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Abstract
Amodel of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B tricho-

thecene producer Fusarium culmorum was developed based on homology modelling with

the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ferulic acid

1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer 6, mag-

nolol 7, and ellagic acid 8, were selected for their ability to inhibit trichothecene production

and/or fungal vegetative growth in F. culmorum. The chemical structures of phenols were

constructed and partially optimised based on Molecular Mechanics (MM) studies and

energy minimisation by Density Functional Theory (DFT). Docking analysis of the phenolic

molecules was run on the 3D model of F. culmorum TRI5. Experimental biological activity,

molecular descriptors and interacting-structures obtained from computational analysis were

compared. Besides the catalytic domain, three privileged sites in the interaction with the

inhibitory molecules were identified on the protein surface. The TRI5-ligand interactions

highlighted in this study represent a powerful tool to the identification of new Fusarium-tar-

geted molecules with potential as trichothecene inhibitors.

Introduction
Trichothecene mycotoxins are produced by filamentous fungi belonging to the Fusarium
genus and are among the major causes of crop loss in cereals [1,2]. Trichothecenes are heat
resistant and very stable, and may cause severe toxicosis in mammals when contaminated
grain or their derivatives are ingested. Besides affecting intestinal, immune endocrine and
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neurologic functions [3], trichothecenes display phytotoxic effects on the host plant, where
their role in virulence has been demonstrated [4–6].

Control strategies taken so far against Fusarium diseases, particularly those based on the use
of synthetic fungicides, are not always effective and sometimes have determined a selection
pressure on fungal populations, hence facilitating the emergence of resistant mutants [7]. In
this scenario, the search for alternative pest management approaches, including the develop-
ment of natural fungicides or inhibitors of mycotoxin biosynthesis, appears particularly prom-
ising [8]. Natural inhibitory compounds are mostly extracted from plants and are involved in
host resistance response [9].

The mechanisms by which these compounds are able to interfere with the biosynthesis of
trichothecenes are not yet completely understood, and numerous hypotheses have been pro-
posed: transcriptional control of TRI genes [10–11], modification of the fungal membrane per-
meability [12], inhibition of fungal enzymes [13], alleviation of oxidative stress that is assumed
to activate the biosynthesis of mycotoxins [14]. One of the most studied interpretations impli-
cates the inhibition of trichodiene synthase (TRI5) [11–16]. TRI5 is a dimeric sesquiterpene
cyclase, encoded by the gene TRI5, which represents the very first step of the trichothecene bio-
synthesis pathway. In the presence of three magnesium (Mg2+) ions the TRI5 enzyme catalyses
the cyclization of farnesyl pyrophosphate to form the bicyclic sesquiterpene trichodiene and
the co-product inorganic pyrophosphate (PPi).

The crystal structure of TRI5 of Fusarium sporotrichioides with PPi bonded to the catalytic
site has been isolated and highly defined by X-ray, providing a useful tool to study protein-mol-
ecule interactions with high standards [17–20]. The hypothesis assumes that the external
ligand, mimicking the natural substrate of this enzyme (i.e., farnesyl pyrophosphate) binds to
TRI5 inducing a conformational change of the protein such as to modify or to block its activity
with the consequent decrease or total inhibition of trichothecene biosynthesis.

In a previous article [21] a collection of natural and natural-like compounds belonging to
phenols and hydroxylated biphenyls was tested in vitro to assess their activity on vegetative
growth and trichothecene biosynthesis by F. culmorum. Significant trichothecene inhibitory
activity was observed over a range of concentrations comprised between 0.25–1.5 mM and
some of the tested compounds proved fungitoxic.

Here we have selected eight representative compounds to test their efficacy on the F. cul-
morummodel strain FcUK99 [22], whose full genome sequencing has been recently achieved
(King, Urban, and Hammond-Kosack, unpublished results).

Aiming to provide further insight into the understanding of structure-activity relationship
of trichothecene inhibitors and TRI5, we have adopted an approach based on modelling tech-
niques. The crystal structure of TRI5 of F. sporotrichioides [18] was used to create a 3D atomic-
level protein model of the F. culmorum TRI5 to carry out modelling and docking studies. Dock-
ing data were integrated with in vitro activity to identify molecular structures, functional
groups and putative amino acids that are most likely involved in the interaction between
selected inhibitory molecules and the F. culmorum TRI5 protein.

Materials and Methods

Fungal strain and culture conditions
Type B trichothecene producer wild-type strain of F. culmorum FcUK99 (Rothamsted
Research, UK- NRRL54111) was used in the in vitro experiments. This strain produces pre-
dominantly 3-acetyldeoxynivalenol (3-ADON) and, to a lesser extent, deoxynivalenol [22].
Strain cultures were maintained as described previously by Pani et al., 2014 [21].
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Effect of selected phenolic compounds on Fusarium culmorum
Ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer
6, magnolol 7, ellagic acid 8 (Fig 1) were selected and used with a purity>98% and tested for
their ability to inhibit trichothecene biosynthesis of F. culmorum strain FcUK99 at the concen-
tration of 0.5 mM.

All compounds were purchased by Sigma-Aldrich (St. Louis, MO, USA) except for Me-
dehydrozingerone 5 and eugenol dimer 6 which were prepared according to Marchiani et al.
(2013) [23] and Dettori et al. (2015) [24], respectively. β-CD (CAVAMAX17 PHARMA;
Wacker Chemie Italia, Peschiera Borromeo, Italy) was added to the medium in order to
improve solubility of phenolic molecules.

The experiments were carried out as described by Pani et al. (2014) [21], with some modifi-
cation as follows. Each phenolic compound (0.5 mM) was added along with β-CD (3 mM) to
Vogel's medium [25]. After a 60 min sonication step, the amended substrates were poured into
Petri plates (60 mm diameter, 8 mL per plate, 5 replicate plates for each treatment) and insemi-
nated with a spore suspension of strain FcUK99 (final concentration 104 conidia mL-1). The
evolution of pH in media amended with the different compounds was recorded at 0, 1, 2, 4, 8
and 14 days after inoculation (S1 Table). After 14 days incubation (at 25°C and in the dark) the
culture broth and the mycelium were separated by vacuum filtration. After washing with sterile
water, mycelia were harvested, dried at 80°C for 24 h and weighted. Culture broth was vortexed
and an aliquot of 5 mL was collected from each replicate plate for mycotoxin extraction with
ethyl acetate (3 mL), 1 min vortex, and 10 min centrifugation. Qualitative and quantitative
mycotoxin detection was carried out by liquid chromatography interfaced to mass spectrome-
try (HP 1100, Agilent Technologies, Palo Alto, USA).

Statistical analysis
Data on total trichothecene production (ng mL-1) obtained from two separate experiments
were expressed as percent value of the untreated control. Data were analysed by one-way analy-
sis of variance (ANOVA) with Dunnett’s test, using Minitab Express for Mac version 1.3.0.

Homology modelling of TRI5
The TRI5 protein of F. sporotrichioides was prepared from the 2.50 Å resolution crystal struc-
ture deposited by Michael J. Rynkiewicz [18] (PDB code 1JFG, http://www.pdb.org). The
starting TRI5 protein sequence for F. culmorum was obtained from UniProtKB/Swiss-Prot
databases (accession number Q8NIG9) [26,27].

Substitution of 33 amino acids from the B chain of 1JFG was carried out with Swiss-Model,
an automated comparative protein model server interconnected with Swiss-PdbViewer 4.0.4
program [28–30]. The crystallographic molecules of water and glycerol ions present in the
starting TRI5 protein of F. sporotrichioides were stripped. Hydrogen atoms were added using
the ADT module of MGLTools 1.5.7rc1 [31].

Molecular docking: in silico studies on the binding of selected phenols to
TRI5
Computational modelling experiments were conducted on multiprocessor machines with OS
Ubuntu 13.04 and 14.04 or Windows 7.0. Model compounds were constructed with standard
bond lengths and angles from the fragment database with MacroModel 5.5 [32]. Minimisation
of structures by conformational search was performed with the MacroModel/BachMin 6.0 pro-
gram using the AMBER force field. An extensive conformational search was further carried out
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using the Monte Carlo/energy minimisation [33] (Ei-E min<5 Kcal/mole, energy difference
between the generated conformation and the current minimum). The atomic charges were
assigned using the Gasteiger-Marsili method [34]. Representative minimum energy conforma-
tions of each compound were optimised using the ab initio quantum chemistry program
Gaussian 09W by Density Functional Theory (DFT) with method B3LYP/6-311G basis set
[35]. Visual analysis was carried out with GaussView version 5.0 [36]. Binding of the com-
pounds was analysed using MGLTools 1.5.7rc1 [31] and AutoDock 4.2 docking programs
[37,38]. The Gasteiger charges [34] for the ligands and proteins were used. The structures were
docked using the Lamarckian genetic algorithm (LGA) defined through a centred grid (coordi-
nates: X) -21.0, Y) 111.0, Z) 8.0, with 120, 120, 120 grid points in X, Y, Z dimensions, respec-
tively. All ligands were docked with all bonds free to rotate. The Lamarckian genetic algorithm
(LGA) of up to 100 runs was set to the population size of 150 individuals, maximum number of
generations and energy evaluations of 27,000 and 15,000,000, respectively. From the estimated

Fig 1. Chemical structures of tested compounds: ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer
6, magnolol 7, ellagic acid 8.

doi:10.1371/journal.pone.0157316.g001
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free energy of ligand binding (E.F.E.B., ΔG), the estimated inhibition constant (E.I.C., Ki) for
each ligand was calculated. Ki is calculated by the equation: Ki = exp [(ΔG� 1000)/ (R�T)]
where ΔG is the docking energy, R (gas constant) is 1.98719 cal K−1 mol−1 and T (Tempera-
ture) is 298.15 K. Graphical representation of the hypothetical positions derived from the dock-
ing calculation was obtained using the software Chimera [39].

Estimation of selected physicochemical descriptors
Lipophilicity (LogP) of ligands was estimated with ChemBioOffice Ultra 13.0 (Perkin Elmer
Inc., Waltham, M, USA), while dipole moment (D, Debye) was calculated with Gaussian 09W.

Results

Fungicide and inhibitory activity of phenols against Fusarium culmorum
FcUK99
Six out of the 8 compounds (ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehy-
drozingerone 5, and eugenol dimer 6) demonstrated their trichothecene inhibitory activity
when tested at 0.5 mM, providing a reduction in the total mycotoxin production ranging from
31% to 98%. One compound (magnolol 7) had a fungicidal action, hence complete inhibition
of mycelium growth and no trichothecene production were observed. On the contrary, ellagic
acid 8 induced a significantly higher (159%) trichothecene biosynthesis compared to the
untreated control (Table 1).

Monitoring of medium pH amended with compounds 1–8 showed a progressive decreasing
that, after 4 days, reached a plateau around 2.2 in the presence of all compounds except for
magnolol 7 that stabilised the pH at 3.38 between the 4th and the 8th day (S1 Table). After 14
days the medium pH was comprised between 2.41 and 2.94 for all the tested compounds.

Computational studies: homology modelling of TRI5
As the X-ray crystal structure of F. culmorum TRI5 was not available, a 3D structure at atomic
level by homology modelling was generated on the TRI5 crystal structure of F. sporotrichioides
[18] and the starting protein sequence for F. culmorum (amino acid sequence code Q8NIG9).
In the RCSB protein data bank (http://www.pdb.org) the trichodiene synthase of F. sporotri-
chioides is represented in a wide array of crystals, including wild type and mutated structures.
The 3D structure homology model of F. culmorum was prepared starting from the chain B of
the F. sporotrichioides crystal (1JFG), which contains the three magnesium atoms and the pyro-
phosphate (PPi), both essential for the enzyme activity. The model was refined by substitution
of 33 amino acids from the B chain of 1JFG and by comparing the obtained result and the exis-
tent homology model sequence of F. culmorum TRI5 (Table 2).

Among all the possible rotamers, we focused on the mutation achieving the best score. In
the crystal structure of 1JFG, residues from Arg355 to Glu374 are not resolved as in other dif-
ferently resolved crystals of F. sporotrichioides. For this reason, also in the reconstruction of F.
culmorum TRI5 we decided not to consider these amino acids in order to set two comparable
systems.

Docking of phenols and hydroxylated biphenyls to TRI5
All docking tests were performed considering a very large grid that included nearly the com-
plete TRI5 enzyme of F. sporotrichioides and F. culmorum. The centre of the grid was located
close to the catalytic site containing the three Mg2+ ions. As a result, a large number of interac-
tions in ligands with different docking sites were evaluated. The default grid spacing (0.375 Å)
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was adopted, treating the docking active site as a rigid system and the ligands as flexible, i.e., all
non-ring torsions were considered active and free to rotate. In addition to the active site, five
further sites showing significant ligand affinities were identified on the TRI5 protein surface.
These five sites, overlapping in the F. sporotrichioides and F. culmorum enzymes, are numbered
from 1 to 5 (Fig 2).

A greater scattering was observed in the different sites of the F. culmorum TRI5, although
the orders of magnitude of Ki and ΔG are very similar to the F. sporotrichioides TRI5 protein.

Among sequence differences (33 amino acids) occurring between the two enzymes, only
four amino acids are located in the privileged binding site 2 (Lys103Ser, Arg303Ala, Ser308His,
Tyr329Phe), whereas the others are in its vicinity or far away (Table 2). The difference between
the four amino acids involved in the binding site has an effect on lipophilicity, slightly increas-
ing in F. culmorum TRI5. These modifications may lead to a variation in the space available to
the ligand, therefore influencing hydrophobicity, charge and polarity of the environment.

The scoring results of docking calculations deduced for ligands, as well as the major ligand
receptor interactions, are listed in Table 3.

The ligands can be clustered into three main groups: (i) molecules characterised by a carboxyl
group, likely deprotonated at physiological pH, and having a charge of -1 (compound 1); (ii)
molecules with charge 0 (compounds 2, 3, 4, 5); and (iii) dimeric molecules (compounds 6, 7, 8).
Docking studies indicate that sites 1, 2, and 4 of F. culmorumQ8NIG9 are privileged sites for
ligands inhibiting trichothecene biosynthesis in vitro. Ligands with a long aliphatic chain and
dimeric molecules (hydroxylated biphenyls) interact simultaneously with sites 1 and 2 (Fig 3).

In docking calculations, PPi was always considered as an additional fixed residue. The reli-
ability of the docking approach was further verified by extracting the PPi from the catalytic site
and by considering it as a normal ligand. After repositioning of PPi into the protein, the new
PPi location was the same as in the original X-ray structure of TRI5, with only minimal confor-
mational changes (RMSD 1.27 Å), hence confirming the reliability of the system (Fig 4).

Ferulic acid 1, the sole charged phenol among the eight ligands tested in in vitro, interacts with
the catalytic site in the proximity of the Mg2+ ions with significant docking score (Ki 1.99 μM)

Table 1. In vitro effect of tested compounds on total trichothecene (DON) production by Fusarium culmorum FcUK99.

Compound Dry fungal biomass DON
(relative yield ± SD) a (relative yield ± SD) b

1—Ferulic acid 97.79 ± 1.40 33.62 ±19.09

2—Apocynin 109.48 ± 2.22 68.85 ± 4.26

3—Propyl gallate 94.99 ± 2.86 2.26 ± 0.75

4—Eugenol 93.59 ± 1.19 22.41 ± 3.35

5—Me-dehydrozingerone 116.57 ± 1.62 8.79 ± 2.91

6—Eugenol dimer 113.66 ± 1.14 11.07 ± 3.62

7—Magnolol 0 N.D.c

8—Ellagic acid 82.51 ± 3.68 159.50 ± 18.78

a Dry fungal biomass values are expressed as mean percent values (± standard deviation) relative to the amount detected in the control culture over two

separate experiments (23 ± 0.7 and 19 ± 0.7 mg, respectively). Only the treatment with magnolol is significantly different (p<0.001) from the untreated

control based on ANOVA followed by Dunnett test.
b DON yields are expressed as mean percent values (± standard deviation) relative to the amount detected in the control culture over two separate

experiments (463.76 ± 120.52 and 249.17 ± 31.66 ng/mL, respectively). All values are significantly different (p<0.001) from the untreated control based on

ANOVA followed by Dunnett test.
c N.D.: not detected.

doi:10.1371/journal.pone.0157316.t001
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and with amino acids of three sites located in the surface of TRI5, identified as site 3, 4 and 5 (Fig
3a; Table 3). The estimated free energy of binding (E.F.E.B.) at sites 3, 4 and 5 was calculated over
a range between -5.19 and -5.58 Kcal/mol (Table 3).

Generally, monomers interact with sites 1 and 2, favouring site 1. Apocynin 2, which inhib-
ited trichothecene biosynthesis by approximately 30% in in vitro assays, displayed 71% of

Table 2. List of the amino acids modified to achieve the Q8NIG9 (Fusarium culmorum) compared to the 1JFGcatB crystal (F. sporotrichioides)
based on the best score by Swiss-Model software.

1JFG chain B Q8NIG9 Choosen/availablea Scoreb Probabilityc Side chain typed

Thr13 Ser13 R 2/3 s:-4 p:0.33 h/h

Leu55 Met5 R 6/12 s:-2 p:0.03 h/h

Lys103 Ser103 R 1/3 s:-1 p:0.55 c/c

Tyr107 His107 R 1/6 s:-3 p:0.26 h/h

Thr109 Ala109 R 1/1 s:-1 p:1.00 c/c

Val111 Leu111 R 1/4 s: 0 p:0.66 c/c

Ala124 Ser124 R 1/3 s:-2 p:0.55 c/c

Leu155 Met155 R 4/12 s:-3 p:0.21 h/h

His175 Asp175 R 7/8 s:-1 p:0.13 c/c

Glu199 Asp199 R 5/8 s:-1 p:0.07 c/c

Gln200 Leu200 R 1/4 s:-2 p:0.66 c/c

Asn202 Asp202 R 4/8 s:-5 p:0.20 c/c

Ser205 Lys205 R 1/19 s:-1 p:0.21 c/c

Leu206 Asn206 R 1/9 s:-3 p:0.33 c/c

Ser212 Thr212 R 1/2 s:-4 p:0.74 h/h

ILE214 Val214 R 1/3 s:-3 p:0.90 h/h

Tyr247 Phe247 R 3/5 s:-3 p:0.12 h/h

Val249 Thr249 R 2/2 s:-3 p:0.25 h/h

Ser250 Cys250 R 3/3 s:-4 p:0.05 h/h

Asp251 His251 R 2/6 s:-3 p:0.14 h/h

Ser254 Thr254 R 1/3 s:-4 p:0.65 c/c

His256 Asp256 R 1/4 s:-2 p:0.75 h/h

Asp265 Glu265 R 1/14 s:-3 p:0.36 h/h

Ser278 Ala278 R 1/1 s:-1 p:1.00 c/c

Arg303 Ala303 R 1/1 s:-1 p:1.00 c/c

Ser308 His308 R 4/6 s:-3 p:0.24 h/h

Glu316 Asp316 R 7/8 s:-2 p:0.13 c/c

Glu317 Gln317 R 2/15 s:-3 p:0.00 c/c

Lys318 Asp318 R 3/8 s:-2 p:0.00 c/c

Gln323 Lys323 R 1/16 s:-3 p:0.23 h/h

Tyr329 Phe329 R 1/5 s:-2 p:0.57 h/h

Ser339 Ala339 R 1/1 s:-1 p:1.00 c/c

Pro347 Gln347 R 1/15 s:-2 p:0.36 c/c

a Rotamer number currently selected, followed by the number of available rotamers.
b Crude score for the given rotamer. The score is obtained from: (4 x NbClash with backbone N CA and C atoms)+(3 x NbClash with backbone O atoms)

+(2 x NbClash with sidechains atoms)-NbHbonds—4 x Nb SSbonds. Lower scores are preferable, while higher scores indicate clashes with the

surrounding environment.
c Probability to find this conformation in the current secondary structure (range from 0 to 1).
d h: helix; s: strand; c:coil

doi:10.1371/journal.pone.0157316.t002

Modelling the Trichodiene Synthase Ligand-Interaction

PLOS ONE | DOI:10.1371/journal.pone.0157316 June 13, 2016 7 / 20



docking runs in site 1 (Table 3), with an energy of -5.35 Kcal/mole and Ki of 119.64 μM. In Fig
5, the coloured areas represent the atoms of the different amino acids interacting with apocynin
2. In virtue of its structural and chemical functional features, the apocynin molecule is fully
positioned within the cavity formed by these amino acids.

Docking experiments with propyl gallate 3 (trichothecene production reduced by 98%)
showed a similar behaviour. Forty per cent of docking runs occurred at the lowest calculated
energy of -5.86 Kcal/mole and Ki 50.71 μM (Table 3). Furthermore, propyl gallate 3 fits in 13%
of the docking runs (-5.28 Kcal/mol) to site 2 with a Ki 133.84 μM (Table 3).

Fig 2. Two different representations of the interaction sites in the TRI5 protein of Fusarium culmorum
(Q8NIG9).

doi:10.1371/journal.pone.0157316.g002
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Eugenol 4 (able to reduce trichothecene production by approximately 78%), binds in 22% of
the cases to site 1 of the TRI5 protein (-4.98 Kcal/mole). Despite the low inhibition constant Ki
(224.72 μM) calculated for site 1, eugenol 4 binds also (50% of docking run sum) to site 2, with
two different conformations. Eugenol 4 shows affinity for this site with energies of -5.12 Kcal/
mole and -5.07 Kcal/mole, according to its conformations. Eugenol 4 and apocynin 2 interact
also with the catalytic domain with negligible docking run, therefore, these interactions were
ruled out.

Table 3. Docking for protein Q8NIG9.

Tested ligands % Sites E.F.E.B.a E.I.C., Ki b Interactions with amino acids

Ferulic acid 1 2 c. d.c -9.62 89.12 nM Asp100 Glu164 Leu181 Arg182 Asn185 Asp226 Glu233 Arg238 Asp239 Ser242 Leu243
Asn246 PPi700 Mg703

6 c. d. -7.78 1.99 uM Ile70 Met73 Tyr93 Thr96 Asp100 Phe157 Arg182 Asn185 Leu187 PPi700 Mg703

13 3 -5.58 80.65 uM Met1 Glu2 Asn3 Phe4 Tyr231 Lys232 Phe234 Asp235 Arg306

8 4 -5.51 92.16 uM Met55 Leu56 Lys57 Arg62 Val98 Ser102 Ser103 Pro126 Trp127

14 3 -5.48 96.45 uM Phe4 Thr6 Tyr231 Phe234 Asp235 Arg306 Lys313

19 5 -5.19 157.79 uM Gln53 Gln54 Leu56 Lys57 Val58 Pro60 Leu63

Apocynin 2 4 c. d. -6.86 9.29 uM Asp100 Glu164 Arg182 Asn185 Asp226 Glu233 Arg238 Asp239 Ser242 Leu243 PPi700
Mg703

60 1 -5.35 119.64 uM Gln68 Tyr76 Cys301 Asp302 Gly336 Ala337 Val338 Trp343

11 1 -5.25 134.28 uM Gln68 Tyr69 Gly72 Tyr76 Trp298 Cys301 Asp302 Gly336 Ala337 Val338

Propyl gallate 3 40 1 -5.86 50.71 uM Ala65 Gln68 Thr69 Tyr76 Trp298 Cys301 Asp302 Ala303 Gly336 Val338 Pro340 Trp343

13 2 -5.28 133.84 uM Leu300 Cys301 Asp302 Ala303 Arg306 Leu307 His308 Phe329 Ala333 Ala337

Eugenol 4 3 c. d. -5.65 72.36 uM Asp100 Glu164 Asn181 Arg182 Asn185 Asp226 Glu233 Arg238 Asp239 Ile241 Ser242
Leu243 Asn246 PPi700

31 2 -5.12 177.48 uM His299 Leu300 Cys301 Asp302 Ala303 Arg306 Leu307 His308 Glu309 Phe329

19 2 -5.07 193.10 uM His299 Leu300 Cys301 Asp302 Ala303 Arg306 Leu307 His308 Phe329 Ala333 Ala337

22 1 -4.98 224.72 uM Gln68 Thr69 Tyr76 Trp298 Cys301 Asp302 Gly336 Ala337 Val338 Trp343

Me-Dehydrozingerone
5

14 4 -5.85 51.63 uM Met55 Leu56 Lys57 Arg62 Val98 Ser102 Ser103 Pro126 Trp127

22 2 -5.27 139.91 uM His299 Leu300 Cys301 Asp302 Ala303 Arg306 Leu307 His308 Glu309 Phe329

32 2 -5.20 153.52 uM Leu300 Cys301 Asp302 Ala303 Arg306 Leu307 His308 Phe329 Ala333

Eugenol dimer 6 14 1–2 -6.69 12.41 uM Gln68 Gly72 Tyr76 Trp298 Cys301 Asp302 Ala303 His308 Ala337 Val338

28 1–2 -6.67 12.98 uM Thr69 Gly72 Tyr76 Trp298 Leu300 Cys301 Asp302 Ala303 Phe329 Ala333 Ala337
Val338 Ala339 Pro340 Trp343

10 1–2 -6.27 25.41 uM Leu36 Gln68 Thr69 Tyr76 Leu300 Cys301 Asp3Ala303 Phe329 Ala333 Gly336 Ala337
Val338 Trp343

14 4 -5.41 108.76 uM Lys57 Val58 Arg62 Val98 Leu99 Ser102 Ser103 Asp104 Pro126 Trp127

Magnolol 7 29 1 -6.91 8.56 uM Gln68 Thr69 Gly72 Tyr76 Leu300 Cys301 Asp302 Phe329 Gly336 Ala337 Val338 Pro340

11 1–2 -6.49 17.43 uM Leu36 Gly72 Tyr76 Trp298 Leu300 Cys301 Asp302 Ala303 Phe329 Ala333 Ala337
Val338 Pro340 Trp343

14 4 -5.91 46.77 uM Met55 Leu56 Lys57 Val58 Arg62 Val98 Ser102 Ser103 Pro126 Trp127

Ellagic acid 8 20 4 -7.00 7.44 uM Met55 Leu56 Lys57 Arg62 Val98 Ser102 Ser103 Pro126

36 1 -6.68 12.64 uM Ala65 Gln68 Thr69 Gly72 Tyr76 Asp302 Ala303 Gly336 Val338 Pro340 Trp343

27 2 -6.18 29.44 uM Leu300 Cys301 Asp302 Ala303 Arg306 Leu307 His308 Phe329 Ala333

a E.F.E.B.: Estimated Free Energy of Binding.
b E.I.C., Ki: Estimated Inhibition Constant, Ki.
c c. d.: catalytic domain.

doi:10.1371/journal.pone.0157316.t003
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Fig 3. Interaction sites between the TRI5 protein of Fusarium culmorummodel and the tested
compounds. (a) ferulic acid; (b) apocynin; (c) propyl gallate; (d) magnolol; (e) eugenol dimer; (f) Me-
dehydrozingerone; (g) ellagic acid; (h) eugenol.

doi:10.1371/journal.pone.0157316.g003

Fig 4. Pyrophosphate positions in the catalytic site of the X-ray structure (violet) and in the model
(orange) of the TRI5 protein.

doi:10.1371/journal.pone.0157316.g004
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Me-dehydrozingerone 5, a molecule that inhibited 92% of the trichothecene production,
interacts with site 2 with two distinct conformations of similar energy with a docking run sum
of 54%. Moreover, Me-dehydrozingerone 5 also interacts with site 4 with 14% of docking run
and significant Ki (51.63 μM) and estimated free energy of binding (-5.85 Kcal/mol).

Eugenol dimer 6, magnolol 7 and ellagic acid 8 are dimeric phenols belonging to the family
of hydroxylated biphenyls. These dimeric molecules are structurally different from the other
two groups as they display a more hindered structure due to the presence of two aromatic rings
linked by a single C-C bond. Two lactone groups fused in the C-C single bond make the struc-
ture of ellagic acid 8 quite planar, whereas eugenol dimer 6 and magnolol 7may freely rotate
along with the C-C single bond. These latter two ligands enter in site 1 with one of their two
aromatic rings, positioning the second one perpendicularly to the first one that then interacts
with the amino acids located in site 2, in proximity to site 1. This conformation allows magno-
lol 7 and eugenol dimer 6 to interact simultaneously with the amino acids of site 1 and 2 by
each aromatic ring. Magnolol 7 interacts with sites 1 and 2 with two conformations that are
quite equal in energy (29% and 11% of docking runs, respectively), and with site 4 in 14% of
the docking runs. The energy ranges between -6.91 and -5.91 Kcal/mole with significant Ki up
to 8.56 μM (Table 3). The eugenol dimer 6 behaves similarly to magnolol 7, binding at the
same time to sites 1 and 2 with a probability of 52% as sum of the three conformations similar
in energy, while interactions with site 4 were assessed to 14% (Table 3).

On the contrary, ellagic acid 8 (the sole dimeric compound inducing a significant increase
in the production of trichothecene by F. culmorum FcUK99 when added to the substrate at the
tested concentration; Table 1), interacts separately and with significant Ki with site 1 (36% of
docking runs) and site 2 (27% of docking runs; Table 3). The lowest energy (-7.00 Kcal/mole)
and the best Ki (7.44 μM), respectively, were predicted for ellagic acid 8 when interacting with
site 4 (Table 3). The flat conformation of ellagic acid 8 forces the molecule to assume an inter-
calating position in the groove.

Fig 5. Interaction between apocynin 2 and the site 1 of the TRI5 protein. Coloured areas represent the
atoms of the different interacting amino acids.

doi:10.1371/journal.pone.0157316.g005
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Discussion
A wide array of natural and natural-like phenols and dimers belonging to cinnamic acids,
acetophenones, benzaldehydes, benzoic acids, phenylpropanoids, and hydroxylated biphenyls
has already proven able to inhibit vegetative growth and/or trichothecene production when
tested on a 3-acetyl-4-deoxynivalenol producing strain of F. culmorum [21]. In our previous
study, no linear correlation was observed between antioxidant properties of the tested com-
pounds and their inhibitory effect on fungal growth and mycotoxin production. Nonetheless,
a guaiacyl unit in the structure was provisionally hypothesized to play a key role in trichothe-
cene inhibition.

In the present investigation, we aimed to provide further insight into the understanding of
structure-activity relationship of trichothecene inhibitors and the trichodiene synthase protein
TRI5. Hence, we selected eight compounds based on their structural properties and on their
inhibitory activity towards the F. culmorum wild-type strain FcUK99, already used in a number
of genomics and biological studies [22,40,41].

The tested compounds ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4 and Me-dehy-
drozingerone 5 are phenols, whereas ellagic acid 8, magnolol 7 and eugenol dimer 6 are C2-
symmetry hydroxylated biphenyls featured by two aromatic rings bonded by a single C-C
bond (Fig 1).

Preliminary docking experiments with selected phenols onto the F. culmorum TRI5 protein
model predicted that these compounds occupy five binding pockets that are different from the
catalytic site. Sites 1, 2, and 4 are privileged sites of no-charged ligands where non-covalent
interactions would take place, whereas ferulic acid 1 activates interactions with the catalytic
domain with significant Ki, preferentially with magnesium atoms and the PPi, although non-
covalent interactions with amino acids of sites 3, 4 and 5 were also estimated with significant
docking score (Table 3).

In the tested experimental conditions, all compounds, among which ferulic acid 1 presents
the lowest pKa (4.48), are likely to be in the protonated form, as confirmed by the low pH value
detected in the medium since the first days of fungal growth.

Propyl gallate 3, ellagic acid 8, magnolol 7, eugenol 4, and the eugenol dimer 6 bound pref-
erentially to sites 1 and 2 located on the surface of TRI5 and far from the catalytic domain (Fig
3). With few exceptions or to a different extent, no-charged phenols interact with the same set
of amino acids identified as: Gln68, Thr69, Tyr76, Trp298, Leu300, Cys301, Asp302, Ala303,
His308, Phe329, Ala333, Gly336, Ala337, Val338, Trp343. Except for Asp302, these amino
acids, that are most involved in the protein-ligand interactions, are hydrophobic, hence lipo-
philicity of phenols may play an important role in trichothecene synthase inhibition [42,43].

Magnolol 7 and eugenol dimer 6 bind to sites 1 and 2 by partially or totally overlapping, in
virtue of their conformational flexible structure that provides the best interaction with the set
of surrounding amino acids. The best docking pose for biphenyls 7 and 8 included one aro-
matic moiety of biphenyl engaging amino acids that are present in site 1, while the other aro-
matic moiety interacts with amino acids in site 2. In the case of ellagic acid 8, though,
significant docking runs were calculated (accounting for 36% and 27% for site 1 and 2, respec-
tively): due to its almost flat structure, ellagic acid 8 does not overlap with sites 1 and 2, exerting
a less intimate contact when compared with conformationally flexible magnolol 7 and eugenol
dimer 6. These two molecules also bind to site 5 with a significant docking (E.F.E.B.) (Table 3;
Fig 3d and 3e). It is known that hydroxylated biphenyls are privileged molecules for protein
binding in comparison to other aromatic compounds [44]. Such behaviour derives from
the flexible structure of the biphenyl unit that can be accommodated, with high level of speci-
ficity, within a wide variety of protein pockets. The presence of a C2 symmetry axis in the
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hydroxylated biphenyls 6–8makes the two aromatic rings indistinguishable from the chemical
and biological point of view [24,45,46]. This structural feature facilitates the docking, reducing
the number of possible interactions between the two parts of the molecule because they are
identical.

Propyl gallate 3, which presents an aliphatic side chain, activates interactions with a large
number of hydrophobic amino acids that are common to magnolol 7 and eugenol dimer 6
(Thr69, Trp298, Leu300, Cys301, Ala303, Phe329, Ala333, Ala337, Trp343), confirming the
high inhibitory activity observed in vitro. To a lesser extent compared to the other sites, Me-
dehydrozingerone 5, magnolol 7, eugenol dimer 6 and ellagic acid 8 activate non-covalent
interactions with a common set of amino acids located in site 4 (Lys57, Arg62, Val98, Ser102,
Ser103, Pro126 and Thp127).

The energetically “best” poses for apocynin 2 involve only site 1 with significant docking
run values, whereas Me-dehydrozingerone 5 engages sites 4 and 2, the latter with almost equal
docking runs in two molecule conformations. We hypothesize that the far less efficient tricho-
thecene inhibition observed in the case of apocynin 2may be related to its limited number of
non-covalent interactions with TRI5, whereas a large number of amino acids are involved in
the interaction between TRI5 and Me-dehydrozingerone 5, which activates interactions with
the hydrophobic amino acids present in site 2.

Another factor evidenced in the docking studies is the capacity of ligands with high tricho-
thecene inhibitory properties to activate hydrogen bond (H-bond) interactions with amino
acids of TRI5 (Table 4). Biphenyls 6–8 establish multiple H-bonds and hydrophobic interac-
tions with the amino acids present in sites 1, 2 and 4 (Table 4; Fig 3d, 3e and 3g). Cross-bridge
interactions with the same amino acids and the OH-phenol group of ferulic acid 1, propyl gal-
late 3, eugenol dimer 6, magnolol 7 and ellagic acid 8 were predicted (Table 4).

Cross-bridge H-bond interactions of biphenyls 6–8 and propyl gallate 3 involve mostly apo-
lar and hydrophobic amino acids (Table 4), whereas polar and less hydrophobic amino acids
activate interactions with ferulic acid 1. This type of interaction was not observed for eugenol
4, apocynin 2 and Me-dehydrozingerone 5, although the latter ligand interacts with sites 2 and
4 with a large number of hydrophobic amino acids.

Overall, the docking results confirmed what we had observed in a previous in vitro assay
with a far larger collection of phenols [21]: lipophilicity and H-bonding capacity were postu-
lated as key factors in the selection of a “good” trichothecene inhibitor. Although no π-π-stack-
ing interactions between protein-ligands were predicted, these would not be ruled out.

Furthermore, the molecular size (i.e., the capacity of the ligand to interact with different
amino acids at the same time) should be taken into account [47,48]. From this perspective, the
scarce inhibitory activity of apocynin 2might reflect its relatively small size, which limits exten-
sive protein-ligand interactions.

As mentioned before, sites 1, 2 and 4 were identified as privileged sites of no-charged phe-
nols. Quite interestingly, five amino acids (Cys301, Asp302, Ala303, Phe329, and Ala337) are
represented in the range of 80–100% in sites 1 and 2, where most of the ligand-protein docking
occurs. These amino acids have neutral and, except for Asp302, non-polar side chains, assum-
ing a lipophilic character of the potentially binding ligand. A prevalence of hydrophobic amino
acids also resulted in site 4.

To sum up, propyl gallate 3, Me-dehydrozingerone 5, eugenol dimer 6 and magnolol 7
proved the best trichothecene inhibitors, as predicted by docking studies, where these com-
pounds bind to the same sites of TRI5, and further confirmed by the in vitro bioassay. The
reduced inhibitory activity observed in vitro for apocynin 2, eugenol 4 and ellagic acid 8might
be related to restricted ligand-protein interaction.
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Table 4. H-bond interaction of tested ligands-protein, logP and Dipole Moment of the ligands.

Tested ligands % Sites Hbond Ligands Atom Protein Atom Distance (Å)a LogP Dipole Moment (D)

Ferulic acid 1 2 c. d.b 5 O12(OA) Asn185:2HD2(HD) 2.118 1.70 26.467

H15(HD) Asp226:OD1(OA) 1.887

O11(OA) Arg238:HE(HD) 2.299

O11(OA) Arg238:1HH2(HD) 2.196

O14(OA) Leu243:HN(HD) 1.985

6 c. d. 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

13 3 4 H15(HD) Glu2:O(OA) 2.023

O14(OA) Phe4:HN(HD) 2.093

O10(OA) Asp235:HN(HD) 1.925

O11(OA) Arg306:1HH2(HD) 1.779

8 4 5 H15(HD) Met55:O(OA) 2.269

O12(OA) Lys57:HN(HD) 2.147

O10(OA) Arg62:1HH1(HD) 1.929

O10(OA) Arg62:1HH2(HD) 2.235

O11(OA) Ser103:HN(HD) 2.208

14 3 7 O11(OA) Thr6:HG1(HD) 2.592

H15(HD) Tyr231:O(OA) 1.860

O14(OA) Asp235:HN(HD) 2.276

O12(OA) Arg306:1HH2(HD) 2.481

O12(OA) Arg306:2HH2(HD) 2.391

O10(OA) Lys313:HZ3(HD) 1.946

O11(OA) Lys313:HZ2(HD) 1.809

19 5 3 O14(OA) Gln53:2HE2(HD) 2.271

O10(OA) Lys57:HZ3(HD) 2.483

O11(OA) Lys57:HZ2(HD) 1.718

Apocynin 2 4 c. d. 3 O10(OA) Asn185:2HD2(HD) 2.087 0.83 5.650

H13(HD) Asp226:OD1(OA) 1.828

O12(OA) Leu243:HN(HD) 1.846

60 1 4 O9(OA) Gln68:1HE2(HD) 2.163

O12(OA) Tyr76:HH(HD) 2.386

H13(HD) Gly336:O(OA) 1.977

O10(OA) Val338:HN(HD) 2.043

11 1 3 H13(HD) Gln68:O(OA) 2.172

O12(OA) Trp298:HE1(HD) 2.305

O9(OA) Val338:HN(HD) 1.822

Propyl gallate 3 40 1 7 O8(OA) Gln68:1HE2(HD) 2.243 1.51 4.534

O9(OA) Gln68:1HE2(HD) 2.280

H18(HD) Tyr76:OH(OA) 2.395

H16(HD) Asp302:OD2(OA) 2.086

H14(HD Gly336:O(OA) 2.134

H18(HD) Gly336:O(OA) 2.244

O13(OA) Val338:HN(HD) 1.932

13 2 5 H14(HD) Asp302:O(OA) 1.926

H18(HD) Asp302:O(OA) 2.005

H18(HD) Ala303:O(OA) 2.591

O17(OA) Arg306:HN(HD) 2.253

O13(OA) Leu307:HN(HD) 1.979

(Continued)
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Table 4. (Continued)

Tested ligands % Sites Hbond Ligands Atom Protein Atom Distance (Å)a LogP Dipole Moment (D)

Eugenol 4 3 c. d. 3 O10(OA) Asn185:2HD2(HD) 1.919 2.57 1.372

H13(HD) Asp226:OD1(OA) 1.819

O12(OA) Leu243:HN(HD) 2.318

31 2 1 H13(HD) Leu300:O(OA) 2.003

19 2 2 H13(HD) Asp302:O(OA) 2.204

O10(OA) Leu307:HN(HD) 1.977

22 1 2 H13(HD) Gly336:O(OA) 2.031

O12(OA) Val338:HN(HD) 1.845

Me-dehydrozingerone 5 14 4 3 O12(OA) Lys57:HN(HD) 2.174 1.53 5.123

O10(OA) Arg62:1HH1(HD) 2.185

O10(OA) Ser103:HN(HD) 2.565

22 2 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

32 2 1 O10(OA) Leu307:HN(HD) 1.875

Eugenol dimer 6 14 1–2 3 O15(OA) Gln68:1HE2(HD) 2.099 4.78 0.172

O20(OA) Val338:HN(HD) 2.176

H21(HD) Val338:O(OA) 2.163

28 1–2 2 O25(OA) Ala303:HN(HD) 2.166

H14(HD) Val338:O(OA) 2.187

10 1–2 3 H21(HD) Tyr76:OH(OA) 2.458

H21(HD) Gly336:O(OA) 2.141

O20(OA) Val338:HN(HD) 1.991

14 4 4 H14(HD) Lys57:O(OA) 2.019

O13(OA) Arg62:1HH2(HD) 1.881

O20(OA) Ser103:HN(HD) 1.827

H21(HD) Ser103:OG(OA) 2.155

Magnolol 7 29 1–2 3 O18(OA) Tyr76:HH(HD) 2.482 5.03 3.655

H19(HD) Gly336:O(OA) 1.907

H17(HD) Val338:O(OA) 1.889

11 1–2 3 H17(HD) Cys301:O(OA) 2.167

O16(OA) Ala303:HN(HD) 2.412

H19(HD) Val338:O(OA) 1.993

14 4 4 O16(OA) Arg62:1HH2(HD) 1.906

H17(HD) Ser102:OG(OA) 2.270

H19(HD) Ser102:OG(OA) 1.880

O18(OA) Ser103:HN(HD) 2.091

Ellagic acid 8 20 4 9 H20(HD) Met55:O(OA) 2.134 1.05 0.001

H22(HD) Met55:O(OA) 2.192

O19(OA) Lys57:HN(HD) 2.581

O18(OA) Arg62:1HH2(HD) 2.020

O8(OA) Ser102:HG(HD) 2.406

O23(OA) Ser103:HN(HD) 2.026

H24(HD) Ser103:OG(OA) 2.139

H26(HD) Ser103:O(OA) 2.193

H26(HD) Ser103:OG(OA) 1.837

36 1 6 H22(HD) Thr69:OG1(OA) 1.900

O25(OA) Tyr76:HH(HD) 2.236

H26(HD) Gly336:O(OA) 1.993

(Continued)
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As mentioned, magnolol 7 behaved as a fungicide in vitro when tested at 0.5 mM concentra-
tion. However, in the modelling study, ligand concentrations were not taken into account, and
magnolol 7may therefore switch from fungicide to trichothecene inhibitor at very low concen-
tration, as shown previously [21]. The fungicidal activity of magnolol 7 should be further inves-
tigated since its properties are likely to affect other mechanisms of action related to both
primary and secondary metabolism [49].

Ferulic acid 1 is a cinnamic acid and was included in this study due to its well-known inhibi-
tory activity towards trichothecene biosynthesis [50,51]. This compound demonstrated a high
affinity with the catalytic domain of the TRI5 protein by strong metal- and ion-interactions
(Fig 6), whereas the best docking scores were estimated with amino acids of sites 3, 4 and 5
where ferulic acid 1 likely activates non-covalent interactions.

Aiming to further investigate the interaction of F. culmorum TRI5 with phenolic acids, we
compared the docking score of ferulic acid 1 with other cinnamic acids and benzoic acids
whose biological activity has been previously tested in vitro [21]. 3-Hydroxycinnamic acid 9,
4-hydroxycinnamic acid 10, 2,5-dimethoxycinnamic acid 11 inhibited trichothecene produc-
tion by F. culmorum strain MCf 21 (syn. INRA 117) in the range of 1.5 and 1.0 mM, whereas
no trichothecene nor mycelium growth inhibition were observed for both 3-methoxybenzoic
acid 12 and 3,4-dimethoxybenzoic acid 13 at 0.5 mM [21]. All phenolic acids interact signifi-
cantly with the catalytic domain with higher docking scores compared to ferulic acid 1 (S2
Table). Contrary to benzoic acids 12 and 13, all cinnamic acids interact with sites 3, 4 and 5 as

Table 4. (Continued)

Tested ligands % Sites Hbond Ligands Atom Protein Atom Distance (Å)a LogP Dipole Moment (D)

O23(OA) Val338:HN(HD) 2.163

H24(HD) Val338:O(OA) 1.850

O25(OA) Val338:HN(HD) 2.195

27 2 3 H24(HD) Leu300:O(OA) 1.795

H20(HD) Ala303:O(OA) 1.721

O18(OA) Leu307:HN(HD) 2.345

a Cross-bridge H-bond interactions with the same aa are listed in bold.
bc. d. = catalytic domain.

doi:10.1371/journal.pone.0157316.t004

Fig 6. Interaction between ferulic acid 1 and the catalytic domain of the TRI5 protein.

doi:10.1371/journal.pone.0157316.g006
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estimated in ferulic acid 1 evidencing an important role of the α,β-unsaturated chain in activat-
ing interactions with sites located on the protein surface. Substituents in the aromatic ring of
cinnamic acids are likely to influence H-bond interactions, that increase when the hydroxyl
group is in para position to the aliphatic chain, hence favouring electron delocalization as in
compounds 1 and 10 (S3 Table). Nevertheless, ferulic acid 1 accounts for the highest H-bonds
involving amino acids located on protein surface. Site 3 and, to a lesser extent, site 5 seem to be
privileged sites for cinnamic acids (charged-phenols), mostly binding to polar and partially
hydrophobic amino acids.

Conclusions
In the present study, a docking method was applied to explore and validate key interactions
between natural and natural-like phenols with the F. culmorum TRI5 model. Apart from the
catalytic domain, five binding sites were identified on the surface of TRI5 and among them
sites 1, 2 and 4 are privileged binding sites for no-charged phenols. For charged phenols, and
particularly ferulic acid 1 which was investigated as a prototype of cinnamic acids, sites 3 and 5
are privileged for binding, despite interaction with the catalytic domain should be also consid-
ered for more polar cinnamic acids.

Docking data confirmed results obtained from in vitro assays with a collection of phenols,
whose lipophilicity and H-bonding capacity were postulated as key factors in the selection of a
good trichothecene inhibitor. An important role might be played by the molecular size, which
governs the ability of the ligand to interact with different amino acids at the same time.

Hence, our model assumes that a phenolic molecule bearing substituents with high ability
to activate protein-ligand interactions at the same time with a large number of amino acids
would be an ideal candidate as trichothecene inhibitor.

It has to be born in mind that the modelling approach provides only an estimation of pro-
tein-ligand interaction, as it does not take into consideration a wide range of interfering factors
(e.g., concentration, interactions with other proteins, interactions with water molecules, deliv-
ery system, membrane permeability, biocompatibility and bioavailability). Nonetheless, the
TRI5-ligand interactions highlighted in this study, along with the availability of a crystal struc-
ture of the Fusarium TRI5, shall provide an additional tool to discover new molecules with
potential as fungicides or as trichothecene inhibitors, and will guide the synthesis of novel
Fusarium-targeted compounds by shortening the time of research and by reducing cost. The
long-term goal of our project is to develop natural or natural-like phenolic compounds as effec-
tive, environmentally-friendly alternatives to synthetic fungicides. Based on in vitro and in sil-
ico characterisation, field testing is now being carried out with selected molecules in order to
evaluate their efficacy in reducing FHB symptoms in durum wheat as well as trichothecene
contamination in harvested grain.
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