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Abstract

Background

Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and

shows worse prognosis compared to other breast cancer subtypes. Molecular studies dem-

onstrated that TNBCs are a heterogeneous group of tumors with different clinical and patho-

logic features, prognosis, genetic-molecular alterations and treatment responsivity. The

PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and

is the most frequently altered pathway in breast cancer, apparently with different biologic

impact on specific cancer subtypes. The most common genetic abnormality is represented

by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of

our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform

a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK path-

ways and to correlate the results with clinical-pathologic data.

Materials and Methods

PIK3CA mutation analysis was performed by using cobas1 PIK3CA Mutation Test. EGFR,

AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was

carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.

Results

PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified

in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of
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tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT

and p-p44/42 MAPK in all PIK3CA mutated TNBC.

Conclusions

Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common

events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be

helpful in order to select patients who would benefit from current targeted therapy

strategies.

Introduction
Breast cancer (BC) is the most frequent malignant tumor in females and the commonest cause
of cancer death among women worldwide [1]. Recently, our knowledge on BC biology has
strongly been improved, with significant increase in personalized treatment options. Gene
expression profiling studies have established the heterogeneous nature of BC, which might be
considered as a collection of distinct “intrinsic” subtypes, based on specific genetic alterations
involving different oncogenic pathways [2–8].

Triple Negative Breast Cancer (TNBC), which accounts for 12–24% of all breast carcino-
mas, is defined by the lack of expression of estrogen, progesterone receptors (ER, PgR) and
HER2 [9]. TNBCs are a heterogeneous group of tumors with different clinical-pathologic fea-
tures, genetic-molecular alterations and treatment responsivity [10]. Specifically, molecular
profiling studies demonstrated that a high percentage of TNBCs showed basal-like features,
whereas the remainders are biologically and genetically different subtypes [11,12]. Indeed,
although TNBCs are prevalently categorized as high grade invasive ductal variants [13], other
less common or special subtypes, such as metaplastic, medullary, adenoid cystic tumors are
still included among TNBC, from which they substantially differ in terms of biologic behavior
and clinical course [11].

The PI3K/AKT is a major pathway involved in the regulation of cell processes, such as sur-
vival, growth, motility and metabolism, and it is known to be deregulated in a large variety of
human cancers [14]. The PI3K/AKT signaling pathway is the most recurrently altered pathway
in BC, apparently with different biologic impact on specific cancer subtypes [14]. In this path-
way, the most common genetic abnormality is represented by activating mutations in Phospha-
tidylinositol-4-5-bisphosphate-3-kinase catalytic subunit-α (PIK3CA) gene, with a reported
frequency of 20–40% in BC [15,16]. PIK3CA mutations are more prevalent in ER/PgR positive
(35%) and HER2-overexpressing BC (23%) than in TNBC (ranging from 5% to 13.2%) [17–
22]. Recently, Kriegsmann et al. demonstrated a high frequency of PI3K pathway alterations,
comprising mainly PIK3CA mutations, in a large series of TNBC [23]; moreover, PIK3CA
mutations were also identified in TNBC-homologous molecular subtype, i.e. basal-like BC [8].

Due to their Triple Negative nature, chemotherapy is currently the mainstay of systemic
treatment for patients with TNBC; nevertheless, the sensitivity of these tumors to chemother-
apy is low, and only 30% of patients achieve a complete pathological response with neoadju-
vant chemotherapy. Therefore, TNBC subtypes represent a priority target of therapeutic
research. [8,24].

The aim of our study was to investigate PIK3CA mutations in a large series of TNBC. Fur-
thermore, we performed a wide analysis on genetic alterations that up-regulate PI3K/AKT and
BRAF/RAS/MAPK pathways, to correlate with clinical-pathologic data.
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Materials and Methods
Our experimental study was approved by ASL Sassari Bioethical Committee, which also waived
the need for written informed consent from the patients, according to the Italian legislation
concerning the guidelines for the performance of retrospective observational studies; however,
breast tissue samples were fully anonymized prior of any authors’ access.

Tumor samples were selected from the Histopathology Departments archives of Cagliari
and Sassari (Italy). Specifically, we retrieved 97 primary TNBC, consecutively identified in
between a pool of 650 primary BC, diagnosed in about 1-year routine activity. Moreover, we
selected 36 consecutive non-TNBC, categorized as 15 Luminal-A-like (ER+, PgR+, Her2-), 12
Luminal-B-like (ER+, PgR+/-, Her2+) and 9 Her2-positive tumors (ER-, PgR-, Her2+), respec-
tively. All cases were reviewed by two experienced pathologists, and categorized according to
current WHO classification [25].

From representative formalin-fixed, paraffin-embedded (FFPE) specimens, 3μm-thick tis-
sue sections were cut for haematoxylin and eosin stains (H & E) and immunohistochemical
analysis. Additional consecutive sections were also obtained for genetic analysis. FFPE speci-
mens from control group (non-TNBC tumors) were utilized only for PIK3CA mutational
analysis.

Real-Time PCR to detect PIK3CA gene mutations
To detect PIK3CA mutations a Real-Time PCR procedure was used. TNBC and BC control
group were processed for genomic DNA isolation using cobas1 DNA Sample Preparation Kit
(Roche Mannheim, Germany) following the manufacturer's instructions. Briefly, deparaffi-
nized 5 μm section, containing at least�10% of tumor cells, was used for the extraction pro-
cess. The amount of genomic DNA mixture was spectrophotometrically determined
(NanoDrop2000, Thermo Fisher Scientific, Waltham, MA USA) and adjusted to a fixed con-
centration to be added to the amplification/detection.

The PCR Real-Time cobas1 PIK3CA Mutation Test kit (Roche) uses a pool of primers
divided into three different mixes for each samples and controls that define specific base-pair
(bp) sequences that range from 85 to 155 bp in PIK3CA exons 1, 4, 7, 9, and 20. An additional
primer pair, targeting a conserved 167 bp region in PIK3CA exon 3, provides a full process
control. A derivative of Thermus species Z05-AS1 DNA-polymerase is utilized for amplifica-
tion. Selective amplification of target nucleic acid from the sample is achieved in the cobas1
PIK3CAMutation Test by the use of AmpErase (uracil-N-glycosylase) enzyme and deoxyuri-
dine triphosphate (dUTP).

The target DNA was amplified and detected on the cobas z480 analyzer (Roche) using the
RT-PCR-based amplification and detection reagents provided in the cobas1 PIK3CA Muta-
tion Test kit (Roche). The validated instrument software of the cobas 4800 system uses a spe-
cific and tested algorithm for the interpretation of the results, through the automatic and
standardized analysis of the specific kinetic of single curve, in order to guarantee the correct
interpretation of the amplified curves. No operator mediated evaluation or interpretation is
needed and/or possible.

Gene sequencing to detect EGFR, AKT1, BRAF and KRASmutations
Gene mutation analyses were performed on specific exons which are known to harbor the
most frequent and significant mutations for each gene: exons 18, 19, 20, and 21 for EGFR, exon
2 for AKT1, exon 15 for BRAF and exons 2 and 3 for KRAS. Selected primers (Eurofins MWG,
Synthesis GmbH, Munich, Germany) used for the amplification and sequencing reaction are
summarized in Table 1.
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Five 10 μm-thick consecutive sections from TNBC specimens were prepared, and tumors
were macro-dissected with a scalpel blade under sterile conditions, using corresponding Hae-
matoxylin & Eosin stained sections as a guide. DNA was extracted using the QIAamp DNA
FFPE Tissue Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instruc-
tions. To obtain genomic DNA 10μl of RNase A (20mg/ml, Rnase PureLink, Life Technologies,
Carlsbad, CA, USA) were applied to the silica membrane to digest contaminating RNA. We
assessed the quantity and the quality of nucleic acids spectrophotometrically, as described
above. Gene sequencing analysis was executed as previously reported [26].

Immunohistochemistry
The immunohistochemistry was performed using specific antibodies against mouse monoclo-
nal Androgen Receptor (AR, clone 2F12, dilution 1:25, Novocastra, Dublin, OH, USA) [27],
mouse monoclonal Cytokeratin 5/6 (CK5/6, Clone CK5/6.007, dilution 1:100, Biocare Medical,
Concord, CA, USA) [28], mouse monoclonal p-AKT (Clone HP18, dilution 1:75, Novocastra),
[29], rabbit monoclonal p-p44/42 MAPK (Clone 20G11, dilution 1:100, Cell Signaling Tech-
nology, Boston, MA, USA), [30] and mouse monoclonal PTEN (Clone 6M2.1, dilution 1:200,
DakoCytomation, Glostrup, Denmark) [31]. Immunoreactions were obtained by incubating
sections with specific primary antibodies for 15 minutes. Immunodetection was performed
using a non-biotin highly sensitive system (EnVision Peroxidase Detection System, Dako), pre-
venting possible false-positive staining due to endogenous biotin present in the tissue. The
slides were then incubated with substrate chromogen solution diaminobenzidine (DAB) for 10

Table 1. Selected Primers for PCR and gene sequencing.

Primers Sequence Annealing temperature Base pair

BRAF F exon 15 TCATAATGCTTGCTCTGATAGGA 55.5°C 185

BRAF R exon 15 GGCCAAAAATTTAATCAGTGGA

K-RAS F2 exon 2 GTTTGTATTAAAAGGTACGGTGGA 58°C 270

K-RAS R2 exon 2 ATCAAAGAATGGTCCTGCAC

K-RAS F2 exon 3 CCAGACTGTGTTTCTCCCTTC 59°C 288

K-RAS R2 exon 3 TATGCATGGCATTAGCAAAGACTC

PIK3CA F exon 9 TCCAGTCACTGTGCTGCTTC 56.8°C 487

PIK3CA R exon 9 GCAAGGGAAAAGGGAGTCTT

PIK3CA F1-nested exon 9 TTGCTTTTTCTGTAAATCATCTGTG 55.5°C 270

PIK3CA R2-nested exon 9 GCCAAATTCAGTTATTTTTTCTGT

PIK3CA F exon 20 TGACATTTGAGCAAAGACCTG 59.4°C 445

PIK3CA R exon 20 GGATTGTGCAATTCCTATGC

PIK3CA F-hemi exon 20 AGGTTTCAGGAGATGTGTTAC 59.4°C 372

PIK3CA R exon 20 GGATTGTGCAATTCCTATGC

EGFR F exon 18 GCTTGCAAGGACTCTGGGCT 62°C 360

EGFR R exon 18 CCAAACACTCAGTGAAACAAAGAG

EGFR F exon 19 GTGCATCGCTGGTAACATCCA 55°C 306

EGFR R exon 19 CATTTAGGATGTGGAGATGAGC

EGFR F exon 20 GAAACTCAAGATCGCATTCATGC 60°C 379

EGFR R exon 20 GCAAACTCTTGCTATCCCAGGAG

EGFR F exon 21 CTAACGTTCGCCAGCCATAAGTCC 57°C 370

EGFR R exon 21 GCTCACCCAGAATGTCTGGA

AKT1 F exon 2 AGGCACATCTGTCCTGGCAC 61°C 263

AKT1 R exon 2 AAATCTGAATCCCGAGAGGCC

doi:10.1371/journal.pone.0141763.t001
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minutes and counterstained with haematoxylin. Specifically, mouse monoclonal EGFR (Clone
2-18C9) immunoreaction was executed using EGFR pharmDx™ Kit (DakoCytomation) [32],
according to manufacturer’s instructions.

Evaluation of Immunohistochemical Staining
AR expression was interpreted as positive if at least 1% immunostained tumor nuclei were
detected in the sample, according with ASCO/CAP recommendations for immunohistochemi-
cal testing of hormone receptors in BC [33].

EGFR was considered positive when� 1% of neoplastic cells exhibited positivity, according
to manufacturer’s instructions; CK5/6 were considered positive when� 5% of neoplastic cells
exhibited positivity; moreover, the results were scored semi-quantitatively including intensity
(0, negative; 1+, weak; 2+, moderate; 3+, strong).

p-AKT, p-p44/42 MAPK and PTEN staining were scored semiquantitatively based on stain-
ing intensity (0–3) and percentage of stained cells (0–100) using the histo-score (H-score;
range 0–300) [34]. PTEN loss cut-off corresponding to the H-score�10 was used. In the same
way, p-AKT and p-p44/42 MAPK with H-score�10 were defined as negative. A score ranging
from 11 to 100 was considered as weakly positive (score 1), from 101 to 200 moderately posi-
tive (score 2), and from 201 to 300 strongly positive (score 3). Finally, subcellular localization
of immunostaining was also assessed for each antibody in each positive tumor.

Subcellular localization of immunostaining has also been assessed for each positive tumor
case.

Statistical analysis
Statistical analysis was carried out with STATAR13 (StataCorp, College Station, TX, USA).
Shapiro-Wilk normality test was used to assess the parametric distribution of the quantitative
variables. Median and inter-quartile range and frequencies were used to summarize quantitati-
veand qualitative variables, respectively. Statistical differences between individuals with and
without PIK3CA mutations for quantitative and qualitative variables were evaluated perform-
ing the Mann-Whitney U test and Chi2 or Fisher's Exact Test when appropriated, respectively.
Logistic regression analysis, both univariate and multivariate, was carried out to assess the asso-
ciation between mortality after 5 years of follow-up and the epidemiological, clinical, and
molecular variables. The statistical significance was set-up at<0.05.

Results

Clinic-pathologic features
One hundred and thirty-three primary BC were included in the study, specifically 97 TNBC
and 36 non-TNBC. TNBC samples were characterized by ER, PR, and HER2 negativity, with
ki67 proliferation index ranging from 6% to 90% of neoplastic cells. Patients’ age ranged from
27 to 92 years (mean: 56), tumor size varied between 8 and 140 mm (mean: 30.5 mm). The clin-
ical-pathologic data of TNBC included in this study are reported in Table 2.

Mutational Analysis
Mutational analysis of PIK3CA gene was achieved in all TNBC and BC control groups.
PIK3CA somatic missense mutations were detected in 23/97 of TNBC (23.7%) and in 12/36
non-TNBC (33.3%), in detail, 6/15 Luminal-A-like (40%), 3/12 Luminal-B-like (25%) and 3/9
HER2-positive tumors (33.3%); among the TNBC, only one tumor harbored mutations in both
exons 9 and 20.

PIK3CAMutations in Triple Negative Breast Cancer
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As regards the analysis of PIK3CA exon 9, involving the helical domain of PIK3CA gene,
our results showed the presence of three hotspot mutations “E542K”, “E545X” and “E546X”,
which were revealed in 7/97 TNBC (7.2%). The mutational analysis of PIK3CA exon 9 on non-
TNBC demonstrated the presence of “E545X”mutation, involving the 3/36 of tumors (8.3%),
with mutations in 2/15 Luminal-A-like and 1/9 HER2-positive tumors, whereas the subtype
Luminal-B-like did not show any mutation on exon 9.

The analysis of PIK3CA exon 20, involving the kinase domain of PIK3CA gene, showed the
presence of one hotspot mutation “H1047X”, which were identified in 16/97 TNBC (16.5%).
The mutational analysis of PIK3CA exon 20 on non-TNBC demonstrated the presence of two
hotspot mutations, “H1047X” and “G1049R”, involving 8/36 of tumors (22.3%), with muta-
tions in 4/15 Luminal-A-like, 2/12 Luminal-B-like and 2/9 HER2-positive tumors. In a single
Luminal-B-like tumor a mutation on PIK3CA gene exon 4 was also identified (2.7%),
“N345K”, located in the C2 domain of PIK3CA, promoting its activity. Finally, exon 20 was
confirmed the most frequently mutated in all BC analyzed [35,36].

Genomic DNA sequencing of EGFR exons 18, 19, 20, and 21, AKT1 exon 2, BRAF exon 15
and KRAS exons 2 and 3 failed to demonstrate mutations in any of the TNBC analyzed.

Immunohistochemical analysis
Immunohistochemistry was performed to define TNBC subtypes and to analyze downstream
signaling pathways.

Androgen Receptor (AR) expression was identified in 20/92 TNBC (21.7%).
The immunoreactivity for basal markers, EGFR and CK5/6 was reported as membranous or

membranous-cytoplasmic. EGFR expression was appreciable in 69.1% of TNBC, with staining

Table 2. Clinic-pathologic and biologic data of the TNBC patients according to mutational status of PIK3CA.

Variables Total cohort PIK3CA mutations p-value

Wildtype Mutated

Age, median (IQR) 57 (43–67) 54 (42–64) 66 (55–77) 0.006

Tumor size, median (IQR) 25 (15–40) 24 (15–35) 25 (17–45) 0.29

Ductal histologic subtype, n (%) 81 (83.5) 62 (83.8) 19 (82.6) 1.00

Lobular histologic subtype 3 (3.1) 1 (1.4) 2 (8.7) 0.14

Other histologic subtypes 13 (13.4) 11 (14.9) 2 (8.7) 0.73

pT1, n (%) 38 (39.6) 29 (39.7) 9 (39.1) 0.21

pT2 40 (41.7) 33 (45.2) 7 (30.4)

pT3 13 (13.5) 7 (9.6) 6 (26.1)

pT4 5 (5.2) 4 (5.5) 1 (4.4)

pN0-N1, n (%) 70 (76.9) 57 (81.4) 13 (61.9) 0.07

pN2-N3 21(23.1) 13 (18.6) 8 (38.1)

Stage I, n (%) 24 (24.7) 19 (25.7) 5 (21.7) 0.14

Stage II 43 (44.3) 36 (48.7) 7 (30.4)

Stage III 30 (30.9) 19 (25.7) 11 (47.8)

Grade I, n (%) 4 (4.1) 4 (5.4) 0 (0.0) 0.03

Grade II 16 (16.5) 8 (10.8) 8 (34.8)

Grade III 77 (79.4) 62 (83.8) 15 (65.2)

Ki67, median (IQR) 45 (25–70) 60 (30–70) 25 (12–60) 0.004

Mortality (5-years), n (%) 8 (12.1) 4 (8.0) 4 (26.7) 0.08

IQR: interquartile range; n: number

doi:10.1371/journal.pone.0141763.t002
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intensity ranging from 1+ to 3+, and the percentages of positive cells varying from 5% to 90%.
No immunoreactivity was observed in non-neoplastic tissues. CK5/6 expression was apprecia-
ble in 63.9% of TNBC, with staining intensity ranging from 1+ to 3+, and the percentages of
positive cells varying from 5% to 95%. Twenty-five TNBC were negative for both basal markers
and were considered as TNBC without basal-like features.

The analysis of downstream signaling pathways, including p-AKT and p-p44/42 MAPK,
showed nuclear staining and nuclear and/or cytoplasmic staining, respectively. p-AKT expres-
sion was absent in 22.8% of TNBC (score 0), whereas 32.7% presented weak (score 1), 21.7%
moderate (score 2) and 22.8% strong expression of p-AKT. p-p44/42 MAPK expression was
absent in 42.3% of TNBC (score 0), whereas 26.8% presented weak (score 1), 18.6% moderate
(score 2) and 12.3% strong (score 3) expression of p-p44/42 MAPK. PIK3CA mutations were
prevalently associated with strong expression of pAKT, namely 12/21 (57.1%) TNBC with
mutated PIK3CA showed score 3, 4/20 (20%) TNBC were score 2, 7/30 (23.3%) TNBC were
score 1, whereas no TNBC (0/21) with mutated PIK3CA was score 0.

PTEN showed nuclear staining. PTEN loss was identified in 11.3% of TNBC (score 0), all
with basal-like features; whereas 21.6% presented weak (score 1), 39.3% moderate (score 2)
and 27.8% strong expression (Table 3, Fig 1).

Tumors with PTEN loss (score 0) showed consistent but variable pAKT expression in 11/11
TNBC, whereas tumors with PTEN scores 1 to 3 showed variable pAKT expression in 61/81 TNBC.

Mutational profiling and association analysis
No significant differences were detected between TNBC and non-TNBC PIK3CA mutational
status (23.7% vs 33.3%, p = 0.262).

Table 3. Immunostaining data of the TNBC patients according to mutational status of PIK3CA.

Variables Total cohort PIK3CA mutations p-value

Antibody Staining Wildtype Mutated

AR, n (%) Positive 20 (21.7) 10 (14.5) 10 (45.5) 0.002

EGFR, n (%)* 0 30 (30.9) 22 (29.7) 8 (34.8) 0.59

1+ 18 (18.6) 16 (21.6) 2 (8.7)

2+ 26 (26.8) 19 (25.7) 7 (30.4)

3+ 23 (23.7) 17 (23.0) 6 (26.1)

pAKT, n (%)§ 0 21 (22.8) 21 (30.4) 0 (0.0) <0.0001

1 30 (32.7) 23 (33.4) 7 (30.4)

2 20 (21.7) 16 (23.2) 4 (17.4)

3 21 (22.8) 9 (13.0) 12 (52.2)

p-p44/42MAPK, n (%)§ 0 41 (42.3) 33 (44.6) 8 (34.8) 0.31

1 26 (26.7) 18 (24.3) 8 (34.8)

2 18 (18.6) 12 (16.2) 6 (26.0)

3 12 (12.4) 11 (14.9) 1 (4.4)

pTEN, n (%)§ 0 11 (11.3) 9 (12.2) 2 (8.7) 0.08

1 21 (21.7) 19 (25.7) 2 (8.7)

2 38 (39.2) 30 (40.5) 8 (34.8)

3 27 (27.8) 16 (21.6) 11 (47.8)

n: number

*: expressed as immunohistochemical intensity

§: expressed as H-score

doi:10.1371/journal.pone.0141763.t003
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The statistical differences between PIK3CA mutational status and standard clinical, patho-
logical and biological features of TNBC were analyzed (Table 2). Briefly, PIK3CA mutations
were significantly higher in older individuals (mean: 66 years vs 54 years; p = 0.006). However,
no significant differences were obtained comparing other variables, such as tumor size, histo-
logic type (although ductal carcinomas were prevalently represented) pT, pN, Stage, and OS.
Interestingly, TNBC showing PIK3CA mutations were prevalently of lower grade (p = 0.03)
with lower proliferation index (p = 0.004).

A statistically significant association was obtained between PIK3CA mutational status, AR
expression (p = 0.002) and p-AKT expression (p = 0.0001). No statistical differences were
observed between PIK3CA mutational status and immunohistochemical expression of EGFR,
p-p44/42 MAPK, and PTEN, as summarized in Table 3.

A logistic regression analysis was carried out in order to assess the impact of established
clinic-pathologic prognostic predictors on TNBC overall patient survival. Although lower Ki67
values were significantly associated with a better overall patient survival (p = 0.015), a multivar-
iate model analysis did not confirm Ki67 value as an independent prognostic factor (Table 4).

Discussion
Our study demonstrates that PIK3CA gene mutations and PI3K/AKT pathway activation are
common events in TNBC, indicating a critical role of this pathway in TNBC pathogenesis.

Fig 1. Morphologic and immunohistochemical features of Triple Negative Breast Cancer. (A)
Haematoxylin & Eosin stain illustrates a Triple Negative variant with features of high grade invasive ductal
carcinoma (original magnification 100X); (B) Immunohistochemistry for EGFR displaying diffuse and
moderate membranous and membranous-cytoplasmic immunoreactivity (original magnification 100X); (C)
Immunohistochemistry for CK5/6 showing diffuse and intense cytoplasmic immunoreactivity (original
magnification 100X); (D) Immunohistochemistry for p- AKT showing diffuse and intense nuclear
immunoreactivity (original magnification 100X); (E) Immunohistochemistry for p-p44/42 MAPK displaying
diffuse and intense nuclear-cytoplasmic immunoreactivity (original magnification 100X); (F) Immunostaining
for PTEN showing diffuse and intense nuclear immunoreactivity (original magnification 100X).

doi:10.1371/journal.pone.0141763.g001
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Several population-based studies have analyzed the association between PIK3CA mutations
and different molecular subtypes of BC with variable results. PIK3CA abnormalities have com-
monly been related to hormone receptors and HER2 overexpression, and PIK3CA mutations
are known to be highly associated with Luminal-A phenotypes [15,35,37,38]. Nevertheless,
recent studies on a wide series of BC have shown that PIK3CA mutations are recognizable in
TNBC, even with low frequencies [21,22,39]. Recently, Kriegsmann et al. demonstrated a
higher frequency of PI3K pathway alterations, comprising mainly PIK3CA mutations (22.1%),
in a large series of TNBC [23].

Our results support Kriegsmann et al. experience, demonstrating that PIK3CA mutations
are recognizable in a higher percentage (23.7%) of TNBC than previously reported in the litera-
ture [17,18,20–22]. Although histologic subtypes other than invasive ductal carcinoma are
scarcely represented in our study, we could identify PIK3CA mutations in triple negative inva-
sive lobular carcinoma, medullary carcinoma, and even in special variants of BC, as adenoid
cystic carcinoma. These results underline the contribution of PIK3CA mutations in the biology
of several histotypes of TNBC, confirming results of other authors [38,40].

To confirm the activating role of these mutations, we performed immunohistochemical
analysis for PIK3CA downstream signaling pathways, such as pAKT and p-p44/42 MAPK,
showing overexpression of these proteins in 100% of PIK3CA mutated TNBC. Interestingly, a
strong association was identified between the presence of PIK3CA mutation and a higher score
of pAKT (p = 0.0001), demonstrating the activating role of this genetic alteration in TNBC.

To perform a consistent evaluation of PI3K/AKT and BRAF/RAS/MAPK pathways, we ana-
lyzed other members of these pathways. In our experience, total loss of PTEN protein was
detected in 11.3% of TNBC, all of these with basal-like phenotypes. pAKT and/or p-p44/42
MAPK were expressed in all TNBC with PTEN loss, according with the activating function of
protein loss on these signaling pathways. Furthermore, PTEN loss was observed in association
with both PIK3CA-mutated and PIK3CA-wild-type tumors.

Table 4. Association between overall survival and clinic-pathological andmolecular variables.

Variables Univariate analysis p-value Multivariate analysis p-value

OR (95% CI) OR (95% CI)

Age 1.05 (0.99–1.08) 0.09 - -

Tumor size 1.02 (0.99–1.05) 0.12 - -

Ductal histologic subtype 0.55 (0.10–3.17) 0.51 - -

Lobular histologic subtype 8.14 (0.46–145.18) 0.15 - -

Other histologic subtypes 0.89 (0.10–8.26) 0.92 - -

pT 1.45 (0.62–3.41) 0.39 - -

pN 1.94 (0.41–9.2) 0.41 - -

Stage 1.41 (0.50–3.99) 0.52 - -

Grade 1.09 (0.28–4.22) 0.90 - -

Ki67 0.94 (0.88–0.99) 0.015 0.95 (0.86–1.05) 0.33

AR 4.09 (0.72–23.09) 0.11 - -

EGFR 0.99 (0.51–1.90) 0.97 - -

pAKT 0.95 (0.49–1.84) 0.88 - -

p-ERK 0.90 (0.45–1.81) 0.77 - -

pTEN 0.53 (0.24–1.17) 0.11 - -

PIK3CA 4.18 (0.90–19.39) 0.07 - -

OR: Odds Ratio; CI: Confidence Interval

doi:10.1371/journal.pone.0141763.t004
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A very recent study by Millis et al. on a wide series of TNBC described PTEN loss in 66% of
tumors, which could be explained by different immunohistochemical thresholds related to
staining intensity and percentages of cells (0+ or�50%) [22].

Although PTEN loss and PIK3CAmutations have often been reported as mutually exclusive
[37], it should be noted that in more recent studies these genetic events are described as con-
cordant in BC patients [18]. We hypothesize that combined mutations might be the conse-
quence of sequential waves of mutations during clonal cell expansion, but it is also possible
that PTEN loss and PIK3CA mutation might be responsible for different pathologic events in
tumor progression.

In our experience, no mutations in EGFR exon 18–21, AKT1 exon 2, BRAF exon 15 and
KRAS exon 2–3 were detected, in keeping with data from the literature [41–46].

The correlation analysis between PIK3CA status and TNBC molecular subtypes showed a
statistically significant association between PIK3CA mutations and Luminal Androgen Recep-
tor (LAR) subtype. Furthermore, the highest percentage of PIK3CA mutations was obtained in
TNBC basal-like variants, in accordance with a very recent study that confirmed the significant
relation between PIK3CA mutations and the presence of basal markers in a series of 75 TNBC
[24]. However, no significant association was appreciable between PIK3CA mutations and
TNBC basal-like or non-basal-like subtypes (p = 0.258). Recently, the Cancer Genome Atlas
Network has shown that PIK3CA mutations were common in Luminal and HER2-enriched
tumors, whereas they were the 2nd most common mutation in basal-like BC. Moreover, activa-
tion of PI3K/AKT pathway was the highest in this subgroup [8].

Taken together, our results demonstrate that at least 33% of TNBC have deregulated PI3K/
AKT pathways, making these pathways an attractive target for pharmacologic treatment and
highlighting the importance of mutation profiling for individualized therapies. Indeed, there is
a strong interest in developing rapid, reliable and sensitive methods which might be used for
clinical routine detection of PIK3CA mutations in BC. In this study breast cancer samples
(FFPE) were tested by Real-Time PCR. This approach is more sensitive than Sanger sequenc-
ing, having the ability to detect mutations at a level of greater than 5%, which are present only
in a subgroup of cancer cells or in tumors with significant contamination. The higher frequen-
cies of PIK3CA mutations detected in our and Kriegsmann et al. studies are related to more
sensitive methodologies, widening the opportunities for TNBC patients to be appropriately
selected for individualized targeted therapy strategies. Moreover, the primers used in the
cobas1 PIK3CAMutation Kit were designed to avoid false positive results due to presence of
PIK3CA pseudogene sequence mismatch at the end of exon 9. [47]. We applied cobas1
PIK3CAMutation Kit also for the analysis of a small series of non-TNBC tumors, showing
33.3% of mutations rate, namely 40% in Luminal-A-like subtypes, 25% in Luminal-B-like sub-
types, and 33.3% in Her2 positive subtypes. Although the small number of tumors could not
allow to reach any statistical significance, the results were similar to those in the literature, even
in this small sized sample [8].

Conflicting results about the prognostic meaning of PIK3CA mutations are evident from
the literature. Some authors reported better overall survival (OS) and disease free survival
(DFS) in patients harboring these genetic alterations, compared to patients without mutations
[18,35,36,38,48,49]. In contrast, other authors reported that PIK3CA mutations in BC patients
were associated with poor clinical outcome [50–52].

Our data on prognostic significance of PIK3CA mutations, restricted to 65 patients due to
incomplete 5-years OS information, could not demonstrate any significant association between
PIK3CA mutations and OS. The association between clinical-pathological data and PIK3CA
mutations on all the TNBC showed that higher grades and higher proliferation indexes were
significantly associated with wild-type PIK3CA tumors.
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Several drugs targeting multiple levels of the PI3K network, such as PI3K, AKT, and mTOR,
have been progressively taken into consideration in clinical trials for BC [53]. However, the use
of PI3K/AKT pathway inhibitors as single-agent therapies has been demonstrated minimally
effective in some diseases, according to the complexity of the PI3K/AKT pathway, with activa-
tion of multiple feedback and cross-talk mechanisms that might explain this drug resistance.
For this reason, PI3K pathway inhibitors are being tested in human trials in combination with
HER2, MEK and ER inhibitors, supposing that the simultaneous targeting of these escape
mechanisms will lead to clinically success [54–57].

Recent results of Janku et al. have shown the clinical significance of highlighting PIK3CA
molecular status in BC patients, since tumors with PIK3CA mutations treated with PI3K/AKT/
mTOR inhibitors showed a response rate of 30% matched to 10% in wild-type PIK3CA tumors;
the response rate in wild-type PIK3CA tumors was comparable to previous reports (4%-11%)
when patients were treated on phase I trials without molecular selection [58]. Moreover, Fink
et al. found that gene expression profiles for TNBC subtype definition were poor predictors of
response to kinase inhibitors, whereas high sensitivity was reported when treatment options
were based on specific genetic abnormalities of tumor, such as PTEN loss or PIK3CA muta-
tions [59].

In conclusion, our study contributes to defining the complexity of TNBC category and, con-
sidering the high percentage of genetic alterations involving PI3K/AKT pathways identified in
our series, supports the necessity to subclassify TNBC on the basis of their specific genomic
abnormalities, in order to appropriately select patients who would more likely benefit from
current targeted therapeutic strategies. Moreover, our results highlight the issue concerning the
application of reliable and sensitive methodologies to detect PIK3CA mutations in routine
practice.
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