics
but also socio-economic and environmental information.

Even though there are many relevant data sources which
publish such quantitative indicators as open data, it is still
cumbersome to use data from multiple sources in combination.
Obstacles inhibiting comparability and raising the entry barrier
for working with open data include the following.

Heterogeneity: different indicator specifications, different lan-
guages, formats, and units, as well as All this data is pub-
lished in different formats such as CSV, JSON, XML, pro-
prietary format such as XLS, just as plain HTML tables, or
even worse within PDF files – and so far to a much lesser
degree only as RDF or even as Linked Data [2]. Also, the
specifications of the individual data fields – (i) how indic-
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ators are defined and (ii) how they have been collected –
are often implicit in textual descriptions only and have to
be processed manually for understanding whether seem-
ingly identical indicators published by different sources
are indeed comparable.

Missing values: Data sources like Eurostat Urban Audit cover
many cities and indicators. However, for reasons such as
cities providing values on a voluntary basis, the published
datasets show a large ratio of missing values. The impact
of missing values is aggravated when combining different
data sets, due to either covering different cities or using
different, non-overlapping sets of indicators.

Updates and changes: Studies like the GCI are typically out-
dated soon after publication since reusing or analysing the
evolution of their underlying data is difficult. To improve
this situation, we need regularly updated, integrated data
stores which provide a consolidated, up-to-date view on
data from relevant sources.

We present the Open City Data Pipeline to integrate and
enrich statistical data about cities in a uniform, coherent and
re-usable manner. In the Open City Data Pipeline, we

1. collect and integrate data from multiple data sources that
publish numerical data about cities in a modular and ex-
tensible way,

2. enrich the integrated data with missing values,
3. run the process in an automated manner and provide ac-

cess to the resulting data in a web-based user interface
and as Linked Data.

The collection and integration is based on modelling nu-
merical data as multidimensional datasets (data cubes); we use
Statistical Linked Data [3] as a standardised format to publish
both the data and the metadata of cubes in wrappers. Statistical
Linked Data means using Linked Data and the RDF Data Cube
(QB) vocabulary [4]. We link all cities through their canonical
DBpedia identifiers to the LOD cloud.4 We use a rule-based
crawler to access all relevant data [5].

For the enrichment, our assumption – inspired also by works
that suspect the existence of quantitative models behind the
working, growth, and scaling of cities [6] – is that most indicat-
ors in such a scoped domain as cities have their own structure
and dependencies, from which we can build statistical prediction
models.5 To this end, we construct a sparse matrix of the avail-
able numerical values for different indicators different sources
(x-axis) per city-year pair(s) (y-axis). In order to deal with the
sparsity of this raw data matrix, we first apply some cleansing
steps, and then constructs principal components (PCs) of the raw
indicators from a “completed” data sets where missing values for
raw indicators are replaced with “neutral” values [7]). We then

4http://lod-cloud.net/
5 We refer to “predicting” instead of “imputing” values when we mean

finding suitable approximation models to predict indicators values for cities and
temporal contexts where they are not (yet) available. These predictions may
(not) be confirmed, if additional data becomes available.

use these principal components as predictors for different stand-
ard regression methods (namely, linear regression, K-nearest
neighbour, and random forest) in order to again approximate/im-
pute the missing values for each raw indicator. Here, we chose
the best fitting (by evaluating the estimated root mean square
error rate (RMSE)) regression method per indicator to build our
overall hybrid prediction model. We further improve our pre-
dictions by cross-validating and adapting them with respect to
existing equational knowledge [8, 9]. That is, apart from learnt
models we use ontological background knowledge in the form
of equations to improve our predictions.

We automate the tasks so that we can run the collection and
integration pipeline once a day. The integrated and enriched
dataset is then prepared for direct consumption in a website with
JavaScript-based SPARQL queries and published in a reusable
manner as Statistical Linked Data.

1.1. What’s New?

A first version of the Open City Data Pipeline has been pub-
lished at ISWC 2015 [10]. For the present paper we completely
re-engineered the architecture and improved the enrichment tech-
niques. The architecture is now modular and extensible since we
use standard Linked Data principles for interoperability between
the various separate pipeline components. The enrichment tech-
nique now combines statistical Machine Learning methods for
imputation with logic-based equational methods for inference of
new values. Moreover, the integrated data not only is enriched
with these imputed/inferred values but also with provenance
information. In particular, the following additional contributions
are presented beyond our earlier, preliminary results:

1. We have refined our wrappers for both Eurostat and UN
Data, and now integrate two more years of data; this al-
lows us to compare our prediction results and indeed our
earlier conjecture is confirmed that the more data we col-
lect the more accurate models we can train. Moreover,
all relevant numeric data (containing city-level indicator
measurements) now is published using standard Linked
Data principles, so that Linked Data consumption tools
such as crawlers can be re-used and regularly run to con-
sider updated data sources.

2. Whereas earlier we have transformed data for integration
into RDF using our own, proprietary ontology, the Open
City Data Pipeline represents all collected, integrated and
predicted indicator values using the standardised RDF
Data Cube vocabulary (QB) [4] which has proven to be a
suitable format for flexible publication and consumption
of numerical data [3, 11, 12] and for generating a unified
view, the global cube [9].

3. We present a streamlined architecture, where our current
system updates data regularly and automatically based on
a rule-based crawler for all relevant data [5] that is easily
maintainable and extensible.

4. We have combined two of our previously presented meth-
ods for enrichment of numerical data, namely (i) statistical
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Machine Learning methods as presented in [10]6 and (ii)
rule-based reasoning over what we earlier called “attrib-
ute equations” [8] and “correspondences” [9]; we include
a formalisation of this approach that encodes and infers
QB observations from such equations, which we call QB
equations (this combined approach is unique and novel as
such).

5. We demonstrate that our extended approach achieves sig-
nificant improvements in terms of prediction accuracy for
missing values:

• We compare RMSEs with respect to statistical Ma-
chine Learning methods applied to principal com-
ponents presented before [10], arguing that our con-
jecture that the more data we collect, the better the
RMSEs get holds, and that with the same accuracy
thresholds we can impute more missing values.

• Extending the approach, by combining statistical
Machine Learning methods with QB equations, we
can show further improvements in terms of again
reduced RMSEs.

1.2. Paper Structure

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the necessary preliminaries in terms of Stat-
istical Linked Data and other technical background, such as an
overview of the used machine learning methods for missing
value imputation. Section 3 gives an overview of the City Data
Pipeline architecture, including a description of data sources and
a description of how the resulting data set is made available in a
re-usable and sustainable manner via a web interface, a Linked
Data interface and a public SPARQL endpoint. Section 4 de-
scribes the data gathering as well as the main challenges in this
context. Section 5 explains the missing data prediction process
in more detail. Section 6 refines this process by introducing
and applying QB equations. Both the basic value imputation
mechanism and the refinement by QB equations are evaluated in
Section 7. Section 8 puts our approach in the context of related
work. Section 9 gives conclusions, provides lessons learnt and
summaries directions for future research.

2. Preliminaries

In the following we introduce the concepts and technologies
that form the basis of the work presented in this paper. We
start with introducing Statistical Linked Data followed by a
description of provenance annotations to track the origin of data.
We then briefly survey machine learning methods and introduce
the necessary background for equational background knowledge.

6Note that, as opposed to [10] herein we rely on learning based on using
principal components (PCs) as predictors only. As we have already shown
in [10] the naive attempt to learn predictions based on complete subsets of raw
indicator data proved to be insufficient for sparse data like the Eurostat/Urban
Audit and UN datasets.

2.1. Statistical Linked Data
Statistical Linked Data refers to numerical data, such as

about quantitative indicators, properly modelled and published
as Linked Data using the RDF Data Cube Vocabulary. In the
following, we first introduce the notion of multidimensional data,
then Linked Data and finally the RDF Data Cube Vocabulary.

Numerical data (statistical data) is often represented in a
multidimensional data model. The multidimensional data model
has roots in On-Line Analytical Processing (OLAP) and encom-
passes datasets (cubes), dimensions, measures and observations.
The relevant numbers (or values) in datasets (cubes) are de-
scribed in relation to independent, mostly categorical attributes
(so-called dimensions) and few dependent, mostly numeric at-
tributes (so-called measures) [13]. Data is often represented in
terms of different temporal (e.g. annual, monthly, quarterly)
and spatial (e.g. city, region, country) dimensions, where across
these dimensions statistical observations for different proper-
ties (typically, numerical indicators) are stored and aggregated.
Stated in the metadata of a cube, every cube not only has a
predefined set of dimensions and measures but also every di-
mension has a predefined set of possible dimension values, also
called members).

All observations in a dataset (cube) can be represented in
tabular form. As example, consider see Table 1 illustrating a
dataset about “population” from Eurostat.7 The dataset has the
following dimensions: geography (on the granularity of cities),
time (on the granularity of years) and indicator; the measure
refers to the value, the measured indicator. Members for the
city dimension would be Karlsruhe and Vienna, for the year
dimension 2009 and 2014, and for the indicator dimension Popu-
lation. Finally, there is the numerical value itself: the dependent
measure value (the observation) is the actual population.

Table 1: Example dataset/cube (Eurostat’s urb_cpop1 dataset) with population
values.

City Year Indicator Value

Karlsruhe 2012 Population 291 995
Karlsruhe 2013 Population 296 033
Karlsruhe 2014 Population 299 103
Vienna 2009 Population 1 687 271
Vienna 2013 Population 1 741 246
... ... ... ...

Linked Data refers to data published according to the Linked
Data principles [14], a set of best practices widely-adopted
within the Semantic Web community. Slightly adapted to our
concrete use case of publishing statistical data, we can recap
these principles as follows:

1. URIs are used to identify things such as datasets, dimen-
sions, statistical indicators, cities and countries.

2. HTTP URIs are used to allow for looking up descriptions
of things.

7http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=
urb_cpop1&lang=en
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3. HTTP URIs are resolvable and provide useful, machine-
readable information in RDF, using well-known vocabu-
laries.

4. Useful information links to other things and dereference-
able datasets by reusing HTTP URIs such as URIs used
by others for things such as dimensions, indicators, cities
and countries.

The RDF Data Cube Vocabulary (QB) [4] is a widely-used
source of URIs to describe numeric data using a multidimen-
sional data model. QB, as a W3C recommendation has estab-
lished itself as the standard for aggregating and (re-)publishing
statistical observations on the web, with off-the-shelf tools to
process and visualise QB data, which is why we chose to deploy
it also for our work. Figure 1 provides an overview of QB with
the most important classes and properties. For readability reas-
ons, we describe URIs with namespaces,8 slightly abusing the
W3C CURIE syntax for expressing compact URIs.

Figure 1: Illustration of most important classes of the RDF Data Cube Vocabulary
with properties (or property chains) between instances of concepts; adapted from
“Outline of the vocabulary” in the QB specification.

QB allows to describe datasets/cubes (instances of qb:Data-
Set) with observations (instances of qb:Observation). In
the remainder of the paper we use the terms (statistical) data-
set, QB dataset and cube synonymously. Every dataset has a
certain structure (instance of qb:DataStructureDefinition,
short DSD) that – using a chain of properties qb:component
before qb:measure or qb:dimension – defines measures (in-
stances of qb:MeasureProperty) and dimensions (qb:Dimen-
sionProperty). Attributes (qb:AttributeProperty) allow to
– per default optionally – add information to observations that
help to qualify and interpret the observed value(s). A qb:Data-
Set provides all necessary information about a cube. The
qb:DataSet URI gives the name of the relation in the tabu-
lar representation defined by the cube (see Table 1 for an ex-
ample). The qb:DataStructureDefinition – the metadata
of the cube/dataset – defines the independent and dependent
attributes of the relation as well as their possible attribute values.

The qb:Observation instances describe the entities in the
relation.

The following triples describe an example observation as a
blank node, an instance with an only locally known name, of
1741246 inhabitants of Vienna in 2013 in the population dataset
of Eurostat9:

8Use http://prefix.cc/ to look up prefix definition.
9If not stated otherwise, we use (abbreviated) Turtle or N3 notation.

_:obs1 a qb:Observation ;
qb:dataSet eurostat:id/urb_cpop1#ds ;
estatwrap:cities eurostat -cities:Vienna ;
estatwrap:indic_ur eurostat -indic_ur:Population ;
dcterms:date "2013" ;
sdmx -measure:obsValue "1741246" .

A HTTP GET request on eurostat:id/urb_cpop1#ds re-
turns the RDF describing the qb:DataSet instance. The follow-
ing SPARQL query returns the number of observations in the
population dataset10:

SELECT count(?obs)
WHERE {

?obs qb:dataSet eurostat -pjan:ds.
}

The QB specification defines the notion of “well-formed
qubes”.11 QB further specifies SPARQL ASK queries as QB
integrity constraints that when applied to an RDF graph return
true if the graph contains one or more data cubes that are
not well-formed according to the specification. For instance,
a well-formed cube satisfies the following constraints. Every
observation in the dataset has a value for each of the measures
and dimensions. The values of the measures are functionally
dependent on the values of the dimensions and for every possible
combination of dimension values, only one fact can be contained
in the dataset. Dimension values only can come from a specific
list as specified in the "metadata"/data structure definition (e.g.,
instances of skos:Concept in a skos:ConceptScheme linked
from the dimension via qb:codeList).

When generating and publishing QB datasets, we ensure
that these constraints are fulfilled. For instance, when we later
generate new observations via predictions and computations we
also generate new datasets containing these values. Also, when
integrating observations from several datasets into a unified view
(the global cube) we will ensure integrity by introducing a new
dimension.

When using QB, we can rely on an existing toolchain: sim-
ilarly as multidimensional datasets in OLAP systems, datasets
represented in QB can be queried using common OLAP opera-
tions using SPARQL [3, 9, 15]:

• Projection: To filter for certain measures from a dataset.

• Dice: To filter for certain dimension values from a dataset,
e.g., only values from "2010".

• Slice: To aggregate over one dimension from a dataset,
e.g., to not consider different genders.

• Roll-Up: To aggregate one dimension to a higher level of
abstraction, from cities to countries.

• Drill-Across: To integrate two datasets into one dataset to
combine their values. Different from the other operations,
drill-across has as input not one but two datasets.

10We assume that the population data is accessible in the default graph of the
SPARQL processor.

11https://www.w3.org/TR/vocab-data-cube/#wf
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prov:wasDerivedFrom

prov:wasGeneratedBy

prov:generatedAtTime

2017-01-15T12:37:00

prov:qualifiedAssociation

prov:hadPlan

prov:wasAssociatedWith

ex:obs123 ex:obs789

ex:activity456

ex:fred

ex:rule937

Figure 2: PROV example.

2.2. Provenance Annotations

Apart from storing observations alone, in order to make data
traceable and allow users to judge the trustworthiness of data, it
is import to record the provenance of data points. There exist
several approaches to address this issue for RDF. A lightweight
approach is to use different Dublin Core properties to refer from
a dataset to its publisher and attach some metadata. For example
the property dc:publisher is defined to refer to an entity (like
a person or organisation) which publishes some resource.

A more flexible approach is PROV [16], which provides
an ontology (among other documents) to annotate all kinds
of resources with provenance information and allows tracking
of provenance of resource representations. On a high level
PROV distinguishes between entities, agents, and activities. A
prov:Entity can be all kinds of things, digital or not, which
are created or modified. Activities are the processes which create
or modify entities. An prov:Agent is something or someone
who is responsible for an activity (and indirectly also for an
entity). A prov:Activity is something that happens and, in
our case, generates new observations from other observations.
PROV also defines plans which can be understood as any kind
of predefined workflow which a prov:Activity might follow
to create or modify an entity. Additionally PROV also allows to
tag certain activities with time, for example a timestamp when
an entity was created.

We will rely on PROV annotations to store the data source
of observations or, when imputing missing values, to annot-
ate the method that was used to process and generate the en-
riched observations. Figure 2 shows a PROV example (all other
triples removed) of two observations, where a QB observation
ex:obs123 was derived from another observation ex:obs789
via an activity ex:activity456 on the 15th of January 2017
at 12:37. This derivation was executed according to the rule
ex:rule937 with an agent ex:timbl being responsible. This
use of the PROV vocabulary models tracking of source observa-
tions, a timestamp, the conversion rule and the responsible agent
(which could be a person or software component).

Population Hotel Beds 

Berlin 2010 3 000 000 

Prag 2010 70 000 

Vienna 2010 1 500 000 100 000 

CO2 Em. Living Area 

Bern 2010 0.34 36 

London 2010 30 

Paris 2010 0.5 

Population Hotel Beds CO2 Em. Living Area 

Berlin 2010 3 000 000 

Prag 2010 70 000 

Vienna 2010 1 500 000 100 000 

Bern 2010 0.34 36 

London 2010 30 

Paris 2010 0.5 

UNSD Dataset Eurostat Dataset 

Combined Dataset 

Figure 3: Combining different Datasets

2.3. Missing Values
After integrating the different datasets, we discovered a large

number of missing values in our data sets. We identified two
reasons for that:

• As shown in Table 2 and 3, we can observe a large ratio
of missing values due to incomplete data published by the
data providers;

• More severely, when we combine the different datasets
even more missing values are introduced, since there is a
fair amount of disjoint cities and indicators between the
datasets (see Figure 3).

2.4. Machine Learning Methods
In our attempt to impute missing values for certain indicat-

ors and cities, our assumption is that every such indicator has
its own distribution (e.g., normal, Poisson) and relationship to
other indicators. Hence, we aim to evaluate different regression
methods and choose the best fitting model to predict the missing
values. We measure the prediction accuracy by comparing the
normalised root mean squared error in % (RMSE%) [17] of
every regression method:

RMSE% =


√

∑
n
t=1(yt−y′t )2

n

ymax− ymin

×100

where n is the amount of predictions, yt is the observed (actual)
value on t, y′t is the predicted value on t, and ymax (resp. ymin)
the maximum (resp. minimum) value of the observed values.
Further, we use for measuring the quality of prediction calculated
by QB equations the root mean squared error (RMSE), which is
defined as:

RMSE =

√
∑

n
t=1(yt − y′t)2

n
where n is the amount of predictions, yt is the observed (actual)
value on t, y′t is the predicted value on t.

In the field of Data Mining [17, 18] (DM) various regression
methods for prediction were developed. We focus on “standard”
DM methods, since there methos are straightforward to apply
and show a robust behaviour. For instance, we use the following
methods:
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• K-Nearest-Neighbour Regression (KNN) that is a wide-
spread DM technique based on using a distance function
to partition the instance space.

• Multiple Linear Regression (MLR) that has the goal to
find a linear relationship between a target and several
predictor variables.

• Random Forest Decision Trees (RFD) involves the top-
down segmentation of the data into multiple smaller re-
gions represented by a tree with decision and leaf nodes.

All these methods, have a common caveat when applied to
our raw data: they need complete training data, or respectively,
can only be applied to complete subsets of the data. As we will
see in Section 4 below though, our data sources contain partially
very sparse data, such that training regression methods based
on complete subsets only, is often insufficient. To this end, a
common and robust method is to first perform a Principal Com-
ponent Analysis (PCA) to reduce the number of dimensions of
the data set and use the new compressed dimensions, called prin-
cipal components (PCs) as predictors for the above-mentioned
standard regression methods. As stated in [18], the PCA is a
common technique for finding patterns in data of high dimen-
sions, but it can also be used for sparse data. That is, in a first
step all the missing values are imputed with neutral values for
the PCA, where the neutral values are created according to the
regularised iterative PCA algorithm described in [7]. The PCs
generated this way shall reflect the characteristics of the whole
data set and can be used as predictors.

2.5. Equational Background Knowledge and Inference

Apart from the above-mentioned regression methods, the
common assumption in the Semantic Web is that missing in-
formation can be inferred deductively by applying ontological
reasoning over suitably formalised background knowledge.

In most cases, such ontological background knowledge is
formalised in terms of taxonomic axioms about class and prop-
erty hierarchies, in terms of RDFS and OWL ontologies, parts of
which (e.g. reasoning about subproperties and subclasses, or en-
tity consolidation using owl:sameAs inferences) are well-known
to be covered by rule-based inferences. We refer to the respect-
ive standard or textbook articles for the necessary background,
e.g. cf. [19].

Another kind of often neglected knowledge is equational
knowledge in the form of equations defining functional depend-
encies among certain attributes of a resource. For example, if
we know that city1 has 10000 inhabitants (population) on an
area of 10 square kilometers (area_km2), we can derive the
population density from the equation

populationDensity = population/area_km2

Note, for simplicity reasons, in this example, we do not use
QB modelling. The multidimensional data model of QB allows
to make explicit different dimension – dimension value combina-
tions, e.g., _:obs cd:unit "km2". and _:obs dcterms:date

"2010". which is important for interpreting the semantics of
values and for integration purposes [20].

In [8] we have defined an approach that allows to store and
process such so called attribute equations in RDF in order to
enable ontological derivations, i.e., –simplifying– given triples
:city1 :population 10000 ; :area_km2 10 .

the approach can infer
:city1 :populationDensity 1000 .

Equations are in principle not directed, thus attribute equa-
tions would also infer the population, given the area and the
population density.

Similar to OWL and RDFS-based reasoning, the approach
works on either rule-based forward-chaining inference, or, re-
spectively in terms of query rewriting, where equations such as
the one above are interpreted – roughly– as rules of the form
{

?c :population ?p .
?c :area_km ?a .
?pd = ?p / ?a .

} =>
{ ?c :populationDensity ?pd }.

For further details about the equations supportable in such
a rule-based approach we refer to [8]. At this point, let us just
emphasise that, in case no computation up to a fixpoint is needed,
rule-based inference as the one sketched above can be also real-
ised with simple SPARQL CONSTRUCT or INSERT queries
(or, in off-the-shelf SPARQL engines by iteratively applying
such queries), such as:
INSERT { ?c :populationDensity ?pd }
WHERE {

?c :population ?p .
?c :area_km ?a .
BIND(?p / ?a AS ?pd)

}

As again we will see in Section 4 below, various published
statistical indicators for cities (population density being one
simple example) are indeed computed indicators, with published
equational computation rules available along with the datasets.
Herein, we aim to exploit such equations and directly infer new
QB observations. To this end, we will extend and adapt the seri-
alisation of equations and inference rules derived from equations
from [8] to comply with the QB vocabulary, cf. Section 6.

3. Overview and System Architecture

The OCDP workflow is illustrated in Figure 4 and consists
of several steps. Data is provided as Statistical Linked Data
via wrappers. A crawler component collects data from different
sources and stores it into the triple store. The data is stored in a
SPARQL endpoint. Then, the data is integrated into the global
cube. After missing values are imputed with statistical Machine
Learning methods, QB equations are applied to infer additional
values. Finally, the resulting data is made accessible.

The architecture of the OCDP system consist of several
components. Figure 5 gives a high level overview of the archi-
tecture with a triple store being the central part. The data quality
improvement workflow uses various methods to improve data
quality and enrich the data.
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Figure 4: Open City Data Pipeline workflow
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Figure 5: Open City Data Pipeline architecture

We start with surveying data sources that serve as input to the
pipeline in Section 3.1. We introduce the different components,
their inputs, outputs, and interfaces in Section 3.2 and explain
how we make the resulting data available in Section 3.3.

3.1. Data Sources

Many interesting statistical data sources are nowadays avail-
able. Many indicators in these data sources are provided on a
country level and only a subset of indicators are available on
the city level. We have identified the following providers of
statistical data concerning cities:

• DBpedia12;

• Eurostat with Urban Audit;

• United Nations Statistics Division statistics;

• U.S. Census Bureau statistics;

• Carbon Disclosure Project13;

• individual city data portals.

In particular, we use DBpedia, United Nations statistics, and
Eurostat data sources, which are integrated and enriched by the
OCDP. The data sources contain data ranging from the years
1990 to 2016, but most of the data concerns the years after 2000.

12http://wiki.dbpedia.org/
13https://www.cdp.net

Further, not every indicator is covered over all years, where
the highest coverage of indicators is between 2004 and 2015
(see Tables 2 and 3). Most European cities are contained in
the Eurostat datasets, but we also include the capital cities and
cities with a population over 100 000 from the United Nations
Demographic Yearbook (UNDY).14

The previous OCDP of ISWC 2015 [10] contains data from
1990 to 2013 with 638 934 values from the Eurostat data source
and 69 772 values from the U.N. data source. Due to some
reorganisation in the Eurostat and U.N. datasets, Eurostat con-
tains now 506 854 values and the U.N. provides 40 532 values.
Regarding indicators, we now have 209 instead of 215 Eurostat
and 64 instead of 154 U.N. indicators. The reason for the drop in
indicators is due to the fact that the U.N publishes fewer datasets.
The same effect can be seen for the cities, where we have 966
instead of 943 Eurostat and 3 381 instead of 4 319 U.N cities.
Due to the smaller size of the datasets (see Tables 2 and 3), we
now have an improved missing values ratio of 81.7% (before
86.3%) for Eurostat, resp. 94.4% (before 99.5%) for the U.N.
dataset.

We now describe each of the data sources in detail.

DBpedia. DBpedia, initially released in 2007, is an effort to
extract structured data from Wikipedia and publish the data as
Linked Data [21]. We include the URIs, latitude/longitude, and
labels of a city in our dataset. For cities, DBpedia provides
various basic indicators such as demographic and geographic
information (e.g., population, latitude/longitude, elevation) but
without a year. While we only integrated textual data, we plan
to add other indicators like weather data and the population of a
city in the future using the DBpedia Wayback Machine [22] to
obtain the values of different points in time.

Eurostat. Eurostat15 offers various datasets concerning E.U.
statistics. The data collection is conducted by the national stat-
istical institutes and Eurostat itself. In particular interesting is
the Urban Audit (UA) collection, which started as an initiat-
ive to assess the quality of life in European cities. UA aims
to provide an extensive look at the cities under investigation,
since it is a policy tool to the European Commission: “The pro-
jects’ ultimate goal is to contribute towards the improvement of
the quality of urban life” [23]. Currently, data collection takes
place every three years (last survey in 2015) and is published via
Eurostat Urban Audit. All data is provided on a voluntary basis
which leads to varying data availability and missing values in the
collected datasets. At the city level, Urban Audit contains over
200 indicators divided into the categories Demography, Social
Aspects, Economic Aspects, and Civic Involvement. Currently,
we extract the datasets that include the following topics:

• Population by structure, age groups, sex, citizenship, and
country of birth

• Fertility and mortality

14http://unstats.un.org/unsd/demographic/products/dyb/dyb2012.
htm

15http://ec.europa.eu/eurostat
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Table 2: Values of the Eurostat Dataset

Year(s) Cities Indicators Available Missing Missing Ratio (%)

1990 131 88 1 799 9 641 84.27
2000 433 163 6 420 63 996 90.88
2005 598 168 20 460 79 836 79.60
2010 869 193 56 528 110 996 66.26
2015 310 69 2 030 19 291 90.48

2004–2016 879 207 437 565 1 331 250 75.26
All (1990–2016) 966 209 506 854 2 257 171 81.66

Table 3: Values of the United Nations Dataset

Year(s) Cities Indicators Available Missing Missing Ratio (%)

1990 5 3 8 7 46.67
2000 1 078 61 3 861 61 836 94.12
2005 777 61 2 110 45 226 95.54
2010 1 525 64 5 866 91 670 93.99
2015 216 3 568 77 11.94

2004–2016 2 095 64 28 849 511 759 94.66
All (1990–2016) 3 381 64 40 532 685 548 94.42

• Living conditions and education

• Culture and tourism

• Labour market, economy, and finance

• Transport, environment, and crime.

United Nations Statistics Division (UNSD). The UNSD offers
data on a wide range of topics such as education, environment,
health, technology and tourism. The focus of the UNSD is
usually on the country level, but there are some datasets on
cities available as well. Our main source is the UNSD Demo-
graphic and Social Statistics, which is based on the data collected
annually (since 1948) by questionnaires to national statistical
offices.16 Currently we use the datasets on the city level that
include the following topics:

• Population by age distribution, sex, and housing

• Households by different criteria (e.g., type of housing)

• Occupants of housing units / dwellings by broad types
(e.g., size, lighting, etc.)

• Occupied housing units by different criteria (e.g., walls,
waste, etc.)

The full UNSD Demographic and Social Statistics data has
over 650 indicators, wherein we kept a set of 64 course-grained
indicators and drop the most fine-grained indicator level. For
example, we keep housing units total but drop housing units
1 room. We prefer more coarse-grained indicators to avoid
large groups of similar indicators which are highly correlated.
However, for future work, we plan to introduce the fine-grained
indicators and relate them to their coarse-grained parents using
hierarchies on the indicator dimension.

16http://unstats.un.org/unsd/demographic/

Prospective Data Sources. At the point of writing, the data
sources are strongly focused on European cities and demo-
graphic data. Hence, we aim to integrate further national and
international data sources, in particular the U.S. Census Bureau
statistics and the Carbon Disclosure Project.

U.S. Census Bureau. The U.S. Census Bureau [24] offers two
groups of tabular datasets concerning U.S. statistics: Table C-1
to C-6 of [24] cover the topics Area and Population, Crime and
Civilian Labor Force for cities larger than 20 000 inhabitants;
Table D-1 to D-6 of [24] cover Population, Education, Income
and Poverty for locations with 100 000 inhabitants and more.

Contrary to the UNSD or Eurostat datasets, the USCCDB
has a low ratio of missing values ranging from 0% to 5% for
a total of 1267 cities. The data includes 21 indicators, e.g.,
population, crime, and unemployment rate.

Carbon Disclosure Project (CDP). The Carbon Disclosure Pro-
ject (CDP) is an organisation based in the U.K. aiming at “[...]
using the power of measurement and information disclosure to
improve the management of environmental risk”.17 The CDP cit-
ies project has data collected on more than 200 cities worldwide.
CDP cities offers a reporting platform for city governments
using an online questionnaire covering climate-related areas
like Emissions, Governance, Climate risks, Opportunities, and
Strategies.

Individual city open data portals. Many cities operate dedicated
open data portals. The data from these individual city open data
portals (e.g., New York, Vienna) could be added and integrated.
This is surely a large effort on its own, as we would require a
unified interface to many different data portals. Either we would
have to write wrappers for every cities’ portal, or standardisation
efforts on how cities publish data would have to succeed.

3.2. Pipeline Components

We now give an overview of each of the components of the
OCDP system.

Statistical linked data wrappers. None of the mentioned data
sources publishes statistical data as statistical linked data. Thus
we use a set of statistical linked data wrappers which publish
the data from these sources according to the principles listed
in Section 2. Such a wrapper consumes data from the original
source, either in real-time or in batch mode, from the original
format, e.g., CSV, and converts the data to statistical linked
data and eventually provides it to the consumer. Section 4 also
explains the statistical linked data wrappers.

Linked data crawler. To collect the data from all the different
sources in one place the linked data crawler starts with a seed list
of URIs and crawls relevant connected linked data. The resulting
RDF data is collected in one big RDF file and eventually loaded
into the triple store. Section 4 extensively explains the linked
data crawler in detail.

17https://www.cdp.net/en-US/Pages/About-Us.aspx
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Triple store. We use a standard Virtuoso 7 triple store as a
central component to store data at different processing stages.
For data loading we use the Virtuoso SQL console which allows
faster data loading. For all other data access we rely on Virtuosos
SPARQL 1.1 interface which allows not only to query for data
but with SPARQL Update also to insert new triples.

Data quality improvement workflow. In an iterative approach we
improve data quality of the crawled raw data. In this configurable
workflow we use several different components consecutively.
Each workflow component first reads input data (=observations)
from the triple store via SPARQL queries, processes the data
accordingly and inserts new triples into the triple store either
via SPARQL Insert queries or the Virtuoso bulk loader facility
(the first option is more flexible – it allows the execution of the
workflow on a different machine – the second usually allows
faster data loading).

The workflow currently uses three different components: a
component to materialise the global cube, a statistical compon-
ent, and a rule execution component.

The first component materialises the global cube in a sep-
arate named graph. This materialisation effectively resolves
different types of heterogeneity found in the raw data: (i) differ-
ent URIs for members, (ii) different URIs for dimensions, (iii)
different DSDs (although the DSDs must be compatible to some
extent for the integration to make sense). Eventually the global
cube provides a unified view over many datasets from several
sources. This component is implemented with SPARQL Update
queries and supplied background knowledge for the integration.
Section 4 details this process of linking statistical data and the
materialisation.

The second component for missing value prediction extracts
the whole global cube generated by the materialisation as one
big dataset. Then it uses different machine learning methods to
train models for missing value prediction. This component is
implemented as a set of R scripts which extract the data with
SPARQL queries. We then train and evaluate the models for
each of the indicators. If the selected model delivers predictions
in a satisfactory quality we apply the model and get estimates
for the indicators. Finally the component exports the statistical
data together with error estimates to one RDF file which is then
loaded into the triple store with the Virtuoso bulk load feature
and added to the global cube. Section 5 explains the details of
this components in detail.

The third and last component uses equations from different
sources to infer even more data. To this end we introduce QB
equations. These QB equations provide an RDF representation
format for equational knowledge and a semantics as well as
a forward chaining implementation to infer new values. QB
equations are implemented in a naive rule engine which directly
executes SPARQL Insert queries on the triple store. Section 6
introduces the concept of QB equations with syntax, semantics
and implementation.

3.3. Data Publication
Eventually after the data is crawled and loaded into the triple

store, improved and enriched by our workflow, the resulting

global cube is available for consumption.
We provide a SPARQL endpoint18 based on Virtuoso, where

the global cube is stored in a named graph.19 The prefix names
used in the examples above are already set in Virtuoso, thus no
prefix declarations are necessary for SPARQL queries.

We also provide a simple user interface20 to query values
for a selected indicator and city in the global cube. Queries
are directly executed on the triple store during loading of the
website using a JavaScript library called Spark; thus one can
have a look at the SPARQL queries in the source code. We show
all predicted values for transparency reasons. We simply order
by the error value, i.e., the most trustworthy value per year is
always shown first.

4. Data Collection, Cleaning, and Integration

We now explain our data collection, cleaning and integration
approach. The approach is modular and extensible in the sense
that every new data source can be prepared for consideration sep-
arately and independently from other sources in a well-defined
manner. The approach allows always up-to-date data since it can
be re-run at any time and is limited only by the available amount
of storage space and runtime to download from the web as well
as store and query all relevant data.

The approach consists of the following components:

• Linked Data wrappers that re-publish numerical data from
various data sources as Statistical Linked Data in a well-
defined manner (Section 4.1);

• a rule-based Linked Data crawler which is maintainable
and efficient in collecting all relevant data (Section 4.2);

• semi-automatically generated links between statistical
data from different sources (Section 4.3);

• the definition and materialisation of a unified view over
all relevant statistical data, a so-called global cube which
includes provenance information (Section 4.4).

4.1. Linked Data Wrappers
Every statistical data source that could be analysed in the

OCDP is assumed to be published either as Linked Data (e.g.,
DBpedia), Statistical Linked Data (e.g., Eurostat), or as collec-
tion of datasets in tabular form (e.g., UNSD or U.S. Census).
Wrappers are a flexible way to make these data sources avail-
able such that (a) on-the-fly retrieval from the original source,
(b) transformation to RDF, and (c) re-publication as Statistical
Linked Data is feasible.

Every data source has an individual dataset, which has their
own specialities and structure. Hence the wrapper needs to pub-
lish all the necessary information as resources accessible via
resolvable URIs. The table of content provides all available data-
sets as a list of qb:DataSet triples and a data structure definition

18http://citydata.wu.ac.at/ocdp/sparql
19http://citydata.wu.ac.at/qb-materialised-global-cube
20http://kalmar32.fzi.de/indicator-city-query.php
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(as qb:DataStructureDefinition), which includes the avail-
able dimensions (as qb:dimension) and concept schemes (as
skos:ConceptScheme). The statistical data is published itself
as individual datasets that include all available observations (as
qb:Observation).

We use the following wrappers that provide access to the
underlying data source via a Linked Data interface:

• Eurostat Wrapper: The Eurostat datasets as described
in Section 3 are available as Linked Data via the Euro-
stat Linked Data Wrapper (Estatwrap).21 The Estatwrap
provides a table of contents22 from which all relevant
datasets can be selected. For instance, Estatwrap offers
under the eurostat namespace the Eurostat GDP Growth
Dataset (eurostat:id/tsieb020#ds).

• UNSD Wrapper: Another relevant data source are the
UN Data datasets that are available as Statistical Linked
Data from the UN Data - Linked Data Wrapper (UN-
wrap).23 For instance, UN-wrap offers under the undata
namespace the dataset Occupied housing units by type of
housing unit for selected cities.

Before integration, locations have varying names in differ-
ent data sources (e.g., Wien vs. Vienna), a Uniform Resource
Identifier (URI) for every city is essential for the integration and
enables to link the cities back to DBpedia and other LOD data-
sets. We choose to have a one-to-one (functional) mapping of
every city from our namespace to the English DBpedia resource,
which in our republished data is encoded by owl:sameAs rela-
tions. We identify the matching DBpedia URIs for multilingual
city names and apply basic entity recognition, similar to Paul-
heim et al. [25], with three steps using the city’s names from
Eurostat and UNYB:

• Accessing the DBpedia resource directly and following
possible redirects;

• Using the Geonames API 24 to identify the resource;

• For the remaining cities, we manually looked up the URL
on DBpedia.

4.2. Linked Data Crawler
Based on the basic notion of Linked Data, RDF may be

stored in a distributed manner. All necessary information about
a dataset can be found by resolving URIs of entities related to the
dataset. Related entities are all instances of QB-defined concepts
that can be reached from the dataset URI via QB-defined proper-
ties. For instance, from the URI of a qb:DataSet instance, the
instance of qb:DataStructureDefinition can be reached via
qb:structure. Similarly, instances of qb:ComponentProper-
ty (dimensions/measures) and skos:Concept (members) can
be reached via links.

21http://estatwrap.ontologycentral.com/
22http://estatwrap.ontologycentral.com/table_of_contents.html

(also available in RDF)
23http://citydata.wu.ac.at/Linked-UNData/
24http://api.geonames.org/

Once all numeric data is available as Linked Data, we need
to make sure to collect all relevant data and metadata starting
from a list of initial URIs. First, a seed list of URIs needs
to be generated to start the collection from. One example of
a “registry” or “seed list” of dataset URIs is provided by the
PlanetData wiki.25 A seed list of such datasets is published as
RDF and considered as input to the crawling.26

Then, Linked Data crawlers deploy crawling strategies for
RDF data where they resolve the URIs in the seed list to collect
further RDF and in turn resolve a specific (sub-)set of contained
URIs. An example Linked Data crawler is LDSpider[26], that
uses a depth-first or breadth-first crawling strategy for RDF data.
Linked Data crawlers typically follow links without considering
the type.

A more direct approach of loading relevant data, a directed
crawling strategy, starts with resolving and loading the URIs of
qb:DataSets interesting to the user, then in turn resolves and
loads instances of QB concepts in the order they can be reached
from the dataset URI.

To describe how to collect Linked Data, we use the Linked
Data-Fu language [5] in which rule-based link traversal can be
specified. For instance, to retrieve data from all qb:DataSets,
we define the following rule:
{

?ds rdf:type qb:DataSet.
} =>
{

[] http:mthd httpm:GET .
http:requestURI ?ds .

} .

The head of a rule corresponds to an update function of
an internal graph representation in that it describes an HTTP
method that is to be applied to a resource. In our example, the
head of a rule applies a HTTP GET method to the resource
?ds. The body of a rule corresponds to the pre-condition in
terms of triple patterns that have to hold in the internal graph
representation. In our example, ?ds is defined as an instance of
qb:DataSet.

Similarly, we retrieve instances of qb:DataStructureDef-
inition, qb:ComponentSpecification, qb:DimensionPro-
perty, qb:AttributeProperty, qb:MeasureProperty, qb:-
Slice, qb:SliceKey, and qb:ObservationGroup. Also, we
crawl the list of possible dimension values (based on qb:code-
List) as well as each single dimension value. The only instances
we do not resolve are observations since these are usually either
modelled as anonymous blank nodes without own identifier
or provided together with other relevant information with the
instance of qb:DataSet or qb:Slice.

Crawling may include further information, e.g., rdfs:see-
Also links from relevant entities and information encoded in the
Vocabulary of Interlinked Datasets (VoiD).27 For instance, VoiD
descriptions may state that the relevant data can be retrieved
from a certain SPARQL endpoint. Assuming that the number
of related instances of QB concepts starting from a QB dataset

25http://wiki.planet-data.eu/web/Datasets
26http://kalmar32.fzi.de/triples/ocdp_seed_datasets.nt
27http://rdfs.org/ns/void#
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is limited and that links such as rdfs:seeAlso for further in-
formation are not crawled without restriction (e.g., only from
instances of QB concepts), the directed crawling strategy should
terminate after finite steps.

Besides all the relevant data and metadata of qb:DataSets,
we collect the following further information:

• The City Data Ontology28 (CDP ontology) that contains
lists of common statistical indicators about cities.

• The QB Equations Ontology29 that contains the vocabu-
lary to describe QB equations and is further detailed in
Section 6.

• The Eurostat QB equations30 that contains a set of QB
equations generated from formulas published by Eurostat
as further detailed in Section 6.

• Background information31 that links indicators of Estat-
wrap to the CDP ontology as further described in Sec-
tion 4.3.

• Background information providing additional owl:equi-
valentProperty links32 between common dimensions
not already provided by the wrappers such as between the
different indicator dimension URIs estatwrap:indic_ur,
cd:hasIndicator and eurostat:indic_na.

• The Global Cube Dataset33 that defines the common URIs
for dimensions, measure and dimension values and that is
described further in Section 4.4.

Besides explicit information available in the RDF sources,
we also materialise implicit information to 1) make querying
over the triple store easier and 2) automatically evaluate relevant
QB and OWL semantics. We execute the QB normalisation
algorithm34 in case the datasets are abbreviated. Also, we ex-
ecute entailment rules35 for OWL and RDFS. However, we
only enable those normalisation and entailment rules that we
expect to be evaluated quickly and to provide sufficient benefit
for querying.

The crawling is implemented as a Linked Data-Fu pro-
gram36 and executed once a night using the Linked Data-Fu
interpreter [5] with Version 0.9.9. The crawled data is then made
available for loading into a triple store.37 The large RDF file
resulting from the crawl is loaded once a night into a Open-
Link Virtuoso triple store (v07) using the standard RDF bulk

28http://citydata.wu.ac.at/ontology.ttl
29http://citydata.wu.ac.at/ocdp/qb-equations
30http://citydata.wu.ac.at/ocdp/eurostat-equations
31http://kalmar32.fzi.de/triples/indicator-eurostat-links.nt
32http://kalmar32.fzi.de/triples/dimension-property-links.nt
33http://kalmar32.fzi.de/triples/global-cube.ttl#

global-cube-ds
34https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm
35http://semanticweb.org/OWLLD/
36http://kalmar32.fzi.de/ecdp.ldf
37See http://kalmar32.fzi.de/ for a collection of information about the

crawling process as well as links to the resulting RDF file

loading feature.38 Afterwards data gets preprocessed further, as
described in the following sections.

4.3. Linking Statistical Data

In our scenario integration means building a unified view
that allows to query over several datasets from the web as if
they would reside in a single database. To allow this we need
equivalence mappings and joining operations to build and query
the unified view over Statistical Linked Data.

Take as an example we want to query all values of the indic-
ator “population” of the area “Vienna”, in the year “2010” simul-
taneously over two datasets: The two datasets may use different
identifiers for the same dimensions, e.g., eurostat:geo and
sdmx-dimension:refArea and dimension values, e.g., euro-
stat:dic/geo#AT13 and dbpedia:Vienna.

Therefore, we define equivalence classes of objects and
define a common representation that we use in queries:

• For the time dimension, we use dcterms:date that is
commonly used in many Statistical Linked Data.

• For the time dimension values, we use single years repres-
ented as String values such as "2015".

• For the geo dimension, we use sdmx-dimension:refArea
that is recommended by the QB standard and link to it
from other representations such as eurostat:geo, euro-
stat:cities and eurostat:metroreg.

• For the geo dimension values, we use instances of db-
pedia:City like dbpedia:Vienna and link to these in-
stances from other representations such as eurostat:dic-
/geo#AT13.

• For the indicator dimension, we use cd:hasIndicator
and link to it from other representations such as euro-
stat:indic_na and eurostat:indic_ur.

• For the indicator dimension values, we use instances of
cd:Indicator such as cd:unemployment_rate and link
it from other representations such as the indicator from
Eurostat eurostat:dic/indic_ur#EC1020I. For the in-
dicator dimension values, we defined the CDP ontology as
the main hub of indicator URIs to link to since no dataset
with common indicators existed, yet.

• For all the other dimensions such as sex, age, unit, we
used the one that is either recommended by QB or mostly
used, e.g., sdmx-dimension:sex, eurostat:unit, and
sdmx-dimension:age.

The following RDF snippet contains example links between
two dimensions and two dimension values:
eurostat:geo owl:equivalentProperty sdmx -dimension:refArea.
eurostat:dic/geo#AT13 owl:sameAs dbpedia:Vienna .

38See http://citydata.wu.ac.at/ocdp/import for a collection of inform-
ation about the loading process.
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Since most publishers follow the practice of using an unspe-
cific measure sdmx-measure:obsValue and a dimension indic-
ating the measured variable, e.g., estatwrap:indic_na, and
since cubes with multiple measures can be transformed to this
form by introducing a new measure dimension, for the remainder
of this paper we assume data cubes to have only one general
measure, sdmx-measure:obsValue.

If we want to pose one query over the two datasets, we 1)
specifically write the query to consider possibly different identifi-
ers (i.e., need to know all identifiers) or 2) assume existing links
and reasoning. Then, if we query for values for the canonical
identifiers (as for any other identifier in the equivalence class),
we also get the values for the other identifiers.

We now describe how we generated these links to map data
from different sources to the common vocabulary:

• For the dimension properties, we set the links – if not avail-
able by the original data source – manually and published
them as RDF to be crawled.

• For the geo dimension URIs: 1) UN-wrap already links to
DBpedia URIs. 2) Estatwrap links were created based on
the labels to “guess” the DBpedia city URIs.

• Links from Estatwrap indicators to the CDP ontology we
created semi-automatically from an Excel sheet provided
by Eurostat from which we generated the city data indic-
ator URI and published as RDF for crawling.39

4.4. Materialisation of the Global Cube
As the foundation to efficiently query Statistical Linked Data

– and in turn enrich as described in Section 5 and Section 6 –
we define and materialise a unified view of all crawled datasets
about cities, the global cube [9]. Table 4 gives an overview of
how datasets published as Statistical Linked Data contribute to
the global cube. The table shows in the rows datasets and in
the columns all their dimensions. The cells give example values
for a dimension, “-” if the dimension is not and “. . . ” if the
dimension may be used. For readability reasons, we describe
URIs with namespaces,40 slightly abusing the W3C CURIE
syntax for expressing compact URIs. Relative URIs such as :DE
and :00 are defined by the data source in the respective context.

Note that datasets may use different identifiers for dimen-
sions and dimension URIs which however can be linked to ca-
nonical URIs. Remember that we use URIs as unique identifiers
for datasets, dimensions, and dimension values from different
data sources. Also, remember we assume data cubes to have
only one general measure, sdmx-measure:obsValue.

Definition 1 (Global Cube). Based on the definition of opera-
tions such as Projection, Dice, Slice, Roll-Up and Drill-Across in
earlier work, we define the global cube [9] as follows. Given the
set of all available cubes {:ds1, . . . , :dsn} with dimension
= {:D1, . . . , :Dn} the set f all dimensions of these available
cubes, we define the global cube globalcube:global-cube-ds

39http://kalmar32.fzi.de/triples/indicator-eurostat-links.nt
40Use http://prefix.cc/ to look up prefix definition.

with dimension(globalcube:global-cube-ds) = dimension.
The global cube is defined in terms of the available cubes; for
cube :dsi with dimension(:dsi) = {:D1, . . . , :Dj}, the
following holds (as N3 rule [5]):
{

?obs qb:dataSet :dsi.
?obs :D1 ?d1.
...
?obs :Di ?dn.
?obs sdmx -measure:obsValue ?value.

} => {
_:obs1 qb:dataSet globalcube:global -cube -ds ;

dcterms:publisher :dsi ;
:D1 ?d1.
...
:Dj ?dj ;
:Dn-j+1 globalcube:ALL -value ;
...
:Dn globalcube:ALL -value ;
sdmx -measure:obsValue ?value .

}

We denote with globalcube:ALL-value the ALL mem-
ber [15] aggregating over all possible values in the dimension.
Thus, dimensions not used in available cubes are regarded as
sliced with respect to the global cube. An OLAP query Q over
the global cube with S sliced dimensions then can be answered
by:

Q(globalcube)=
Drill-Acrossds∈DataCube,dimension\S⊆dimension(ds)Q(ds)

Since Drill-Across is commutative, the query result over
the global cube does not depend on the order of Drill-Across
operations.

When using this definition to materialise the global cube,
we solve several issues: When integrating values from several
datasets with the same dimension values, we need to make sure
that the global cube does not to violate the QB specification
integrity constraint IC-12, that says "No two qb:Observations
in the same qb:DataSet may have the same value for all di-
mensions.". Therefore, we add another dimension to the global
cube, dcterms:publisher, providing as contextual information
(provenance) the dataset URI that has provided these numbers.

We require the global cube to explicitly contain global-
cube:ALL-value ALL member values [15] when datasets do
not serve all dimensions, as visible for several dimensions in
Table 4.

In theory, the global cube may have as many dimensions as
all relevant datasets exhibit. In our scenario of the Open City
Data Pipeline, the relevant datasets all exhibit the three dimen-
sions for dcterms:date (short time or year), sdmx-dimension:
refArea (geo, city) and cd:hasIndicator (indicator) as well as
possibly dimensions such as sdmx-dimension:sex (sex, gender),
estatwrap:unit (unit) and sdmx-dimension:age (age).

We have published the metadata of the global cube as Stat-
istical Linked Data.41 Besides our general measure (sdmx-mea-
sure:obsValue) the qb:DataStructureDefinition of the glo-
bal cube uses above mentioned dimensions. Also, we have
defined instances of qb:AttributeProperty for cd:estima-
tedRMSE (for describing the error), cd:preferredObservation

41http://kalmar32.fzi.de/triples/global-cube.ttl#
global-cube-ds
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Table 4: Overview of data cubes contributing to the global cube in our scenario (in rows) with their dimensions (in columns) and dimension members (in cells).
Dataset \Dimension cd:

hasIndicator
sdmx-dimension:
refArea

dcterms:
date

sdmx-dimension:
sex

estat-
wrap:
unit

sdmx-dimension:
age

...

eurostat:id/
nama_10r_3popgdp#ds
(Eurostat Population)

cd:
population. . .

dbpedia:Vienna. . . 2001. . . - :THS. . . - -

eurostat:id/
lfst_r_lfp2act#ds
(Eurostat Economically
Active Population)

cd:
economically_
active_
population_
total. . .

dbpedia:Vienna. . . 2001. . . :F. . . :THS. . . :Y18. . . -

eurostat:id/
lfst_r_lfu2ltu#ds
(Eurostat Long-term
Unemployment)

cd: persons_
unemployed_
total. . .

dbpedia:Vienna. . . 2001. . . - :THS. . . - -

eurostat:id/
urb_cpop1#ds
(Eurostat Urban Audit
Population)

cd:population_
female. . .

dbpedia:Vienna. . . 2001. . . - - - -

undata:240
(UN Data Population)

cd:population_
female. . .

dbpedia:Vienna. . . 2001. . . - :COUNT. . . - -

... . . . . . . . . . . . . . . . . . . . . .

(for linking to more reliable values), prov:wasGeneratedBy
(for describing provenance information) and prov:generated-
AtTime (for the time of generation) that help to interpret and
evaluate the trustworthiness of values.

We implemented the materialisation of the global cube as a
single SPARQL query (see AppendixA).

1. The query covers all combinations (necessary dimensions
are year, city, indicator; possibly optional dimensions are
sex, unit, age);

2. Considers all dimension properties equivalent to the ca-
nonical properties for time, indicator, city, sex, unit and
age;

3. Sets the new dcterms:publisher source dimension with
the dataset URI;

4. Sets all not set dimensions to the special-type globalcube:-
ALL-value. For that, uses a pattern to assign a variable
?x a default value d (which could be an RDF term or a
variable) if an optional pattern did not match (y and z are
arbitrary RDF terms or variables): OPTIONAL { ?x_1 y
z } BIND(COALESCE(?x_1, d) AS ?x);

5. Via a filter makes sure that only datasets are included that
do not show other dimensions;

6. Uses for the global cube the canonical dimension URIs;
and

7. Loads all triples to a new graph for more efficient querying
inside this graph.

Note, the query needs to be executed only once since the
rules defining the global cube (Definition 1) are not recursive.

We analyse the complexity of the materialisation SPARQL
query as follows: The query could be split up into separate quer-
ies for the possible dimension combinations (e.g., datasets that
only exhibit indicator, geo, time; datasets that exhibit indicator,
geo, time, sex; and so on). The well-known CUBE operator
[13] has complexity O(2N) because of 2N group bys (with N the
number of dimensions). Similar to this CUBE operator, the split
up query would have complexity O(2N) because we need to look
for datasets with the selected number of dimensions in order to
fill all the other dimensions with the default ALL value.

Now, the query could also be specified more by making expli-
cit the dimension URIs. Then, all possible equivalent dimension
combinations have to be tried in order to materialise the global
cube from all possible relevant datasets. This materialisation
approach requires for every combination now O(MN) because
it needs MN unions with N the number of Dimension and M
the minimum number of equivalent dimensions. Therefore, the
total complexity of the global cube materialisation query can be
estimated by: O(22N).

The query works in practise for up to 100k observations.
When approaching 1m observations the global cube materialisa-
tion query could not be evaluated anymore due to issues with the
SPARQL endpoint (query timed out). Thus, we resorted to a dif-
ferent approach involving several steps, effectively modularising
the different tasks into several queries:

1. One SPARQL query to tag all the relevant from the crawled
datasets (these were all that exhibited dimensions year,
city, indicator and optionally sex, unit, age using a similar
FILTER NOT EXISTS pattern),42

2. one SPARQL query to ask for all the schemas (qb:Data-
StructureDefinition) of the cubes, looking up the used
dimensions for year, city, indicator, sex, unit, and age,43

3. one SPARQL query for each of the three dimension com-
binations to materialise the global cube,44 and

4. two SPARQL queries to perform the entity consolidation
for indicators and cities.45

We attach provenance information for each value using the
PROV vocabulary. We can use the provenance information in

42http://citydata.wu.ac.at/ocdp/loadqueries/
pre-canonicalise4.rq

43http://citydata.wu.ac.at/ocdp/loadqueries/
pre-canonicalise6.rq

44http://citydata.wu.ac.at/ocdp/loadqueries/canonicalise1.rq,
http://citydata.wu.ac.at/ocdp/loadqueries/canonicalise2.rq and
http://citydata.wu.ac.at/ocdp/loadqueries/canonicalise3.rq

45http://citydata.wu.ac.at/ocdp/loadqueries/
post-canonicalise1.rq and http://citydata.wu.ac.at/ocdp/
loadqueries/post-canonicalise2.rq
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queries to the global cube. For instance, to query the materialised
global cube for all the values of the indicator “population” in the
city “Wien” over all years, for all sources, including provenance
information, see the following SPARQL query:
SELECT DISTINCT ?obs ?year (xsd:decimal (? snvalue) AS ?value

) ?source ?estError ?prefObs ?genBy ?genWhen
FROM <http :// citydata.wu.ac.at/qb-materialised -global -cube >
WHERE {
?obs qb:dataSet globalcube:global -cube -ds.
?obs dcterms:publisher ?source.
?obs dcterms:date ?year.
?obs sdmx -dimension:refArea <http :// dbpedia.org/resource/

Wien >.
?obs cd:hasIndicator <http :// citydata.wu.ac.at/ns#

population >.
?obs sdmx -dimension:sex globalcube:ALL -value.
?obs estatwrap:unit ?unit.
?obs sdmx -dimension:age globalcube:ALL -value.
?obs cd:estimatedRMSE ?estError.
?obs sdmx -measure:obsValue ?snvalue.

OPTIONAL { ?obs cd:preferredObservation ?prefObs
OPTIONAL { ?obs prov:wasGeneratedBy ?genBy
OPTIONAL { ?obs prov:generatedAtTime ?genWhen
} ORDER BY ?year ?estError

In this query, we query optional provenance information
based on the QB dimension dcterms:publisher (the qb:Data-
Set publishing the source) and the QB attributes cd:estimated-
RMSE (estimated RMSE), cd:preferredObservations (the –
possibly reflexive – preferred/more trustworthy observation),
prov:wasGeneratedBy (provenance activity) and prov:gener-
atedAtTime (the time of generation).

For instance, for the population of Vienna in 2005, we not
only get an answer by two separate trustworthy sources, Eurostat
(1.633M) and UN-Data (1.626M), but also from a prediction
with estimated error of 0.27 (296K).

To only query the most trustworthy values, we can add a
FILTER NOT EXIST pattern as follows, making sure no other
value with the same dimension value combinations and a lower
error estimation is available:
FILTER NOT EXISTS {
?obsa dcterms:date ?year.
?obsa sdmx -dimension:refArea <http :// dbpedia.org/resource/

Wien >.
?obsa cd:hasIndicator <http :// citydata.wu.ac.at/ns#

population >.
?obsa sdmx -dimension:sex globalcube:ALL -value.
?obsa estatwrap:unit ?unit.
?obsa sdmx -dimension:age globalcube:ALL -value.
?obsa sdmx -measure:obsValue ?valuea .
# either get error value or use default value
OPTIONAL { ?obsa cd:estimatedRMSE ?errorap }
BIND(COALESCE (?errorap , 0.0) AS ?errora)

FILTER (? errora < ?estError) }

For querying existing values, it is necessary to decide which
dimensions and dimension values are relevant or need to be
aggregated over (i.e., set to globalcube:ALL-value).

Setting dimensions to globalcube:ALL-value can also be
done during the generation of new values so that it may be
necessary to define intermediary QB equations (e.g., computing
the unit "Thousand" to "ALL" by multiplying the value by 1000).

Now, given this approach of materialising and querying the
global cube, new values can be generated from existing ones
inside the global cube.

For both the imputation and inference methods described in
the following sections, SPARQL queries are generated that query

the global cube for the necessary existing values to generate new
values. The newly imputed and inferred values also include
provenance information.

5. Predicting Missing Values

As discussed in the motivation, the filling-in of missing
values is a central requirement for the OCDP, as we discovered
a large number of missing values in our datasets (see Table 2
and 3).

Base Methods. Our assumption is that every indicator has its
own distribution (e.g., normal, Poisson) and relationship to other
indicators. Hence, we aim to evaluate different regression meth-
ods and choose the best fitting model to predict the missing
values. We measure the prediction accuracy by comparing the
normalized root mean squared error in % (RMSE%) [17] of
every regression method. In the field of Data Mining [17, 18]
(DM) various regression methods for prediction were developed.
We chose the following three “standard” methods for our eval-
uation due to their robustness and general performance. The
chosen methods K-Nearest Neighbour Regression, Multiple Lin-
ear Regression, and Random Forest Decision Trees are straight-
forward to apply and show a robust behavior.

K-Nearest-Neighbour Regression (KNN), models denoted
as MKNN , is a wide-spread DM technique based on using a dis-
tance function to partition the instance space. As stated in [18],
the algorithm is simple, easily understandable and reasonably
scalable. KNN can be used in variants for clustering as well as
regression.

Multiple Linear Regression (MLR), models denoted as MMLR,
has the goal to find a linear relationship between a target and sev-
eral predictor variables. The linear relationship can be expressed
as a regression line through the data points. The most common
approach is ordinary least squares to measure and minimize the
cumulated distances [18].

Random Forest Decision Trees (RFD), models denoted as
MRFD, involve the top-down segmentation of the data into mul-
tiple smaller regions represented by a tree with decision and leaf
nodes. Each segmentation is based on splitting rules, which are
tested on a predictor. Decision nodes have branches for each
value of the tested attribute and leaf nodes represent decision on
the numerical target. A random forest is generated by a large
number of trees, which are built according to a random selection
of attributes at each node. We use the algorithm introduced by
Breiman [27].

5.1. Preprocessing

The preprocessing starts with the extraction of the base data
from the global cube. We use the following SPARQL queries
with the fixed period of 2004–2016 and the selection of the top
hierarchy for the dimensions sex and age:
SELECT DISTINCT ?city ?indicator ?year ?value
FROM <http :// citydata.wu.ac.at/qb-materialised -global -cube >
WHERE {

?obs dcterms:date ?year.
?obs sdmx -dimension:refArea ?city.
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?obs cd:hasIndicator ?indicator.
?obs sdmx -measure:obsValue ?value.
?obs sdmx -dimension:sex kalmar:ALL -value.
?obs sdmx -dimension:age kalmar:ALL -value.

OPTIONAL { ?obs cd:preferredObservation ?po }.
FILTER(xsd:integer (?year) >= 2004 and xsd:integer (?rmse) =

0)
FILTER( !bound( ?po ) )
} ORDER BY ?indicator ?city ?year

The SPARQL query “flattens” the multidimensional data to an
input dataset as a matrix with tuples of the form:

〈City, Indicator, Year, Value〉.

Based on the initial matrix, we perform the preprocessing as
follows:

• Removing boolean and nominal columns, as well as all
weather related data and sub-indicators in the U.N. data
set, e.g., occupants of housing units with 2 rooms;

• Merging the dimensions year and city, resulting in:
〈City Year, Indicator, Value〉;

• Transposing the initial matrix by moving the indicators
into the columns, resulting in tuples of the form:
〈City Year, Indicator1Value, . . . , IndicatornValue〉;

• Deleting columns and rows which have a missing values
ratio larger than 95%.

Our initial data set from Eurostat and UNSD contains 2 974 cities
with 207 indicators. By merging city and year and transposing
the matrix we create 8 545 city/year rows. And after deleting the
cities/indicators with a missing values ratio larger than 95%, we
have the final matrix of 7 905 rows (city/year) with 146 columns
(indicators).

5.2. Approach 1 - Building Complete Subsets

In the first approach (A1), we try to build models for a target
indicator by directly using the available indicators as predict-
ors. For this, we are using the correlation matrix of the data to
find indicators which are suitable predictors. Subsequently, we
build a complete subset from our data, i.e., we first perform a
projection on our data table, keeping only the predictors and the
specific target as columns. More detailed, our approach has the
following steps on the initial data set, the matrix A1 and a fixed
number of predictors n (we test this approach on different n′s):

1. Select the target indicator IT ;
2. Calculate the correlation matrix AC of A1 between IT and

the remaining indicators;
3. Create the submatrix A2 of A1 with IT and the n “best” in-

dicators (called the predictors). The predictors are selected
according to the highest absolute correlation coefficients
in AC;

4. Create the complete matrix A3 by deleting all rows in A2
with missing values;
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Figure 7: Prediction results Approach 2

5. Apply stratified tenfold cross-validation (see [17]) on A3
to obtain ten training- and test sets. Then, train the models
MKNN , MMLR, and MRFD using the training sets. Finally,
calculate the mean of the ten RMSE% based on the test
set for each model and choose the best performing model
MBest accordingly;

6. Use the method for MBest to build a new model on A2 for
predicting the missing values of IT .

Evaluation. The performance of the regression methods were
evaluated for two to ten predictors. Two regression methods
have their best RMSE% with ten indicators: 0.27% for KNN and
2.57% for MLR. Whereas RFD has the best RMSE% of 4.12%
with eight indicators. Figure 6 gives an overview of the results.
By picking the best performing regression for every indicator
(red line) the median RMSE% can be reduced only slightly. For
ten predictors the median RMSE% improves to 0.25% over KNN
with 0.27%. Depending on n, we fill-in between 122 056 for ten
and 296 069 values for two predictors. For a single city and ten
predictors, the number of predicted values range from 7 to 1 770.
The limited number of filled-in values is due to the restriction of
using the complete matrix for the regression methods.

5.3. Approach 2 - Principal Component Regression

In the second approach (A2), we omit the direct use of
indicators as predictors. Instead, we first perform a Principal
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Component Analysis (PCA) to reduce the number of dimensions
of the data set and use the new compressed dimensions, called
principal components (PCs) as predictors. As stated in [18], the
PCA is a common technique for finding patterns in data of high
dimensions. Parts of the evaluation is similar to Approach 1,
but we have an additional step where we impute all the missing
values with neutral values for the PCA. The neutral values are
created according to the regularized iterative PCA algorithm
described in [7]. This step is needed to perform the PCA on
the entire data set. The following steps are evaluated having
an initial data set A1 as a matrix and a predefined number of
predictors n (we test this approach also on different n′s):

1. Select the target indicator IT ;
2. Impute the missing values in A1 using the regularized

iterative PCA algorithm resulting in matrix A2 and remove
the column with IT ;

3. Perform the PCA on the A2 resulting in a matrix A3 of a
maximum of 80 PCs;

4. Append the column of IT to A3 creating A4 and calculate
the correlation matrix AC of A4 between IT and the PCs;

5. Create the submatrix A5 of A4 on the selection of the PCs
with the highest absolute correlation coefficients and limit
them by n;

6. Create submatrix A6 of A5 for validation by deleting rows
with miss. values for IT ;

7. Apply stratified tenfold cross-validation on A6 with the
Step 5 from Approach 1, which results in the best per-
forming model MBest ;

8. Use the method for MBest to build a new model on A5 (not
A6) for predicting the missing values of IT .

5.4. Evaluation and Publishing

Figure 7 shows the results for an median RMSE% with an
increasing number of predictors and compares the performance
of KNN, RFD, MLR, and the selection of best method. Clearly,
for 80 predictors MLR performs best with a median RMSE% of
0.56%, where KNN (resp. RFD) has a median RMSE% of 4.36%
(resp. 5.27%). MLR is the only method that improves steady up
to 80 predictors. KNN provides good results for a lower number
of predictors, but starts flattening with 20 predictors. Contrary to
MLR, KNN and MLR have to be adjusted according to number
of predictors, hence optimizing the number of clusters for KNN
could improve the result. The red line in Figure 7 shows the
median RMSE% with the best regression method chosen. Up
to 60 predictors, the overall results improves by selecting the
best performing method (for each indicator). The best median
RMSE% of 0.55% is reached with 80 predictors, where MLR
is predominant and only 3 out of 145 indicators are predicted
by KNN. Compared to the result of the ISWC experiments, the
median RMSE% improved from 1.36% to 0.55%, which mainly
related to the lower sparsity of the datasets.

We only publish the predicted values created by Approach 2
(see a discussion in Chapter 7) and apply a threshold of RMSE%
of 20% as a cut off. This leads to 5 indicators (e.g. price of a m3

of domestic water in EUR) being dropped for the execution with

80 predictors. Following our strategy of using statistical linked
data wrappers, we publish the predicted values using the Missing
Values Wrapper,46 which provides table of content, structure
definition, and datasets, where a new dataset is created for each
prediction execution with different parameter (i.e., the number
of predictors).

5.5. Workflow and Provenance
The full prediction workflow is shown in Figure 8 and is

based on all the observed values ignoring old predicted values
in the global cube. Data cleansing and transposing is written
in Python, but all other steps such as PCA, model building, and
model evaluation are developed in R [28] using its “standard”
packages. All the scripts and their description are available on
the website of the Missing Values Wrapper. We conducted an
evaluation of the execution time on our Ubuntu Linux server
with 2 cores, 2.6 GHz, and 16 GB of RAM. A single prediction
run requires approx. 6min for each indicator (2min for each
method) resulting in a total time of approx. 12 hours for all
indicators.

One can see that the workflow branches after four steps,
where we distinguish two cases. In the case of no previous
executions, we perform the full prediction steps as described
in the previous section. In the case of previous executions,
we already have provenance information available in our triple
store, which describes the last execution and the related model
provenance data (for each indicator). The model provenance
includes for each indicator the number of predictors, prediction
method, method parameter (i.e., the number of clusters in the
KNN), the number of PCs, and the RMSE%. Note, that initially
we aimed to store the entire model, however due to Approach
2, we would need to adjust the PCs for each indicator with the
updated values, which had the effect of recalculating the full
workflow. However, we still save evaluation time since, only one
model (and not 3) has to be rebuild and evaluated. Summarizing,
we keep provenance for our predictions on three levels:

• For each execution, we publish the RMSE%, creation date,
and the creation agent;

• For each indicator, we publish the above mentioned model
provenance data;

• For each predicted value published as a qb:Observation,
we publish the overal RMSE% and the absolute RMSE.
Further, we point to better observations (published with an
lower RMSE%), which might occur if another approach
as QB Equations improve the predicted values.

For describing the model provenance, we use the MEX vocab-
ulary, which is compared to other vocabularies (i.e., DMOP
[29]) lightweight and designed for exchanging machine learning
metadata [30]. We use the MEX Algorithm layer to describe
our prediction method and its parameter and the MEX Perform-
ance layer to describe the RMSE%. Further, we describe each
execution using attributes from MEX Execution.

46http://citydata.ai.wu.ac.at/MV-Predictions/
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Figure 8: Prediction Workflow

6. QB Equations

Usually ontological reasoners are limited to infer new know-
ledge in the domain of instances. Reasoning in the domains of
literal values such as numbers is out of scope for such reasoners.
In fact ontological reasoners can not use equational knowledge,
which is knowledge given as equations which relates number
values, for inferring new numerical knowledge, although such
knowledge is already published in some form, such as the QUDT
ontology [31].

For statistical data, especially statistical linked data, such
knowledge can be interesting to fill in the gaps of missing values
which usually occur and give the user of an RDF data ware-
house a better user experience. Examples for useful equational
knowledge include unit conversion, indicator definitions, or lin-
ear regression models. Currently there exists no framework to
exploit this knowledge to infer new statistical data.

With QB equations we introduce a framework to exploit
equational knowledge to infer new numerical data. Similarly
QB rules can express unidirectional relationships, using non-
invertible functions, e.g., rounding of values, specific forms of
aggregation, or linear regression models. QB equations include
an RDF syntax for representing equational knowledge and a
formal semantics for reasoning. We propose an implementation
strategy used in the OCDP allowing to encode relationships
between numerical observations and to derive new numerical
values based on these relationships.

Example 6.1. We can relate some observation value given in
kilometres to the same observation given in miles with an equa-
tion: d km = d mi× 1.609344. This equation is a high level
specification of the relationship between observation values.

When encoded in RDF we call these relationships QB equa-
tions or QB rules. QB equations specify relationships between
observations which can be reformulated into different “direc-
tions” while QB rules are valid only in one direction.

The approach of QB equations presented in the following is
a combination and extension of two approaches which we earlier
called “RDF attribute equations” [8] and “complex correspond-
ences” [9].

6.1. Syntax

We express QB equations in an RDF syntax. Since – to the
best of our knowledge – no vocabulary exists for this purpose

qbe:input
qbe:output

qbe:variable

qbe:filter

qbe:dimension qbe:value

qbe:variableType

qbe:equationType qbe:functionType

qbe:hasEquation qbe:hasFunction

qbe:variableName

qbe:structure

qb:DataStructureDefinition

qbe:Ruleqbe:Equation

qbe:ObsSpecification

qbe:DimSpecification

owl:Thingqb:DimensionProperty

Figure 9: QB equations ontology

so far we have to introduce a new vocabulary expressing QB
equations and QB rules.

Each QB equation is identified by an IRI and consists of
two parts: (i) a representation of a mathematical equation us-
ing (arithmetic) functions and variables, and (ii) a mapping of
observations to variables using observation specifications. Addi-
tionally each equation is related to a QB DSD with the property
qbe:structure – inspired by the qb:structure property.

Figure 9 gives an overview of the QB equations ontology
showing all the introduced classes, properties, and datatypes as
well as reuse of the QB ontology.

Representation of the equation or function. One possibility to
represent equations in RDF would be building an operator tree in
RDF, similar to, e.g., the RDF-reification of OWL axioms. Such
an encoding could use RDF data structures such as RDF lists or
might be derived from other representations such as MathML,
which defines an XML representation of mathematical concepts.
While such a representation can be interesting for some use
cases, we refrained from such a reified representation, as it is
difficult to handle with standard tools such as SPARQL queries
and the added complexity is not necessary.

Rather we define the core of the QB equations, which is
the equation itself, as a literal that directly reuses SPARQL’s
arithmetic expression syntax,47 i.e., we use a datatype literal
with the datatype qbe:equationType, the lexical space of which
is defined by the following grammar rule (in the syntax and
referring to non-terminal symbols of the SPARQL grammar):

equationType ::= Var ’=’ NumericExpression

This choice enables standard SPARQL parsers or other stand-
ard libraries for mathematical expressions for processing these
equations, and – as we will see – straightforward implementa-
tion of the application of equations by SPARQL engines. An
example for an equation for a simple unit conversion is

"?mile = ?km * 0.6214"^^qbe:equationType.

The property qbe:hasEquation relates an instance of an
equation qbe:Equation to such an equation literal.

47cf. http://www.w3.org/TR/sparql11-query/#rNumerivExpression
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The lexical space of datatype qbe:variableType is – ana-
logous to qbe:equationType – defined by the SPARQL gram-
mar non-terminal ’Var’.

Observation specification. The second part maps observations
to the variables used in the equation. Usually observations
are specified by giving values for all of the dimensions. This
approach would be too constraining and might lead to multiple
representations of essentially the same equation. Instead an
observation specification only needs values for some of the
dimensions. In an example of unit conversions, one would only
specify the value of the unit dimension because the equation
should be applicable to any kind of observation given in that
unit, regardless of the values of the other dimensions. Intuitively
the values of all other unspecified dimensions must be the same
among all specified observations.

Example 6.2. The following example shows the complete defin-
ition of the equation for unit conversion between kilometres and
miles. The QB equation defines a variable ?km which binds to
all observations which have set the dimension estatwrap:unit
set to qudt-unit:Kilometer. The second variable ?mile is
defined analogously. Eventually the QB equation gives the equa-
tion relating the variables as a qbe:equationType-typed literal.
ex:unit -km-mile a qbe:Equation ;

qbe:variable [ a qbe:ObsSpecification ;
qbe:filter [ a qbe:DimSpecification ;

qb:dimension estatwrap:unit ;
qbe:value qudt -unit:Kilometer ] ;

qbe:variablename "?km"^^qbe:variableType ] ;
qbe:variable [ a qbe:ObsSpecification ;

qbe:filter [ a qbe:DimSpecification ;
qb:dimension estatwrap:unit ;
qbe:value qudt -unit:MileInternational ] ;

qbe:variablename "?mile "^^qbe:variableType ] ;
qbe:hasEquation "?mile = ?km * 0.6214"^^ qbe:equationType.

QB equations can be evaluated in multiple directions, ef-
fectively creating a function to compute a value for each of the
variables from all the other variables. In the example above we
can infer observations given in miles from observations given in
kilometres and vice versa. Obviously this works only for invert-
ible functions including the usual arithmetic operators: addition,
subtraction, multiplication, and division.48 In fact, we can reuse
the definition of simple equations from [8], which guarantee this
property:

Definition 2 (from [8]). Let {x1, . . . ,xn} be a set of variables.
A simple equation E is an algebraic equation of the form x1 =
f (x2, . . . ,xn) such that f (x2, . . . ,xn) is an arithmetic expression
over numerical constants and variables x2, . . . ,xn where f uses
the elementary algebraic operators ’+’, ’-’, ’*’,’/’ and contains
each xi exactly once.

Equations of this form can be easily transformed into an equi-
valent form xi = f ′(x1, . . . ,xi−1,xi+1, . . . ,xn) for each appearing
variable xi, 2≤ i≤ n. For instance, in our example the equation
can likewise be used to convert miles to kilometres:

"?km = ?mile / 0.6214"^^qbe:equationType.

48while we have to take care of division by zero, for details cf. [8]

These equivalent transformations can be easily computed
by standard mathematical libraries (which we will use in our
implementation, cf. Section 6.3 below). A central piece of
this transformation is a function solve with two parameters: the
equation as string and the name of the target variable to solve
for. The solve function algebraically solves an equation for a
variable and returns a function. For example solve("a=b/c",c)
would return the function "b/a" whereas solve("a=b/c",b)
would return "a*c". The function solve is implemented in every
computer algebra system – for example in Maxima with roots
going back to the 1960s. That is, we could write

f ′(x1, . . . ,xi−1,xi+1, . . . ,xn) = solve(x1 = f (x2, . . . ,xn),xi)

Analogously to qbe:equationType we define a datatype
qbe:functionType describing an arithmetic function or expres-
sion a whose lexical space is again defined via a SPARQL gram-
mar non-terminal rule:

functionType ::= NumericExpression

Following the example for equationType a function for
converting kilometres into miles is:

"?km * 0.6214"^^qbe:functionType.

QB rules (or functions) are similar to equations but can be
evaluated only in one direction. Thus QB rules specify not
variables but one or more input variables and exactly one output
variable. These variables are specified in the same way as the
variables in QB equations, while the output variable does not
need a qbe:variableName.

Example 6.3. A QB rule to compute a population in thousands
approximation, using the function round to demonstrate a non-
invertible function.
ex:qbrule1 a qbe:Rule ;

qbe:input [
qbe:filter [

qbe:dimension ex:indic ;
qbe:value un:population ] ;

qbe:variablename "? population "^^qbe:variableType ;
] ;
qbe:output [

qbe:filter [
qbe:dimension ex:indic ;
qbe:value ex:approx -pop -k ] ;

] ;
qbe:function "round(? population /1000) "^^qbe:functionType.

6.2. Semantics
We define the semantics of QB equations by using a rule

language. In fact, as indicated in Section 2.5 above, SPARQL
INSERT queries can be seen as rules over RDF triple stores
where the pattern of the INSERT clause is the rule head and the
graph pattern in the WHERE clause is the rule body. We note
that this “idea” is not new and straightforwardly implementing
the same concept as interpreting CONSTRUCT statements as
rules, introduced e.g. in [32], where we defined a formal se-
mantics for such rules based on the Answer Set Semantics for
non-monotonic Datalog programs (ASP) with external (built-in)
predicates and aggregates [33]; builtin-predicates are introduced
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Listing 1: Algorithm to convert QB equations to QB rules
R := {}
for each (?e, ?eq) where { ?e rdf:type qbe:Equation.

?e qbe:hasEquation ?eq }:
for each (?v, ?vname) where { ?e qbe:variable ?v .

?v qbe:variableName ?vname }
?f := solve(?eq, ?vname)
add r(?e, ?vname , ?f) to R

return R

Listing 2: Algorithm to create a QB rule
def r(?e, ?outvar , ?f):
rule := empty graph
?rulename := sk(?e, ?vname)
rule := { ?rulename a qbe:Rule .

?rulename qbe:hasFunction ?f .
?rulename prov:wasDerivedFrom ?e .
?rulename qbe:output ?outvar . }

for each (?v, ?vname) where { ?e qbe:variable ?v .
?v qbe:variableName ?vname }

if ?vname != ?outvar:
add { ?rulename qbe:input ?v } to rule

return rule

in SPARQL1.1 through expressions and assignment (BIND ...
AS), and non-monotonicity in SPARQL is introduced by features
such as OPTIONAL and NOT EXISTS.

We explain the semantics of QB equations in three steps:
(i) normalisation of QB equations to QB rules, (ii) conversion
of QB rules to SPARQL INSERT queries, (iii) a procedure to
evaluate a program (a set of SPARQL INSERT queries) until
a fixpoint is reached. Note here, that in the general case rules
with the expressive power of ASP with external predicates do
not have a unique, finite fixpoint, but we will define/discuss how
we can guarantee termination in our case.

6.2.1. Normalisation
A QB equation in n variables can be viewed as a meta rule

representing n rules: as discussed before, for each variable xi a
rule to compute xi from all the other variables in the equation e
can be generated by resolving the equation to xi = solve(e,xi) .
To simplify the semantics specification we thus first normalise
each QB equation to n QB rules and then in the next step give
the semantics for QB rules.

That is, the QB rules generated in the normalisation, have
xi as the output variable, and the other (n−1) variables as input
variables with f ′(x1, . . . ,xi−1,xi+1, . . . ,xn) being the function to
compute the output.

Listing 1 shows the main algorithm of the conversion. The
function r in Listing 2 takes three parameters: the original QB
equation IRI, the name of the output variable, and the function.
The function sk(...), with a variable number of parameters is
a Skolem function deterministically returning a unique IRI for
each unique parameter combination.

Eventually, after applying Listing 1 we could replace all
triple encoded QB equations in an RDF graph with the triple-
encoded QB rules in R , i.e. we view these representations
equivalent. The remainder of our semantics only deals with
rules.

Example 6.4. The QB equation of Example 6.2 results in two

QB rules, one for each of the two variables. The QB rule to
compute an observation in miles from an observation given in
kilometres is shown below. Instead of variables we now have
input and output and the equation was replaced by a function
in the input variable ?km.
ex:unit -km-mile -km a qbe:Rule ;
prov:wasDerivedFrom ex:unit -km-mile ;
qbe:input [ a qbe:ObsSpecification ;
qbe:filter [ a qbe:DimSpecification ;
qb:dimension estatwrap:unit ;
qbe:value qudt -unit:Kilometer ] ;

qbe:variablename "?km" ] ;
qbe:output [ a qbe:ObsSpecification ;
qbe:filter [ a qbe:DimSpecification ;
qb:dimension estatwrap:unit ;
qbe:value qudt -unit:MileInternational ] ;

qbe:variablename "?mile" ] ;
qbe:hasFunction "?km * 0.6214"^^ qbe:equationType .

The second QB rule accordingly represents the function to
compute an observation in kilometres from an observation given
in miles, with the QB function corresponding to the right-hand
side of Section 6.1 above.

6.2.2. Rule Conversion
In this step QB rules are converted to SPARQL INSERT

queries. The query has to implement several tasks: retrieve
the input observations, compute the output observations, gen-
erate several URIs, propagate error and provenance and ensure
termination when evaluated repeatedly.

Compared to other rule languages SPARQL queries provide
very complex features, but, as shown earlier [34, 35], can be
compiled to –essentially– non-recursive Datalog with negation,
wherefore INSERT queries, read as rules, have the same ex-
pressivity.

Without loss of generality, we make the following assump-
tions (which could be easily checked in a pre-processing step,
e.g., with a SPARQL ASK query assuring that there is a single
measure value per observation):

• there is always only a single measure per observation

• the measure predicate that holds the measure value is fixed
to sdmx-measure:obsValue

On a high level, the INSERT queries corresponding to QB
rules have the following structure:
INSERT {

output observation
- according to QB vocabulary
- with PROV annotations to describe the generation by

QBE rules
- error estimation }

WHERE {
one pattern for each input observation

- with all dimensions specified in the DSD and error
estimate

BINDs for IRI creation for
- ID for the newly generated observation
- prov:Activity

further BINDs to
- assign current time to variable for PROV annotation
- compute measure value of target observationn
- estimate error of target observation

Termination condition }
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Output observation. The output observation is set in the head
with the fixed dimensions from the DSD and fixed dimension
values if specified in the observation specification of the QB rule.
The other dimension values are taken from the input variables.
The rule head for Example 6.4 would look like the following
query fragment, incorporating the PROV annotations:
?obs qb:dataSet globalcube:global -cube -ds ;

cd:hasIndicator ?indicator ;
dcterms:publisher ?source ;
dcterms:date ?year ;
sdmx -dimension:refArea ?city ;
sdmx -dimension:sex ?sex ;
estatwrap:unit qudt -unit:MileInternational;
sdmx -dimension:age ?age ;
sdmx -measure:obsValue ?value ;
prov:wasDerivedFrom ?km_obs ;
prov:wasGeneratedBy ?activity ;
prov:generatedAtTime ?now ;
cd:estimatedRMSE ?error .

It is important to note that the SPARQL INSERT application
is idempotent, i.e., repeated applications of a generated SPARQL
INSERT query will not add any more triples after the first ap-
plication. Idempotence would be lost if blank nodes are used in
the head, because they would create a fresh blank node for every
application of a SPARQL query, even if the SPARQL query
returns only a single result. Furthermore we have to ensure that
all values generated by the query are completely determined by
the variable bindings of the WHERE clause.

Provenance propagation. For every new derived observation we
record the provenance, i.e., each derived observation has a link
to each input observation ?obsin1, . . . , ?obsinN and to the
rule or equation used for the computation ?equation. Firstly
this provenance information provides transparency: We know
precisely how a derived observation was computed. Secondly
we can use the provenance information during the derivation
process to ensure termination. Furthermore we record the time
of the rule application and the agent, which could be the script
or person responsible for the query creation.
?obs a prov:Entity ;

prov:wasDerivedFrom ?obsin1 , ... ?obsinN ;
prov:wasGeneratedBy [

a prov:activity ;
prov:qualifiedAssociation [

a prov:Association ;
prov:wasAssociatedWith ex:fred ;
prov:hadPlan ex:unit -km-mile -km ] ] ;

prov:generatedAtTime "2017 -01 -15 T12 :37:00" .

The preliminaries in Section 2.2 give an example of a part
of the derivation tree generated by this rule head fragment.

Input observations. For each input observation one set of triple
patterns which asks for one observation is generated for the
SPARQL WHERE clause. For each qbe:DimSpecification a
dimension value is fixed. For all the other dimensions a fixed
variable is used in all input observations. In the example below,
again generated from Example 6.4 the query contains for all
dimension values variables, except for estatwrap:unit which
is fixed to qudt-unit:Kilometer as specified by the QB rule
input dimension specification. Furthermore the observation
value and the error estimated are retrieved.
?km_obs qb:dataSet globalcube:global -cube -ds;

dcterms:publisher ?km_src ;

dcterms:date ?year;
sdmx -dimension:refArea ?city ;
cd:hasIndicator ?indicator ;
sdmx -dimension:sex ?sex ;
estatwrap:unit qudt -unit:Kilometer;
sdmx -dimension:age ?age ;
sdmx -measure:obsValue ?km_value ;
cd:estimatedRMSE ?km_error .

Value creation with BIND. Several SPARQL variables used for
the output observation need to be computed using variables from
the input observations. Most importantly the output measure
value has to be created using the function of the QB rule.
BIND(?km * 0.6214 AS ?value)

Several IRIs have to be generated for the rule head. We
use a Skolem function to generate these IRIs. The inputs of
this Skolem function are the IRI of the QB rule rule, the input
variables var1, . . .varN and a string "_static_" to differentiate
the different variables in the head. We implement this Skolem
function with string concatenation and a hash function.
BIND(IRI(CONCAT(STR(rule), "_static_", MDA(CONCAT(STR(?var1

), ..., STR(?varN))))) AS ?targetvar)

We have to generate two URIs: observation, and PROV
activity.
BIND(IRI(CONCAT ("http :// example.com/unit -km-mile -km", "

_obs_", SHA1(CONCAT(STR(? km_obs))))) AS ?obs)
BIND(IRI(CONCAT ("http :// example.com/unit -km-mile -km", "

_activity_", SHA1(CONCAT(STR(? km_obs))))) AS ?obs)

Furthermore we bind the current time to a variable to use in
the provenance part of the head.
BIND(NOW() as ?now)

Error propagation. Values computed based on values with an
associated error also need an error estimate. The procedure
to estimate an error of the new value is called error propaga-
tione [36, 37]. In our use case we do not promise precise stat-
istical error quantifications, but just want to propagate an upper
bound of the error estimations of the inputs to the computed out-
put value. We chose a error propagation function which is simple
to implement in standard SPARQL. To this end, we incorpor-
ate a relatively naive error propagation function which however
can be adapted to more accurate estimations if necessary in the
future [36, 37].

We proceed herein as follows. The error values we have from
our predictions are given as RMSE, i.e., the root-mean-square-
error, which intuitively characterises how far off in absolute
numbers the actual value is on average from our prediction. To
compute a conservative estimate of how these errors “add up”
when used in computations, we proceed as follows. Depend-
ing on the function f used for computing the computed output
value, the n variables x1, . . .xn and their associated indicators
ind1, . . . indn, we denote by r1, . . .rn the estimated RMSEs for
these indicators, i.e. ri = RMSE(indi).

In Table 5 we define the propagated estimated RMSE (per)
of a computed observation recursively over the operator tree of
the function term expr = f (x1, . . .xn). Intuitively, we assume
here the following: if the real values x′i for indicators indi lie
exactly ri away –i.e., exactly the estimated RMSE above (x′i =
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expr per(expr)

const 0
xi ri

a+b per(a)+ per(b)
a−b per(a)+ per(b)
a/b (|a|+ per(a))/(|b|− per(b))−a/b
a∗b (|a|+ per(a))∗ (|b|+ per(b))−a∗b

Table 5: Computing the propagated estimated RMSE (per) for a given expression
(expr)

xi + ri) or below (x′i = xi− ri) – from the predicted value xi,
we intend to estimate how much off would a value computed
from these predicted values maximally be; here, const denotes
a constant value, and a,b are sub-expressions. Furthermore we
assume that the RMSE ri is always less than the observed value
xi.

If now, for an equation x f = f (x1, . . .xn), the propagated
estimated RMSE per( f (x1, . . .xn)) is smaller than the so far
estimated RMSE r f for indicator ind f then we assume it po-
tentially pays off to replace the predicted value so far with the
newly computed value by the rule corresponding to the equation.

To cater for rounding errors during the computation we add
a small ε to the error estimate. In some sense this ε punishes
each rule application and thus enables quicker termination later.
Eventually the following BIND expression will be generated to
compute the propagated error as defined by per and assign it to
the corresponding variable used in the head of the rule (a more in-
teresting example for the function ?nationals/?population).
BIND((ABS(? nationals)+? nationals_error)/(ABS(? populatio)-?

population_error) + 0.1 AS ?error)

Termination. So far we introduced triple patterns and BIND
expressions into the rule body. As remarked above the BIND
expressions implement Skolem functions and thus avoid duplic-
ating the same output observations over and over again (our
SPARQL INSERT queries are idempotent). We now give two
different termination conditions which can be used separately or
together to ensure termination of the QB rules program.

To ensure termination of the whole SPARQL INSERT rule
program we use a similar termination condition as in earlier
work [8], we block the repeated application of the same rule to
derive a particular observation. With the PROV annotations in
fact we create an equation dependency graph. Given an observa-
tion o, a SPARQL path expression o prov:wasDerivedFrom+ o′

returns all the observations o′ transitively used in the com-
putation of o. Furthermore the SPARQL path expression o
prov:wasDerivedFrom*/prov:wasGeneratedBy/prov:qual-
ifiedAssociation/prov:hadPlan r gives all the rules r trans-
itively used during the computation of o. So, in order to ensure
termination, we define that a QB rule r is only applicable to
materialise an observation o if r does not occur in the result of
that path expression.

In the SPARQL INSERT query can we implement this con-
dition by adding one of the following patterns for each input
observation ?i where r is the URI of the rule (or equation) itself.

FILTER NOT EXISTS {
?i prov:wasDerivedFrom */prov:wasGeneratedBy/prov:

qualifiedAssociation/prov:hadPlan/prov:wasDerivedFrom?
r }

Thus as a worst case the evaluation will be terminated by
this condition after applying each rule n times, where n is the
number of QB rules in the system, because after applying each
rule once for the derivation of a single observation no rule can be
applicable anymore. An example of such a worst case would be
a chain of QB rules where ri = ri+1 and 0 < i < n and a single
given observation for r0.

Another termination condition is based on the error propaga-
tion described above. Intuitively the condition ensures that an
observation o from a computation is only materialised if no ob-
servation o′ exists that (i) shares the same dimension values and
(ii) has a lower error estimate.
FILTER NOT EXISTS {

?obsa qb:dataSet globalcube:global -cube -ds ;
dcterms:date ?year;
sdmx -dimension:refArea ?city ;
cd:hasIndicator ?indicator ;
sdmx -dimension:sex ?sex ;
estatwrap:unit qudt -unit:Kilometer;
sdmx -dimension:age ?age ;
cd:estimatedRMSE ?errora .

FILTER (? errora <= ?error) }

In the error propagation we use a function to rather overes-
timate the error. While we materialise only better observations
(i.e., observations with a lower error estimate) the error estimates
are tending to increase with each rule application. Thus the rule
program will terminate. Together the two termination conditions
can lead to faster termination.

However, this would need to ensure that the error propaga-
tion “converges” in the sense that application of rules does not
decrease error rates. Our simple method for error propagation
would – in connection with cyclic rule application – not guaran-
tee this as demonstrated by the following, simple example:

Example 6.5. For two indicators i and j let two equations be
i = j/2 and j = i/2. Essentially, this boils down to the equation
i = i/4 where – in each application – we would derive smaller
error estimate.

While this example is quite obviously incoherent (in the
sense of rules being cyclic in terms of the rule dependency graph
defined in [8][Definition 12]), we still see that with cyclic applic-
ation of rules the convergence of error rates cannot be ensured
in general. In practice such incoherent systems of equations are
hardly useful, however the first termination condition would still
serve its purpose.

6.3. Implementation

As described in Section 6 we compile QB equations into
a semantically equivalent set of rules. Usually there are two
strategies for query answering in rule based knowledge bases:
forward or backward chaining. For the OCDP we decided to
implement a forward chaining approach to enrich the global data
cube with the newly inferred observations. Forward chaining
approaches materialise as much as possible thus allowing faster
query evaluation times. On the other hand forward chaining
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approaches require more memory or disk space and updates lead
to re-materialisation. In our case the space requirements are
manageable and updates are not frequent.

Our forward chaining implementation approach relies on the
iterative application of SPARQL INSERT queries (which im-
plement the rules). Overall, QB equations infer and persist new
observations in three steps: (Normalisation) convert all QB equa-
tions to QB rules, (Rule conversion) for each QB rule we create
a SPARQL query, and (Query evaluation) iteratively evaluate
the constructed SPARQL INSERT queries until a fixpoint.

Normalisation. As described in the semantics above in this first
step we convert QB equations to QB rules. The algorithm in
Listing 1 already outlines our implementation. We implemented
the algorithm using Python 2.7 and the libraries rdflib for RD-
F/SPARQL processing and sympy providing the solve function
to algebraically solve an equation for a variable. The Python
script reads the QB equations from an RDF file containing the
QB equations,49 converts them to QB rules and publishes them
again as Linked Data50 and in the triple store.

Create SPARQL queries. We create a SPARQL INSERT query
for each QB rule. The listing in AppendixB gives as a complete
example of the SPARQL INSERT query resulting from convert-
ing one of the QB rules. Due to a serious performance hit of
SPARQL INSERT queries applied on the Virtuoso triple store
in a preliminary evaluation, we used SPARQL CONSTRUCT
queries instead, and load the resulting triples into the triple store
afterwards. The conversion from QB rules to SPARQL CON-
STRUCT queries is analogous to the algorithm described in
Section 6.2.2 above to convert a QB rule to a SPARQL INSERT
query. To cater for a bug in Virtuoso51 we have to check each
division for division-by-0. In the implementation we use an
IF-expression to test each divisor for 0 and in this case return a
value which will lead to an empty result (a static string "err").
This applies to the observation measure computation and to the
error propagation computation.

Evaluate queries in rule engine. In principle the rule engine
naively evaluates SPARQL INSERT queries, or respectively,
CONSTRUCTs + re-loads, over and over again until a fixpoint
is reached.

Apart from the termination conditions described in Sec-
tion 6.2.2 we ensure that the repeated application of a rule on
the same observations does not create any new triples by using
Skolem constants instead of blank nodes (see also discussion on
idempotency above). Thus, in order to check whether a fixpoint
has been reached, it is enough to check in each iteration simply
if the overall number of triples has changed or not. So, for a
naive implementation we could simply use a SPARQL query to
count the number of triples in the named graph.

However, unfortunately, in our experiments, such a simple
implementation solely based on “onboard” means of the SPARQL

49http://citydata.wu.ac.at/ocdp/eurostat-equations.rdf
50http://citydata.wu.ac.at/ocdp/eurostat-rules.rdf
51https://github.com/openlink/virtuoso-opensource/issues/317

engines turned out to be infeasible due to performance reasons.
Thus, for the time being, we resorted to just evaluating one iter-
ation of all generated rules, in order to evaluate our conjecture
that rules improve our prediction results.

Eventually, we may need to resort to (offline) using a native
rule engine. Indeed, in practical applications such rule/datalog
engines have shown to perform better than recursive views im-
plemented directly on top of databases in the past for instance
for computing RDFS closure, cf. [38]. For the moment, we leave
this to future work and resort, as mentioned, to a fixed number
of iterations of rule applications.

7. Evaluation

The OCDP runs distributed over several systems. The data
wrappers are distributed over several machines and collected
by the crawler on http://kalmar32.fzi.de/. The crawl file
is then regularly downloaded and inserted on the OCDP server,
which is a virtual machine with 2 assigned cores with 2.6GHz
and 16GB main memory running 64bit Ubuntu Linux. The
OCDP server then performs the global cube materialisation.
The missing value prediction is performed asynchronously on a
workstation. Eventually the QB equations are evaluated again
by the OCDP server.

7.1. Crawling and Global Cube Materialisation

We require a considerable amount of memory for Linked
Data-Fu (our machine is a virtual machine with Intel(R) Xeon(R)
CPU E5520 @ 2.27GHz and 8GB RAM), thus we split the
program into two separate programs, one for crawling Eurostat
and another one for UN-Data. The crawling takes 60 minutes
for Eurostat and 30 minutes for UN-Data and results in a merged
file with > 7 M triples and > 1 M observations.

The queries given in the implementation of Section 4.4 be-
have in practise as follows:

1. The SPARQL query to tag all the relevant datasets tags 32
datasets,

2. the SPARQL query to ask for all the schemas returns
returns three variants,

3. the SPARQL queries for these three dimension combin-
ations to materialise the global cube need altogether 8
minutes, and

4. the two SPARQL queries to perform the entity consolida-
tion for indicators and cities and take 78 seconds.

From the crawl we materialise 936k observations (7M triples)
into the global cube in 15 minutes.

7.2. Predicting Missing Values

In Chapter 5, we evaluated two approaches for filling-in the
missing values. Approach 1 uses indicators directly as predictors,
but requires complete subsets of the matrices In Approach 2, we
perform PCA to reduce the number of dimensions, which allows
us to impute all the missing values with neutral values for the
PCA. Since, we will only apply a single approach, we have two
quality measurements to evaluate them:
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1. It is important to build models which are able to predict
many (preferably all) missing values.

2. Second, the prediction accuracy of the models is essential,
so that the Open City Data Pipeline can fulfil its purpose
of publishing high-quality, accurate data and predictions.

Prediction accuracy is slightly higher with 0.25% in Ap-
proach 1 than in Approach 2 with 0.55%, which we relate to
the smaller size of the dataset. However in Approach 1, we
fill-in only 296 069 values with 2 predictors (median RMSE%
of 2.09%). Note that with more predictors we filled-in even
less missing values. This is about 42% of the 699 390 values in
Approach 2.

Summarizing, despite the good RMSE%, of Approach 1, a
major drawback is the reduced number of predictions, hence we
will apply Approach 2 as the input for the following steps and
for publishing the filled-in missing value.

7.3. QB Equations

Section 6.3 described the implementation of QB equations
in the OCDP. In this section we give some results about the
behaviour of the QB equations part of the OCDP system52 and
some evaluation of the QB evaluation themselves and how they
improve the results of the whole OCDP.

Normalisation. The normalisation to generate QB rules from
QB equations took 19 seconds to normalise 61 QB equations
from Eurostat into 274 QB rules.53

AppendixC contains a complete example QB equation from
Eurostat and one of the normalised QB rules.

Create SPARQL queries. First we filter out 104 QB rules for
which at least one input variable matches no existing observation.
Such rules can never deliver any results and evaluating them is
useless. Note that due to another bug in the Virtuoso cost estim-
ation we could not evaluate the 34 QB rules containing seven
or more input variables. Eventually we created 129 SPARQL
CONSTRUCT queries in five seconds.

AppendixC shows a complete example of a SPARQL CON-
STRUCT query together with the corresponding QB rule.

Evaluate queries in rule engine. This one iteration of evaluating
all generated 129 SPARQL CONSTRUCTs took 24 minutes and
inserted 1M observations (21M triples) into the global cube.

Observation evaluation. As we can demonstrate in even such
an incomplete materialization of equations allows us to predict a
significant amount of new or improved observations, that could
not be predicted with equal accuracy with solely the methods
described in Section 5:

Out of 1M newly generated observations from rules, 32k are
fresh observations, i.e., observations with a dimension-instance
combination where no previous predicted values existed.

52for more details see http://citydata.wu.ac.at/ocdp/import
53the Eurostat indicator definition for the population change over 1 year is not

expressible in QB equations

The SPARQL queries could generate 180k observations (for
29 indicators) containing propagated error estimates which are
better than the error estimates of the corresponding prediction
observations. These 180k observations thus improve the estima-
tions of the missing value prediction.

Additionally, we verified the computed values against ob-
served values from the crawled sources where possible. That
is, we computed the RMSE per indicator (we have comparable
data for 6 of these 29 indicators) comparing the computed val-
ues through equations against those values where an original
source observation existed. In all these cases, the average error
was lower than the best RMSE computed through the regres-
sion methods from Section 7.2, which shows that our combined
approach effectively improves the missing value predictions.

We could show that extending the approach of using stat-
istical missing value prediction methods with equational know-
ledge can improve the quality of missing value prediction.

8. Related Work

We begin the review of related work with approaches related
to the handling of numerical values in databases. We only re-
view a small selection of the large related work in the area of
databases, because our focus is on data integration using web
technologies. As such, we use technologies such as RDF [39],
RDFS, OWL and SPARQL 1.1 (both query language [40] and
update language [41]) to represent, query and integrate multi-
dimensional data. We assume the reader is familiar with these
standards. After we cover RDF data pipelines for data access
and integration, we survey vocabularies for modelling and rep-
resenting multidimensional data in RDF, followed by methods
for representing equations. Finally, we deal with work on im-
putation from the field of statistics, which is concerned with
substituting missing values in numerical data.

8.1. Numerical Data in Databases
Siegel et al. [42] introduce the notion of semantic values –

numeric values accompanied by metadata for interpreting the
value, e.g., the unit – and propose conversion functions to fa-
cilitate the exchange of distributed datasets by heterogeneous
information systems.

Diamantini et al. [43] suggest to uniquely define indicators
(measures) as formulas, aggregation functions, semantics (math-
ematical meaning) of the formula, and recursive references to
other indicators. They use mathematical standards for describing
the semantics of operations (MathML, OpenMath) and use Pro-
log to reason about indicators, e.g., for equality or consistency
of indicators. In contrast, we focus on heterogeneities occurring
in terms of dimensions and members, and allow conversions and
combinations.

As a basis for sharing and integration of numerical data,
XML is often used [44]. XML standards such as XCube fulfil re-
quirements for sharing of data cubes [45] such as the conceptual
model of data cubes, the distinction of data (observations) and
metadata (dimensions, measures), a network-transportable data
format, support for linking and inclusion concepts, extensibil-
ity, conversion capability and OLAP query functionality. Other
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advantages include that XML allows to define a schema (XML
Schema), there are data modification and query languages for
XML such as XSLT and XQuery, and there are widely-used
XML schemas for representing specific information, e.g., XBRL
for financial reports, SDMX for statistics, DDI54 for research
studies. Another XML-based exchange standard for ETL trans-
formations and data warehouse metadata is the Common Ware-
house Metamodel (CWM)55 by the Object Management Group
(OMG).

However, the integration of data across different standards
is still an open issue. CWM – but also other interfaces and
protocols to share multidimensional datasets such as XML for
Analysis and OLE DB – lack a formal definition making it more
difficult to use such formalism as a basis for integration [46].
XML schemas are concerned with defining a syntactically valid
XML document representing some specific type of information.
Yet, XML schemas do not describe domain models; without
formal domain models, it is difficult to derive semantic rela-
tionships between elements from different XML schemas [47].
Often, the domain model for an XML schema is represented
in a semi-formal way using UML documents and free text. In
contrast, schemas described as an OWL or RDFS ontology such
as QB have a formal domain model based on logics.

Conceptually, we distinguish the global-as-view (GAV, also
known as source-based integration) approach of data integration
where the global schema is represented in terms of the data
sources and the local-as-view (LAV) approach that requires
sources to be defined as views over the global schema [48–50].
We use the GAV approach and define the global cube in terms
of single data cubes using the drill-across operation. With GAV,
queries over the global schema can easily be translated to queries
over the data sources [49]. The advantage of LAV is that the
global schema does not need to change with the addition of new
data sources. The advantage of GAV is that queries over the
global schema can easily be translated to queries over the data
sources.

8.2. RDF Data Pipelines

Within the Semantic Web community there is extensive work
around triplification and building data pipelines and Linked
Data wrappers for publicly available data sources on the web,
where for instance the LOD2 project has created and promoted
a whole stack of tools to support the lifecycle of Linked Data,
i.e. creating maintainable and sustainable mappings/wrappers of
existing data sources to RDF and Linked Data, a good overview
is provided in the book chapter by Auer et al. [51, 52]. All this
work could likewise be viewed as an application of the classical
ETL (Extract-Transform-Load) [53] methodology extended to
work on the web, based on open standards and Linked Data
principles [14]. Our work is not much different in this respect,
with the difference that we apply a tailored architecture for a
set of selected sources around a focused topic (city data), where
we believe that a bespoke combination of rule-based reasoning

54http://www.ddialliance.org/
55http://www.omg.org/spec/CWM/

methods in combination with statistical machine learning can
provide added value in terms of data enrichment. This is a key
difference to the above-mentioned methods that rather focus
on entity linkage and object consolidation in terms of semantic
enrichment. However, this focused approach is also different
from generic methods for reasoning over Linked Data on the
web (cf. e.g. [54] and references therein for an overview), solely
based on OWL and RDFs which (except very basic application
of owl:sameAs (for consolidating different city identifiers across
sources) and rdfs:subPropertyOf reasoning (for combining
overlapping base indicators occurring within different sources).

Other work tries to automatically derive new from existing
data. Ambite and Kapoor [55] present Shim Services providing
operations for accessing remote data, integrating heterogeneous
data, and deriving new data. Workflows of operations are auto-
matically created based on semantic descriptions of operators.
Subsumption reasoning is included to match inputs of services
to outputs of other services. To avoid the infinite execution of
operations, a limit is defined to the depth of nested operations of
the same type. In contrast to the automatically constructed work-
flows, our pipeline consists of a fixed set of processing steps.
Instead of “shim services” that act as standalone components
accessible via the network, we base the computation on local
formulas and use a vocabulary to represent the formulas.

8.3. Data Modelling and Representation

We have chosen the Data Cube Vocabulary (QB) [4] as basis
for representing statistical data (both for the individual data
points and the "metadata", the structure definitions). QB is one
among several vocabularies available to publish raw or aggreg-
ated multidimensional datasets. For instance, there are various
OWL ontologies available for representing multidimensional
datasets [56]. Also, several light-weight ontologies have been
proposed, such as SCOVO [57] and SCOVOLink [20]. Other
vocabularies for statistical data are the DDI RDF Vocabularies,56

several vocabularies inspired by the Data Documentation Initiat-
ive, and the StatDCAT application profile57 (StatDCAT-AP) to
express in a structured way the metadata of statistical datasets
which are currently published by the different agencies in the
European Union. In comparison to these approaches, we see
the following reasons for choosing QB: QB is widely-adopted,
which is an important factor for data integration use cases, as
sources already represented in QB can be integrated more easily
than sources in other representations. Further, QB promises
flexibility and efficiency benefits in various use cases [58], and
exhibits the necessary complexity to allow efficient and flexible
integration and analysis of statistical datasets.

8.4. Modelling of Equations

Modelling the actual numerical data and the structure of that
data captures only a part of the knowledge around statistical data

56http://www.ddialliance.org/Specification/RDF
57https://www.europeandataportal.eu/de/content/

statdcat-ap-wg-virtual-meeting
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that can be represented in a machine-interpretable manner. Equa-
tions in particular are a rich source of knowledge in statistical
data. Lange [59] gives an extensive overview of representations
of mathematical knowledge for the Semantic Web. We first cover
representation of equations for layout purposes, and then cover
representations that permit the interpretation of the formulas by
machines.

Non-RDF based representations of mathematical knowledge
include MathML [60] and OpenMath [61] and use XML for
serialisation and focus more on a semantic representation of
mathematical entities and are not directly useful for reasoning.
Although GeoSPARQL [62] uses MathML in XMLLiterals and
OpenMath provides preliminary integration into RDF,58 these
representations are hard to reuse for RDF tools and still are not
suitable for an RDF QB setup.

The OWL ontologies QUDT [31], OM [63], and SWEET [64]
provide means to describe units and to some extent model conver-
sion between these units, but do not specify a concrete machinery
to perform these conversions. Our approach is orthogonal to
these efforts in that it provides not only a modelling tool for
unit conversions but more general equations and also gives a
semantics to automatically infer new values.

Semantic Web rule languages and systems often implement
numerical functions – for example RIF uses numerical functions
from XPath.59 Other examples for rule languages and systems
include SWRL and Apache Jena rules. Converting equations to
rules naively can lead to a set of recursive rules which often lead
to non-termination even for one equation alone (cf. [8]).

To add reasoning over numbers Description Logics were
extended with concrete domains (cf. [65]). A concrete domain is
a domain separate from the usual instance domain of the model
based semantics. Examples for concrete domains include differ-
ent sets of numbers or strings. A specific concrete domain exten-
sion defines predicates over the concrete domain, e.g., greater
than for numbers, or substring for strings. Often also a limited
set of functions (for computation) can be supplied. Racer [66]
implements concrete domains with numbers. But computed
values are only used during reasoning and are not available to
the user afterwards. OWL Equations [67], a concrete domain
extension carried over to OWL, allows comparing numerical
values – even computed values; still the same limitations apply.

8.5. Missing Value Imputation

Several books provide information on handling missing val-
ues from the perspective of statistics as well as from social sci-
ences, e.g. cf. [68, 69]. Within the Semantic Web community, a
main focus on value completion has been in the prediction of gen-
eric relations, and mainly object relations (i.e. link-prediction)
on the object level rather than on numerical values, cf. [70] for
an excellent survey on such methods. The usage of numerical
values is a a rather recent topic in this respect. Along these lines,
but complementary to the present work, Neumaier et al. [71] (as

58http://www.openmath.org/cd/contrib/cd/rdf.xhtml
59https://www.w3.org/TR/2007/REC-xpath-functions-20070123/

#op.numeric

well as similar works referenced therein) have discussed meth-
ods to assign bags of numerical values to property-class pairs in
knowledge graphs like DBpedia (tailored to finding out relations
such that for instance a certain set of numbers could possibly be
“population numbers of cities in France”), but not specifically
to complete/impute missing values. Our method rather uses
fairly standard, robust, and well-known methods (KNN, linear
regression, and random forrest) for numerical missing value
imputation based on principle components [7]. This could
be certainly refined to more tailored methods in the future, for
instance using time-series analysis; indeed our predicted val-
ues, while resonably realistic in the value ranges often show
some non-realistic “jumps” when raw data for a certain indicator
is available over a certain sequence of years, but missing for
only a few years in between. Since the missing value imputa-
tion component in our architecture is modularly extensible with
new/refined methods, such refinements could be added as future
work.

9. Conclusions

In this paper we have presented the Open City Data Pipeline,
an extensible platform for collecting, integrating, and enriching
open city data from several data providers including Eurostat
and UNSD. We have developed several components including
wrappers, a data crawler, an ontology-based integration platform,
and a missing value prediction module, which relies on both
statistical regression methods as well as ontological inference
over equational background knowledge: since we deal with very
sparse datasets, the prediction (or, as it is often referred to, im-
putation) of missing values is a crucial component. For this, we
have developed two approaches, one based on basic regression
methods, and one based on exploiting known equations.

As for the former, we both predict target indicators directly
from other indicators, if available, and if the available data is
too sparse rely on predictors from components calculated by
Principal Components Analysis (PCA). We applied for both
approaches three basic regression methods and selected the best
performing one.

As for the latter, we have shown that the predictions com-
puted this way can be further improved by exploiting equations,
where we have estimated and verified the assumption that this
combination improves prediction accuracy overall, in terms of
the number of filled-in values and estimated errors.

The created prediction values are fed back into our triple
store and are accessible via our SPARQL endpoint or Web UI.
Here, we additionally publish provenance information including
the used prediction methods and equations along with estimated
prediction accuracy.

9.1. Lessons Learnt & Future work

In the wrapper component, integrating cities and indicators
for a new dataset (often CSV tables) is still a slow manual pro-
cess and needs custom scripting. Particularly, entity recognition
for cities can only partially be automated and needs manual
adaption for each wrapper. Also, mapping indicators is still a
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largely manual process, where in the future, we plan to also ap-
ply instance based mapping learning techniques used in ontology
matching (cf. [72]). We emphasize here, that in fact such ap-
proaches could rely on and extend similar regression techniques
as we used for imputing missing values.

As for our enrichment approach (combining missing value
prediction techniques and equations), we have improved over
the past 1 1/2 years significantly [10], not only refining our
methods, but also by proving the conjecture that the more data
we collect, the better the predictions actually get: by applying
the PCA-based prediction approach, using standard regression
techniques without customization, we reach a good quality for
predictions (overall RMSE% of 0.55%) and are able to fill large
gaps of the missing values, which can be further improved by
the combination with equational knowledge.

The republication of our enriched dataset as Statistical Linked
Data [3], using the standard QB format shall allow to com-
bine and integrate our dataset with other datasets of the Global
Cube [9].

Our future work includes extensions of the presented data-
sets, methods, and the system itself. Regarding the datasets, we
already mention several potential additional data sources that
could be included, e.g., the Carbon Disclosure Project,60 or the
World Council for City Data (WCCD), formerly Global City
Indicator Framework (GCIF) which cover a wider range of cities
worldwide, but aren’t yet providing Open Data. Apart from
that, we could include sources like DBpedia or Wikidata in a
more timely fashion, e.g. recording changes in values, through
projects such as the DBpedia wayback machine [22], to collect
also historical data from DBpedia.

Compared to [10] we have completely refurbished our crawl-
ing framework and architecture to automatically and regularly
update the integrated sources dynamically. We therefore expect
new lessons learnt from more regular updates; e.g.; Eurostat
only since very recently updates its datasets monthly, instead of
annually only,61 which we expect to benefit from.

We also plan to connect our plattform to the Linked Geo Data
Knowledge Base [73] including OpenStreetMap (OSM) data.
Based on such data, new indicators could be directly calculated,
e.g., the size of public green space by aggregating all the parks.
Some preliminary works on integrating indicators extracted from
OSM with our Open City Data Pipeline have been presented
in [74].

As we integrate more sources and datasets, another future
direction we should pursue is to revisit cross-dataset predictions
of missing values in more detail,62 i.e., how predictions can be
made from one data source to another. This is particularly im-
portant, as typically different data sources have only a handfull
(if any) of overlapping indicators.

We further aim to extend our basket of base regression meth-
ods with other well established methods. Promising candid-

60https://www.cdp.net/de
61cf. Section 8.1 at http://ec.europa.eu/eurostat/cache/metadata/

de/urb_esms.htm: “From 2017 new data will be published the first day of
every month.”

62Some preliminary work along these lines have been presented in [10].

ates are Support Vector Machines [75], Neural Networks, and
Bayesian Generalized Linear Models [76].

Moreover, we plan to publish more details on the best regres-
sion method per indicator as part of our ontology: so far, we only
indicate the method and estimated RMSE%, whereas further de-
tails such as used parameters and regression models would be
needed to reproduce and optimize our predictions. Ontologies
such as [29] could serve as a starting point here.

Furthermore, we are in the process of improving the user
interface to make the Web application easier to use. For this
we investigate several libraries for more advanced information
visualization.

Last, but not least, in many components of our pipeline
we deliberately relied on off-the-shelf SPARQL engines. This
design choice should hopefully allow us to benefit from further
improvements of these engines: for instance, we have experi-
enced scalability limitations in the scalability of update queries
for implementing inferences through QB equations or also for
materializing provenance annotations in the Global Cube. We
shall explore optimizations, test other SPARQL stores, or com-
bine our approach with e.g. custom rule engines, in the future,
to improve performance of our data pipeline.

References

[1] Economist Intelligence Unit (Ed.), The Green City Index, Siemens AG,
2012.

[2] S. Neumaier, J. Umbrich, A. Polleres, Automated quality assessment of
metadata across open data portals, ACM Journal of Data and Information
Quality (JDIQ) 8 (1) (2016) 2.

[3] B. Kämpgen, S. O’Riain, A. Harth, Interacting with Statistical Linked
Data via OLAP Operations, in: 9th Extended Semantic Web Conference
(ESWC) Satellite Events, 2012.

[4] R. Cyganiak, D. Reynolds, J. Tennison, The RDF data cube vocabulary,
W3C Recommendation, W3C (Jan. 2014).

[5] S. Stadtmüller, S. Speiser, A. Harth, R. Studer, Data-Fu : A Language
and an Interpreter for Interaction with Read / Write Linked Data, in: 22nd
International Conference on World Wide Web (WWW), 2013.

[6] L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G. B. West, Growth,
innovation, scaling, and the pace of life in cities, Proc. of the National
Academy of Sciences of the United States of America 104 (17) (2007)
7301–7306.

[7] S. T. Roweis, EM algorithms for PCA and SPCA, in: Advances in Neural
Information Processing Systems 10 (NIPS 1997), 1997, pp. 626–632.

[8] S. Bischof, A. Polleres, RDFS with Attribute Equations via SPARQL
Rewriting, in: Proc. of ESWC 2013, Springer, 2013, pp. 335–350.

[9] B. Kämpgen, S. Stadtmüller, A. Harth, Querying the Global Cube: Integ-
ration of Multidimensional Datasets from the Web, in: 19th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW), 2014.

[10] S. Bischof, C. Martin, A. Polleres, P. Schneider, Collecting, integrating,
enriching and republishing open city data as linked data, in: The Semantic
Web - ISWC 2015 - 14th International Semantic Web Conference, Beth-
lehem, PA, USA, October 11-15, 2015, Proceedings, Part II, 2015, pp.
57–75.

[11] B. Kämpgen, T. Weller, S. O’Riain, C. Weber, A. Harth, Accepting the
XBRL Challenge with Linked Data for Financial Data Integration, in: 11th
Extended Semantic Web Conference (ESWC), 2014.

[12] B. Kämpgen, Flexible integration and efficient analysis of multidimen-
sional datasets from the web, Ph.D. thesis, KIT, Fakultät für Wirtschaft-
swissenschaften (Feb. 2015).

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Ven-
katrao, F. Pellow, H. Pirahesh, Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals, Data Mining
and Knowledge Discovery 1 (1).

26

https://www.cdp.net/de
http://ec.europa.eu/eurostat/cache/metadata/de/urb_esms.htm
http://ec.europa.eu/eurostat/cache/metadata/de/urb_esms.htm


[14] T. Berners-Lee, Linked Data, W3C Design Issues, from http://www.w3.
org/DesignIssues/LinkedData.html; retr. 2010/10/27 (July 2006).

[15] B. Kämpgen, A. Harth, No Size Fits All – Running the Star Schema
Benchmark with SPARQL and RDF Aggregate Views, in: 10th Extended
Semantic Web Conference (ESWC), 2013.

[16] T. Lebo, D. McGuinness, S. Sahoo, PROV-O: The PROV ontology,
W3C recommendation, W3C, http://www.w3.org/TR/2013/REC-prov-o-
20130430/ (Apr. 2013).

[17] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, 3rd Edition, Morgan Kaufmann Publishers Inc., 2011.

[18] J. Han, Data Mining: Concepts and Techniques, 3rd Edition, Morgan
Kaufmann Publishers Inc., 2012.

[19] A. Polleres, A. Hogan, R. Delbru, J. Umbrich, RDFS & OWL reasoning for
linked data, in: Reasoning Web. Semantic Technologies for Intelligent Data
Access (Reasoning Web 2013), Vol. 8067 of LNCS, Springer, Mannheim,
Germany, 2013, pp. 91–149.
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AppendixA. Global Cube Materialisation

INSERT INTO GRAPH <http :// citydata.wu.ac.at/qb-materialised
-global -cube > {

?obs qb:dataSet globalcube:global -cube -ds.
?obs dcterms:publisher ?ds.
?obs dcterms:date ?year.
?obs sdmx -dimension:refArea ?city.
?obs cd:hasIndicator ?indicator.
?obs sdmx -dimension:sex ?sex.
?obs <http :// ontologycentral.com /2009/01/ eurostat/ns#unit >

?unit.
?obs sdmx -dimension:age ?age.
?obs sdmx -measure:obsValue ?value.
}
WHERE { GRAPH <http :// citydata.wu.ac.at/qb> {
# Considering all dimension property URIs
?yearDimension1 owl:equivalentProperty <http :// purl.org/dc/

terms/date >.
?cityDimension1 owl:equivalentProperty <http :// purl.org/

linked -data/sdmx /2009/ dimension#refArea >.
?indicatorDimension1 owl:equivalentProperty <http ://

citydata.wu.ac.at/ns#hasIndicator >.
# in our global cube for OCDP we assume date , refArea ,

indicator as compulsory; sex , unit , age as optional
OPTIONAL { ?sexDimension2 owl:equivalentProperty sdmx -

dimension:sex. }
bind(coalesce (? sexDimension2 , sdmx -dimension:sex) as ?

sexDimension1)
OPTIONAL { ?unitDimension2 owl:equivalentProperty <http ://

ontologycentral.com /2009/01/ eurostat/ns#unit >. }
BIND(coalesce (? unitDimension2 , <http :// ontologycentral.com

/2009/01/ eurostat/ns#unit >) AS ?unitDimension1)
OPTIONAL { ?ageDimension2 owl:equivalentProperty sdmx -

dimension:age. }
BIND(coalesce (? ageDimension2 , sdmx -dimension:age) AS ?

ageDimension1)

?obs qb:dataSet ?ds.
?ds qb:structure ?dsd.

# Querying the observations
?obs ?yearDimension1 ?year.
?obs ?cityDimension1 ?city1.
?obs ?indicatorDimension1 ?indicator1.
OPTIONAL { ?obs ?sexDimension1 ?sex1. }
BIND(coalesce (?sex1 , globalcube:ALL -value) AS ?sex)
OPTIONAL { ?obs ?unitDimension1 ?unit1. }
BIND(coalesce (?unit1 , globalcube:ALL -value) AS ?unit)
OPTIONAL { ?obs ?ageDimension1 ?age1. }
BIND(coalesce (?age1 , globalcube:ALL -value) AS ?age)
?obs sdmx -measure:obsValue ?value.

?city1 owl:sameAs ?city .
?city a <http :// dbpedia.org/ontology/City >.

?indicator1 owl:sameAs ?indicator.
?indicator a <http :// citydata.wu.ac.at/ns#Indicator >.

# Only those datasets that do not show other dimensions
FILTER NOT EXISTS { ?dsd qb:component ?acomp. ?acomp qb:

dimension ?otherdim.
FILTER (? otherdim != dcterms:date
&& ?otherdim != estatwrap:cities && ?otherdim != sdmx -

dimension:refArea && ?otherdim != estatwrap:geo && ?
otherdim != estatwrap:metroreg

&& ?otherdim != estatwrap:indic_ur && ?otherdim != cd:
hasIndicator

&& ?otherdim != estatwrap:unit && ?otherdim != cd:unit
&& ?otherdim != estatwrap:sex && ?otherdim != sdmx -

dimension:sex
&& ?otherdim != estatwrap:age && ?otherdim != sdmx -

dimension:age
)}}}

AppendixB. SPARQL INSERT query for QB rule

The following SPARQL INSERT query is the result of con-
verting the QB rule from Example 6.4. We assume the referenced
dataset ex:ds contains the dimensions sdmx-dimension:refArea,
ex:indic, and, as used by the QB rule ex:unitDimension.
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INSERT {
?obs qb:dataSet ex:ds ;

sdmx -dimension:refArea ?city ;
dcterms:date ?year ;
ex:indic ?indic ;
ex:unitDimension qudt -unit:MileInternational ;
sdmx -measure:obsValue ?value ;
a prov:Entity ;
prov:wasDerivedFrom ?km_obs ;
prov:wasGeneratedBy ?activity ;
prov:generatedAtTime ?now ;
ex:error ?error .

?activity a prov:activity ;
prov:qualifiedAssociation [

a prov:Association ;
prov:wasAssociatedWith ex:fred ;
prov:hadPlan ex:unit -km-mile -km ] .

}
WHERE {

?km_obs qb:dataSet ex:ds ;
sdmx -dimension:refArea ?city ;
dcterms:date ?year ;
ex:indic ?indic ;
sdmx -e:unitMeasure qudt -unit:Kilometer ;
sdmx -measure:obsValue ?km ;
s ex:error ?km_error_1 .

BIND(IRI(CONCAT("http :// example.com/unit -km-mile -km", "
_obs_", MD5(CONCAT(STR(? km_obs))))) AS ?obs)

BIND(IRI(CONCAT("http :// example.com/unit -km-mile -km", "
_activity_", MD5(CONCAT(STR(? km_obs))))) AS ?activity
)

BIND(NOW() as ?now)
## computation and variable assignment
BIND( ?km * 0.6214 AS ?value)
## error propagation
BIND(? km_error + 0.1 as ?error)
## 1st termination condition:
## there exists no better observation with the same

dimension values
FILTER NOT EXISTS {

?obsa a qb:Observation ;
sdmx -dimension:refArea ?city ;
ex:indic ?indic ;
ex:unitDimension qudt -unit:MileInternational ;
sdmx -measure:obsValue ?valuea .

# either get error value or use default value
OPTIONAL { ?obsa ex:error ?errorap }
BIND(COALESCE (?errorap , 0.0) AS ?errora)

FILTER (? errora < ?error) }
## 2nd termination condition:
## the same equation was not used for the computation of

any source observation

FILTER NOT EXISTS { ?km_obs prov:wasDerivedFrom */prov:
wasGeneratedBy/prov:qualifiedAssociation/prov:hadPlan
/prov:wasDerivedFrom? ex:unit -km-mile -km . }

}

AppendixC. Complete example of QB equation steps

An example for a QB equation is the Eurostat indicator
definition for EU foreigners as proportion of the population. The
next listing gives the QB equation.63

<qbe:Equation rdf:about="http:// citydata.wu.ac.at/ocdp/
eurostat -equations#
eu_foreigners_as_a_proportion_of_population">

<qbe:hasEquation rdf:datatype="http:// citydata.wu.ac.at/
qb-equations#equationType"> ?
eu_foreigners_as_a_proportion_of_population = ?
eu_foreigners / ?population </qbe:hasEquation >

63http://citydata.wu.ac.at/ocdp/eurostat-equations#eu_
foreigners_as_a_proportion_of_population

<qbe:structure rdf:resource="http:// kalmar32.fzi.de/
triples/global -cube.ttl#global -cube -dsd"/>

<qbe:variable >
<rdf:Description >

<qbe:filter >
<rdf:Description >

<qbe:dimension rdf:resource="http:// citydata.wu.
ac.at/ns#hasIndicator"/>

<qbe:value rdf:resource="http:// citydata.wu.ac.at
/ns#eu_foreigners"/>

</rdf:Description >
</qbe:filter >
<qbe:variableName rdf:datatype="http:// citydata.wu.ac

.at/qb-equations#variableType">?eu_foreigners </
qbe:variableName >

</rdf:Description >
</qbe:variable >
<qbe:variable >

<rdf:Description >
<qbe:filter >

<rdf:Description >
<qbe:dimension rdf:resource="http:// citydata.wu.

ac.at/ns#hasIndicator"/>
<qbe:value rdf:resource="http:// citydata.wu.ac.at

/ns#population"/>
</rdf:Description >

</qbe:filter >
<qbe:variableName rdf:datatype="http:// citydata.wu.ac

.at/qb-equations#variableType">?population </
qbe:variableName >

</rdf:Description >
</qbe:variable >
<qbe:variable >

<rdf:Description >
<qbe:filter >

<rdf:Description >
<qbe:dimension rdf:resource="http:// citydata.wu.

ac.at/ns#hasIndicator"/>
<qbe:value rdf:resource="http:// citydata.wu.ac.at

/ns#
eu_foreigners_as_a_proportion_of_population"/
>

</rdf:Description >
</qbe:filter >
<qbe:variableName rdf:datatype="http:// citydata.wu.ac

.at/qb-equations#variableType">?
eu_foreigners_as_a_proportion_of_population </
qbe:variableName >

</rdf:Description >
</qbe:variable >
<prov:wasDerivedFrom rdf:resource="http://ec.europa.eu/

eurostat/cache/metadata/Annexes/urb_esms_an2.xlsx"/>
</qbe:Equation >

In the first step this equation is normalised to three QB rules.
We give one example here:
<qbe:Rule rdf:about="http :// citydata.wu.ac.at/ocdp/eurostat

-rules#e0299b9f18a91815ba4f9cbd73960b112">
<qbe:hasFunction rdf:datatype ="http :// citydata.wu.ac.at/

qb-equations#functionType ">? eu_foreigners /?population
</qbe:hasFunction >

<qbe:input >
<rdf:Description >

<qbe:filter rdf:nodeID ="
b1df1135590c30324cd362c1efd286125 "/>

<qbe:variableName rdf:datatype ="http :// citydata.wu.ac
.at/qb-equations#variableType ">?population </qbe:
variableName >

</rdf:Description >
</qbe:input >
<qbe:input >

<rdf:Description >
<qbe:filter rdf:nodeID ="

bba05d10b662474c6c0a474a8146c3fff "/>
<qbe:variableName rdf:datatype ="http :// citydata.wu.ac

.at/qb-equations#variableType ">?eu_foreigners </
qbe:variableName >

</rdf:Description >
</qbe:input >
<qbe:output >

<rdf:Description >
<qbe:filter rdf:nodeID ="

b0299b9f18a91815ba4f9cbd73960b112 "/>
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</rdf:Description >
</qbe:output >
<qbe:structure rdf:resource ="http :// kalmar32.fzi.de/

triples/global -cube.ttl#global -cube -dsd"/>
<prov:wasDerivedFrom rdf:resource ="http :// citydata.wu.ac.

at/ocdp/eurostat -equations#
eu_foreigners_as_a_proportion_of_population "/>

</qbe:Rule >
<rdf:Description rdf:nodeID ="

b1df1135590c30324cd362c1efd286125">
<qbe:dimension rdf:resource ="http :// citydata.wu.ac.at/ns#

hasIndicator "/>
<qbe:value rdf:resource ="http :// citydata.wu.ac.at/ns#

population "/>
</rdf:Description >
<rdf:Description rdf:nodeID ="

bba05d10b662474c6c0a474a8146c3fff">
<qbe:dimension rdf:resource ="http :// citydata.wu.ac.at/ns#

hasIndicator "/>
<qbe:value rdf:resource ="http :// citydata.wu.ac.at/ns#

eu_foreigners "/>
</rdf:Description >
<rdf:Description rdf:nodeID ="

b0299b9f18a91815ba4f9cbd73960b112">
<qbe:dimension rdf:resource ="http :// citydata.wu.ac.at/ns#

hasIndicator "/>
<qbe:value rdf:resource ="http :// citydata.wu.ac.at/ns#

eu_foreigners_as_a_proportion_of_population "/>
</rdf:Description >

Next the QB rules are converted to SPARQL CONSTRUCT
queries. We give here the SPARQL query for the example QB
rule above.
CONSTRUCT {

?obs qb:dataSet globalcube:global -cube -ds ;
<http :// citydata.wu.ac.at/ns#hasIndicator > <http ://

citydata.wu.ac.at/ns#
eu_foreigners_as_a_proportion_of_population > ;

dcterms:publisher ?source ;
dcterms:date ?year ;
sdmx -dimension:refArea ?city ;
sdmx -dimension:sex ?sex ;
estatwrap:unit ?unit ;
sdmx -dimension:age ?age ;
sdmx -measure:obsValue ?value ;
prov:wasDerivedFrom ?population_obs , ?

eu_foreigners_obs ;
prov:wasGeneratedBy ?activity ;
prov:generatedAtTime ?now ;
cd:estimatedRMSE ?error .

?activity a prov:activity ;
prov:qualifiedAssociation [

a prov:Association ;
prov:agent cd:import.sh ;
prov:hadPlan <http :// citydata.wu.ac.at/ocdp/eurostat -

rules#e0299b9f18a91815ba4f9cbd73960b112 > ] .
}
WHERE { { SELECT DISTINCT * WHERE {

?population_obs qb:dataSet globalcube:global -cube -ds;
<http :// citydata.wu.ac.at/ns#hasIndicator > <http ://

citydata.wu.ac.at/ns#population > ;
dcterms:date ?year;
sdmx -dimension:refArea ?city ;
sdmx -dimension:sex ?sex ;
estatwrap:unit ?unit ;
sdmx -dimension:age ?age ;
sdmx -measure:obsValue ?population ;
cd:estimatedRMSE ?population_error .

?eu_foreigners_obs qb:dataSet globalcube:global -cube -ds;
<http :// citydata.wu.ac.at/ns#hasIndicator > <http ://

citydata.wu.ac.at/ns#eu_foreigners > ;
dcterms:date ?year;
sdmx -dimension:refArea ?city ;
sdmx -dimension:sex ?sex ;
estatwrap:unit ?unit ;
sdmx -dimension:age ?age ;
sdmx -measure:obsValue ?eu_foreigners ;
cd:estimatedRMSE ?eu_foreigners_error .

BIND(CONCAT(REPLACE("http :// citydata.wu.ac.at/ocdp/
eurostat -rules#e0299b9f18a91815ba4f9cbd73960b112", "

e0299b9f18a91815ba4f9cbd73960b112", MD5(CONCAT("http
:// citydata.wu.ac.at/ocdp/eurostat -rules#
e0299b9f18a91815ba4f9cbd73960b112",STR(?
population_obs), STR(? eu_foreigners_obs))))) AS ?
skolem)

BIND(IRI(CONCAT (?skolem , "_source")) AS ?source)
BIND(IRI(CONCAT (?skolem , "_obs")) AS ?obs)
BIND(IRI(CONCAT (?skolem , "_activity")) AS ?activity)
BIND(NOW() as ?now)
## computation and variable assignment
BIND(? eu_foreigners *1.0/IF(? population != 0, ?population ,

"err") AS ?value)
## error propagation
BIND((ABS(? eu_foreigners)+? eu_foreigners_error)*1.0/IF((

ABS(? population)-?population_error) != 0.0, (ABS(?
population)-?population_error), "err")-?eu_foreigners
*1.0/IF(? population != 0, ?population , "err") + 0.1
as ?error)

FILTER (?error > 0.0)
## 1st termination condition:
## there exists no better observation with the same

dimension values
# FILTER NOT EXISTS {
# ?obsa qb:dataSet globalcube:global -cube -ds ;
# dcterms:date ?year;
# sdmx -dimension:refArea ?city ;
# <http :// citydata.wu.ac.at/ns#hasIndicator > <

http :// citydata.wu.ac.at/ns#
eu_foreigners_as_a_proportion_of_population > ;

# sdmx -dimension:sex ?sex ;
# estatwrap:unit ?unit ;
# sdmx -dimension:age ?age ;
# cd:estimatedRMSE ?errora .
# FILTER (? errora < ?error) }
## 2nd termination condition:
## the same equation was not used for the computation of

any source observation

#FILTER NOT EXISTS { ?population_obs prov:wasDerivedFrom
*/prov:wasGeneratedBy/prov:qualifiedAssociation/prov:
hadPlan/prov:wasDerivedFrom? <http :// citydata.wu.ac.
at/ocdp/eurostat -rules#
e0299b9f18a91815ba4f9cbd73960b112 > . }

#FILTER NOT EXISTS { ?eu_foreigners_obs prov:
wasDerivedFrom */prov:wasGeneratedBy/prov:
qualifiedAssociation/prov:hadPlan/prov:wasDerivedFrom
? <http :// citydata.wu.ac.at/ocdp/eurostat -rules#
e0299b9f18a91815ba4f9cbd73960b112 > . }

}}}
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