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Abstract: Indirect reciprocity describes a class of reputation-based mechanisms which
may explain the prevalence of cooperation in large groups where partners meet only once.
The first model for which this has been demonstrated was the image scoring mechanism.
But analytical work on the simplest possible case, the binary scoring model, has shown
that even small errors in implementation destabilize any cooperative regime. It has
thus been claimed that for indirect reciprocity to stabilize cooperation, assessments of
reputation must be based on higher-order information. Is indirect reciprocity relying
on first-order information doomed to fail? We use a simple analytical model of image
scoring to show that this need not be the case. Indeed, in the general image scoring
model the introduction of implementation errors has just the opposite effect as in the
binary scoring model: it may stabilize instead of destabilize cooperation.
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1 Introduction

1.1 Indirect reciprocity

Cooperating by acting altruistically and helping others reduces the actor’s material pay-
off and increases the recipient’s material payoff. If the sum of the payoffs increases,
cooperation enhances welfare and is socially beneficial. But actions which reduce own
payoff are hard to reconcile with individual rationality, so why do we see so much cooper-
ation in economic life? Questions such as this one have traditionally been studied using
the framework of the Prisoner’s Dilemma game, often in the special case of the donation
game. In these games defection is the inevitable outcome unless cooperation can be
induced by some supporting mechanism. Such mechanisms solve the paradox of cooper-
ation by placing the Prisoner’s Dilemma into an environment where interactions occur
repeatedly and short-run altruism is rewarded in the long run and can thus become
established in a society. Nowak (2006) surveys the most important such mechanisms
from the biologist’s point of view. For economists, mechanisms based on reciprocity
are of primary interest. If pairs of players from a large population interact only once,
cooperation based on personal enforcement, also called direct reciprocity (Axelrod and
Hamilton, 1981, Fudenberg and Maskin, 1990), is ruled out. But cooperation can still
be achieved via indirect reciprocity (Trivers, 1985, Sugden, 1986, Alexander, 1987). Un-
der indirect reciprocity, helping others enhances one’s reputation, and help is primarily
directed towards those with a high reputation. Thus, the immediate costs of helping
are more than offset by the future benefits of being helped when in need, which aligns
individual and social rationality of cooperation.

Economists have studied mechanisms of indirect reciprocity within the framework of re-
peated games with random matching, where these mechanisms are known as community
enforcement.1 The appropriateness of the traditional approach via repeated games has
sometimes been questioned because it relies on perfectly rational players with common
knowledge of rationality and perfect anticipation of other’s reactions to hypothetical
deviations from equilibrium play. While such stringent assumptions might arguably be
approximately justified in dyadic long-run interactions, they are considerably less con-
vincing as a model of repeated interactions in large real-world societies with constant
entry and exit. Some researchers have therefore turned to an approach relying on evo-
lutionary games (Weibull, 1997, Samuelson, 1998, Gintis, 2000, Cressman 2003, Sand-
holm, 2010). Borrowed from biology (Maynard Smith, 1982, Hofbauer and Sigmund,
1998), evolutionary game theory posits boundedly rational myopic agents choosing their
strategies from a restricted set of rules-of-thumb and occasionally switching to strategies
promising higher payoffs. In such a setting, indirect reciprocity has been formally stud-
ied since the late 1990ies.2 The pioneering work of Nowak and Sigmund (1998a, 1998b)

1This literature started with Kandori (1992) and was further developed by Ellison (1994), Okuno-
Fujiwara and Postlewaite (1995), Takahashi (2010), and Awaya (2014), among others.

2While indirect reciprocity is highly relevant for studies of human cooperation, and therefore for eco-
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showed that in a population of discriminators who base their decisions on their partner’s
reputation, cooperation can persist for long periods of time. In their models, reputation
is measured as an image score.

1.2 Image scoring

Under image scoring, every individual carries an observable numerical score measur-
ing its past cooperativeness by counting how often it helped on its past interactions.
Nowak and Sigmund (1998a) studied the performance of discriminatory strategists who
cooperate if and only if their opponent’s image score exceeds a given threshold. These
threshold strategies differ in their respective threshold levels and include unconditional
defection and unconditional cooperation as extreme cases. If only a single past action of
an individual is observed, the score becomes binary and the only proper discriminator
strategy assesses other individuals as either Good or Bad, depending on whether or not
they gave help. In any interaction, discriminators then help those and only those which
are assessed as Good. In assessing an individual’s reputation, the scoring rule relies only
on the individual’s behavior towards its interaction partner, but neither on this partner’s
reputation nor on the individual’s previous reputation. Such an assessment rule is called
a first-order assessment rule.

Image scoring seemed to work well in Nowak and Sigmund’s (1998a) numerical simu-
lations in the sense that cooperative regimes could persist for many generations, but
cooperation was not evolutionarily stable. Unconditional cooperators could invade by
neutral drift and pave the way for defectors to take over the population for some time,
leading to endless cycles. The analytical results on four different model specifications of
the binary version of image scoring in Nowak and Sigmund (1998b) made it clear that
discriminators are only neutrally stable and can always be invaded by unconditional
cooperators drifting into the population. All these models assumed that implementa-
tion of strategies is free of errors. In principle, introducing noise has the potential to
stabilize cooperation, as was pointed out by Boyd (1989) for the case of direct reci-
procity. However, for image scoring things seemed to become even worse under errors.
Indeed, Panchanathan and Boyd (2003) pointed out that if errors in the implementation
of strategies are added to the binary scoring model, cooperation becomes unstable and
defection prevails in the long run. The reason for this is the paradoxical nature of image
scoring: a discriminator who refuses to help a “bad” opponent risks being assessed as
“bad” itself.

nomics, it has been somewhat neglected by economists. With the notable exception of a few ex-
perimental economics studies (see the references in section 1.3) the field is dominated by theoretical
biologists and anthropologists as well as mathematicians and physicists. It is the authors’ hope to
make a modest contribution to introducing this area of studies to economists.
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1.3 Higher-order assessment rules

Panchanathan and Boyd (2003) also showed that Sugden’s (1986) standing rule can be
an evolutionarily stable strategy (ESS) in this model, as had previously been suggested
by Leimar and Hammerstein (2001). But standing, unlike image scoring, is a second-
order assessment rule, since in updating an individual’s reputation after observing its
action it takes into account the reputation of the individual’s opponent. This allows
it to distinguish “justified” and “unjustified” defections.3 Later literature has almost
exclusively focused on higher-order assessment rules, see the survey of Sigmund (2012).
In the last decade the overall picture has emerged that higher-order assessment rules can
stabilize reputation-based cooperation, while first-order assessment rules cannot.4 But
higher-order assessment rules are cognitively highly demanding. Moreover, they heavily
rely on the reputations of individuals being built and truthfully spread by word-of-mouth
by observers. Their superiority therefore received a blow when Suzuki and Kimura (2013)
showed that introducing arbitrarily small costs for building or spreading a reputation
results in a second-order social dilemma and renders cooperation impossible.

All in all, the situation seems puzzling: Higher-order assessment rules are cognitively
highly demanding and work only under the unrealistic assumption of costless reputation
transmission. The first-order assessment rule of image scoring, on the other hand, renders
reputation-based cooperation invadable by unconditional cooperators5 in the absence of
noise and unstable in the presence of noise in the binary case. But indirectly reciprocal
behavior in humans, and especially image scoring is strongly supported by experimental
research (Wedekind and Milinski, 2000, Milinski et al, 2001, Bolton et al, 2005, Seinen
and Schram, 2006, Engelmann and Fischbacher, 2009). How can the prevalence of
indirect reciprocity be reconciled with the fragility of its theoretical foundations?

1.4 Beyond binary scores

Our answer in this paper is that within the space of threshold strategies, instability of
cooperation under image scoring in the presence of noise obtains only for the binary
scoring case and not for the general case of image scoring. We present a simplified
version of the original “full score” model of image scoring (Nowak and Sigmund, 1998a),

3Standing and a range of other sophisticated higher-order assessment rules can successfully stabilize
cooperation based on indirect reciprocity, as has later been shown by Ohtsuki (2004), Ohtsuki and
Iwasa (2004, 2006), and Brandt and Sigmund (2004). This literature is reviewed in Nowak and
Sigmund (2005).

4There are a few exceptions, but these are based on rather special assumptions like a fixed or Poisson-
distributed number of perfectly synchronized rounds of interaction (Fishman, 2003, Brandt and
Sigmund, 2004), monotonically growing social networks (Brandt and Sigmund, 2005), or interactions
in larger groups (Suzuki and Akiyama, 2007, 2008).

5Note that this is disastrous for cooperation, since unconditional cooperators are easy prey for defectors.
This means that not only is reputation-based cooperation not evolutionarily stable, but it is not even
robust against indirect invasions (van Veelen, 2012).
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where an individual observes several past actions of its partner. Following the original
model, we also assume that individuals condition their choice of action on the partner’s
image score using a threshold strategy, meaning that they cooperate if and only if the
partner’s perceived score exceeds some threshold. We then introduce noise in the form
of implementation errors and show that in this model, reputation-based cooperation is
indeed evolutionarily stable under a wide range of parameter values.

Here, a note on the set of feasible strategies we consider is in order. Heller and Mohlin
(2015) demonstrated that if individuals observe only partners’ past actions and the
set of feasible strategies is completely unrestricted, then defection is the only sta-
ble outcome. Intuitively, under our assumptions an individual’s payoff is only deter-
mined by its past cooperation rate. Thus, in any population there exists an optimal
(i.e. payoff-maximizing) individual cooperation rate, and if this rate is strictly positive,
non-discriminatory mutants randomly cooperating with the optimal probability can in-
vade any such population. When we talk of evolutionary stability, we therefore follow
the majority of the literature by referring to stability within a restricted strategy space,
given by the set of feasible strategies allowed by the model. In general, limitations of
feasible strategies are due to biological constraints on cognitive capacity, memory length,
or physiology (Broom and Rychtar, 2013).

1.5 Threshold strategies

The image scoring literature has typically studied rather small strategy spaces. For
example, in the analytical part (on binary scoring) of their work, Nowak and Sigmund
(1998a, 1998b) give conditions for which discriminators are evolutionarily stable, but
there they consider only two strategies, viz. defectors and discriminators. Similarly,
Brandt and Sigmund (2004, 2005) consider asymptotic stability under the replicator
dynamics (which is implied by evolutionary stability) in a three-strategies model of de-
fectors, cooperators, and discriminators. Berger (2011) studies stability in a ternary
scoring model comprising defectors, cooperators, and “tolerant” discriminators. In con-
trast, here we study a multiple scoring model based on observations of n past actions of
one’s current partner, allowing for all n+ 2 threshold strategies, including the uncondi-
tional extremes of always defecting and always cooperating. We thus consider a setting
which closely resembles the original “full score” model of Nowak and Sigmund (1998a).

Threshold strategies have been introduced by Taylor (1976) in the context of an iterated
N -person Prisoner’s Dilemma game as a natural generalization of the well-known Tit for
Tat strategy for the two-person case. These strategies can be coded by a single number,
and are therefore the simplest nonconstant strategies in this context. The restriction to
threshold strategies has also been used for the multiplayer Prisoner’s Dilemma and the
binary public goods game by Boyd and Richerson (1988), Kurokawa and Ihara (2009),
and van Segbroeck et al. (2012), amongst others, and, as mentioned, by Nowak and
Sigmund (1998a) for their study of indirect reciprocity.
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We show that introducing noise in the form of unintended defections may stabilize co-
operation provided n ≥ 2. This excludes precisely—and only—the binary scoring case
n = 1 which was the basis of almost all previous analytical studies of image scoring.
Our main result on the existence of cooperative ESS depends on the assumption that
individuals play deterministic strategies, but not on the assumption that only thresh-
old strategies are feasible. Generically, our discriminator ESS are also immune against
invasion of mutants playing non-threshold strategies.

Our stability results are actually slightly stronger than evolutionary stability. We show
that the ESS we find are strict or quasi-strict Nash equilibria. By continuity this implies
that they remain stable even if we introduce small costs of observation. Thus, our results
are immune against the critique of Suzuki and Kimura (2013) discussed above.

In our model, members of a stable discriminator population cooperate with each other
with a high rate, which is, however, smaller than the maximal possible rate given by
the complementary of the error rate. Mutants with a lower tolerance level (defection
threshold) than the incumbent cooperate less often and therefore receive considerably
less help by incumbents, which pushes the mutant’s payoff below the incumbent’s. On
the other hand, mutants with a higher tolerance level cooperate more frequently, paying
higher costs but also being helped more often by incumbents. However, the increase in
benefits received from incumbents is rather small and cannot offset the increased costs.
Thus, also the more tolerant mutants cannot invade. This kind of deterrence of mutants
with lower as well as higher threshold levels can only arise since the functions mapping
mutants’ past cooperation rates to incumbents’ cooperation probability against mutants
are nonlinear.

2 Model

2.1 The donation game, errors, and threshold strategies

Consider an infinite population of individuals. Time t is continuous and pairs of individ-
uals are repeatedly and randomly drawn to interact in a donation game. During each
interaction, one individual is randomly chosen to be the donor and the other to be the
receiver. Donors can either give help (cooperate, C) or not (defect, D) to the receiver.
Helping decreases the donor’s payoff by an amount c and increases the receiver’s payoff
by b, where b > c > 0. For convenience we will make the usual assumption that actually
each individual plays in both roles at the same time during an interaction.6 With a
small probability α > 0 a donor who intends to cooperate is not able to do so (e.g. due
to lack of resources) and instead defects. No implementation errors are assumed if a

6This means that on each interaction, individuals play a Prisoner’s Dilemma with equal gains from
switching, also called a linear Prisonser’s Dilemma.
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donor intends to defect.7

Before a donor implements his action, he is informed of his partner’s choices in a random
sample of n ≥ 1 past interactions of this partner.8 The donor’s action then depends
on the donor’s strategy and on the number of defections (D’s) in the drawn sample.
A donor with a threshold-i strategy intends to cooperate if and only if his partner
defected at most i times in the sample. The threshold level i is thus a measure of
the donor’s tolerance against defections. An individual playing this strategy is called
an i-discriminator. We let −1 ≤ i ≤ n to include the unconditional strategies ALLC
(i = n) and ALLD (i = −1). We employ the polymorphic interpretation of mixed
strategies, i.e. we assume that individuals play pure strategies, while mixed population
states represent polymorphic states.

Our stability analysis relies on the static ESS concept. However, payoffs of different
discriminator strategies depend on their cooperation rates. While cooperation rates
change dynamically, we assume that interactions are much more frequent than repro-
duction. Technically we assume that cooperation rates have already converged to some
fixed point before reproduction occurs, allowing us to calculate payoffs in the stationary
states of cooperation rates. Convergence from arbitrary initial values is shown in section
2.3 below.

2.2 Cooperation functions

Assume that an i-discriminator meets an individual with a past frequency of cooperation
given by p. Then the probability that the i-discriminator helps this individual is a
function of p only. We call this the cooperation function of the i-discriminator and
denote it by fi(p). From our assumptions it follows that

f−1(p) ≡ 0, (1)

fi(p) = (1− α)F (i;n, 1− p) for i ∈ {0, . . . , n}

where F (i;n, 1 − p) denotes the cumulative distribution function of the binomial dis-
tribution, i.e., the probability that in an n-times repeated Bernoulli experiment with
probability 1− p of outcome D in one experiment, the D appears at most i times. The
case n = 5 and α = 0.1 is displayed in Figure 1.

7This assumption is standard in the literature. First, since in the donation game defecting basically
just means not to act, “unintended cooperation” would be an implausible assumption. Second, this
asymmetry in the noise makes the case against cooperation stronger and therefore strengthens the
model’s results.

8Note that we do not assume that these are the partner’s last n actions. So this assumption cannot be
formulated in terms of “memory length”.
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f−1 ≡ 0

1

1
p

fi(p)

1 − α

g(p) = p

f0

fn

fn−1

p̃1

p̃2p̃3

stable fixed point pfix
2 of f2

f3 f2

f1

unstable fixed point p∗2 of f2

stable fixed point 0 of f2

p∗3

Figure 1: Cooperation functions fi(p) for n = 5 and α = 0.1.

For the special cases i = −1 and i = n we have the constant cooperation functions

f−1(p) ≡ 0 (ALLD) and fn(p) ≡ 1− α (ALLC). (2)

From now on, in this subsection, we restrict our attention to the cooperation functions
of proper discriminators, i.e. 0 ≤ i ≤ n − 1. Writing the binomial distribution function
as a regularized beta function we obtain

fi(p) = (1− α)

i∑
k=0

(
n

k

)
pn−k(1− p)k (3)

= (1− α)(n− i)
(
n

i

)∫ p

0
sn−i−1(1− s)i ds

The cooperation functions of proper discriminators are strictly increasing from fi(0) = 0
to fi(1) = 1− α.

Two important special cases are

f0(p) = (1− α)pn and fn−1(p) = (1− α)(1− (1− p)n). (4)

Using the identity provided by the beta function we can calculate the derivatives

f ′i(p) = (1− α)(n− i)
(
n

i

)
pn−i−1(1− p)i (5)
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These are non-negative and vanish at p = 0 (except for i = n− 1) and at p = 1 (except
for i = 0).

The second derivatives for i ∈ {0, . . . , n− 1} are given by

f ′′i (p) = (1− α)(n− i)
(
n

i

)
pn−i−2(1− p)i−1(n− i− 1− (n− 1)p). (6)

In particular,

f ′′0 (p) = (1− α)n(n− 1)pn−2,

f ′′n−1(p) = −(1− α)n(n− 1)(1− p)n−2.

For n = 1 we have f0(p) = (1−α)p, f ′0(p) ≡ 1−α, and f ′′0 (p) ≡ 0. For n ≥ 2 we can see
that for every i ∈ {0, . . . , n − 1}, f ′i(.) strictly increases from p = 0 up to the inflection
point

p̃i =
n− i− 1

n− 1
(7)

and then strictly decreases until p = 1. In other words, fi(.) is strictly convex on [0, p̃i]
and strictly concave on [p̃i, 1]. Note that for the special case i = 0, we have p̃0 = 1, so
f0(.) is strictly convex on [0, 1]. Analogously, p̃n−1 = 0 and fn−1(.) is strictly concave
on [0, 1].

2.3 Cooperation rate dynamics and fixed points

Consider now, for i ∈ {0, . . . , n − 1}, a homogeneous population of i-discriminators.
Assume that at time t the past cooperation rate in the population is p(t). If in a small
time interval ∆ a proportion ∆ of the population is chosen to play, then a fraction
fi(p(t)) of those individuals will cooperate, so p(t + ∆) = [tp(t) + ∆fi(p(t))](t + ∆)−1.
Letting ∆→ 0 we arrive at the cooperation rate dynamics ṗ = [fi(p)− p]t−1. Hence, as
long as fi(p(t)) < p(t), the cooperation rate will decrease, and as long as fi(p(t)) > p(t),
the cooperation rate will increase. The cooperation rate will thus converge to a fixed
point of the cooperation function fi.

9

The special case n = 1, where only a single past action is observed, leads to the binary
scoring model. Note that since f0(p) = (1−α)p < p, convergence of cooperation rates to
0 is inevitable. Discrimination based on single observations does not work. For n = 1,
a homogeneous population of discriminators always ends up with pure defection in the

9Since the population is large, partners are matched randomly and partners’ past actions are drawn
randomly, each individual samples independently from the same distribution of Cs and Ds with
mean p(t). From the martingale central limit theorem it follows that individuals’ cooperation rates
converge pairwise in probability. Therefore the overall cooperation rate converges as well.
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long run. However, as we demonstrate below, this result does not extend to the general
case of n ≥ 1.

In Figure 1 the fixed points of the cooperation function fi are the intersections of fi with
the diagonal. For small i, p = 0 is the unique fixed point and the population ends up
with all-out defection. This is always the case for i = −1 and i = 0, but it might also
hold for larger values of i, if the error rate α is large. But if α is small enough, then
for some minimal i-value another stable fixed point p̃i < pfix

i ≤ 1 − α appears on the
concave part of the graph of the i-discriminator’s cooperation function, accompanied by
an unstable fixed point 0 ≤ p∗i < pfix

i . This is the case whenever the cooperation function
fi crosses the diagonal from above.

So, generically, for given α, n ≥ 2, and −1 ≤ i ≤ n, we either have a unique and
globally attracting fixed point at 0 (all-out defection), a bistable situation with either
all-out defection or a high cooperation rate in the long run, or—for i = n − 1, where
0 is an unstable fixed point, and for the unconditional cooperators i = n—a highly
cooperative population in the long run. The latter two cases are those where a homo-
geneous population of i-discriminators is able to maintain a high rate of cooperation.10

We then say that the i-discriminators are self-cooperative. Technically, i-discriminators
are self-cooperative if and only if their cooperation function fi crosses the diagonal from
above.

Self-cooperation is always obtained for the case i = n (an ALLC-population), and from
(5) also for i = n − 1 provided α < n−1

n . However, for i ≤ n − 2 self-cooperation is
only possible in the bistable case. The dynamics of cooperation rates then allow for a
cooperative as well as for a defective regime, depending on initial conditions. Hence,
to uniquely determine the final cooperation rate of the population we have to make
an assumption on those initial conditions. We assume here that newborn individuals,
who lack a record of past play, are given the benefit of doubt, i.e. they are treated
by discriminators as if they had a clean record of all-out cooperation. It then follows
that self-cooperative discriminators always end up with a cooperation rate at the high-
cooperation fixed point pfix

i .11

2.4 Payoffs

Let us now investigate whether a small fraction of mutant m-discriminators can survive
or even spread in an otherwise homogeneous incumbent population of self-cooperative
i-discriminators. In any such investigation we will assume that prior to the mutant’s

10Note that “high” is to be understood here as relative to the maximum possible cooperation rate of
1− α.

11This assumption is not crucial, however. Without it, our results would continue to hold provided
the population happens to start with a cooperation rate within the basin of attraction of the high-
cooperation fixed point.
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entry the incumbent’s cooperation rate has already stabilized at pfix
i . We denote the

expected payoff per interaction of a single j-discriminator in an otherwise homogeneous
population of i-discriminators by π̂(j|i). It is useful to work with normalized payoffs,
measuring original payoffs in multiples of the benefit b, so let π(j|i) := b−1π̂(j|i).12

When a mutant m-discriminator enters an incumbent population of i-discriminators, the
incumbents’ overall cooperation rate remains at pfix

i , which implies a mutant’s cooper-
ation rate of fm(pfix

i ). Hence, upon meeting the mutant, an incumbent will cooperate
with probability fi(fm(pfix

i )).

For the mutant’s payoff we thus get π̂(m|i) = bfi(fm(pfix
i ))− cfm(pfix

i ), or

π(m|i) = fi(fm(pfix
i ))− rfm(pfix

i ), (8)

where r := c/b denotes the cost-benefit ratio of the donation.

For an incumbent, the probability of meeting the mutant is negligible, so the incumbents’
average payoff will be π(i|i) = (1− r)pfix

i .

2.5 Evolutionary stability of discrimination

A sufficient condition for the incumbent population to be evolutionarily stable in the
sense of Maynard Smith and Price (1973) is that the incumbent’s payoff is strictly larger
than any mutant’s payoff, i.e. that π(i|i) > π(m|i), or

(1− r)pfix
i > fi(fm(pfix

i ))− rfm(pfix
i ) (9)

for all m 6= i.

It is easy to see that for any n, unconditional cooperators, i.e. n-discriminators, can
always be invaded by unconditional defectors. Strictly speaking, defectors themselves
are not evolutionarily stable, because mutant discriminators do not cooperate with them,
earn 0 payoff as well and can grow by neutral drift. However, these mutants never manage
to cooperate with each other, since their cooperation rate, having started at pi = 0, never
reaches the basin of attraction pi > p∗i of the cooperative regime. So even if ALLD is
not evolutionarily stable, defection cannot be overcome.13 Essentially the same is true
for the 0-discriminator, which is never self-cooperative. Hence ESS candidates exist only
for n ≥ 2 and 1 ≤ i ≤ n− 1.

So let us assume that n ≥ 2 and α and 1 ≤ i ≤ n− 1 are such that the i-discriminator is
self-cooperative with cooperation rate pfix

i . Self-cooperativeness implies that at pfix
i the

12The ESS concept is immune to rescaling of payoffs, so normalizing payoffs is without loss of generality
here (Berger, 2009).

13Taking into account our assumption that proper discriminators cooperate with newborn defectors,
defectors even have a slight advantage, making ALLD evolutionarily stable. However, this assumption
is extraneous to the model.
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cooperation function fi crosses the diagonal from above, i.e. f ′i(p
fix
i ) < 1. Moreover, the

graph of fi is below the diagonal between 0 and p∗i , has slope greater than 1 between
p∗i and p̃i, and is strictly concave between p̃i and 1. This implies that the graph of fi
is completely below the tangent to fi at pfix

i . Applying this at the point p = fm(pfix
i )

we get the inequality fi(fm(pfix
i )) < pfix

i − f ′i(pfix
i )[pfix

i − fm(pfix
i )]. Assume now that the

cost-benefit ratio r happens to be exactly equal to r = f ′i(p
fix
i ), then the inequality can

be written as fi(fm(pfix
i )) < (1 − r)pfix

i + rfm(pfix
i ). Comparing this to inequality (9)

shows that this means π(i|i) > π(m|i), implying evolutionary stability of the incumbent
i-discriminator. By continuity of both sides of the inequality in r, evolutionary stability
continues to hold for nearby cost-benefit ratios. This proves:

Theorem 1 (Existence of ESS-discriminators). Fix n ≥ 2 and 0 < α < n−1
n . Choose

1 ≤ i ≤ n−1 such that the i-discriminator is self-cooperative. Then there exists an open
interval of cost-benefit ratios r such that the i-discriminator is evolutionarily stable.

Intuitively, in a population of self-cooperative i-discriminators a mutant strategy’s payoff
depends only on its cooperation rate and hence there will be some optimal cooperation
rate. But the peculiar shape of the incumbent’s cooperation function implies that by
varying r between 0 and 1 we can always find a cost-benefit ratio such that this optimal
cooperation rate equals the incumbent’s own cooperation rate pfix

i . Any possible mutant
will then achieve a strictly lower payoff against the incumbent than the incumbent itself.
By continuity of payoffs in the cost-benefit ratio, this continues to hold for nearby such
ratios.

If the i-discriminator is evolutionarily stable, a homogeneous population of i-discri-
minators cooperates at a high rate and resists invasion attempts of all mutant m-
discriminators, including ALLC and ALLD. If the error rate α is small enough, all
i-discriminators with 1 ≤ i ≤ n − 1 are self-cooperative and hence each i-discriminator
is an ESS for some open set of cost-benefit ratios. The only case where no such ESS
exists is the binary image scoring case, i.e. n = 1, where the only proper discriminator,
i = 0, is not self-cooperative for any α > 0.

Note that in the argument leading to Theorem 1 we did not make use of the assump-
tion that a mutant employs a threshold strategy. Indeed, the result continues to hold
whenever for the chosen values of α and n there is no mutant strategy m such that
fm(pfix

i ) = pfix
i , i.e. whenever no mutant’s cooperation function intersects the incum-

bent’s cooperation function exactly on the diagonal. However, since there are only
finitely many possible mutants and all cooperation functions are scaled by the factor
1 − α this happens only in non-generic cases. Theorem 1 can therefore be extended in
the following way.

Proposition 1. Fix n ≥ 2 and let the strategy space include all 2n+1 strategies cor-
responding to mappings from {0, 1, 2, . . . , n} to {C,D}. Let 0 < α < n−1

n and choose
1 ≤ i ≤ n − 1 such that the i-discriminator is self-cooperative. Then, generically, there

12



exists an open interval of cost-benefit ratios r such that the i-discriminator is evolution-
arily stable.

3 ESS Regions

3.1 Overview

The exact shape of the ESS-regions Ri in the interior of the α-r-square where an i-
discriminator is an ESS, can be determined numerically from inequality (9). It turns
out that for small α the open intervals of r-values guaranteeing the ESS-property for the
i-discriminators can be extremely small. However, a sizable fraction of the α-r-square
consists of parameter combinations where some discriminator is an ESS. For n = 5 these
ESS regions are depicted in Figure 2 as the “leaves” originating from (0, 0).

Note that relatively large values of α < 1 cannot readily be interpreted as probabilities
of implementation errors of intended donations. Rather, high values of α indicate that
individuals intending to help often simply lack the resources to do so.14 For very large
values of α, viz. α ≥ n−1

n , not even the most tolerant discriminator i = n − 1 is self-
cooperative, and cooperation is doomed to fail. However, as can be seen from region
R4 in Figure 2, for medium to high cost-benefit ratios the most tolerant discriminator
remains an ESS even for α-values arbitrarily close to the maximum of 0.8 for n = 5 (this
is proved rigorously below). Clearly, however, the cooperation rate in this “cooperative”
regime is actually rather low, being bounded from above by the corresponding (1− α)-
values close to 0.2.

3.2 Properties of ESS regions

The numerical calculations behind Figure 2 suggest that for every i-discriminator with
1 ≤ i ≤ n − 1 there exists a certain αmax

i such that the discriminator can be an ESS
for all 0 < α < αmax

i but is never an ESS for α > αmax
i . This is indeed the case. The

proof of the existence of ESS discriminators above is valid as long as the discriminator in
question is self-cooperative. For 1 ≤ i ≤ n−1 this is the case whenever α is small enough.
Increasing α scales down the cooperation functions in Figure 1 until the unstable fixed
point p∗i and the stable fixed point pfix

i coincide and the diagonal is tangential to the
cooperation function at this value. The value of α where this happens is αmax

i . From
Figure 1 it is also immediate that αmax

i is increasing in i.

A special case is αmax
n−1, where self-cooperativeness of the most tolerant proper discrimi-

nator breaks down. Since fn−1 is strictly concave, a stable fixed point pfix
n−1 > 0 exists

14This could suggest an interpretation of such a high-α population as a poor society.
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Figure 2: ESS regions R1, . . . , R4 for n = 5.

if and only if f ′n−1(0) > 1. From equation (5) we have f ′n−1(p) = (1 − α)n(1 − p)n−1,
hence f ′n−1(0) = (1− α)n, implying αmax

n−1 = 1− 1
n .

We have shown that in the case of self-cooperation, i.e. for α < αmax
i , there exists an

open interval of cost-benefit ratios r such that the i-discriminator is evolutionarily stable.
By construction, this interval contains the ratio r = f ′i(p

fix
i ). Maximally extending the

boundaries of the interval leads to the largest such interval rmin
i < r < rmax

i . Note
that the boundary values depend on α. Given any cooperation function f , let us now
denote the slope of the line between the two points (p1, f(p1)) and (p2, f(p2)) on the

graph of f by slf (p1, p2) := f(p2)−f(p1)
p2−p1

. We can then show that rmin
i = slfi(p

fix
i , fi+1(p

fix
i ))

and rmax
i = min (1, slfi(fi−1(p

fix
i ), pfix

i )). Moreover, if the cost-benefit ratio is outside the
closure of this interval, the i-discriminator can be invaded by a mutant strategy and is
never an ESS. The proof of this is relegated to the Appendix.

Figure 2 also strongly suggests that the ESS regions of different i-discriminators do not
overlap. The ESS regions of more tolerant discriminators seem to lie to the right and
below the ones of stricter discriminators. Indeed, this is the case. Again the proof can
be found in the Appendix.

3.3 Evolutionarily stable mixtures of neighboring discriminators

Figure 2 raises one more question. What happens in the regions where no i-discriminator
is an ESS? We try to answer this question in this section.
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First we focus on points in parameter space which lie vertically between the ESS regions
of an i-discriminator and the (i + 1)-discriminator. These are points (α, r) such that
there exists an i ∈ {1, . . . , n − 1} with α < αmax

i and rmax
i+1 < r < rmin

i . We show that
in any such case there exists a mixture of i- and (i+ 1)-discriminators which cannot be
invaded by any mutant strategy and thus is an evolutionarily stable state.

If i- and (i+1)-discriminators are present in fixed proportions in a well-mixed population,
the dynamics of their respective cooperation rates (pi, pi+1)(t) are described by a smooth
two-dimensional dynamical system. It is easy to see that if the initial cooperation rates of
both groups are close to zero, they both vanish in the limit. However, we show now that
there is always a second asymptotically stable fixed point with high cooperation rates.
As in the case of a single type of discriminators, we will assume that initial cooperation
rates are high, which allows us to treat them as fixed at their respective equilibrium
values with high cooperation when looking for evolutionarily stable mixtures of i- and
(i+ 1)-discriminators.

3.3.1 Limit cooperation rates in mixtures of two discriminators

Assume the population is composed of a fraction q of i-discriminators and a fraction
1−q of (i+1)-discriminators. Let the initial past cooperation rates in the two groups be
pi and pi+1. On his next interaction, an i-discriminator meets another i-discriminator
with probability q and an (i + 1)-discriminator with probability 1 − q, in the first case
cooperating with probability fi(pi) and in the second case cooperating with probability
fi(pi+1), so in his next interaction his cooperation probability will be qfi(pi) + (1 −
q)fi(pi+1). The cooperation rate of the i-discriminators will thus be moved into this
direction. The analogous applies to the (i + 1)-discriminator. Dropping the common
factor t−1, the dynamics of cooperation rates can hance be described by

ṗi = qfi(pi) + (1− q)fi(pi+1)− pi
(10)

ṗi+1 = qfi+1(pi) + (1− q)fi+1(pi+1)− pi+1

Consider now the case where pi = pfix
i and pi+1 > pi. Since fi is strictly increasing,

fi(pi+1) > fi(pi) = pi and the first equation in (10) implies that ṗi > 0. Analogously,
pi+1 = pfix

i+1 and pi+1 > pi imply ṗi+1 < 0. On the other hand, since fi+1 is strictly
greater than fi on the interior of the unit interval, subtracting the first from the second
equation of (10) implies d

dt(pi+1 − pi) > −(pi+1 − pi), so pi+1 − pi strictly increases at
interior points of the diagonal {pi = pi+1}. Hence, the triangle {pfix

i+1 ≥ pi+1 ≥ pi ≥ pfix
i }

in phase space is forward invariant.

Consider next the isocline ṗi = 0 in this triangle. We have ṗi = 0 at the lower left
corner (pfix

i , p
fix
i ), ṗi > 0 at the upper left corner (pfix

i , p
fix
i+1), and ṗi < 0 at the upper right
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corner (pfix
i+1, p

fix
i+1), so the isocline runs from the lower left corner to the upper edge of

the triangle. Since ∂
∂pi+1

[qfi(pi) + (1− q)fi(pi+1)− pi] = (1− q)f ′i(pi+1) > 0, the implicit

function theorem tells us that the isocline ṗi = 0 can be written as a function pi+1(pi)

with p′i+1(pi) = − qf ′i(pi)−1
(1−q)f ′i(pi+1)

. Since f ′i(pi) < 1, we have p′i+1(pi) > 0. From this we get

p′′i+1(pi) = − qf ′′i (pi)(1−q)f ′i(pi+1)−(qf ′i(pi)−1)(1−q)f ′′i (pi+1)p
′
i+1(pi)

[(1−q)f ′i(pi+1)]2
> 0. So the isocline ṗi = 0

can be written as an increasing and convex function running from the lower left corner to
the upper edge of the triangle. The analogous arguments for pi+1 show that the isocline
ṗi+1 = 0 can be written as an increasing and convex function running from the left edge
to the upper right corner of the triangle. By continuity of these functions they intersect
in a unique fixed point in the interior of the triangle, which we denote by (pfix

i,i+1, p
fix
i+1,i).

This fixed point has pfix
i < pfix

i,i+1 < pfix
i+1,i < pfix

i+1 and is asymptotically stable. 15

3.3.2 Evolutionary stability of mixtures of two discriminators

Let q ∈ [0, 1] be fixed. Consider again the population mixture of a fraction q of i-
discriminators and a fraction 1 − q of (i + 1)-discriminators. As shown above, the
cooperation rates of the two groups will then equilibrate at pfix

i,i+1 and pfix
i+1,i, respectively.

Therefore, the payoffs of an i-discriminator and an (i+ 1)-discriminator are given by

πi = qfi(p
fix
i,i+1) + (1− q)fi+1(p

fix
i,i+1)− rpfix

i,i+1,

(11)

πi+1 = qfi(p
fix
i+1,i) + (1− q)fi+1(p

fix
i+1,i)− rpfix

i+1,i,

respectively. We now define a new function, which is just a weighted average of fi and
fi+1, viz.

f qi,i+1(p) := qfi(p) + (1− q)fi+1(p)

The two payoffs can then be written as πi = f qi,i+1(p
fix
i,i+1)−rpfix

i,i+1 and πi+1 = f qi,i+1(p
fix
i+1,i)−

rpfix
i+1,i. Division by pfix

i+1,i−pfix
i,i+1 shows that the payoff difference πi−πi+1 has the same

sign as the difference between the cost-benefit ratio r and the slope of the line con-
necting the two points (pfix

i+1,i, f
q
i,i+1(p

fix
i+1,i)) and (pfix

i,i+1, f
q
i,i+1(p

fix
i,i+1)), i.e. the difference

r−slfq
i,i+1

(pfix
i,i+1, p

fix
i+1,i). In particular, equality of payoffs implies slfq

i,i+1
(pfix

i,i+1, p
fix
i+1,i) = r.

Note that q = 0 is just the situation of a homogeneous population of (i+1)-discriminators,
and slfq

i,i+1
(pfix

i,i+1, p
fix
i+1,i) = slfi+1

(fi(p
fix
i+1), p

fix
i+1) = rmax

i+1 . By our assumption of rmax
i+1 <

r < rmin
i we have πi − πi+1 > 0, so this population can be invaded by i-discriminators.

15Indeed it can be shown that this fixed point attracts all solutions of (10) with initial cooperation rates
exceeding p∗i .
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Vice versa, for q = 1 we get a homogeneous population of i-discriminators, which can
be invaded by (i+ 1)-discriminators. By continuity of the payoffs in q, there must exist
a 0 < q < 1 such that in the resulting mixture of i- and (i + 1)-discriminators, both
groups have equal payoffs. This mixture can neither be invaded by i- nor by (i + 1)-
discriminators. It remains to be shown that also no other mutant m-discriminator can
invade.

Theorem 2 (Stable mix of two discriminators). Let i ∈ {1, . . . , n− 1}, 0 < α < αmax
i ,

and rmax
i+1 < r < rmin

i . Then there exists a unique mixture of i- and (i+1)-discriminators
which is an ESS.

The proof of Theorem 2 can be found in the Appendix. Figure 3 shows the ESS-regions of
mixtures of neighboring discriminators added to the ESS-regions of single discriminators
in the α-r-square.

α

r = c
b

1

10

0

R4
R3

R2

R1

0.5

0.5

αmax
4 = 0.8

4,ALLC3, 4
2,
3

1, 2

0.1

0.05

α

r = c
b

3, 4
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1, 2
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0

0

R1
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Figure 3: ESS regions of single discriminating strategies and mixtures of two discrimi-
nating strategies for n = 5. On the right side a zoom of the area close to the
origin.

3.4 The chances for evolutionary stability

Given randomly selected values for α and r in the unit interval, what is the probability
that a high rate of cooperation can be achieved in an ESS? We can’t answer this question
exactly, since we have only proved existence of two special types of ESS here, single
discriminator ESS and ESS of mixtures of two neighboring discriminators. It is in
principle possible that some fraction of the white region in Figure 3 could admit similar
or other types of ESS. However, by measuring the coloured area in this Figure we
can at least calculate a lower bound for the chances that a cooperative ESS exists.
Table 1 provides these values for realistically low as well as for intermediate and very high

17



values of n. Note that while the percentage of points admitting a single discriminator
ESS eventually decreases, the corresponding area where a mixture ESS exists seems
to increase monotonically. In particular, this suggests that if the costs are less than
half the benefits, our two ESS types cover the complete area in the limit as n grows
large. However, even low values of n provide substantial chances for cooperation to be
evolutionarily stable.

Table 1: Percentage of points (α, r) with existence of a single discriminator ESS or an
ESS mixture of two neighboring discriminators (first column: single, second
column: single or mixture)

4 Conclusions

Explanations of cooperation relying on the image scoring mechanism of indirect reci-
procity have met with two points of criticism. The first was that within an unrestricted
strategy space cooperation based on first-order information is never an ESS. This, of
course, cannot be circumvented. E.g. if we introduce unresponsive strategies randomiz-
ing between C and D into our space of threshold strategies, then cooperation falls apart.
Even if pfix

i happens to be the payoff-maximizing cooperation rate, a static strategy co-
operating with probability pfix

i on each interaction constitutes a neutral mutant and can
drift into the incumbent population, paving the way for unconditional defectors. Within
the restricted strategy spaces studied in the literature, a second point of critique was that
implementation errors destabilize cooperation based on discrimination. We have shown
that this second point of criticism is not valid in general, applying only to the case of
binary scoring. We have shown that if at least two observations are made, implementa-
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tion errors may stabilize the evolution of cooperation via indirect reciprocity. This holds
even in the presence of small costs of reputation transmission, i.e. under assumptions
where higher-order assessment rules don’t work.

An obvious limit of the present analysis is that it is a static one. The ESS property of a
discriminator tells us nothing about the size of its basin of attraction under a learning
or evolutionary dynamics. For the same reason we have to leave open the question what
exactly happens when parameters are in a region where neither a homogeneous discrim-
inator population nor a mixture of two neighboring discriminators are evolutionarily
stable. Numerical simulations might shed further light on these questions.
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Appendix

Lemma 3 (Interval of cost-benefit ratios). Let rmin
i = slfi(p

fix
i , fi+1(p

fix
i )) and rmax

i =
min (1, slfi(fi−1(p

fix
i ), pfix

i )). Then

rmin
i < r < rmax

i =⇒ i-discr. is ESS =⇒ rmin
i ≤ r ≤ rmax

i . (12)

Proof. First we observe

π(m|i)− π(i|i) (8)
= fi(fm(pfix

i ))− rfm(pfix
i )− fi(fi(pfix

i )) + rfi(p
fix
i )

= fi(fm(pfix
i ))− fi(pfix

i ) − r (fm(pfix
i )− pfix

i ) .

Hence,

π(m|i) ≤ π(i|i) ⇔ fi(fm(pfix
i ))− fi(pfix

i ) ≤ r (fm(pfix
i )− pfix

i )

⇔

 for m > i : r ≥ fi(fm(pfix
i ))−fi(pfix

i )

fm(pfix
i )−pfix

i

= slfi(p
fix
i , fm(pfix

i ))

for m < i : r ≤ pfix
i −fi(fm(pfix

i ))

pfix
i −fm(pfix

i )
= slfi(fm(pfix

i ), pfix
i )

and the analogous equivalence holds for the strict inequality. This proves

r̃min
i < r < r̃max

i =⇒ i-discr. is ESS =⇒ r̃min
i ≤ r ≤ r̃max

i ,

where

r̃min
i := max

m>i
slfi(p

fix
i , fm(pfix

i )) and r̃max
i := min

m<i
slfi(fm(pfix

i ), pfix
i ).

It remains to be shown that rmin
i = r̃min

i and rmax
i = r̃max

i .
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For the first equality, rmin
i = r̃min

i , we show that the slope slfi(p
fix
i , fm(pfix

i )) is decreasing
in m for m > i. However, this follows from the observations in section 2.2. Since at the
stable fixed point pfix

i the function fi(.) intersects the diagonal g(p) = p from above and
fi(0) = 0, pfix

i must be in the concave part of fi(.), i.e.

pfix
i ≥ p̃i. (13)

Hence, f ′i(p) is non-increasing on the whole interval [pfix
i , 1]. This implies that the

slope slfi(p
fix
i , p) is also non-increasing in p on [pfix

i , 1] because it is the average of f ′(.)
on [pfix

i , p]. The maximum slope is attained by the smallest p. This concludes the proof
of this step because fm(pfix

i ) is by definition increasing in m.

For the second equality, rmax
i = r̃max

i , we consider the function h(p) := slfi(p, p
fix
i ). First,

we prove analogously to above that h(p) is non-increasing on [p̃i, p
fix
i ] because f ′i(.) is

non-increasing on this interval.

h′(p) =
−f ′i(p)(pfix

i − p) +
∫ pfix

i
p f ′i(t) dt

(pfix
i − p)2

≤
−f ′i(p)(pfix

i − p) +
∫ pfix

i
p f ′i(p) dt

(pfix
i − p)2

= 0

Let p∗i be the intersection point of fi and g(p) = p such that for all p with p∗i < p < pfix
i

we have fi(p) > p. We want to prove that h(p) is non-increasing on [p∗i , p
fix
i ]. If p∗i > p̃i,

we are done. Otherwise, we still have to prove the statement for the interval [p∗i , p̃i].
Note that we have f ′i(p

∗
i ) ≥ 1 because fi(p

∗
i ) = p∗i and fi(p

∗
i +ε) > p∗i +ε for small ε > 0.

Because we are in the convex part of fi, f
′
i is increasing. Hence, f ′(p) ≥ 1 for every p ∈

[p∗i , p̃i]. This implies

h′(p) =
−f ′i(p)(pfix

i − p) + pfix
i − fi(p)

(pfix
i − p)2

fi(p)≥p
≤ −f ′i(p)(pfix

i − p) + pfix
i − p

(pfix
i − p)2

=
1− f ′i(p)
pfix
i − p

f ′i(p)≥1≤ 0.

We have proved that h(p) is non-increasing on [p∗i , p
fix
i ].

If p∗i > 0, then fi(p) ≤ p on [0, p∗i ] because fi intersects g(p) = p from below in p∗i and
fi is first convex on [0, p∗i ], then possibly followed by a concave part. Hence,

min
m<i,fm(pfix

i )≤p∗i
slfi(fm(pfix

i ), pfix
i ) ≥ 1.

Because f−1(p
fix
i ) = 0, we even have the equality minm<i,fm(pfix

i )≤p∗i
slfi(fm(pfix

i ), pfix
i ) = 1

and it holds also for p∗i = 0. We can conclude

r̃max
i = min

m<i
slfi(fm(pfix

i ), pfix
i ) = min

(
1, min

m<i,fm(pfix
i )≥p∗i

slfi(fm(pfix
i ), pfix

i )

)
= min (1, slfi(fi−1(p

fix
i ), pfix

i )) = rmax
i

Note that the last equality holds also if fi−1(p
fix
i ) < p∗i where the minimum equals 1.

This concludes the proof.
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Lemma 4 (Non-overlapping ESS-regions). For i, j ∈ {1, . . . , n− 1} and i 6= j, we have
Ri ∩Rj = ∅. More precisely, i < j and 0 < α < αmax

i imply rmax
j < rmin

i .

Proof. The proof uses the following observation about the fixed point pfix
i and the inflec-

tion point p̃i = n−i−1
n−1 as described around (7):

Lemma 5. For 1 ≤ i ≤ n− 1, p ∈ [p̃i, 1) or p ∈ [pfix
i , 1) implies f ′i+1(p) < f ′i(p).

Proof of Lemma 5. For i = n−1 we have f ′i+1(p) = f ′n(p) = 0 < fi(p). Now, assume 1 ≤
i ≤ n− 2.

f ′i(p)− f ′i+1(p)
(5)
= (1− α)(n− i) n!

i!(n− i)!p
n−i−1(1− p)i

− (1− α)(n− i− 1)
n!

(i+ 1)!(n− i− 1)!
pn−i−2(1− p)i+1

= (1− α)
n!

i!(n− i− 2)!
pn−i−2(1− p)i

(
1

n− i− 1
p− 1

i+ 1
(1− p)

)
This shows

f ′i(p)− f ′i+1(p) > 0 ⇔ 1

n− i− 1
p− 1

i+ 1
(1− p) > 0

⇔ p

(
1

n− i− 1
+

1

i+ 1

)
>

1

i+ 1
⇔ p

(
i+ 1

n− i− 1
+ 1

)
> 1

⇔ p >
n− i− 1

n
⇐ p ≥ p̃i

(7)
=
n− i− 1

n− 1
.

Within the proof of Lemma 3 we showed in (13) that pfix
i > p̃i. This proves that the

implication holds for the precondition p ≥ pfix
i , too.

To prove Lemma 4 it now suffices to prove the statement for j = i+1. Let 0 < α < αmax
i .

The inequality fi+1(p) > fi(p) for 0 < p < 1, the monotonicity of both, fi and fi+1,
pfix
i < pfix

i+1, and the fixed point properties of pfix
i and pfix

i+1 imply

pfix
i = fi(p

fix
i ) ≤ fi+1(p

fix
i ) ≤ fi+1(p

fix
i+1) = pfix

i+1 (14)

and pfix
i = fi(p

fix
i ) ≤ fi(p

fix
i+1) ≤ fi+1(p

fix
i+1) = pfix

i+1.

Because of

pfix
i

(13)
> p̃i

(7)
=
n− i− 1

n− 1
>
n− i− 2

n− 1

(7)
= p̃i+1
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both cooperation functions fi and fi+1 are concave on [pfix
i , 1]. We have

rmin
i

Lemma 3
= slfi(p

fix
i , fi+1(p

fix
i ))

(14), fi concave

≥ slfi(p
fix
i , p

fix
i+1)

Lemma 5
> slfi+1

(pfix
i , p

fix
i+1)

(14), fi+1 concave

≥ slfi+1
(fi(p

fix
i+1), p

fix
i+1)

≥ min
(
1, slfi+1

(fi(p
fix
i+1), p

fix
i+1)

) Lemma 3
= rmax

i+1

Proof of Theorem 2

Proof. Let q be the ratio of i-discriminators in population equilibrium. To simplify
notation, we now denote the cooperation rates of the two discriminators in the steady
state again by pi and pi+1 instead of by pfix

i,i+1 and pfix
i+1,i. Moreover, we define

f̃j(pi, pi+1) := qfj(pi) + (1− q)fj(pi+1) (15)

for any j ∈ {−1, . . . , n}.

In the steady state of cooperation rates, the right-hand sides of (10) must be zero, which
is equivalent to

f̃i(pi, pi+1) = pi and f̃i+1(pi, pi+1) = pi+1. (16)

It will be useful to define the combined cooperation function of the whole population by

fi,i+1(p) := qfi(p) + (1− q)fi+1(p). (17)

In a mixed population equilibrium, the payoffs of both types of discriminators must
be equal, since otherwise the discriminator with the higher payoff would increase in
frequency. The payoff relation, again, has a useful slope formulation.

π(i+ 1|i, i+ 1) = π(i|i, i+ 1) (18)

⇔ qfi(pi+1) + (1− q)fi+1(pi+1)− rpi+1 = qfi(pi) + (1− q)fi+1(pi)− rpi
(17)⇔ fi,i+1(pi+1)− rpi+1 = fi,i+1(pi)− rpi
⇔ fi,i+1(pi+1)− fi,i+1(pi) = r(pi+1 − pi)
⇔ slfi,i+1

(pi, pi+1) = r.

Note that the same equivalences hold, if we replace ”=” by ”<” or ”>”,

π(i+ 1|i, i+ 1) ≷ π(i|i, i+ 1) ⇔ slfi,i+1
(pi, pi+1) ≷ r. (19)

If the slope exceeds r, the (i+ 1)-discriminator has a payoff advantage and q decreases.
This in turn increases both steady state cooperation rates pi and pi+1, since the right-
hand sides of (10) are decreasing in q. As a consequence, the slope-term decreases,
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since the cooperation rates are in the concave part of fi and fi+1, and hence of fi,i+1.
Analogous arguments show that the slope-term is increased, if it is below r. These
arguments show that the mixed equilibrium population ratio q is unique.

The rest of the proof is very similar to the proof of Lemma 3. We want to prove the
following equivalent statements16 for m 6= i:

π(m|i, i+ 1) < π(i|i, i+ 1) = π(i+ 1|i, i+ 1) (20)

⇔ fi,i+1(f̃m(pi, pi+1))− rf̃m(pi, pi+1) < fi,i+1(pi)− rpi
⇔ fi,i+1(f̃m(pi, pi+1))− fi,i+1(pi) < r(f̃m(pi, pi+1)− pi)

⇔
{

slfi,i+1
(pi, f̃m(pi, pi+1)) < r for f̃m(pi, pi+1) > pi

slfi,i+1
(f̃m(pi, pi+1), pi) > r for f̃m(pi, pi+1) < pi

⇔
{

slfi,i+1
(pi, f̃m(pi, pi+1)) < r for m > i+ 1

slfi,i+1
(f̃m(pi, pi+1), pi) > r for m < i

The last equivalence follows from the monotonicity of fj(p) in j and (16).

It is simple to prove that the statements in (20) hold for m > i + 1. In the proof of
Lemma 3 we have already used the inequality pfix

i > p̃i from (13), which means that fi(.)
is concave on the whole interval [pfix

i , 1]. Since p̃i+1 < p̃i, also fi+1(.) is concave on that
interval17. Hence, fi,i+1(.) is concave, too. From f̃m(pi, pi+1) > f̃i+1(pi, pi+1) = pi+1, we
get

slfi,i+1
(pi, f̃m(pi, pi+1)) < slfi,i+1

(pi, pi+1)
(18)
= r.

For the case m < i, let us first exclude the special case i = n−1. Hence, since 0 ≤ m < i
we now consider 1 ≤ i ≤ n−2. We can use the very same argumentation for fi,i+1 which
was used in the proof of Lemma 3 for fi. In order to do so, we have to show that fi,i+1

has the same crucial properties as fi:

1. fi,i+1 is strictly increasing from fi,i+1(0) = 0 to fi,i+1(1) = 1− α.

2. fi,i+1 cuts the line g(p) = p from above at a point pfix
i,i+1.

3. There exists a fixed point of fi,i+1 smaller than pfix
i,i+1. Let p∗i,i+1 be the largest

such fixed point.

4. fi,i+1 is convex up to a value p̃i,i+1 ∈ [0, 1] and then concave.

1. holds because fi,i+1 is a mixture of two functions which have this property. 2. holds
for a value pfix

i,i+1 ∈ [pfix
i , p

fix
i+1] because at pfix

i we have fi(p
fix
i ) = pfix

i and fi+1(p
fix
i ) > pfix

i ,
hence fi,i+1(p

fix
i ) > pfix

i . Analogously, one can show that fi,i+1(p
fix
i+1) < pfix

i+1. Hence, the

16Here, π(j|i, i+ 1) denotes the payoff of a single j-discriminator in the equilibrium population mixture
of i- and (i+ 1)-discriminators.

17Note that since m > i+ 1 we know that i+ 1 < n.
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fixed point pfix
i,i+1 exists due to continuity of fi,i+1. Furthermore, 4. will show that this

fixed point is unique. 3. holds because at least p = 0 satisfies all conditions.

To prove 4., note that for p < p̃i+1 < p̃i we know that f ′′i+1(p) > 0 and f ′′i (p) > 0, and
hence f ′′i,i+1(p) > 0. Actually, since q > 0 we even know f ′′i,i+1(p̃i+1) > 0. Analogously,
one can prove f ′′i,i+1(p) < 0 for p ∈ [p̃i, 1]. What happens between p̃i+1 and p̃i? One can
use (6) to show that the sign of f ′′i,i+1(.) on (0, 1) depends only on a function which is a
quadratic polynomial in p. Hence, it can have at most two roots in [p̃i+1, p̃i]. However,
the change of sign between f ′′i,i+1(p̃i+1) and f ′′i,i+1(p̃i) shows that the number of roots
must be odd. Hence, we have exactly one root in that interval which completes the proof
of the 4th property.

Now, applying the analogous arguments as in the proof of Lemma 3, shows that each p ≤
p∗i,i+1 satisfies slfi,i+1

(p, pi) ≥ 1 > r, and each p ∈ [p∗i,i+1, pi) satisfies slfi,i+1
(p, pi) >

slfi,i+1
(pi, pi+1) = r. In particular, this holds for p := f̃m(pi, pi+1) < f̃i(pi, pi+1) = pi.

We still have to deal with the special case i = n− 1. Here, fi,i+1=fn−1,n is a mixture of
fn−1(p) = (1−α)(1−(1−p)n) which is concave everywhere and fn(p) = (1−α). Since q >
0, the function fi,i+1 is strictly increasing and concave on the whole interval [0, 1]. This
proves that for every p < pi we have slfi,i+1

(p, pi+1) > slfi,i+1
(pi, pi+1) = r, in particular

for p := f̃m(pi, pi+1) < pi like above.
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