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Abstract 

            The ecological and public health liabilities related with consuming petroleum resources 

have inspired the development of sustainable and environmental friendly materials. Plant protein, 

as a byproduct of oil extraction, has been identified as an economical biomaterial source and has 

previously demonstrated excellent potential for commercial use.  Due to the intrinsic structure, 

protein-based materials are vulnerable to water and present relatively low wet mechanical 

properties.  The purpose of this study focuses on increasing protein surface hydrophobicity through 

chemical modifications in order to improve wet mechanical strength.  However, most of the water 

sensitive groups (WSG), such as amine, carboxyl, and hydroxyl groups, are also attributed to 

adhesion. Therefore, the goal of this research is to reduce water sensitive groups to an optimum 

level that the modified soy protein presents good wet adhesion and wet mechanical strength.  

In this research, we proposed two major approaches to reduce WSG: 1). By grafting 

hydrophobic chemicals onto the WSGs on protein surface; 2). By interacting hydrophobic 

chemicals with the WSGs.  For grafting, undecylenic acid (UA), a castor oil derivative with 11-

carbon chain with a carboxyl group at one end and naturally hydrophobic, was used.  Carboxyl 

groups from UA reacted with amine groups from protein and converted amines into ester with 

hydrophobic chains grafting on protein surface.  The successful grafting of UA onto soy protein 

isolate (SPI) was proved by both Infrared spectroscopy (IR) and ninhydrin test.  Wood adhesive 

made from UA modified soy protein had reached the highest wet strength of 3.30 ± 0.24 MPa with 

fiber pulled out, which was 65% improvement than control soy protein. Grafting fatty acid chain 

was verified to improve soy protein water resistance.  

For interaction approach, soy oil with three fatty acid chains was used to modify soy 

protein. Soy oil was first modified into waterborne polyurethanes (WPU) to improve its 

compatibility and reactivity with aqueous protein. The main forces between WPU and protein were 

hydrogen bonding, hydrophobic interactions, and physical entanglement. Our results showed that 

WPU not only increased protein surface hydrophobicity with its fatty acid chains but also enhanced 

the three-dimensional network structure in WPU-SPI adhesives. WPU modification had increased 

wet adhesion strength up to 3.81 ± 0.34 MPa with fiber pulled out compared with 2.01 ± 0.46 MPa 

of SPI. Based on IR and thermal behavior changes observed by DSC, it was inferred that a new 

crosslinking network formed between WPU and SPI.  

To exam if the UA and WPU technologies developed using soy protein are suitable for 

other plant proteins, we selected camelina protein because camelina oil has superior functional 

properties for jet fuels and polymers. Like soy protein, camelina protein is also highly water 

sensitive.  However, simply applied UA and WPU to camelina protein following the same methods 

used for soy proteins, we did not obtain the same good adhesion results compared to what we 

achieved with soy protein.  After protein structure analysis, we realized that camelina protein is 

more compact in structure compared to soy protein that made it weak in both dry and wet adhesion 

strength. Therefore, for camelina protein, we unfolded its compact structure with Polymericamine 

epichlorohydrine (PAE) first to improve flexible chains with more adhesion groups for future 

reaction with UA or WPU.  PAE with charged groups interacted camelina protein through 

electrostatic interaction and promoted protein unfolding to increase reactivity within protein 

subunits and between protein and wood cells. Therefore, the wet adhesion strength of camelina 

protein was improved from zero to 1.30 ± 0.23 MPa, which met the industrial standard for plywood 



 
 

adhesives in terms of adhesion strength. Then the wet adhesion strength of camelina protein was 

further improved after applying UA and WPU into the PAE modified camelina protein. In addition, 

we also found PAE unfolding significantly improved the dry adhesion strength of camelina protein 

from 2.39 ± 0.52 to 5.39 ± 0.50 MPa with 100% wood failure on two-layer wood test. 

Camelina meal which is even more economical than camelina protein was studied as wood 

adhesive. Through a combination of PAE and laccase modification method, the wet adhesion 

strength of camelina meal was improved as high as 1.04 ± 0.19MPa, which also met industrial 

standards for plywood adhesives. 

The results of this study had proven successful modification of oilseed protein to increase 

water resistance and wet mechanical strength. We have gained in-depth understanding of the 

relationship between protein structure and wet adhesion strength. The successful modification of 

plant proteins meeting the industrial needs for bio-adhesives will promote the development of eco-

friendly and sustainable materials. 
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Abstract 

            The ecological and public health liabilities related with consuming petroleum resources 

have inspired the development of sustainable and environmental friendly materials. Plant protein, 

as a byproduct of oil extraction, has been identified as an economical biomaterial source and has 

previously demonstrated excellent potential for commercial use.  Due to the intrinsic structure, 

protein-based materials are vulnerable to water and present relatively low wet mechanical 

properties.  The purpose of this study focuses on increasing protein surface hydrophobicity through 

chemical modifications in order to improve wet mechanical strength.  However, most of the water 

sensitive groups (WSG), such as amine, carboxyl, and hydroxyl groups, are also attributed to 

adhesion. Therefore, the goal of this research is to reduce water sensitive groups to an optimum 

level that the modified soy protein presents good wet adhesion and wet mechanical strength.  

In this research, we proposed two major approaches to reduce WSG: 1). By grafting 

hydrophobic chemicals onto the WSGs on protein surface; 2). By interacting hydrophobic 

chemicals with the WSGs.  For grafting, undecylenic acid (UA), a castor oil derivative with 11-

carbon chain with a carboxyl group at one end and naturally hydrophobic, was used.  Carboxyl 

groups from UA reacted with amine groups from protein and converted amines into ester with 

hydrophobic chains grafting on protein surface.  The successful grafting of UA onto soy protein 

isolate (SPI) was proved by both Infrared spectroscopy (IR) and ninhydrin test.  Wood adhesive 

made from UA modified soy protein had reached the highest wet strength of 3.30 ± 0.24 MPa with 

fiber pulled out, which was 65% improvement than control soy protein. Grafting fatty acid chain 

was verified to improve soy protein water resistance.  

For interaction approach, soy oil with three fatty acid chains was used to modify soy 

protein. Soy oil was first modified into waterborne polyurethanes (WPU) to improve its 

compatibility and reactivity with aqueous protein. The main forces between WPU and protein were 

hydrogen bonding, hydrophobic interactions, and physical entanglement. Our results showed that 

WPU not only increased protein surface hydrophobicity with its fatty acid chains but also enhanced 

the three-dimensional network structure in WPU-SPI adhesives. WPU modification had increased 

wet adhesion strength up to 3.81 ± 0.34 MPa with fiber pulled out compared with 2.01 ± 0.46 MPa 

of SPI. Based on IR and thermal behavior changes observed by DSC, it was inferred that a new 

crosslinking network formed between WPU and SPI.  

To exam if the UA and WPU technologies developed using soy protein are suitable for 

other plant proteins, we selected camelina protein because camelina oil has superior functional 

properties for jet fuels and polymers. Like soy protein, camelina protein is also highly water 

sensitive.  However, simply applied UA and WPU to camelina protein following the same methods 

used for soy proteins, we did not obtain the same good adhesion results compared to what we 

achieved with soy protein.  After protein structure analysis, we realized that camelina protein is 

more compact in structure compared to soy protein that made it weak in both dry and wet adhesion 

strength. Therefore, for camelina protein, we unfolded its compact structure with Polymericamine 

epichlorohydrine (PAE) first to improve flexible chains with more adhesion groups for future 

reaction with UA or WPU.  PAE with charged groups interacted with camelina protein through 

electrostatic interaction and promoted protein unfolding to increase reactivity within protein 

subunits and between protein and wood cells. Therefore, the wet adhesion strength of camelina 

protein was improved from zero to 1.30 ± 0.23 MPa, which met the industrial standard for plywood 



 
 

adhesives in terms of adhesion strength. Then the wet adhesion strength of camelina protein was 

further improved after applying UA and WPU into the PAE modified camelina protein. In addition, 

we also found PAE unfolding significantly improved the dry adhesion strength of camelina protein 

from 2.39 ± 0.52 to 5.39 ± 0.50 MPa with 100% wood failure on two-layer wood test. 

Camelina meal which is even more economical than camelina protein was studied as wood 

adhesive. Through a combination of PAE and laccase modification method, the wet adhesion 

strength of camelina meal was improved as high as 1.04 ± 0.19 MPa. 

The results of this study had proven successful modification of oilseed protein to increase 

water resistance and wet mechanical strength. We have gained in-depth understanding of the 

relationship between protein structure and wet adhesion strength. The successful modification of 

plant proteins meeting the industrial needs for bio-adhesives will promote the development of eco-

friendly and sustainable materials, which also met industrial standards for plywood adhesives. 
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Chapter 1.  Introduction 

1.1 Research needs 

Progress in research and development of petroleum-based resins had shown great success since 

the 1940s. Such resins meet many industrial applications like paint, printing ink, adhesives, and 

rubber for tough conditions (1). However, they also bring concerns about human health and natural 

environment. For example, condensation resins based on formaldehyde are traditional wood 

adhesives and are believed to cause human carcinogens (2). Non-renewable reservoir and growing 

environmental concerns from traditional petroleum resources have led to the desire for more 

biodegradable and renewable materials. Protein, as a byproduct of oil extraction, has been 

identified as a common economical biomaterial source. Proteins are made up of different 

polypeptide chains and these polypeptide chains fold into unique 3-dimensional structures mainly 

by hydrophobic interaction and hydrogen bonding in aqueous solution. Interactions between 

protein and substrate surface together with the intermolecular and intramolecular cross-linking of 

single protein contribute to the mechanical strength to support structure. The relative insolubility, 

resistance to proteolytic hydrolysis, or other chemical dissolution decide the durability of proteins 

(3). Most of the oilseed proteins are globular in water with the polar and charged amino acids on 

the surface and hydrophobic amino acids buried inside. Therefore, protein based adhesive are 

vulnerable to water penetration. The poor performance of wet adhesion strength from protein’s 

hydrophilic nature has limited its potential industrial applications. There is a strong necessity to 

improve the water resistance and cohesion of protein based adhesives. 

While soy protein based wood adhesives and particle boards have already shown the successful 

application in the commercial market, camelina which contains 40% of the protein in its defatted 

meal, hasn’t been extensively used and could potentially serve as a new primary source of protein. 

Compared with soy protein, camelina protein is more economical and doesn’t cause potential 

political and economic concerns regarding famine. Camelina would be useful new resources to 

replace soy protein in biomaterial field. Based on the similarity of amino acid composition between 

soy protein and camelina protein and the fact that the adhesion strength of camelina protein is 
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much lower than soy protein, it is suggested that compact 3D conformation of camelina protein 

hinders its adhesion property. 

Altering tertiary protein conformation will potentially change its physicochemical properties 

including rheology, thermal stability, and mechanical strength. To make such compact globular 

proteins into adhesive, the bonds and interactions shaping proteins’ structures need to be broken. 

Only with flexible and interwoven polypeptide chains can proteins attach to solid surface and 

distribute the concentration of stresses generated at the interface into the bulk (4). 

A few studies had shown that unfolding protein tertiary structure with urea, guanidine 

hydrochloride, sodium dodecyle sulfate would make the polypeptide chains more flexible and have 

a high degree of entanglements and crosslinked structure (5-7). Strengthening the crosslinking and 

hydrophobicity of protein will improve its adhesion properties. Grafting hydrophobic chains, 2-

octen-1-ylsuccinic anhydride and undecylenic acid, onto amino acid residues improved the wet 

adhesion strength of soy protein based adhesive (8.9) However, how to achieve unfolding and 

crosslinking while increasing the hydrophobicity at the same time? In the proposed study, the 

polyelectrolyte is introduced into protein solution to open the dense globular structure and then 

built a new crosslinking network through ionic interactions and covalent bonds to strengthen the 

original protein structure. The fatty acyl chains will also be introduced into protein structure to 

increase surface hydrophobicity. The synergetic effect between polyelectrolytes and fatty acyl 

chains will also be studied.   

Polyelectrolyte chemicals bear electrolyte groups either cations or anions with different chain 

lengths and other functional groups in the main chain. Protein-polyelectrolyte interactions arise 

from interactions between a three-dimensional fixed and heterogeneously charged protein with a 

flexible charged chain strand. Strong bonding is formed through electrostatic interactions among 

charged groups and hydrophobic interactions among hydrophobic segments of the polyelectrolyte 

and hydrophobic patches of proteins (10.11) Therefore, the three-dimensional network of protein 

adhesive will be strengthened. To further increase hydrophobicity, aliphatic chains would be 

introduced into the protein-polyelectrolyte system. In summary, this project aims at a thorough 

understanding of how to change globular proteins into adhesives and how polyelectrolyte and 
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aliphatic chemicals influence protein structures as well as how to accomplish the optimum formula 

for oilseed proteins based adhesives. 

1.2 Objectives and goals 

1.2.1 Objectives 

Our previous study proved that physiochemical properties of protein could be influenced by 

altering the interactions which stabilize the three-dimensional structure of protein. The unfolding 

and crosslinking of globular protein make it work better as adhesives. The task of this research is 

to investigate and verify our hypothesis that 1) polyelectrolytes could stimulate protein unfold and 

rebuild a new crosslinking network; 2) introduce fatty acyl chains into protein could increase 

system hydrophobicity. Both the interactions between the protein and polyelectrolytes, protein and 

aliphatic chemicals improve the wet adhesion strength of protein adhesive. We will study how 

polyelectrolyte and aliphatic chemicals interact with protein and the crosslinking structures in the 

hybrid system. We want to develop protein-based adhesives with enhanced mechanical strength 

and easy handling rheology properties. The specific objectives are: 

Objective 1: Investigate the chemical reaction pathway of fatty acyl chains grafting onto protein 

and study modified protein structures and physiochemical properties. Hypothesis: Covering 

protein with hydrophobic fatty acyl chains will prevent water penetrate into and dissolve protein.  

Objective 2: Study the interactions between protein and oil based polyurethane in aqueous 

condition. Hypothesis: Waterborne polyurethane has the hydrophilic and hydrophobic segment, 

which could interact and improve protein structure through covalent and noncovalent bonds. 

Objective 3: Investigate the mechanisms of how polyelectrolytes interact with protein and 

characterize the properties of modified protein (molecular weight, particle size, morphology, 

thermal stability and mechanical strength). Hypothesis: polyelectrolytes stimulate protein 

unfolding through electrostatic and hydrophobic interactions and then form a new crosslinking 

complex.  

Objective 4: Study the synergetic effect of polyelectrolyte-hydrophobic chains on protein 

structure and optimize protein adhesive formula and investigate the structure-property 
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relationship. Hypothesis: densely crosslinked structure with higher hydrophobicity will benefit 

thermal stability and both dry and wet adhesion strength.  

1.2.2 Long-term goals 

Our long-term goal is to develop efficient technologies to modify oilseed protein into a reliable 

adhesive with improved performance on wet adhesion. The modified protein based adhesives 

should be great substitutes for petroleum-derived adhesive resins. This will dramatically relieve 

the stress on fossil resources and alleviate environment pollution and then benefit human being in 

the long run. Also, the knowledge and methodology we gain from the proposed research will be 

applied to other scientific studies to exploit more protein-based biomaterials.  

1.3 Rationale and significance  

1.3.1 Structural basis 

Proteins, formed from sequences of monomer amino acids, are specific polymers with three 

dimension arrangement of atoms. Proteins fold into different spatial conformations stabilized by 

non-covalent interactions including hydrogen bonding, ionic interactions, hydrophobic packing 

and van der waals forces (12). The oilseed proteins usually fold into a compact globular structure 

driven mainly by hydrophobic interactions which bury the hydrophobic residues inside. The 

interactions between amino acids play a vital role in protein folding and the formation of protein 

complex structures. Other external factors such as solvent, ionic strength, pH, and thermal or 

pressure conditions could significantly influence native protein structure. With the disruption of 

the forces stabilizing native state, protein will unfold or form aggregation and lose its bio-

functionality. For example, water molecules play a major role in protein folding and protein 

interactions through their structural association with protein particularly at the two interface (13). 

Acid/pH can promote protein unfolding and make it go through a H+ linked conformational 

transitions with a change in residue binding affinity (14). 

Polyelectrolytes are macromolecules with either anionic or cationic charged functional groups, 

thus they have both the properties of electrolytes (dissociate in aqueous solution) and polymers 

(high molecular weight with repeating structures). The charged chains play the fundamental role 
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in determining polyelectrolyte spatial structure, stability and the interactions with other molecular 

assemblies. The conformation of polyelectrolyte chains decides many physical properties like 

viscosity, thermal stability. When polyelectrolyte dissolve in aqueous dispersion, it can interact 

with solute particles result in either stability or instability of the dispersion. Acrylamide is usually 

used to synthesis polyelectrolyte (15). By monitoring the polymerized condition of acrylamide, 

the chain length, charge group position and density, and even the aqueous conformation of 

polyacrylamide could be controlled. The polyelectrolyte can absorb on dispersion particles through 

physical entangling and covalent bonding. The polypeptide can also consider as polyelectrolyte 

when it is charged by tuning pH condition. It is possible to synthesis polyacrylamide based 

polyelectrolyte and used to modify the spatial structure of protein.   

1.3.2 Hypotheses on polyelectrolyte and fatty acyl chains stimulating protein 

structure 

Electrostatic interactions serve as an essential role in the binding of charged chemicals with 

protein. The initial electrostatic association would form a salt bridge or hydrogen bonding between 

protein and polyelectrolyte, which promote protein to unfold partially and gain more 

conformational flexibility and molecular mobility. Therefore, the hydrophobic sites are easier to 

access and, in turn, allow the hydrophobic chain of polyelectrolyte to interact with internal 

hydrophobic sites of protein after the initial electrostatic attraction. What’s more, the functional 

groups on polyelectrolyte side chain could self-crosslink or crosslink with amino residuals during 

the curing process. With all the interactions, a reinforced three-dimensional crosslinking network 

is built within protein based adhesive. The hydrophobicity of polyelectrolyte modified protein 

system could be increased or decreased compared with native protein. It is hypothesized that 

increasing the hydrophobic groups on protein surface will benefit the water resistant after protein 

curing. Long chain aliphatic chemicals are suitable hydrophobic agents which can be grafted onto 

amino residuals through covalent bond (like amide bond formed between carboxyl and amine 

groups) or non-covalent linkage such as electrostatic and hydrophobic interactions. 

The previous studies proved that the initial interaction between surfactants and proteins is 

dominantly ionic. The ionic surfactants (for example, sodium dodecyl sulfate) first binds to group 

with opposite charge on protein through electrostatic interactions and when initial binding site are 
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saturated, binding of more surfactant lead to the cluster that starts to unfold protein. The unfolded 

protein provides more hydrophobic binding patches and the binding change to the cooperative 

pattern. (16-18). It is reported that when covering the original positively charged lysine residues 

with negatively-charged citraconyl or neutral acetyl groups, the binding between oleic acid 

(negative charged) with bovine a-lactalbumin was eliminated (10). The authors believed 

electrostatic interactions between positive charged basic groups and the negatively charged 

carboxylate group were as important as the hydrophobic interactions between protein hydrophobic 

sites and aliphatic tails of oleic acid. The binding of polyelectrolyte to proteins is also initiated by 

charged groups but within a three-dimensional structure and a long flexible chain. Proteins 

undergoe a series of conformational changes as bending toward the direction of more unfolded 

structure. By varying the solution condition, soluble polyelectrolyte-protein complex formed (19). 

This process is too diverse to be simply accommodated in one model. Whether this complex could 

further crosslink under curing conditions is influenced by many factors including charge density 

on both polyelectrolyte and protein, ionic strength, stoichiometry ratio. The binding of sodium 

polystyrenesulfonate (PSSNa, negative charge) to lysozyme (globular, positively charged) 

stimulated the progressively unfolding of lysozyme with an initial strong electrostatic binding and 

then hydrophobic interaction. The short chain polyelectrolyte with protein excess formed local 

shrunk but no network while the long chain polyelectrolyte still keeps part of the original network 

within PSSNa but are partially shrunk due to cross-linking by lysozyme (20). Some studies on soy 

protein adhesives demonstrated it reacted with various chemicals. When grafted hydrophobic long 

chain structure, 2-octen-1-ylsuccinic anhydride and undecylenic acid, the rheology and thermal 

properties were changed, and the wet adhesion strength improved (8, 9). The grafting hydrophobic 

structure on protein surface will increase its water resistance but at the same time decrease its self-

crosslinking and reaction with other components. Our previous study found that positively charged 

polymericamine-eppichlorohydrine could modify camelina protein structure and increase its 

mechanical strength. Given all the potential results, further study on the mechanism of how 

polyelectrolyte could unfold oilseed protein (soy and camelina) and form a desirable crosslinking 

network and the influence on physiochemical properties is necessary.  
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1.3.3 Hypotheses on the structure-mechanical properties relationship  

The physiochemical properties of protein-based biomaterials are primarily established upon by the 

intrinsic amino acid sequence and peptide spatial conformation. It is found that β-sheet structures 

contribute to increased adhesion and water resistance in soy protein, the hydrophobic residue 

sequence leads to highly ordered secondary and tertiary structure than hydrophilic sequences, but 

they also promote aggregations (21-23). When soy protein polymerize with poly(ethylene glycol) 

in a loosely cross-linked network, both polymer and protein have been fully solvated, enabling 

96% water content and formed hydrogel systems (24). The highly crosslinked structure tend to 

have larger molecular weight and stronger tensile strength. The synergistic crosslinking of 

poly(vinyl alcohol) hydrogel with natural gelation can significantly change its physical properties 

to meet the requirement of vasculature (25). Hydrophobic and electrostatic interaction mainly 

control the polymer self-assembly. Therefore, we hypothesize that polyelectrolyte and aliphatic 

chemicals could disturb protein conformation by breaking down old hydrophobic and electrostatic 

forces and build new crosslinking interactions. The mechanical strength of modified protein 

adhesives should be altered according to their structure changes.  

1.4 Literature review 

1.4.1 Protein structure and denaturation mechanism  

Proteins are a kind of polymers made up of amino acids. Each protein is a specifical polypeptide 

sequence with its secondary and tertiary, even quaternary structure. The primary structure is the 

amino acid sequence connecting by the peptide bonds. The secondary structure refers to highly 

regular local sub-structures. Principally α-helices, β-sheets, and random coil or loops structure are 

the main types of secondary structure. These secondary structures are stabilized by hydrogen bonds 

between the main-chain peptide atoms. The tertiary structure refers to the spatial arrangement of a 

single polypeptide chain, wherein secondary structure segments into a compact three-dimensional 

folded form with hydrophilic groups located on the exterior protein surface and most of the 

hydrophobic groups buried inside to exclude water. The main strength to stabilize tertiary structure 

is a hydrophobic interaction between amino residues. The quaternary structure is the spatial 

arrangement of a multi-subunit protein and how the subunits fit together. The quaternary structure 

is stabilized by disulfide bonds and non-covalent interactions including hydrogen bonds, salt 
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bridges, and Van der Waals’ force. Hydrophobic interactions and ionic networks are considered 

necessary for protein stability under varied denaturation condition (26).  

Protein denaturation means a process in which such quaternary, tertiary and secondary structures 

are damaged by the application of some external physical stress like heating, radiation, ultrasound 

or chemical compounds such as strong acid or base, an organic solvent, salts. Such process occurs 

when the external stress is strong enough to disrupt the bonding interactions responsible for the 

secondary and tertiary structures. During a denaturation process, hydrogen bonds, salt bridges, 

disulfide bonds, and non-polar hydrophobic interactions are destroyed. Since denaturation 

reactions are not forceful enough to break the peptide bonds, the primary structure (sequence of 

amino acids) remains the same after a denaturation process (26). Usually, the protein can still keep 

its bioactivity when losing its quaternary structure because the folding of the reactive site is still 

retained. Denatured proteins have various characteristics, like losing solubility, communal 

aggregation (aggregation of hydrophobic groups), and changes in rheology properties. In most 

cases, denaturation is irreversible when removing the influence factors. After denaturation, 

proteins tend to form aggregation and crosslink into the new network. 

Urea and guanidine hydrochloride (GH) are the most commonly used denaturation agents. It 

believes that urea upsets the hydrogen-bonding network of the solvent around hydrophobic side 

chains and provides better solvation environment for non-polar amino acid. Another explanation 

of urea denaturation is directly interacting with protein and comparing with intramolecular 

hydrogen bonding (27-29). Urea competes with water both as a hydrogen bond donor and acceptor 

(30).  For larger biomolecule, the denaturation requires a high concentration of urea (>10M, for 

irreversible denaturation) and the association of urea with the protein-water system is based on 

enhancement of hydrophobic interactions (31). GH, in particular, tends to interact with 

hydrophobic regions of protein through its flat, nonpolar surface while exposing its polar charged 

edges to the solvent. In high GH concentration, the electrostatic interaction between Gdm+ and 

the charged residues as well as the peptide backbone is the primary mechanism for destabilizing 

protein structure (32, 33). At extreme pH, proteins have lower stability compared with neutral or 

near isoelectric point pH. Acids and bases increase the unfavorable electrostatic interactions 

resulting in the decreased stability (34). As might be expected, acids and bases disrupt salt bridges 
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held together by ionic charges (35). There are alterations in ionic interactions with the protein 

interactions of the chain with water molecules and exposure of hydrophobic residues under 

extreme pH (36). Heat and high pressure are basic physical unfolding methods for protein. It is 

known that the hydrophobic interactions in native protein structure are disturbed under heating or 

high-pressure conditions (37, 38). Recently, the study of chignolin concluded that heating caused 

protein transferred to a higher entropy state with larger moving space. During pressure 

denaturation, water approaches those not well hydrated hydrophobic residues and broke 

hydrophobic contacts. (39). After denaturation, protein molecule has unfolding structures and 

imbalanced attractive and repulsive forces of particles, which generates protein aggregation. 

Protein aggregation can be further developed into gelation (40, 41). Physiochemical properties 

including viscosity, solubility, thermal stability and mechanical strength could be modified 

through protein denaturation.  

1.4.2 Protein-based adhesives and modification methods 

In the ancient centuries, proteins like gelation and casein had been used as adhesive. After the 

successful development of synthetic polymers at the beginning of twenty century, protein based 

adhesive were abandoned by industry because the issue of water sensitivity and high price. 

However, petroleum derived polymers bear the drawbacks of non-degradable and toxic. 

Considering the natural environment and human health, more and more researchers focus on bio-

based adhesives. Oilseed protein like soy and camelina proteins are byproducts of oil extraction 

and usually treated as animal feed.  Innovate oilseed protein into value added biomaterials such as 

film and adhesive could bring more profit to farmers. Soy is the most promising and inexpensive 

raw material for wood adhesives. The timber industry lowers costs and eliminates emission with 

soy.  Hydrolyzed soy proteins added to phenol formaldehyde (PF) resins provide cost reduction 

without degrading performance. Soy-based products represent one alternative to urea-based 

products for interior applications where legislation now restricts emissions of formaldehyde. 

Commercial products are available, for instance, Columbia Company had converted the soy 

adhesive patent from Oregon State University into decorative plywood panels under the Pure Bond 

name (42).   
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From a structure perspective, gelatin and casein have relatively large, flexible and interwoven 

polymer chains which can firmly attach to a solid surface by adsorption. The protein network 

distributes the concentration of stresses generated at the interface into the polymer bulk and away 

from the surface and saving the bond (43). In native state, most of the proteins are globular and 

compact structure. In aqueous form, most of the nonpolar residuals of globular protein are buried 

inside by hydrophobic interaction while the polar parts contact with water. The oilseed proteins 

are storage proteins with globular shapes. Soy protein has two major components, β -conglycinin 

(7S) and glycinin (11S), accounting for more than 70% of the total protein in soybean. β-

conglycinin and glycinin are both macromolecules with a mass of 150–360 kDa (44). Camelina 

protein is a mixture of albumins, globulins, and glutelins with different solubility (45). Both soy 

and camelina protein are rich of amino residuals containing carboxyl (-COOH), amine (-NH2), 

hydroxyl (-OH), and thiol (-SH). These functional groups are good adhesion groups absorbing 

onto the substrate surface and available for many reactions such as esterification, alkylation and 

therefore, provide many potential modification methods. 

The inherently amino acid composition of oilseed protein are suitable for application in adhesives 

but to utilize and improve the properties, the specific bonds and interactions in native protein need 

to be broken to make a loose structure with more flexible crosslinking in further adhesive curing 

process (4). Solvent polarity, pH, chemicals, temperature, and pressure, are the major methods to 

modify protein. Salts like sodium chloride (NaCl), sodium sulfate (NaSO4), and sodium sulfite 

(NaSO3), could change the ionic environment and decrease protein adhesion strength at high 

concentration by interacting with charged polar amino residuals. Low concentration salts can 

decrease protein adhesive viscosity without influence on adhesion strength (46). The study of pH 

conditions concludes that the optimum pH for soy protein isolate to gain the maximum adhesion 

strength is in the range of 5.0 to 6.7 (47).  Another study on alkali-modified soy protein found that 

moderate alkaline condition pH ten at 50 ℃ improved the adhesive strength compared with 

unmodified protein (48). The isoelectric pH for soy protein is around 4.5 and at higher pH 

condition, protein can be charged and partly unfolding. The charged and unfolding protein has a 

higher surface polarity which will benefit the bonding between wood and protein. Since the 

adhesive performance depends on both the adhesiveness and cohesiveness of protein, too much 

unfolding will weaken the cohesiveness of protein resulting in lower bond strength. The 



11 

 

temperature, ionic strength, and other factors will also affect the protein unfolding and 

confirmation, so the optimum condition is different for a different system. Urea and gluanidine 

hydrochloride (GH) are the chemical unfolding agents for protein. At low urea concentration, for 

soy protein, a certain amount of secondary structure changed to β-sheet and enhanced adhesion 

strength. While in high concentration, urea-unfolded protein structure too much to the random coil 

and reduced adhesion strength. GH has a similar effect of unfolding protein like urea. More 

hydrophobic groups were exposed, and protein secondary structure was rearranged with urea and 

GH treatment, which enhanced water resistance as well as adhesion strength (49-51). 

There are several studies found that increasing hydrophobicity could enhance the wet adhesion 

strength. Under alkaline and trypsin hydrolysis condition, the globular soy protein was open to 

linear structure and expose more hydrophobic residuals and had improved water resistance (52). 

Grafting hydrophobic chains onto protein surface through covalent linkage could also increase the 

system hydrophobicity and water resistance. 2-octen-1-ylsuccinic anhydride and undecylenic acid 

were both grafted onto soy protein and the aliphatic chains form a hydrophobic layer on the protein 

surface and prevent water penetrating into the interface between protein and wood (8, 9). 

Crosslinking is another direction to modify the physicochemical properties of protein. 

Crosslinking agents are chemicals with multiple functional groups which can link polypeptide 

together or with other chemicals through covalent bonds. 3-aminopropyltriethoxysilane was used 

to crosslink inorganic calcium silicate hydrate with soy protein and the entangled and interwoven 

polymeric structure promoted the attachment to the solid surface, which consequently improved 

the bonding strength between protein molecules (53). Glutaraldehyde crosslinked proteins through 

reaction with amino groups and increased protein molecular weight and changed native protein 

conformation. The mild crosslinking enhanced cohesiveness and then improve bond strength but 

too much crosslinking resulted in rigid protein structure which damaged wettability and decreased 

dry and wet adhesion strength (54). 

Ionic interaction and hydrogen bonding also play a major role in protein network formation. The 

phosphorylation of soy protein stimulated charged phosphorus groups to form ionic interaction 

and hydrogen bonds with polypeptide chains which enhanced the protein structure and wet 

adhesion strength to meet the interior used hardwood plywood and particleboard (55).  Polyamide-
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epichlorohydrin and soy protein molecules formed revisable complexation through ionic 

interactions at pH range from 4.0 to 9.0. The complexation improved the wet adhesion strength of 

soy protein adhesive by enhanced the crosslinking network and stabilized the structure (56). 

Blending with synthetic resin is another way to improve the performance of the protein-based 

adhesive. For example, the polyamidoamine-epichlorohydrin resin and formaldehyde based latex 

improved the water resistance of soy adhesive. On the other hand, adding soy protein to 

formaldehyde resin could reduce the emission (57, 58). 

In summary, to make proteins better adhesives, the protein should be unfolded to make the 

polypeptide chains more flexible and then easier to attached on a wood substrate. Protein unfolding 

will explore more hydrophobic residuals and enhance water resistance. Mild crosslinking help 

stabilizes the protein structure and also benefit the adhesion strength. The previous studies on 

modification methods give us advise on further improving oilseed protein structure to get higher 

strength and water resistance.  

1.4.3 Studies on protein-polyelectrolyte interactions and implications 

Polyelectrolytes are polymers with positive or negative charged groups on side chains. There are 

many synthetic polyelectrolytes like poly(sodium styrene sulfonate) and polyacrylic acid and 

natural polyelectrolytes like polypeptides, glycosaminoglycans, and DNA. The electrolyte groups 

dissociate at an aqueous solution and affect solution’s ionic strength and further influence other 

properties such as electrical conductivity. The charged groups on linear polyelectrolyte will repel 

each other and cause a complicated polymer conformation. Polyelectrolytes can be used to modify 

flow and stability properties of aqueous solutions and gels. In food formulation, polyelectrolytes 

including pectin, carrageenan, alginates and carboxymethyl cellulose are used to concrete 

mixtures. Polyelectrolytes can also destabilize a suspension and initiate flocculation. Proteins 

interact strongly with both biological and synthetic polyelectrolytes. Interactions of synthetic 

polyelectrolytes and protein have been studied as the technology in enzyme immobilization, 

protein separation, sensor development and stimuli-responsive systems. Many studies had been 

down to investigate and implicate the interaction between protein and polyelectrolytes.  
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The binding of protein to polyelectrolytes are considered as nonspecific, low affinity and 

nonselective binding. The initial force for protein-polyelectrolyte interaction is ionic interaction, 

and this force stimulates protein unfolding to explore more hydrophobic patches to interact with 

the hydrophobic parts on polyelectrolytes (59). The ionic strength and counterions strongly 

modulate the binding process. The anisotropy of electrostatic domains on protein surface plays a 

key role in determining the ionic strength dependence of its binding to polyelectrolytes. Through 

the study of hydrophobically modified polyacid binding to different proteins, the authors found 

out that the charge heterogeneity presence near the binding sites on proteins and inhomogeneous 

distributions of Coulomb potential at the protein surface can tune the overall affinity (60). When 

the polyelectrolytes have densely charged groups, it could affect the secondary structures of 

binding protein, decreasing of α-helix and increasing of β-sheet when studied using bovine serum 

albumin (BSA) and hen egg white lysozyme (HEL) upon (61). After binding with 

poly(diallyldimethylammonium chloride) (PDADMAC), the dynamic surface elasticity changed 

since the formation of BSA-PDADMAC complex with a surface activity higher than that of native 

BSA (62). On the other hand, the structure of polyelectrolytes such as chain length, charged group 

distribution affect the microstructures of protein-polyelectrolyte complex. High molecular weight 

PDADMAC binding with BSA resulted in increased viscosity (63). The BSA-chitosan complex 

showed much greater zero-shear viscosities and relaxation times than BSA- PDADMAC complex. 

The existence of dense and somewhat interconnected domains formed by the clustering of protein-

polyelectrolyte aggregates of variable degrees of desolvation explained for rheology properties 

change. For chitosan-BSA, domains appear to occupy larger coacervate volume fractions and are 

more interconnected but less dense (64). 

The bovine serum albumin (BSA) was the model protein to study protein immobilization by 

polyelectrolyte brushes. Poly(acrylic acid) (PAA) was grafted on spherical brushes and then PAA 

tails bonded with BSA through positive and negative charge interaction at low salts concentration. 

The adsorption of BSA dramatically decreased at high salt concentration because at higher level 

ionic strength the pH and salt concentration within the brush and BSA was the same, and steric 

repulsion became operative, and no adsorption took place. This binding property makes 

polyelectrolyte brushes suitable carrier particles for protein (65). Another application for protein-

polyelectrolyte interaction is protein separation. Protein and polyelectrolyte firstly form soluble 
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complexes before coacervation. The phase separation is a result of the aggregation of nearly neutral 

polyions which is influenced by many factors. The study of BSA-polyelectrolyte 

poly(dimethyldially1ammo- nium chloride) system showed that soluble complex formed in the pH 

range between 4.6 to 7.4. When pH lower than 4.6, coulombic repulsive forces between positively 

charged protein and positively charged polyelectrolyte prevent the formation of complexes and 

protein departed as separate entities in the solution. When pH higher than 7.4, coacervate occurred. 

The protein and polyelectrolyte molecular concentration and ratio both affected the phased 

boundary pH (66, 67). 

Based on all the previous studies, proteins are very active to interact with the polyelectrolyte. The 

microstructure of protein-polyelectrolyte complex decides the physical properties like viscosity, 

surface elasticity, thermal stability and aqueous solubility. Varying the structure of 

polyelectrolytes can achieve the aim to modify the protein conformation.  

1.4.4 Studies on protein-fatty acyl chains interactions and implications 

Long chain aliphatic compounds including fatty acids, fatty alcohol, lipids, and other 

hydrocarbons.  They can interact with protein covalently through the chemical reactions on 

headgroups or noncovalently through special binding motifs on proteins. In bio-system, lipids can 

bind to specific protein to meet the need of bio-functions. For instance, the protein-lipid mixture 

can promote rapid surface film formation, which is thought to be critical for normal lung surfactant 

function (68). Proteins inserting into the lipids bilayer in biological membranes is the model for 

long protein chain aliphatic compounds interaction. Both the structure and conformation of protein 

and lipid fatty acyl chains contribute to successful binding. Lipid fatty acyl chains distort to match 

the rough surface of membrane protein. The presence of a rigid protein surface will reduce the 

extent of the emotional fluctuations of the chains, and the chains will have to tilt and become 

conformationally disordered to maximize contact with protein surface (69). While from the protein 

perspective, proteins make use of a variety of structural motifs to anchor them to lipid membranes. 

For example, some particular amino acid sequence could encode for enzymatic attachment of lipid 

moieties that target the protein to a lipid bilayer. The inherent secondary and tertiary structures of 

the proteins could also be used to bind lipids. Such structures include target specific domains like 

the C1 domain that binds diacylglycerol, the pleckstrin homology domain that binds 
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phosphoinositides like PIP2 and PIP3, and FYVE domains that bind PIP3 (70). The study of Golgi 

complex also demonstrated that lipid-protein interactions rely on the abilities of certain protein 

domains to recognize specific lipids. The interactions are unique to the head groups of the 

phospholipids and in a few cases through specifically interacting with the phospholipid acyl chains 

(71). 

Analysis of X-ray diffraction, electron crystallography, and NMR data over 100 specific lipid 

binding sites on membrane proteins demonstrated that lipids bind non-covalently to proteins 

through their headgroups, acyl chains, or binding are mediated by the entire lipid molecules. The 

dominant forces to stabilize such binding are polar interactions and van der Waals force (72). Xie 

and the coworkers did an experiment to prove that electrostatic interactions between the positively 

charged basic groups on a-lactalbumin and the negatively charged carboxyl groups on oleic acid 

play an essential role in the binding of oleic acid with α lactalbumin in the HAMLET-like complex 

(20). Another study found that the hydrophobic segments in membrane protein are the bridges for 

the interaction between protein and lipid acyl chains. It is also possible that proteins change the 

orientation of hydrophobic and hydrophilic side chains and the lipids stretch acyl chains or 

assembling to meet the binding process (73). Many factors including lipid chain length, lipid 

packing, fluidity, surface charge density, and protein conformation play an important role in the 

protein-lipid interaction.  

Binding desire fatty acyl chains on protein could change the physicochemical properties especially 

the water absorption of protein. Almond and walnut oil were used to modify protein films by 

emulsification. The hydrophobic character of protein film was enhanced (74, 75). Epoxy soybean 

oil was used as a cross-linking agent to improve the water resistance as well as the tensile strength 

of soy protein-based films (76) 2-octen-1-ylsuccinic anhydride with eight carbon chain and 

undecylenic acid with ten carbon chain were grafted on to soy protein through reaction with amine 

groups to improve the wet adhesion strength of soy protein adhesives (8,9). The hydrophobic 

nature of fatty acyl chains benefits the water resistance of protein. 
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Chapter 2.  Improved water resistance of Undecylenic Acid (UA) 

modified Soy Protein Isolates (SPI) based adhesive 

2.1 Abstract  

Soy protein has showed great potential as renewable and environment-friendly adhesives. 

However, poor water resistance of soy protein adhesive has limited its application as high 

performance wood adhesive. This work focused on development and characterization of UA 

modified soy proteins to improve their water resistance. The reaction between amine groups from 

protein and carboxyl groups from undecylenic acid was proposed to be the main chemical pathway 

for grafting, which was proved by Ninhydrin test and Fourier Transform Infrared Spectroscopy 

(FTIR). Thermal study of thermogravimetric analysis (TGA) and Differential scanning 

calorimetry (DSC) showed that UA modification led to less thermal stable state because of protein 

unfolding and less protein-protein cross linkages. The increased attractive force between carbon 

chains of UA and residues of protein resulted in higher viscosity and dynamic modulus. Atomic 

force microscopy (AFM) images indicated the changes in particle size and surface properties. Wet 

strengths of modified soy protein adhesives were significantly improved by 35% to 62%, 

compared with SPI of 2.02 MPa wet strength. Undecylenic acid with hydrophobic carbon chains 

and reactive carboxyl groups is an ideal bio-based modifier for soy protein. 

2.2 Introduction 

The main adhesives used in wood composites are petroleum-based resins including phenol-

formaldehyde and urea-formaldehyde. However, formaldehyde-based resins not only damage 

environment but are also a human carcinogen (1). The demand to find renewable and environment-

friendly substitutions for petrochemicals is urgent. Soybean is widely planted across the world 

which makes it one of the most promising biodegradable and renewable resources for adhesives, 

packaging, and labeling industries (2). However, the poor water resistance of soy protein based 

adhesives limits their developments (3). Soy protein contains two major compositions β-

conglycinin (7S) and glycinin (11S), accounting for more than 70% of the total protein in soybean. 

Glycinin and β-conglycinin are both macromolecules with a mass of 150-360kDa (4). There are 

20 different kinds of amino acid residues with varieties of functional groups on the side chains of 

polypeptides including carboxyl (-COOH), amino (-NH2), hydroxyl (-OH), and thiol (-SH). Such 



23 

 

functional groups are available for many chemical reactions like esterification and alkylation. 

Modifications of soy protein affect its surface and inner structures, which results in changes of 

physical and mechanical properties of soy protein adhesives (5). 

In the past decades, lots of chemical modifications of soy protein adhesives were carried out to 

improve water resistance. Most of them focused on unfolding protein and making the hydrophobic 

subunits exposed (6, 7, 8). Qi et al, used sodium bisulfide modified soy protein to react with 2-

octen-1-ylsuccinic anhydride, which needed two steps to finish the modification (9). Our study 

focused on one step modification of simple soy protein isolate (SPI) to improve the water 

resistance. Only undecylenic acid (UA) was used to react with SPI and the pH was kept 

consistently at 10.0. UA is derived from castor oil by cracking under pressure and it is widely used 

in pharmaceuticals, cosmetics and perfumery (10, 11). UA has 10 carbons in its aliphatic chain 

with C=C double bond and carboxyl group on each end [CH2CH(CH2)8COOH]. The long 

hydrophobic aliphatic chain is supposed to be water unfavorable.  

In the present work, we confirmed reaction between UA and SPI through FTIR and ninhydrin test. 

The objectives of this study were to improve water resistance of soy protein based adhesives 

through grafting hydrophobic chains and characterize physical and mechanical properties such as 

thermal, rheological and adhesion strength of modified adhesives. 

2.3 Materials and methods:  

2.3.1 Materials 

Defatted soy flour was purchased from Cargill (Cedar Rapids, IA) and was used for extraction of 

soy protein isolate (SPI). SPI was precipitated at pH 4.5 and redissolved at pH 7.6, then freeze-

dried (freeze dryer, Model 6211-0459; The Virtis Company. Inc., Gardiner. NY). The dried SPI 

was milled into powder, with 95% passed through U.S. #100 mesh. The freeze-dried SPI powder 

sample had a protein content of 85.6% and moisture content of 8%. 

Undecylenic acid (UA, 99%), 1-ethyl-3-[3-dimethylaminopropul] carbodiimide hydrochloride 

(EDC, 99%) and Ninhydrin reagent solution were purchased from Sigma-Aldrich. Cherry wood 
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veneers with dimensions of 50 mm × 127 mm × 5mm (width × length × thickness) were provided 

by Veneer One (Oceanside, NY). 

2.3.2 Preparation of UA modified SPI adhesives 

2g SPI powder was suspended in 14.6ml deionized water and stirred for 1hr to make uniform, 12% 

solid content slurries. Adjusted pH of SPI slurry to 10 ± 0.1 with 2mol/L sodium hydroxide using 

a digital pH analyzer. Then, UA was added to SPI slurry and pH of the slurry was maintained at 

10.0 by adding sodium hydroxide. EDC (30 wt% of UA) was added to the slurry together with UA 

to active carboxyl group (-COOH). The mixture of SPI slurry and UA was stirred for 5 h at room 

temperature (23 ℃). Varying UA content to be 0, 3%, 5%, 7%, and 10% on dry base of SPI, a 

series of UA modified SPI adhesives were prepared.  

2.3.3 Instruments  

2.3.3.1 Infrared spectroscopy 

SPI and UA modified SPI samples were freeze dried and grounded into fine powder for IR 

analysis. The IR spectra were recorded by PerkinElmer Spectrum 100 FTIR spectrometer 

(Waltham, MA) in MID-IR range (4000-600 cm-1) with a Universal ATR (attenuated total 

reflectance) sampling device. Each sample was scanned 32 times at a resolution of 2 cm-1. Data 

from ATR is converted to sample transmission data.  

2.3.3.2 Qualitative analysis of amino (-NH2) group  

Based on the reaction between amino group and ninhydrin, the concentration of amino group can 

be tested by the changes in absorbance at 570 nm. 1 ml Ninhydrin reagent solution was used to 

mix with each sample (2 ml, samples were diluted 200 times to ensure absorbance at 570 nm under 

1.0) and then placed samples into boiling water bath for 10 min. Cooled to room temperature and 

added 5 ml 95% ethanol to each sample. Read absorbance at 570 nm and the concentration of 

amino group was determined by comparison of the 570 nm absorbance with standard curve 

(Glycine solution was used to make the standard curve. Y=0.0859x-0.0004, R2=0.9988, Y: 

concentration of amino group; X: absorbance) (12, 13). 

2.3.3.3 Thermogravimetric analysis (TGA) 
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SPI and UA modified SPI slurries were freeze dried and then the decomposition temperature of 

dry samples were determined using TGA (PerkinElmer Pyris1 TGA, Norwalk, CT). For each 

sample, about 5 mg was loaded in the pan and heated from 25 to 700 ℃ at a rate of 10 ℃/min 

under nitrogen atmosphere. Onset (To) and peak temperatures (Tp) were calculated by TGA 

software.  

2.3.3.4 Differential Scanning Calorimetry (DSC) 

Thermal denaturation of SPI and UA modified SPI (slurry with 12% solid content) were measured 

visa differential scanning calorimeter (Q200, TA instrument, Schaumburg, IL). About 10 mg 

samples were hermetically sealed in Tzero aluminum hermetic pans. Sample temperature was held 

at 20 ℃ for 1 min and then scanned from 20 to 150 ℃ with a heating rate of 10℃/min.  

2.3.3.5 Rheology properties 

Apparent viscosity of SPI and UA modified SPI slurries were measured by a Bohlin CVOR150 

rheometer (Malvern Instruments, Southborough, MA) with a parallel plate (PP20, 20 mm plate 

diameter and 500 μm gap). Shear rate was 25 S-1 and testing temperature was 23℃.To prevent 

dehydration during testing, a thin layer of silicone oil was spread over the circumference of the 

sample.  

Dynamic oscillatory shear measurements were carried out using the same rheometer. Constant 

strain of 0.01 and an angular frequency of 0.63 rad/s were used. Samples were heated from 20 to 

75 ℃ at a heating rate of 3 ℃/min. A thin layer of silicone oil was spread over the circumference 

of the sample to prevent evaporation of water. Elastic modulus (G’) and viscous modulus (G’’) 

were continuously recorded.  

2.3.3.6 Atomic Force Microscopy (AFM) 

Tapping-mode AFM was used to obtain height and phase imaging data on an Innova AFM from 

BRUKER. Silicon probes with 125 µm long cantilevers were used at their fundamental resonance 

frequencies which typically varied from 200 to 400 KHz depending on the cantilever. Samples 

were prepared by diluting protein slurry to 10 μg /ml and then put them onto freshly cleaved mica. 

Nitrogen gas was used to dry the samples and resulted in particles fixed to the mica surface.  
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2.3.3.7 Particle size analysis 

The 12% solid content SPI and UA modified SPI slurries were used for particle size analysis 

directly. Laser scattering particle size distribution analyzer LA-910 from HORIBA company were 

used to record and calculate particle size distribution.  

2.3.3.8 Wood specimen preparation and shear strength measurements 

Cherry wood were preconditioned in chamber (Electro Tech Systems, Inc., Glenside, PA) at 23 ℃ 

and 50% RH for a week before use. About 600 μl SPI adhesive slurry was brushed onto each end 

of the cherry wood piece with dimensions of 127 mm × 20 mm (length × width). Wood pieces 

were allowed to rest at room temperature for 15 min and then assembled and pressed with a hot 

press at 170 ℃, 1.4 MPa for 10 min. Wood samples were removed and cooled at room temperature 

and then stored in chamber at 23 ℃ and 50% RH.  

The wood assemblies were preconditioned in a 23℃ and 50% RH chamber for 1 day and cut into 

5 pieces with dimensions of 50 mm × 20 mm (length × width), then further conditioned for 2 days 

before dry strength test. According to ASTM Standard Method D2339-98 at a crosshead speed of 

1.6 mm/min (14), wood specimens were tested with an Instron Tester (Model 4465, Canton, MA). 

Adhesion strength was recorded as stress at the maximum load. Wood failure was estimated in 

accordance with the standard method for estimating the percentage of wood failure in adhesive-

bonded joints (15). Results in this paper were the average of five duplicates.  

Water resistance of the wood assemblies was measured on the basis of ASTM Standard Methods 

D1183-96 and D1151-00 (16, 17). The specimens after cutting were soaked into water at room 

temperature for 48 h. The wet strength was tested immediately after soaking.  

2.4 Result and Discussion 

2.4.1 Structure and reactivity analysis  

Carboxyl groups of UA and amino groups of SPI can carry out amidation. Fig.1 shows the possible 

chemical pathway with carbodiimide hydrochloride (EDC) as catalyst to active carboxyl group. 

EDC reacts with a carboxyl group first and forms an amine reactive O-acylisourea intermediate 

that quickly reacts with an amino group to form an amide bond (16). 
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Fig.2 showed the FTIR spectra of SPI, UA, and UA modified SPI. The characteristic peaks of 

control SPI are amide I at 1634 cm-1 corresponding to C=O stretching vibration (80%) with minor 

contribution of C-N stretching vibration and amide II at 1514 cm-1 arising from N-H bending 

(60%) as well as C-N stretching vibration (40%) (18, 19). The broad peak at 3283 cm-1 responded 

for the N-H stretching vibration of protein. The characteristic peak of carboxyl group in UA was 

at 1706 cm-1 from C=O stretching and long aliphatic carbon chain was characterized by –CH2 and 

–CH3 stretching at 2925 and 2855 cm-1 respectively (20). For the spectrum of UA modified SPI 

(SPI:UA = 4:1, weight ratio), the characteristic peak of carboxylic acid at 1706 cm-1 disappeared 

indicating –COOH participated in reaction with –NH2. The position of amide II peak moved to 

higher wavenumber 1559 cm-1and the relative intensity between amide II and amide I increased 

compared with unmodified SPI. Since the reaction between –COOH from UA and –NH2 from SPI 

would generate new C-N vibration, changes in amide II peaks demonstrated this reaction.  

Free amino groups in SPI slurry before and after reaction with UA were tested by ninhydrin 

reagent. The concentrations of amino groups and percentages of reacted amino groups in different 

samples were shown in Table 1. With the increasing of UA amount involved in reaction, the 

concentration of amino group dropped from 8.25 to 0.86 μmol/ml. For sample with a weight ratio 

of SPI:UA=1:1, 89.57% amino groups were grafted with UA. Amino test together with FTIR 

spectrum were strong evidences for reaction between carboxyl group from UA and amino group 

from SPI. 

2.4.2 Thermal properties 

Fig. 3 shows derivative weight loss curves as a function of temperature for SPI based adhesives 

with different UA contents. The peak temperatures of each sample in TGA were summarized in 

Table 2. Control SPI experienced three stages weight loss degradation. In the first stage, from   

36.6 ℃ to 103.8 ℃, weight loss was due to evaporation of free and bonded water. The second stage 

was associated with protein degradation from 283.9 ℃ to 360.3 ℃. During the degradation, non-

covalent bonds including intermolecular and intramolecular hydrogen bonds, electrostatic bonds 

and losing of hydrophobic interaction were firstly decomposed, and then covalent bonds between 

C-N, C (O)-NH, C (O)-NH2 and –NH2 of amino acid residues were broken with increasing heating 

temperature. Protein backbone was totally decomposed and released various gases such as CO2, 
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CO, and NH3 (21, 22). The third degradation peak at 499.8 to 544.4 ℃ indicated a protein 

composition with higher decomposition temperature. Long time alkali treatment could unfold 

protein structure and exposed more reactive side groups such as amino, carboxyl, and hydroxyl 

which were responsible for crosslinking reactions (23, 24). UA modified samples had similar water 

lost peak as that of control. But there was only one protein degradation peak from around 270 to 

350 ℃. One possible reason for the thermal stability change is that UA prefers to react with –NH2 

groups on unfolded protein surface and thus the cross linkages due to protein-protein interaction 

decreased. Another reason maybe that hydrophobic interaction between aliphatic chains of UA 

and protein promotes the rupture of low-energy inter-molecular bonds that maintain protein 

conformation and disrupt the continuity of protein matrix, resulting in unfolding and less thermal 

stability (25).  

DSC study showed that thermal denaturation of pure SPI slurry at pH 10 was characterized by one 

major peak at 76.9 ℃. Usually, soy protein has two denaturation peaks at around 75 and 90 ℃ 

responding to β-conglycinin globulin (7S) and glycinin globulin (11S) respectively. 11S can 

converts to 2S or 7S in alkali condition (26). Since inHyd our research the control SPI had a long 

time alkali treatment, only 7S denaturation peak was found. The Td of 3% and 5% UA modified 

SPI moved to lower temperature and enthalpy increased. For 7% and 10% UA modified samples, 

only small peaks were found at around 70 ℃. Reaction between UA and amino groups of SPI 

converted the positive charged groups into neutral residues, thus the electrostatic repulsion was 

weakened and tended to gather to larger aggregates (27). However, the reaction between UA and 

active amino groups on protein could unfold polypeptide chains and dissociate aggregates. 

Introducing long alky chains on protein would enhance hydrophobic interaction among different 

polypeptides. The association of polypeptides led to a more thermal stable state while dissociation 

led to a less thermal stable state. The completion between association and dissociation explained 

changes in denaturation temperature and enthalpy of modified SPI slurry.  

2.4.3 Rheology properties  

The apparent viscosities of SPI with different UA modification at single shear rate (25 S-1) were 

summarized in Fig.5. Modified samples had higher viscosity, which firstly increased from 227.67 

to 843.00 cP and then jumped to 5623.33 cP. 3%, 5%, and 7% UA modified SPI adhesives still 
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had good flow-ability while viscosity of sample with 10% UA was too viscous to handle. The long 

hydrophobic carbon chains of UA might attract the hydrophobic groups of protein, thus the 

attractive force (hydrophobic interaction) between different protein particles increased which 

resulted in higher viscosity. After adding UA, the concentration of the slurry also increased which 

was another possible reason for the higher viscosity (28, 29).  

Fig. 6 showed the dynamic viscoelasticity of control and UA modified SPI samples. The elastic 

modulus (G’) and loss modules (G’’) were recorded as a function of temperature. Viscoelastic 

properties of different SPI slurry were well characterized by elastic modulus (G’) and loss modulus 

(G’’). The G’ and G’’ of UA modified SPI were both higher than control sample and increased 

with UA amount. These data indicated that after UA modification the protein slurry formed stiffer 

and more solid cross linkage than control. This result was consistent with viscosity changes. We 

hypothesized that the hydrophobic interaction between alkyl chain of UA and amino acid residues 

led to the increase in viscosity and modulus. Due to the increased intra- and intermolecular 

attractive force, probably as a result of hydrophobic interaction and hydrogen bonding, the 

molecular networks were strengthened. As temperature increased, molecular movements increased 

and protein matrix became soft. Thus, the modulus decreased with increasing temperature.  

2.4.4 Characterize of aggregates in SPI adhesives  

Compared to control SPI, UA modified SPI have different aggregate structures due to the 

introduction of alkane chains, which may cause the difference in viscoelastic behaviors. AFM, as 

a powerful instrument to detect the contact response between tip and sample, can be used to 

describe the differences of viscoelastic behaviors among samples by phase imaging. Phase imaging 

reflects the energy dissipation involved in the contact between the tip and the sample, which 

depends on a number of factors, including such features as viscoelasticity, surface energy 

hysteresis and long-range interfacial interactions. Especially viscoelasticity, which varies 

remarkably based on the setting oscillation amplitude (30, 31, 32). For mixed samples, it is easy 

to get contrast in the phase.  In this study, line scans were carried out after getting tapping phase 

images to give information on phase contrast. 
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Fig.6 was the AFM tapping phase image of control and UA modified samples. A lot of large 

aggregates were found in SPI image. But aggregates in modified samples became much smaller. 

To quantify the changes in true adhesive samples, particle size distributions of different UA 

modified samples were measured. As was shown in Fig.7, SPI had three peaks in its particle size 

distribution curve while UA modified samples only had the first two peaks at smaller size. There 

were much more particles larger than 500 μm in SPI than in UA modified samples. Table 4 gave 

more quantitative information on this. The median number of SPI was 90.3 μm and this data 

dropped to 78.0 and 75.9 μm after 5% and 10% UA modification respectively, which indicated 

that SPI had higher frequency in larger particle sizes while modified sample had higher frequency 

in smaller sizes. The mean particle size of SPI was 162.7 μm while for modified samples, the mean 

size were only 116.2 and 101.3 μm for 5% and 10% UA respectively. The mode number (particle 

size at highest frequency) of control sample was also bigger than modified samples. The particle 

size distributions had good consistency with AFM image. Because UA reacted with amino groups 

on protein surface, the cross linkages due to protein-protein interaction decreased. Thus, less large 

aggregates were formed after modification.   

Table 5 gave the phase contrast data under different setpoints. Setpoint is a measure of force 

applied by the tip to the sample, which is controlled by certain amplitude of oscillation of the 

cantilever. At setpoint 1v, the phase contrast of SPI was 3.4 while this number changed to 2.8 and 

1.8 for setpoints at 2 and 3.5 respectively.  The big changes of contrast indicated that SPI sample 

surface was sensitive to forces attacked on it.  While for modified samples, the contrasts stayed 

around 6 under setpoint 1 and 2V and dropped to 4.2 at setpoint 3.5V. Under the same setpoint, 

phase contrasts of modified sample were about two times of that of control, which meant modified 

samples had stronger hysteretic quality. 5% and 10% UA modified samples had similar phase 

contrasts, which indicated that they were similar in surface physical properties. After grafting UA 

on SPI, the aliphatic chain could interact with protein surface through hydrophobic force or 

hydrogen bonds. The folded structures of SPI changed and resulted in changes of properties such 

as viscoelasticity and adhesion.  
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2.4.5 Shear adhesion strength 

Both SPI and UA modified adhesives had great performance on dry shear adhesion strength, 

showing in Table 6. UA had little influence on dry shear strength, all samples exhibiting 100% 

cohesive wood failure. The wet strength of UA modified SPI adhesives were improved from      

2.04 MPa to 3.3 MPa at UA amount up to 10%. The fiber of the wood specimen was pulled out 

from the glued wood surface for 10% UA modified sample. As a result of UA grafted onto SPI 

through reaction with -NH2, the conformation of protein might change which could increase 

contact surface areas between protein and wood and then benefit adhesion strength. At the same 

time, hydrophilic amino groups were replaced by hydrophobic aliphatic hydrocarbon chains which 

enhanced the hydrophobic interactions among protein molecules. Poor wet strength of protein 

based adhesives is due to cavities between protein and wood surface formed when hydrophilic 

groups of protein dissolve into water. Introducing hydrophobic chains on protein could decrease 

its water solubility. In addition, UA is totally not water soluble and thus the hydrophobic aliphatic 

chains prevent water penetrating into the interfacial surface of adhesive and wood. The decrease 

of hollow cavities could be the main reason for increased water resistance of UA modified SPI 

adhesives. 

2.5 Conclusions 

UA was successfully grafted on soy protein through reaction between –COOH and –NH2 under 

facile condition, confirmed by the disappearance of carbonyl peak at 1706 cm-1 in FTIR spectra 

and decreased amino group concentration tested through ninhydrin reagent. The less thermal 

stability after UA modification was detected by denature and degradation peak changes in DSC 

and TGA curves. Increased viscoelastic properties demonstrated the unfolding of protein during 

reaction. AFM image and particle size distribution proved the dissociation and less protein to 

protein cross-linkage after grafting UA. AFM phase contrast information also proved viscoelastic 

properties changes in UA modified samples. UA modification significantly improved wet shear 

adhesion strength by 35%-62%. The oily nature and long hydrophobic alkyl chains of UA 

prevented water penetration, which mainly contributed to the significant water resistance 

improvement. 
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2.7 Figures and Tables 

Figure 2.1 Schematic illustration of amidation mechanism between UA and SPI   
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Figure 2.2 FTIR spectra of SPI, UA, and UA modified SPI 
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Figure 2.3 TGA curves for control SPI and SPI modified with UA at concentration of 3%,   

5%, 7%, and 10% 
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Note: Measured at a heating rate of 10 ℃/min under nitrogen atmosphere 
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Figure 2.4 DSC thermogram of UA modified SPI based adhesives 
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Figure 2.5 Viscosity of UA modified SPI based adhesives  

Note: Data are average of three dulpicates and A, B, C means signicantly different, α< 0.05, 

same letter means not significantly different 
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Figure 2.6 Elastic and Viscous modulus of UA modified SPI adhesives 
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Figure 2.7 AFM tapping phase image of SPI, 5%UA and 10% UA modified SPI samples. 

 

Figure 2.8 Particle size distribution of SPI and UA modified SPI 

 

SPI Control 5 % UA 10 % UA 
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Table 2.1 Contents of amino groups in samples with different UA amounts 

            Sample ID     SPI  SPI:UA   4:1  SPI:UA  3:1  SPI:UA  1:1 

Amino concentration            

(μmol/ml) 
8.25 ±0.12   4.63 ± 0.06    2.66 ± 0.12    0.86 ± 0.05 

Reacted amino group %    43.85± 0.04    67.80±0.03   89.57 ± 0.04 

Note: SPI:UA weight ratio on dry base. Data are the average of two duplicates.  

 

Table 2.2 Degradation peak temperature of control SPI and SPI modified with UA at 

percentage of 3%, 5%, 7%, and 10%. 

UA % 
         Peak 1(℃)            Peak 2(℃)             Peak 3(℃) 

To  Te  Tpeak To  Te  Tpeak To  Te  Tpeak 

 0 36.6 103.8 61.3 283.9 360.3 302.4 500.0 544.5 521.4 

3%  26.9 96.1 61.7 279.5 363.3 324.1 - - - 

5%  29.6 92.2 52.9 298.0 357.3 328.5 - - - 

7%  27.3 86.4 53.6 291.3 345.8 328.3 - - - 

10%  27.3 72.8 50.2 288.5 332.5 316.4 - - - 

Note: To, onset temperature of a peak; Te end temperature of a peak 

 

Table 2.3 Denaturation temperatures and enthalpy of SPI slurry with different UA content 

UA % Td (℃) ΔHd1(J/g) 

0 76.98 2.07 

3 75.02 2.32 

5 75.23 4.46 

7 71.27 0.43 

10 70.04 0.159 
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Table 2.4 Particle size distribution of SPI, 5% UA and 10% UA modified SPI.  

 Median (μm) Mode (μm) Mean (μm) 

SPI 92.4 ± 2.9 88.7 ± 8.7 158.8 ± 5.5 

5% UA 78.0 ± 4.9 82.7 ± 0.1 116.2 ± 1.4 

10% UA 75.9 ± 3.2 88.7 ± 8.5 101.3 ± 0.7 

Note: Data were the average of two parallel experiments. 

 

Table 2.5 Tapping phase contrast of SPI and UA modified SPI 

Setpoint (V) 1 2 3.5 

SPI 3.4 2.8 1.8 

5% UA 6 6 4.2 

10% UA 6.5 6 4.2 

 

Table 2.6 Dry and wet shear adhesion strength of UA modified SPI adhesives 

  UA Dry strength (MPa)   WCF Wet strength (MPa)           WCF 

  0%    5.991±0.788   100%       2.038±0.177C              0 

  3%    5.243±0.724   100%       2.748±0.314B              0 

  5%    6.103±0.635   100%       2.701±0.106B              0 

  7%    5.940±0.827   100%       2.880±0.079B              0 

 10%    6.671±0.580   100%       3.296±0.243A Fiber pulled out 

Note: CWF: cohesive wood failure. Data are average of five duplicates. A, B, C means significantly different, α< 0.05, 

same letter means not significantly different.  
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Chapter 3.  Soy-oil-based waterborne polyurethane improved wet 

strength of soy protein adhesives on wood 

3.1 Abstract  

Soy-oil-based waterborne polyurethane (WPU) is used to improve wet strength in shear test of 

wood bonded with an adhesive of soy protein isolate (SPI) by dispersing WPU into SPI slurry. 

WPU’s effects on the physiochemical properties of WPU-SPI adhesives are characterized through 

Fourier transform infrared spectrum, transmission electron microscopy, thermal analysis, contact 

angle, and mechanical strength. Wet strength of the WPU-SPI adhesives increases by 66.7% 

compared to SPI control. Moreover, the microstructure of WPU has effects on the interactions 

between WPU and SPI. In this study, smaller and more uniform distributed WPU0002 is easier to 

interact and form stronger crosslinking network with protein than WPU0500. The stronger 

interaction between WPU0002 and protein results in increased viscosity and bond strength. The 

WPU-SPI blended adhesives show significantly improved wet strength, demonstrating their 

potential as wood adhesives. 

3.2 Introduction  

The necessity to develop greener materials to reduce the dependence on petroleum feedstock is 

growing. Not only is petroleum feedstock a limited resource, it also contributes to environmental 

pollution and human disease. Soy-protein-based adhesive has been commercially available as a 

replacement of urea formaldehyde. For example, Soyad from SolenisTM has been used in wood 

composites, which includes particleboard and medium-density fiberboard (1). Columbia Forest 

Products uses soy-based PureBond® for hardwood plywood manufacturing, which is 

formaldehyde-free and complies with the U.S. Green Building Council’s Energy and Environment 

Design standards (2). Although soy flour is widely used as wood adhesives with excellent dry bond 

strength, the poor water resistance of soybean-protein-based adhesives has limited their application 

as high-performance wood adhesives compared with phenol-formaldehyde adhesives. There is a 

strong necessity to improve soy-protein-based adhesive to broaden its application.   
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The hydrophilic nature of amino acids results in the relative weak wet strength of SPI-based 

adhesives. It is hypothesized that blending SPI-based adhesives with functionalized hydrophobic 

soy oil through covalent and non-covalent interactions would increase SPI-based adhesive’s water 

resistance.  

Soy oil is naturally triglyceride with three fatty acid chains. The main fatty acids are unsaturated 

α-linolenic acid (C-18:3), linolenic acid (C-18:2), and oleic acid (C-18:1). It also contains the 

saturated fatty acids stearic acid (C-18:0) and palmitic acid (C-16:0). The native oil structure is 

not possible for polymerization reactions but can be functionalized through the reactive double 

bonds. Through the well-developed methods including hydroformylation, ozonolysis, and 

transesterification, hydroxyl groups can be successfully incorporated into the oil structure to 

increase the future reactivity of soy oil (3-5). Cargill’s BIOH with various hydroxyl functionalities 

is one of the commercial polyols from soy oil (6). It has replaced ingredients derived from 

petroleum-based products in traditional foam, carpet backing, upholstered furniture, and so on. 

BIOH is one of the most important starting materials for polyurethane synthesis, which requires a 

di- or polyisocyanate with a polyol. Plant-oil-based waterborne polyurethanes (WPU) have been 

studied as coatings, adhesives, and foams since it is more environmental friendly than 

polyurethanes synthesized from petroleum based hydroxyl-bearing monomers and isocyanates. 

Because of the hydrophobic nature of the oil structure, polyurethanes derived from plant oil have 

enhanced hydrophobicity and thermal stability (7, 8). The storage stability of plant oil based WPU 

dispersions was has been shown to be over six months, and the initial decomposition temperature 

of WPU-based film was above in excess of 250 ℃ (9).  

WPU is highly reactive and interactive with other chemicals and compounds through covalent 

bonding, hydrogen bonding, hydrophobic interactions, and physical entanglement. Therefore, the 

physiochemical properties of the reacted compounds can be enhanced through the crosslinking. 

Acrylic monomers were successfully grafted onto soy-oil-based WPU networks during emulsion 

polymerization. These WPU/acrylic hybrid latexes had a significant increase in Young’s moduli 

and tensile strength compared with unmodified WPU (10). Lots of  Numerous previous studies 

found that soy protein isolate (SPI) had good miscibility and compatibility with WPU. For 

example, SPI plastics with utilizing anionic WPU have tensile strengths up to 19 MPa and water 
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resistance σb(wet) /σb(dry)=0.4-0.5, which was much better than those of pure SPI sheets. The 

SPI/WPU films made from poly (butylene adipate) also had higher contact angles with excellent 

water resistance. The Wwater uptake of SPI/WPU blended films was dramatically reduced because 

of the incorporation of WPU into a protein matrix (11-13). 

In this study, we examined the interactions between a soy-oil-based WPU and SPI and how WPU 

would improve the wet strength of SPI based adhesives. Figure 1 presents the chemical pathway 

of soy-oil-based polyol derived WPU-SPI blended adhesives. The objectives of our study are to 1) 

Make soy-oil-based WPU with excellent stability and dispersibility; 2) Study the wood bonding 

strength, water resistance, thermal, and rheological properties of WPU-SPI blended adhesives. 

3.3 Materials and Methods  

3.3.1 Materials 

Defatted soy flour was purchased from Cargill (Cedar Rapids, IA). BIOH polyols (X-0002 and X-

0500) were purchased from Cargill (Cedar Rapids, IA). The hydroxyl number of X-0002 is 117 

mg KOH/g and that of X-0500 is 56 mg KOH/g. Isophorone diisocyanate (IPDI, 98%), 

trimethylamine (TEA, 99%), acetone (99%), and dime thylol propionic acid (DMPA, 98%) were 

purchased form Sigma-Aldrich (St. Louis, MO). Cherry wood veneers used for the wood test were 

provided by Veneer One (Oceanside, NY).  

Preparation of SPI, WPU and WPU-SPI blend  

3.3.1.1 SPI 

SPI was extracted from the defatted soy flour. The fiber was removed by dispersing soy flour at 

pH 8.5 and then centrifuging the soy flour dispersion. SPI was precipitated at pH 4.5 by 2mol/L 

hydrochloric acid, and redissolved at pH 7.6 by 2mol/L sodium hydroxide, and then freeze-dried 

(freeze dryer Model 6211-0459; The Virtis Company. Inc., Gardiner, NY). Dried SPI was milled 

into powder, and the powder was passed through a U.S. #100 mesh sieve.  

3.3.1.2 WPU 
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BIOH polyols X-0002 and IPDI were mixed into a three-neck flask equiped with a condenser tube 

(Rratio of NCO/OH was 1.4.). The sample was placed in, and heated using a silicon oil bath for 1 

h (Heidolph MR Hei-Standard Magnetic Stirrer with Temperature Sensor, Elk Grove Village, IL). 

The silicon oil temperature was 85 °C. DMPA was added to the mixture after 1 h. The reaction 

stayed on conditions were maintained for 2 to 3 h, during which time acetone was added to reduce 

viscosity. The sample was cooled down to 45 ℃, and TEA was used to neutralize the DMPA. 

Finally, water was added to make the water dispersion, and acetone was evaporated overnight in a 

fume hood. The solid content of WPU was adjusted to 10% by adding more water.  

3.3.1.3 WPU-SPI 

2 g of SPI powder was suspended in 18 ml deionized water and stirred for one hour to make a 

uniform slurries slurry with 10% solid content. The pH of the SPI slurry was adjusted to 9.0  ± 0.1 

with 2 mol/L sodium hydroxide using a digital pH analyzer. Varying amounts of WPU (10%, 30%, 

50%, and 60%/70% of SPI dry base) were then added drop by drop to the SPI slurry. The pH of 

the slurry was maintained at 9.0 by adding 2 mol/L sodium hydroxide. The mixture was stirred for 

2 h at room temperature (23 ºC). A series of WPU-SPI blended adhesives were thus made and 

coded as WPU0002-SPI 10%, WPU0002-SPI 30%, WPU0002-SPI 50%, and WPU0002-SPI 60%. 

The same process was repeated with the BIOH polyols X-0500 to make a series of WPU0500-SPI 

adhesives, which were coded as WPU0500-SPI 10%, WPU0500-SPI 30%, WPU0500-SPI 50%, 

and WPU0500-SPI 70%.  

3.3.2 Characterization  

3.3.2.1 Fourier transform infrared spectroscopy (FTIR)  

The Ccontrol SPI and WPU-SPI slurries were freeze-dried and ground into fine powders for IR 

analysis. The blended WPU-SPI samples were first freeze-dried and then hot pressed at 170 ℃ for 

10 min to mimic the adhesives’ applied application condition. The IR spectra were recorded by a 

PerkinElmer Spectrum 100 FTIR spectrometer (Waltham, MA) in the MID-IR range (4000-        

600 cm-1) with a universal attenuated total reflectance (ATR) sampling device. Each sample was 

scanned 32 times at a resolution of 2 cm-1. Data from ATR is converted to sample absorption data. 

3.3.2.2 Contact angle  
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Measurements were made using a CAM 100 optical contact angle meter (KSV Instruments, CT). 

A sample was dropped onto a glass surface, and the shape of the sample was immediately recorded 

by a CCD video camera and the contact angle was determined by fitting the Young-Laplace 

equation to the drop profile. The data showed in this study was an average of eight replicated tests.  

3.3.2.3 Water resistance of cured WPU-SPI samples 

A certain amount of WPU-SPI samples were coated onto glass plates with an even thickness and 

cured at 115 ℃ in the an oven for 30 min. The cured samples were soaked in water for 30 min and 

then dried. The differences between dry sample weight before and after being soaked in water were 

calculated. Solid Material lost resulting from the soaking process were was expressed as the 

percentage of sample weight dissolved extracted into by the water to the original sample dry 

weight.  

3.3.2.4 Rheology properties 

The apparent viscosities of the control SPI and WPU-SPI slurries were measured by a Bohlin 

CVOR150 rheometer (Malvern Instruments, Southborough, MA) with a parallel plate (PP20, 20-

mm plate diameter). The distance between cone and plate was set as at 500 nm for all samples. 

Shear rate was in the range of 0.1 to 50 S-1, and the testing temperature was 23 ℃. To prevent 

dehydration during testing, a thin layer of silicone oil was spread over the circumference of the 

samples.  

3.3.2.5 Thermal analysis  

Control SPI and WPU-SPI slurries were freeze-dried, and then the thermal hydrolysis curves of 

dry samples were determined using Tthermogravimetric analysis (TGA, PerkinElmer Pyris1 TGA, 

Norwalk, CT). For each sample, about 5 mg was loaded in the pan and heated from 50 to 700 ℃ 

at a rate of 10 ℃/min. Onset (To) and peak temperatures (Tp) were calculated by TGA software.  

Thermal denaturation of control SPI and WPU-SPI were measured via differential scanning 

calorimetry (DSC, Q200, TA instrument, Schaumburg, IL). Samples (about 10 mg) were 

hermetically sealed in T zero aluminum hermetic pans. The samples were heated from -50 to       

300 ℃ and then cooled down to -50 ℃ and heated again with a heating rate of 10 ℃/min.  
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3.3.2.6 Particle size analysis 

The 10% adhesive slurries were directly used for particle size analysis. A laser scattering particle 

size distribution analyzer (LA-910, HORIBA Company, Kyoto, Japan) was used to record and 

calculate particle size distribution.  

3.3.2.7 Transmission electron microscopy (TEM) 

TEM microstructure observation was carried out using a Philips CM 100 (FEI Company, 

Hillsboro, OR). Newly prepared WPU-SPI blended adhesives were diluted to 1% with deionized 

water and then sonicated for 5 min before imaging. Formvar/carbon-coated 200-mesh copper grids 

were used to absorb diluted samples and stained with 2% (w/v) uranyl acetate for 45-60 s at room 

temperature.  

3.3.2.8 Wood specimen preparation and shear strength measurements  

Cherry wood pieces were preconditioned in a chamber (Electro Tech Systems, Inc., Glenside, PA) 

at 23 ℃ and 50% RH for at least one week before use. About 1 ml SPI adhesive was brushed onto 

the surface of cherry wood pieces; the dimensions of each piece were 50 mm × 127 mm×5 mm 

(width×length×thickness). Wood pieces were allowed to rest at room temperature for 15 min and 

then layered and pressed with a hot press at 170 ℃ and 1.4 MPa for 10 min. Wood assemblies 

were removed and cooled at room temperature and then stored in a chamber at 23 ℃ and 50% RH 

for 1 day. Each wood assembly was cut into five pieces with dimensions of 50 mm×20 mm 

(length×width) and then further conditioned for two days before the dry strength test. Two of the 

five pieces were used for dry strength test, and the other three were used for a wet strength test. 

Three duplicated wood assemblies were made for each adhesive sample.  

For dry strength tests, wood specimens were tested with an Instron Tester (Model 4465, Canton, 

MA) according to ASTM Standard Method D2339-98 at a crosshead speed of 1.6 mm/min (14). 

Bonding strength was recorded as stress at the maximum load. Wood failure was estimated in 

accordance with the standard method of determining the percentage of wood failure in adhesive-

bonded joints (15). For wet strength tests, the specimens were soaked in water at room temperature 

for 48 h. Wet strength was tested immediately after soaking, on the basis of ASTM Standard 

Methods D1183-96 and D1151-00 (16). 
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3.4 Results and Discussion  

3.4.1 FTIR spectra of SPI, WPU and their mixtures  

FTIR spectra are shown in Figure 2. The characteristic peaks for SPI are as follows: amide I at 

1634 cm-1, which corresponds mainly to C=O stretching vibration (80%) with a minor contribution 

from C-N stretching vibration; amide II at 1515 cm-1, which arises from N-H bending (60%) and 

C-N stretching vibration (40%) (17, 18). For WPU, the major peaks are from C=O, C-N, and N-

H. The carbonyl group of WPU0500 was broad and seemed to be composed of two bonds at 1745 

and 1715 cm-1, which were from free C=O stretching and hydrogen bonded C=O, respectively 

(19). The sharp peak at 1712 cm-1 with WPU0002 was assigned to the stretching of               

hydrogen bonded carboxyl groups and they were similar with that of WPU0500 containing both 

free and hydrogen bonding C=O. The N-H bending and C-N stretching of polyurethane contributed 

to peaks at 1536 and 1537 cm-1. After blending with WPU, amide bonds of SPI (1634 cm-1 and 

1515 cm-1) shifted to higher frequency (1645/1641 cm-1 and 1530 cm-1) because strong 

intermolecular interactions between amide groups and polyurethane occurred and changed the 

chemical environment.  The sharp carbonyl absorption turned into flat shoulder peaks besides 

amide I at a frequency of about 1736 cm-1, which has less content of hydrogen bonding. The new 

shape and position of carbonyl absorption showed that C=O was in an entirely different chemical 

environment, for instance, it has less involving of N-H bonds from polyurethane as electron donor 

but more interaction with bonds from protein. FTIR spectra suggested that there were some 

intermolecular interactions between WPU and SPI.  

3.4.2 Contact angle  

Contact angle analysis was used to estimate the surface hydrophobic properties of the WPU-SPI 

blended adhesives. Contact angle changes with increasing WPU content are shown in Figure 3. 

For the pure SPI slurry, the contact angle was about 33 ± 2º (average of the two control tests), that 

was relatively hydrophilic and easier to wet the glass surface. The contact angles of WPUs were 

difficult to measure because of the polarity effect between WPU and glass surface. But after WPUs 

interacted with SPI, their contact angles increased up to 52 ± 2º and 50 ± 2º for WPU0002-SPI and 

WPU0500-SPI respectively. Interactions between SPI and WPU would change protein 

conformations and create a new and more hydrophobic surface with hydrophobic polyurethane 
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segments. It is possible that this new hydrophobic surface is affected by the interactions between 

WPU and protein and that too much WPU would decrease the interactions.  

3.4.3 Water resistance of WPU-SPI film curing on glass plate 

WPU-SPI blended adhesives were cured at 115 ℃ for 30 min on glass plates and then soaked in 

water for 30 min. The hydrophobic segments from the WPU are supposed to prevent water from 

breaking down and dissolving the cured SPI and thus reduce the solid lost in water. When blended 

with WPU, samples clearly exhibited much reduced levels of material extraction (Figure 4). The 

error within duplicated tests for SPI and 25%WPU-SPI were high because the cured samples were 

broken down into pieces, and the weights of some small pieces that became detached from the 

main body of the sample were impossible to measure. On the contrary, the 50%WPU-SPI sample 

maintained its shape very well with less material extracted and dispersed into the water. The above 

results demonstrated that with the incorporation of  a certain amount of WPU, the SPI films had 

better water resistance than the control SPI film. 

3.4.4 Viscosity analysis 

Viscosity describes the resistance of adhesives to flow. It is an important factor determining a 

products’ handling properties and ability to wet a substrate surface. When intermolecular 

attractions become stronger, samples will show a higher viscosity (20). The apparent viscosity 

against shear rate was measured and plotted as indicated in Figures 5 and 6. The viscosity of the 

SPI slurry was very low and constant with increasing shear rate in this test range.  All blended 

samples had a higher viscosity than SPI with viscosity increasing substantially as the WPU content 

was increased from 10% to 50%. The highest value occurred with the 50% WPU0002-SPI system, 

which was still flowable and easy to apply onto a substrate surface. For WPU-SPI samples the 

viscosity first increased with shear rate and then decreased presenting shear thinning 

characteristics at higher shear rates. The shear thinning behavior benefits adhesive application by 

making it easier to spread the adhesive onto a substrate surface. The increased viscosity 

demonstrates the growing interactions between WPU and SPI and the stronger cross-linking 

network between molecules. At pH 9.0, protein is partly unfolded with increased hydrodynamic 

volume and contact area (21). The hydrophobic segments from WPU were likely to interact with 
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the hydrophobic amino residues from SPI and thus formed bigger aggregates, which were more 

resistant to flow. Because of the hydroxyl, amine, and carboxyl groups in the mixed system, WPU 

and SPI could form hydrogen bonds and electrostatic interactions, which enhanced the crosslinking 

network as shown by the FTIR data in Figure 2. It was noticed that samples made with WPU0002 

had significantly higher viscosities than WPU0500 (Figure 5 and 6). The possible reasons for this 

could be that WPU0002 has a larger contact surface due to its smaller molecular weight and thus 

more interacting groups, which benefit the interactions between WPU and SPI. Higher viscosity 

indicated stronger interaction between molecules or residues. The contact angle of WPU0002-SPI 

was bigger than that for WPU0500-SPI (Figure 3) because with higher viscosity, WPU0002-SPI 

formed more hydrophobic liquid drops (22, 23). 

3.4.5 Thermal properties analysis 

DSC is a useful tool to characterize the thermal transitions of polymers. Differences in thermal 

transitions are related to composition and structural changes. Figure 7 shows that pure SPI had two 

endothermic peaks at temperatures of 186 and 217 ℃ in the first scan (Table 1), which were 

assigned to denaturation peaks of 7S and 11S subunits, respectively. Because 11S has a higher 

molecular weight and was the major compound of soy protein, it attains a higher denaturation 

temperature and enthalpy change. In the second scan, SPI had a very strong peak at 81℃ and a 

weaker peak at 150 ℃. These two peaks were believed to be melting peaks because during the cool 

down, protein could crystallize into different crystals, which melt when temperature increases. For 

WPU, there were two thermal transition peaks in the first scan. The first peak was 55 and 66 ℃ 

for WPU0002 and WPU0500 respectively. According to previous studies, this is the glass 

transition temperature and it varies with different polyurethane structure. The higher Tg of 

WPU0500 indicated that it had a higher molecular weight and crosslinking density than   

WPU0002 (24, 25). The higher thermal transition peak of WPU0500 in comparison to WPU0002 

corresponded to TEM images showing that the aggregate size of WPU0500 was much larger than 

that of WPU0002 (Figure 11). Another peak from the WPU thermogram in the first scan was 

exothermic at temperatures of 197 and 204 ℃ for WPU0002 and WPU0500 respectively. This 

indicated a crosslinking reaction between free functional groups at the ends of the urethane 

prepolymer. The △Hd (-80.07J/g) change with WPU0002 was 3.5 times higher than that for 
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WPU0500 (△Hd=-27.28 J/g, Table 1). The main reason for the difference is that WPU0002 was 

smaller in molecular weight and had more free functional groups available for further crosslinking 

reactions (26). In the second scan, the WPU curves were rather smooth with a small glass transition 

at 6 and 12 ℃ for WPU0002 and WPU0500 respectively.  

The 50%WPU and SPI mixture had a slightly lower (about 5 ℃) glass transition temperature and 

smaller △Hd than the pure WPU in the first scan, which indicated that interactions between protein 

and polyurethane molecules had changed the former crosslinking of WPU. Compared with pure 

WPU, crosslinking reactions within the WPU and SPI mixture occurred at a higher temperature, 

with △Hd reducing substantially. This suggested that crosslinking reactions between polyurethane 

molecules were weakened. A possible reason was that the interaction of WPU with protein had 

partly blocked the free functional groups of the WPU, which would otherwise participate in 

crosslinking reactions. The denaturation temperature of SPI also changed because protein 

conformation was disrupted due to its interaction with WPU.  In the second scan, WPU0002-SPI 

had a much stronger melting peak than WPU0500-SPI. This melting peak was even stronger than 

that of pure SPI with a lower melting temperature. The new melting peak was from new crystal 

structure resulting from interactions between SPI and WPU0002. The differences between 

WPU0002-SPI and WPU0500-SPI in thermal behavior suggest they must have different 

interacting processes and different microstructures (Figure 7 and Table 1).   

3.4.6 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis gives information on thermal stability and decomposition as 

determined by weight loss. Figure 8 shows the derivative TGA curves of WPU, SPI, and their 

blends. SPI had only one decomposition peak from 304 ℃ to 358 ℃. In the beginning of 

degradation, non-covalent bonds including hydrogen bonds, electrostatic interactions, and 

hydrophobic interactions were disrupted, and covalent bonds between C-N, C (O)-NH, C (O)-NH2 

and –NH2 on amino acid residues and peptide backbones decomposed as temperature increased. 

The complete decomposition of protein released various gases such as CO2, CO, and                      

NH3 (27, 28). WPU had two degradation peaks, which might be assigned to the two major 

segments with different thermal stability. The first one at 324 ℃ is similar for both WPU0002 and 

WPU0500, while the second peak with WPU0500 (415 ℃) was much higher than that of 
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WPU0002 (388 ℃). The higher decomposition temperature of WPU0500 indicated that this had a 

more thermally stable segment which may result from more regular urea and urethane segments 

(29).  

For WPU-SPI blends, the degradation peaks, although broadened, were still similar in shape, 

which meant that WPU and SPI had good compatibility. It was also noticed that there was a weak 

peak at a higher temperature, around 440 ℃, for both blended samples, which suggests that SPI 

and WPU may combine into more stable and larger aggregates through interactions such as 

covalent linkages and electrostatic and hydrophobic interactions.  

3.4.7 Particle size distribution and morphology of WPU-SPI adhesives  

3.4.7.1 Particle size distribution 

Because of the interactions between WPU and SPI molecules, the blended samples were expected 

to have different aggregate structures.  For the WPU0500-SPI samples, including WPU0500 alone, 

had exhibited similar frequency in particle size curves (Figure 9) with the highest frequency around 

a particle size of 40 μm. Compared with SPI, the WPU0500-SPI blended samples had a slightly 

higher frequency when particle size <40 μm and a little lower frequency when particle size >40 

μm. WPU0500 was smaller than SPI and their mixture should have a particle size between 

WPU0500 and SPI. While the WPU0002-SPI blends had a quite different size distribution pattern 

(Figure 10), the size of WPU0002 was too small to be measured using the light scattering method 

and curves were moved to a larger size with multiple peaks after WPU0002 was blended with SPI 

(Figure 10). For example, 10%WPU0002-SPI had the highest frequency at 60 μm and another 

peak value around 400 μm. Therefore, there were two dominant sizes in the sample. The 50% 

WPU0002-SPI was relatively uniform with a major peak at 100 μm.  

Since the particle size of WPU0002 was quite small, there was larger contact surface with SPI, 

which would facilitate interaction and result in more massive aggregates. The particle size data 

agreed well with the viscosity data. Stronger interactions between WPU0002 and SPI led to larger 

sizes and higher viscosity, while interactions between WPU0500 and SPI had a small influence on 

particle size and viscosity.  
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3.4.7.2 Morphology 

Soy protein is globular in shape, and the protein aggregates formed exhibit a continuous linear 

chain network as shown in Figure 11 A. Proteins were connected to the surrounding molecules 

through hydrophobic interactions, hydrogen bonds, and electrostatic interactions. The darker color 

indicates that more layers of protein aggregates were stuck together. Figure 11 B and C are for 

WPU0002 and WPU0500, respectively. The WPUs were both round in shape with varied particle 

sizes, but WPU0500 was noticeably larger than WPU0002. As the measurement results show, for 

WPU0002, the larger particles were around 60 nm and the smaller ones were only around 16 nm, 

while for WPU0500, the larger ones were over 500 nm and even the smaller ones were 50 nm on 

average. WPU particles also had connections with each other, which resulted in larger aggregates. 

Multiple factors can affect the particle size of WPU, for example, the ratio between hydroxyl and 

isocyanate groups, carboxyl groups’ content, and ionic, nonionic hydrophilic segments (30, 31). 

The main reason for the different particle sizes in our WPU samples was the functionalities of 

BIOH 0002 and 0500.  

With regard to microstructure, proteins were smaller and less unfolded in nature with WPU0002-

SPI (Figure 11 D), whereas with WPU0500-SPI, a multiple layered linear chain network was 

observed (Figure 11 E). For WPU0002-SPI, proteins adhered to the surface of WPU particles, and 

the small particle size of WPU0002 made it easier to approach and interact with the protein 

crosslinking network and form new connections. For WPU0500, the particles were enclosed by a 

protein network. The WPU0002 had a more uniform distribution in the protein than WPU0500 

because of its smaller size.  

3.4.8 Dry and wet strength wood specimens 

Both SPI and WPU-SPI blended adhesives exhibited good dry shear bond strength characteristics 

as shown in Table 2. However the bond strength for WPU was low and thus not shown in table 2 

and figure 12. WPU0500 had a dry strength of 4.76 ± 0.42 MPa and wet strength of 1.85 ±            

0.21 MPa; WPU0002 has a dry strength of 1.85 MPa ± 0.21, and a wet strength of  0.09 ± 0.06 

MPa For the dry tests, samples are all exhibited 100% cohesive wood failure. All the samples in 

of WPU0002-SPI had a higher value than WPU0500-SPI. It is possible that samples tested at 
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different times were influenced by the systematic error associated with both instrumentation and 

wood materials variability However, it is possible that WPU0002 treated adhesives had a stronger 

adhesion property.  

When WPU content reached to 50%, both WPU0002-SPI and WPU0500-SPI experienced 

increased wet strength (Figure12). The wet strength was increased to 3.81 ± 0.34 MPa, i.e. about 

66.7% more than that of pure SPI. The highest value occurred with 50% WPU samples. 30% and 

50% WPU0002-SPI and 30% and 50% WPU0500-SPI samples had fiber pulled out of the wood 

surface (Figure 13). Interactions between SPI and WPU could benefit adhesion performance. Their 

interactions can be due to covalent bonds between active functional groups such as amine and 

carbonyl as well as non-covalent linkages such as hydrophobic interaction and hydrogen bonds 

(Figure 2). Through these interactions, the protein might change to a more unfolded conformation 

so as to extend the contact area with WPU. Cavities between protein and wood resulting from the 

dissolution of hydrophilic amino acid residues into water are the main reason for poor wet strength. 

On the one hand, once the hydrophobic WPU adheres onto the protein surface, it would prevent 

water from penetrating into the interfacial surface between adhesive and wood. On the other hand 

because WPU was synthesized from hydrophobic soy oil, it is hard to dissolve in water so fewer 

cavities would form. However, when WPU content increased to 60% or 70%, the wet strength 

began to decrease. One possible reason for this is the decrease of adhesion groups from protein, 

which weakens the splice between adhesive and wood. The interaction between protein and WPU 

might also weaken if there was too much WPU. The WPU0002-SPI had a higher wet strength than 

WPU0500-SPI, which may relate to the differences in their physical properties such as aggregate 

sizes and viscosity. Particle size is related to mechanical properties (32, 33). In the wet strength 

test, WPU0002-SPI blends had a higher strength than WPU0500-SPI on each blended level. A 

more uniform distribution of hydrophobic segments could better prevent water from penetrating 

into the interphasial region between adhesive and wood. On the other hand, the smaller and more 

open proteins would promote adhesive penetration into wood and thus increase bond strength.                                

3.5 Conclusions 

Soy-oil-based waterborne polyurethanes (WPU) have been successfully merged with soy protein 

into homogeneous adhesives. These WPU-SPI blends showed improved wet strength up to 
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3.81±0.34 MPa with fiber failure. The compatibility between WPU and SPI was the result of 

hydrogen bond and electrostatic and hydrophobic interactions. Based on FTIR and thermal 

behavior changes observed by DSC, it was inferred that a new crosslinking network may form 

between WPU and SPI. Microstructure and particle size information based on TEM images 

indicated that the smaller WPU0002 had more interactions with soy protein and that this 

contributed to improved mechanical properties. The WPU-SPI blended adhesives are safe, 

biodegradable, and renewable; therefore, they have great potential for the adhesive industries.  
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3.7 Figures and Tables  

Figure 3.1 Proposed chemical scheme of possible interactions between WPU and SPI: 

covalent linkage; hydrogen bond; hydrophobic interaction; physical entanglement 
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Figure 3.2 FTIR spectra of SPI, WPU, and WPU-SPI 
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Figure 3.3 Contact angle of WPU-SPI blended adhesives as a function of WPU content 

Note: Numbers in horizontal axis means dry base wt% of WPU in samples. The same applies to 

following figures 

Figure 3.4 WPU-SPI blended samples’ solid lost in water 
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Figure 3.5 Apparent viscosity of WPU0002-SPI blended adhesives as affected by shear rate 
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Figure 3.6 Apparent viscosity of WPU0500-SPI blended adhesives as affected by shear rate 
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Figure 3.7 DSC thermogram of SPI, WPU, and WPU-SPI blends. Graph on left is the first 

scan; graph on right is the second scan. 
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Figure 3.8 DTGA curves of WPU, SPI, and WPU-SPI blend 
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Figure 3.9 Particle size distribution of SPI, WPU0500, and WPU0500-SPI adhesives  

Figure 3.10 Particle size distribution of SPI, WPU0002, and WPU0002-SPI adhesives 
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Figure 3.11 TEM images: A: SPI; B:WPU0002;C:WPU0500;D:WPU0002-SPI; 

E:WPU0500-SPI 

A 

50 nm 50 nm 

B 
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200 nm  
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Figure 3.12 Wet shear bond strength of WPU-SPI blended adhesives 

Figure 3.13 Wood surface after dry and wet bond strength test 
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Table 3.1 Peak temperatures and enthalpy change for DSC thermogram  

First scan 

Sample ID 

  Peak 1 (℃)        △Hd     Peak 2 (℃) 

△Hd 

(J/g) 

Peak 3 

(℃) 

△Hd 

(J/g) 

Peak 4 

(℃) 

△Hd 

(J/g) Td1 Tg Td (J/g) TgJ/(g. ℃)  Td2  

SPI 186   4  217  12     

WPU 

0002 
 55    0.37  197 -80.07     

WPU0500  66    0.16  204 -27.28     

50%WPU 

0002-SPI 
 49    0.11  181 0.50 207 -5.86 222 3.24 

50%WPU 

0500-SPI 
 62    0.08  202 1.98 212 -1.14 223 0.50 

Second scan 

 

 

 
Peak (℃) 

 

              △Hd 

 

Peak (℃) 

 

 

             △Hd (J/g) 
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Sample ID 
Tm Tg 

 

(J/g) 

 

J/(g. ℃) 

 

          Tm 

 

SPI  

81 

  

29.92 

  

150 

 

1.42 

WPU0002   

6 

  

 0.75 

  

WPU0500   

12 

  

    0.40 

  

50%WPU 

0002-SPI 

  

10 

  

    0.47 
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43.02 

50%WPU 

0500-SPI 

  

16 

  

    0.30 

 

60 

 

1.53 

Notes: Td1 and Td2 means protein denaturation temperature; Tg means glass transition 

temperature; Tm means melting temperature; △Hd means enthalpy change. 

 

 

 

Table 3.2 Dry shear bond strength of WPU-SPI blended adhesives 

       Sample ID 
Strength 

(MPa) 

Cohesive 

Wood Failure 

Sample ID 
Strength 

(MPa) 

Cohesive 

Wood Failure 

             SPI 5.78  ± 0.37 100%    

10% WPU0500-SPI 5.41 ± 0.62 100% 10% WPU0002-SPI 6.76 ± 0.56 100% 

30% WPU0500-SPI 4.80 ± 0.42 100% 30% WPU0002-SPI 5.94 ± 0.38 100% 

50% WPU0500-SPI 6.49 ± 0.55 100% 50% WPU0002-SPI 7.30 ± 0.61 100% 

70% WPU0500-SPI 5.21 ± 0.25 100% 60% WPU0002-SPI 6.36 ± 0.74 100% 

 

  



75 

 

Chapter 4.  Camelina protein enhanced by polyelectrolyte 

interaction and its plywood bonding properties 

4.1 Abstract 

Camelina protein is a major by-product after oil extraction from camelina seeds and has drawn 

research attention as an economical material for bio-industrial implications. The present study 

investigates the influence of polyelectrolyte interaction on camelina protein structure and effects 

on wood bonding performance when used as a bio-adhesive. Infrared spectroscopy (IR) and 

transmission electron microscopy (TEM) images revealed that after interacting with polymeric 

amine epichlorohydrine (PAE), a cationic polyelectrolyte, camelina protein is partly unfolded with 

more flexible chain structures. PAE works as a bridge among different protein molecules primarily 

through electrostatic and hydrophobic interactions. Separation by size exclusion chromatography   

showed that soluble PAE modified proteins are smaller in molecular size. PAE modified proteins 

had reduced solubility, possibly indicated increased hydrophobicity. PAE treatment of camelina 

protein greatly improved both dry and wet adhesion strength when used as an adhesive. Two 

aliphatic structures with hydrophobic chains were introduced into the PAE modified protein 

system to further improve the water resistance. This study demonstrates the possibility of camelina 

as a green resource for the adhesive industry. 

4.2 Introduction  

Camelina is a native flowering plant found in the Mediterranean region of Europe and Asia. 

Camelina is known as an oilseed crop, which is planted in many areas including Austria, China, 

Finland, Germany, Ukraine and United States.  Camelina seed contains about 39% oil of which 

90% is made up of polyunsaturated fatty acids (1). Current research has focused on the utilization 

of camelina oil as bioenergy, for example, as jet fuel and biodiesel, as well as use as a biolubricant 

and in animal feed. Camelina based fuel has an 80% reduction in net carbon emissions and the fuel 

has been used in commercial airlines and military planes in North America (2). The successful 

industrial utilization of camelina oil may stimulate increased planting of more camelina and at the 

same time increase the need to exploit byproducts from the oil extraction process.  



76 

 

Defatted camelina meal contains roughly 40% protein, 12% fiber and small amount of gum and 

vitamins (3). According to a recent study, there are three main protein fractions including 

albumins, globulins, and glutelins in camelina protein with varied solubility and structure (4). 

Camelina protein is currently mainly used as animal feed additive. Based on the similarity of amino 

acid composition between soy protein and camelina proteins, camelina proteins would be useful 

new resources to replace soy protein in biomaterials. Modified camelina meals have improved 

physicochemical properties when used as thermal plastics, composite sheets, and wood adhesives 

(5, 6). However, the mechanical strength of native camelina protein based adhesive is too weak 

for industrial application. To improve the use of camelina proteins as adhesives, modifications to 

the native protein structure and properties need to be made. Disrupting native compact, globular 

protein structures and producing, more open, flexible and interwoven polypeptide chains can 

improve protein attachment to solid surfaces and distribute the concentration of stresses generated 

at the interface into the bulk solid (7). Polyelectrolyte chemicals bear electrolyte groups containing 

either cations or anions with different chain lengths and other functional groups in the main chain. 

Protein-polyelectrolyte interactions arise from interactions between a three-dimensional fixed and 

heterogeneously charged protein with a flexible charged chain strand of the polyelectrolyte. Strong 

bonding is formed through electrostatic interactions among charged groups and hydrophobic 

interactions among hydrophobic segments of the polyelectrolyte and hydrophobic patches of 

proteins (8, 9). Therefore, the three-dimensional network of protein may be strengthened. Based 

on previous work, aliphatic chains can be introduced into the protein-polyelectrolyte system to 

further increase the water resistance of protein based adhesives. (10, 11). Thus, a chemical 

crosslinker, Tetrakis(hydroxymethyl)phosphonium chloride (T), was also introduced to modify 

camelina protein and further improve adhesive performance. T is an economical, amine-reactive, 

aqueous cross-linker for protein based molecules. The T-amine reaction mechanism was studied 

using primary and secondary amino acids (12). The high reactivity and water solubility of T is 

essential to work with camelina protein.  

The goals of the present study were to investigate ways to improve the use of camelina protein as 

a bio-adhesive through the interactions between cationic amine-epichlorohydrine and camelina 

protein. Specific objectives of this study were to 1) reveal the mechanism of how polyelectrolyte, 

chemical cross-linker, and aliphatic chains could influence the structure of camelina protein; 2) 



77 

 

characterize the plywood bonding strength, rheology, and other physiochemical properties of 

camelina protein based adhesives.  

4.3 Experimental Section  

4.3.1 Materials  

Camelina meal was purchased from Field Brothers Inc (Pendroy, MT, US) and contained 15% 

lipids (db), 32.4% crude protein (db), and 11.0% moisture (db). Polymeric amine epichlorohydrine 

(PAE) was provided by Wuhu Hangchen Trading Co. Ltd (WuHu, China). PAE is in aqueous 

solution at a 12.7% solid content and pH 3.9. Undecylenic acid (99%, UA) was purchased from 

Sigma–Aldrich (St. Louis, MO). Tetrakis(hydroxymethyl)phosphonium chloride (T, 80% water 

solution), hydrochloric acid (HCl), sodium hydroxide (NaOH), and hexane were purchased from 

Fisher scientific (Waltham, MA, US). The water borne polyurethane was made from BiOH® 

polyols according to our previous studied methods (11). Cherry wood veneers with dimensions of 

50 mm × 127 mm × 5 mm (width × length × thickness) were provided by Veneer One (Oceanside, 

NY). Yellow pine veneers with dimension of 300 × 300 × 3.5 mm were purchased from Ashland 

Company (Covingtion, KY US). 

4.3.2 Characterization  

Size exclusion chromatography (SEC) 

The molecular weight of protein with/without modification were measured using a high 

performance liquid chromatography (HPLC) system (1260 with high sensitivity detector, Agilent, 

Palo Alto, Cal.) as described in Bean et al, 2006 (19) except that a 300 × 7.8 mm BioSep 4000 

column and security guard column (Phenomonex, Torrance, Cal.) were used. The column was run 

at room temperature 30 ℃. The mobile phase was a pH7.0 sodium phosphate buffer (50mM) with 

1% sodium dodecyl sulfate (SDS, w/v) and flow rate was maintained at 1 ml/min. The samples 

were first freeze dried and then redissloved in 1mL of a pH 7.0 sodium phosphate buffer (12.5 

mM) with 1% SDS at a constant weight of 5 mg. Proteins including bovine serum albumin (66 

kDa), carbonic anhydrase (29 kDa), lysozyme (14 KDa), and vitamin B12 (1350 Da) were used as 

standards for the estimation of camelina protein weight distribution.  
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Infrared spectroscopy (IR) 

The control and modified camelina protein based adhesives were freeze dried after reaction and 

ground into fine particles. The IR spectrum were recorded using a Smiths Detection Sensor IR 

equipped with universal attenuated total reflectance. (London, England) in the range of 4000 -   

800 cm-1. Each spectrum was scanned 256 times at a resolution of 4 cm-1. The spectra data were 

average of three replicates. Baseline and ATR correction were done to the spectra. Data from ATR 

is converted to sample absorption data. 

Rheology 

The shear rate dependent viscosities of camelina protein and modified camelina protein based 

adhesives were measured by a Bohlin CVOR150 rheometer (Malvern Instruments, Southborough, 

MA) with a parallel plate (PP20, 20 mm plate diameter).The distance between cone and plate was 

set as 500 nm for all samples. Shear rate was in the range of 0.1 to 100 S-1, and the testing 

temperature was 23 ℃. To prevent dehydration during testing, a thin layer of silicone oil was 

spread over the circumference of the samples. 

Morphology  

Transmission electron microscopy (TEM) 

The microstructure of aqueous samples were observed using a model CM100 TEM (FEI Co., 

Hillsboro, ORE) operated at 100 KV. Fresh prepared samples were diluted into 0.1% with 

deionized water and then sonicated for 3 min right before imaging. The sonicated sample was then 

absorbed onto Formvar/carbon-coated 200-mesh copper grids (Electron Microscopy Sciences, 

Fort Washington, Pa.) and stained with 2% (w/v) uranyl acetate (Ladd Research Industries, Inc., 

Burlington, Vt. US) for one minute at room temperature. The stained sample was allowed to dry 

for about 15 min before taking TEM images.  

Scanning electron microscopy (SEM) 

The samples were cured using the wood pressing temperature (170 ℃) to mimic the adhesive 

application conditions. The cured samples were milled into powder to view the microstructure on 

a Hitachi S-3500N (Hitachi Science System, Ibaraki, Japan) SEM instrument. The sample powder 
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was affixed to an aluminum stub with two sided adhesive tape and coated with an alloy of 605 

gold and 40% palladium. (Desk ⅡSputter/Etch Unit, Moorestown, NJ, US). The accelerating 

voltage of the testing was 5 KV.  

Particle size analysis  

Freshly prepared control and modified camelina protein adhesive samples were tested on a laser-

scattering particle size distribution analyzer (LA-910, HORIBA company, Kyoto, Japan). Particle 

sizes were recorded and calculated into particle size distribution graphs. Three repetitive tests were 

done on each sample. 

Turbidity  

Control and modified camelina protein adhesive samples were diluted into 0.1% with deionized 

water and these solutions were stirred for one hour at room temperature before testing. The 

absorbance of protein solutions was measured at 600 nm with a UV-VIS Spectrophotometer 

(SHIZMADAU Corp. Tokyo, Japan). All measurements were done in three repetitions and the 

averages were reported.  

Thermogravimetric analysis (TGA) 

The control and modified camelina protein based adhesives were freeze dried after modification 

and milled into fine powder. The thermal hydrolysis curves of dry samples were record using 

thermogravimetric analysis (TGA, PerkinElmer Pyris1 TGA, Norwalk, CT). Around five mg of 

each sample was loaded into the TGA pan and heated from 50 to 700 ℃ at a heating rate of             

ten ℃/min. Heating processes were under nitrogen atmosphere. Data was plotted as the derivative 

thermogravimetric analysis (DTGA). The onset, end, and peak temperatures of each peak were 

calculated by TGA data processing software. 

Wood bonding performance tests  

Two layer wood specimen Cherry or yellow pine wood pieces were preconditioned at 23 ℃ and 

50% RH in a chamber (Electro Tech Systems, Inc., Glenside, PA, US) for at least one week prior 

to use. According to previous studies, the camelina protein adhesives were brushed on wood at 
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2.36 mg/cm2. The wood pieces were rested for 15 min before assembling together. To avoid the 

influence of hot press condition on adhesion strength, a relative higher temperature of 170 ℃ and 

a longer time of 10 min were used at a pressure of 1.4 MPa. The wood assemblies were cooled at 

room temperature and conditioned at the chamber at 23 ℃ and 50% RH for one day before cutting.  

Each wood assembly was cut into five small pieces at a dimension of 50 mm × 20 mm (length × 

width). Two of the small wood pieces were further conditioned and used for dry strength testing. 

Three of the small wood specimen were soaked in water at room temperature for 48 h. Wet strength 

was tested immediately after soaking. Adhesion strength was expressed as the stress at maximum 

load. Wood failure was evaluated in accordance to the standard for estimating the percentage of 

wood failure in adhesive-bonded joints (14). Wood specimens were tested with an Instron tester 

(Model 4465, Canton, MA) based on ASTM Standard Method D2339-98 at a crosshead speed of 

1.6mm/min (15). Water resistance of the two layer wood specimen was measured based on ASTM 

Standard Methods D1183-96 and D1151-00 (16).  Dry strength data were the average of four 

replicates and wet strength data were the average of six replicates.  

Three layer wood specimen The 300 × 300 × 3.5mm dimension yellow pine veneers were 

preconditioned in a 27 ℃, 30% RH chamber at least one week before wood adhesion test. The 

three veneers were layered up in a way that grain lines of the middle panel were perpendicular to 

the grain lines of the top and bottom panels. Around 20 to 22 g/ft2 (wet basis) adhesive was 

brushed on the two faces of the middle veneer panel only. The assembled wood specimen was 

standing for 15 min before hot press. The hot press conditions were 150 ℃, 10 min at 1.03 MPa.  

The bonded three layer wood specimen were conditioned in a chamber at 23 ℃ and 50% RH for 

two days and then cut into ten small pieces (82.6 × 25.6 mm) and four large wood pieces (50 × 

127 mm) based on the ASTM standard method D906-98 (17). Four of the small wood pieces were 

used to test dry adhesion strength. Water resistance was evaluated in terms of wet shear adhesion 

strength and three cycle soaking test (18). Six of the small wood pieces were soaked in water for 

24 h at 23 ℃ and then wet adhesion was tested immediately after soaking.  The four large pieces 

were used for three cycle test. In each cycle, the wood pieces were soaked at 23 ℃ for four hours 

and then dried at 50℃ with air circulation for 19 h. After drying, the wood pieces were evaluated 
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for delamination. The delamination score is rated from zero to ten. Zero means no delamination, 

five is the maximum allowable delamination to pass the test, and ten means completely veneer 

separation. Any individual value higher than 5 is considered as fail to pass the three cycle test. 

4.3.3 Preparation of Camelina Protein  

Camelina protein was extracted according to previous method with slight modifications (13). 

Camelina meal was defatted using hexane at a ratio of 1:10 (w/v) for two hours with three repeated 

cycles. The defatted camelina meal (DCM) was then spread into thin layers (under 2mm) to allow  

hexane to evaporate in a fume hood for 48 hours. DCM was suspended into water at a ratio of 1:30 

(w/v) and stirred for two hours. Centrifuge the DCM slurry to remove the water soluble gum and 

other impurities. The sedimentation was then dispersed into water at ratio of 1:30 (w/v) and the 

pH was adjusted to 12.0 using 3 Mol/L NaOH with continuous stirring for two hours to dissolve 

protein and then centrifuge. The supernatant was adjusted to pH4.5 using 3 Mol/L HCl to 

precipitated protein.  To remove the salts, protein was washed with distilled water for twice and 

then redissloved at pH7 for freeze drying. The final protein isolate had about 83% protein as 

measured by Elemental Analyzer (Perkin Elmer 2400 SeriesⅡ CHNS/O, Waltham, MA) using 

6.5 nitrogen to protein conversion factor.  

4.3.4 Preparation of modified camelina protein based adhesives  

Camelina protein was dispersed into water at a 10% solid content at different pH values and 

allowed stabilize at the pH for 30 min. Varied amounts of PAE (3%, 5%, 10%, 15%, volume ratio 

to C slurry) solution were then add to the protein slurry. The pH of the slurry was maintained using 

sodium hydroxide. Camelina protein slurry was stirred under the same conditions without PAE to 

use as control.  

The adhesive formulation was further improved by introducing a cross-linker and hydrophobic 

aliphatic chains. The protein was first dispersed in water and then different amount of T, UA or 

WPU was added to the slurry. The pH of the slurry was maintained at 8 for UA and WPU, 4.5 and 

8 for T, using NaOH & HCl and the mixture was stirred for two hours. Next, 10% of PAE was 

added to the CT/CU/CW mixture and the pH was maintained at 4.5 or 8. The CTP/CUP/CWP 
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adhesives were further stirred for another four hours. All the preparation procedures were done at 

room temperature (23 ℃).  

4.4 Results and Discussion  

4.4.1 Molecular weight of control and modified camelina protein studied by size 

extraction chromatography (SEC) 

SEC was used to characterize the molecular weight (Mw) distribution of control and modified 

camelina proteins solubilized in SDS buffer. In Fig.1, control camelina protein had three major 

peak at 5.1 min, 8.1 min, and 9.0 min. According to the standard molecular weight marker, peak 

at 8.1 min represented fraction of 66 KDa, peak at 8.9 represented fraction of 29 KDa, peak at 9.8 

min represented fraction of 14 KDa, and peak at 11.7 min represented fraction of 1,350Da. Peak 

at 5.1 min indicated camelina protein fractions with molecular weight distribution much larger 

than 66 KDa, which likely represents polymeric and oligomeric proteins composed of smaller 

protein  subunits. In samples with PAE modification, the large peak at 5.1 min dramatically 

decreased and all other peaks shifted to lower molecular weights, indicating that within the SDS 

soluble proteins, PAE modification resulted in a shift to smaller proteins. Samples with UA and 

WPU had slightly larger Mw than CP but still under 29 KDa. This slightly different molecular 

weight distribution of the SDS-soluble proteins in UA and WPU may be due to UA and WPU 

partially blocking the protein surface and reducing the efficiency of PAE modification.  

The SEC chromatograms of samples with cross-linker T are shown in Fig.2. SDS soluble proteins 

with T added had a narrower molecular weight range with the lower peak area after 10 min shifted 

to the 8-10 min range in the CTP and CT compared with CP. The sharp peak at 12min in Fig.4 

was free cross-linker. CT and CTP had very similar SEC curves which indicated that the covalent 

bonding between T and protein was stronger than the uncovalent interactions between PAE and 

protein.  

Chromatograms in Fig 1 and 2 were normalized to be able to easily compare the SEC 

chromatograms from the samples. The total peak area from the SEC analysis is shown in Fig 3. 

Demonstrating that after PAE modification, protein solubility in SDS was greatly reduced 

compared to the control PAE modification may have promoted the unfolding of camelina protein 
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and more hydrophobic groups exposed to limit the solubility. Modifications may have also resulted 

in the inability of SDS to bind to the proteins, limiting solubility. From Fig.2 and Fig.3, we could 

see after modifying protein with T, the protein samples had larger Mw but higher solubility. The 

surface hydrophobic groups should reach its maximum with only PAE modification.  

4.4.2 IR spectra of control and modified camelina protein 

In the IR spectra (Fig. 4) of cured PAE, we found typical amide I and amide II bonds at 1644 and              

1551 cm-1. In the unmodified camelina protein, the amide bonds were located at 1646 and 1542 

cm-1 respectively. The amide I is corresponded to C=O stretching vibration with minor 

contribution from C-N stretching, and amide II arises from N-H bonding (60%) and C-N stretching 

(40%) (26, 27). The small peak at 1716 cm-1 in PAE spectra was attributed by the stretching 

vibration of C=O in ester groups. In the drying process, the carboxyl groups at the end of 

polyamideamine chains reacted with the hydroxyl groups on the azetidinium ring and formed the 

new ester groups (28). There was also an ester peak at 1745.6 cm-1 in camelina protein spectra 

corresponded to the residual of camelina oil. Both PAE and protein had the strong and broad peaks 

from the stretching of N-H but at different position. 

In the spectra of CP, the amide bonds moved to lower position at 1640 and 1535.5 cm-1, which 

indicated the changes in chemical environments because of the interactions between PAE and 

protein molecules. But the relative peak area ratio under amide I and amide II remained the same, 

indicating no covalent bonds between protein and PAE. To further study the structure changes in 

protein, Fourier self-deconvolution spectrum were calculated in the range of amide I bond. The 

major peaks in deconvolution amide bond were not changed for camelina protein after 

modification by PAE. The analysis of deconvolution amide I band proved that protein secondary 

structure stayed the same after PAE modification. The electrostatic and hydrophobic interactions 

between PAE and protein only altered protein tertiary conformation and partly unfolded protein. 

The acid carboxyl groups (-COOH) in protein can react with the azetidinium ring in PAE and form 

new ester carboxyl groups (-O-C=O) and thus the carboxyl absorbance peak shifted to 1737 cm-1 

(29). 
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The spectrum of camelina protein modified with both PAE and UA/WPU/T are shown in Fig. 5.  

The acid carboxyl group from –COOH in UA at 1712 cm-1 was not shown in the CUP spectra, 

which indicated that carboxyl groups reacted with the amine group (-NH2) in protein. The major 

interactions between protein and WPU are physical entanglement and hydrophobic interactions of 

side chains. IR spectrum demonstrated that covalent linkage and side chains interactions from UA 

and WPU promoted protein unfolding and conformation changes. The CTP and CT spectra were 

quite different in amide bonds position and relative intensity compared with C or CP. Molecular 

aggregation will influence the amide bonds vibration and thus move their absorption position in 

the IR spectra. The amide I and II peak area ratio in CTP and CT are 2.52 and 2.43 respectively 

while the ratio of C and CP are only 2.09 and 1.91 respectively. The increased ratio between amide 

I and II reveals that the intensity of amide II bond decreases due to the amine group reacting with 

cross-linker T. 

4.4.3 Viscosities of control and modified camelina protein 

Viscosity is an important parameter referring to handling and surface wetting ability of adhesives. 

Intermolecular interactions including hydrogen bonds, hydrophobic interactions, and electronic 

static forces mainly determine the intrinsic viscosity. With stronger intermolecular interactions, 

the protein molecules tend to be in larger sizes with more self-association (31, 32). The intrinsic 

viscosity against shear rate in the range of 0.1 to 100 S-1 were measured and plotted in Fig.6. 

Viscosity of camelina protein showed shear thinning properties and all the viscosities of modified 

samples were within the range for good industrial applications (33). After PAE modification, 

camelina protein had lower viscosity because of the positive charged groups from PAE forming 

electrostatic interaction with charged protein chains. The decrease of charged patches and increase 

of net charge on protein surface led to less attraction and more repulsion of surrounding molecules 

and therefore less self-association and lower viscosity (34). 

Both UA and WPU have the long aliphatic chains and interact with polypeptide chains from CP. 

After addition of UA and WPU, the adhesives’ viscosity increased mainly because of the 

intermolecular chain entanglement and hydrophobic interaction. As a small molecule, the reaction 

efficiency between UA and CP is much higher than that of WPU and the chain flexibility of UA 

is higher than WPU. Therefore, the increase of viscosity for UA treated adhesive is more obvious 
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than WPU treated adhesive. T crosslinked different protein chains together and thus increased 

intramolecular interactions and molecular weight, which resulted in higher viscosity. 

4.4.4 Microstructures of control and modified camelina proteins  

It has been reported that the majority of camelina proteins have are globular structures (37). For 

the current study, camelina protein was extracted as mixture of different fractions. The protein 

conformation in 1% aqueous solution was studied by TEM. Different camelina protein molecules 

crosslinked together into large aggregates and formed a continuous layered network as shown in 

Fig. 7. The darker color in TEM image shows more layers of the sample molecules. In the images 

of CP, two distinct types of structures were evident. The majority was the protein structures, the 

minority club-shaped structures were free PAE. Protein aggregates with PAE treatment had more 

flattened shapes and open, loose networks. PAE was uniformly distributed into protein and formed 

a bridge between protein molecules. The conformation changes of camelina protein observed by 

TEM demonstrated that partly unfolded camelina protein with more flexible structure would 

improve wood bond strength. The compact camelina protein structure was disassociated and 

unfolded by the stimulation of electrostatic and hydrophobic interactions between PAE and 

protein. The unfolded protein had more surface available for contact with wood and more exposed 

adhesion groups to react with wood. PAE also worked as a linkage to enhance the inner 

crosslinking of protein molecules.  

The microstructures of cured protein adhesives were viewed by SEM (Fig.8). The samples were 

cured at hot press temperature and hand milled into small particles. Both samples formed compact 

disks after thermal curing, which indicated that the protein molecules were well crosslinked 

together. In the up-left side enlarge picture, the surface and sectional view were shown. The curved 

control camelina protein showed a smooth fracture surface with a few small particles attached on 

its surface. The PAE treated sample showed a coarse fracture surface with fluctuant layers. 

Absorbing polyelectrolyte into protein structure leads to a disordered and increased roughness of 

cured protein structure (38).  Proteins in PAE treated samples were unfolded and had more flexible 

chains. Therefore, when protein cured, they tended to form anomalous crosslinking. 
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4.4.5 Particle size analysis  

As an important physical characteristic, particle size reflects useful information including the 

changes in conformation, aggregate states, and denaturation. The particle size distribution of 

adhesive can influence the process of protein penetrating into wood cells and further effect the 

adhesion strength. Fig. 9 shows the particle sizes distribution of camelina protein adhesives with 

different formulation. The majority of the native protein particles had a size under 10 µm but had 

particles as large as 100 µm. After PAE modification, the frequency of particles under 10 µm 

decreased and converted to larger size around 100 µm to 400 µm. PAE can noncovalently link 

protein molecules together through electrostatic and hydrophobic interactions. In the CWP sample, 

WPU would have first covered the protein surface subsequently making it difficult for PAE to link 

protein molecules and thus, the CWP and C had almost the same particle size distribution curves. 

UA, as a small molecule, covalently grafted on protein. The UA chains interacted with other chains 

to help crosslink protein molecules and it didn’t hinder the PAE coming to protein and thus, the 

CUP particle size was between 10 to 100 µm. CT particle size distribution shifts to larger size 

compared with CUP because T was an active, small molecule cross-linker. When T and PAE were 

combined together, the protein molecules crosslinking effects were even more obvious.  

4.4.6 Turbidity  

Turbidity is a useful optical parameter to predict protein aggregation behavior caused by either 

covalent crosslinking, noncovalent interactions, or physical entanglement (30). The turbidity of 

camelina protein with different chemical modifications is summarized in Table 1. The native 

camelina protein had very low absorbance at 600 nm, which indicated relatively high solubility 

and low aggregation. All the modified camelina protein had remarkable increase in absorbance at 

600 nm. The interaction between PAE and protein through charged groups stimulated the 

unfolding process of protein and the exposed protein side chains would further interact with each 

other through hydrophobic interactions (8, 9). This process favored protein association and 

resulted in low solubility. WPU and UA brought more alkyl side chains into the protein system 

and these alkyl side chains mainly interact with protein through physical entanglement and 

hydrophobic interactions. T covalently crosslinked protein molecules together with the reaction on 
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amine groups. Thus, WPU, UA, and T further increase the aggregation process resulting in higher 

turbidity.  

4.4.7 Thermal degradation analysis of control and modified camelina protein 

Thermal analysis gives the information of sample decomposition as a function of temperature. The 

thermal stability of an adhesive is important reference for further process conditions such as hot 

press temperature. Fig. 10 showed the derivative weight loss curve of samples when heated under 

nitrogen. The details of peak temperature are summarized in Table 2. Free and bound water 

evaporated under 100 ℃. Since the water content of protein samples was very low, the water loss 

peaks were not obvious. Treatment C had two degradation stages assigned to protein subunits with 

different stabilities. During the heat process, the noncovalent intramolecular interactions including 

electrostatic interactions, hydrogen bonds, and hydrophobic interactions were first decomposed 

and then the covalent bonds such as C-N, C(O)-NH, C(O)-NH2, and NH2 broke and released CO2, 

CO, and NH3 (35, 36). Peak 1 in CP samples was broad with higher peak temperature than in C. 

After reacting with PAE, the composition of peak 2 in camelina protein disappeared, which meant 

it converted into structures decomposed at lower temperature. The electrostatic and hydrophobic 

interactions between PAE and protein stimulated protein unfolding into loosen structures with less 

thermal stability. Also, the CP surface covered with PAE molecules had less opportunities for 

protein-protein self-association. Because WPU itself had two decomposed peak at 324 and 338 ℃ 

assigned to hard and soft segments in WPU structure, (11) the CWP adhesive had one broad 

decomposed peak broadened from 273 to 480 ℃.  Since the interactions between CP and WPU 

were mainly hydrophobic interactions and physically entanglement, their decomposed peaks 

merged together instead of forming a new peak at a higher temperature. Grafting UA on protein 

surface hardly affected the thermal stability of CP. Both CTP and CT had even lower peak 

temperatures comparing with other samples. The cross-linker T also resulted in protein with less 

thermal stable structures. 

4.4.8 Wood bonding performance of camelina protein based adhesives  

4.4.8.1 The effect of PAE on adhesion property of camelina protein 
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The adhesion properties of camelina protein were affected by PAE significantly. Dry and wet wood 

bonding strength of different amount of PAE modified camelina protein adhesives are summarized 

in Table 3. The native camelina protein had a very low dry bond strength of 2.39 ± 0.52 MPa and 

hardly any wet strength at all. The poor wood adhesion property of camelina protein could be due 

to its highly compact structure (20). After modification with 10% PAE, the dry wood bond strength 

was increased to 5.39 ± 0.50 MPa with 100% wood failure. The wet wood bond strength was 

dramatically increased from 0.37 ± 0.22 to 2.35 ± 0.17 MPa. PAE is a positive charged aqueous 

polyelectrolyte, which ensured good compatibility with camelina protein slurry. The charged 

protein segments are inclined to crosslink with charged chains of PAE. The charged chains of PAE 

may absorb onto the protein through physical entanglement and/or noncovalent bonding (21). 

Electrostatic interactions likely serve an essential role in the binding of charged PAE chains with 

the protein. The initial electrostatic association may form salt bridges or hydrogen bonding 

between protein and polyelectrolyte, which promotes partial protein unfolding resulting in more 

conformational flexibility and molecular mobility (22, 23). The more open structure of PAE 

modified protein would provide more contact area and adhesion groups to react with wood, and 

therefore increase the bond strength.  

Protein structure is sensitive to pH conditions. At the isoelectric pH, protein is in the most compact 

state with lowest solubility. With the increasing of pH, protein will be partly unfolded, charged, 

and easier to disperse in water (24). The data in Table 4 showed that at pH 8.0 camelina protein 

had higher dry bond strength with 100% cohesive wood failure. Mild Alkaline pH  alter protein 

charge, and therefore possibly structure, which in turn facilitates interaction with PAE and wood 

surfaces, which leads to the increased wood bonding strength. Wet bond strength at pH 9.0 

decreased to 1.54 ± 0.27 MPa, possibly due to increasing charge on the proteins and increasing 

interaction with water, weakening bond strength.  

4.4.8.2 Synergistic effect of PAE with aliphatic compounds and chemical cross-linker on 

adhesion property of camelina protein  

From previous studies it is known that addition of aliphatic chains to proteins results in increased 

hydrophobicity of protein and therefore increases in wet bond strength of protein based adhesives 

(10, 11). In the present study, camelina protein was first reacted with 10% PAE at pH 8 and then 
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different amount of UA/WPU were added to the PAE modified adhesive. UA can grafted onto 

protein through the reaction of carbonyl group from UA and amine group from protein, which can 

be detected using IR. WPU can interact with protein through hydrogen bonding, hydrophobic 

interactions and physical entanglement. From table 5 and 6, it can be seen that the addition of 

UA/WPU increased both dry and wet bond strength. The hydrophobic chains from UA or WPU 

could prevent water penetration into the adhesive surface and thus increase water resistance. Also, 

the chemical crosslinking and physical entanglement of UA or WPU with protein may have 

enhanced the three dimensional network of PAE modified camelina protein. The highest wet 

adhesion strength was increased up to 3.12 ± 0.20 MPa with wood fiber pulled out. Too much UA 

or WPU would block the functional groups which should react with wood cells and resulted in low 

bond strength.  

Chemical crosslinking could also enhance the three dimensional structure of protein. T is active to 

react with amine group on protein and link different protein segments together (13).From the data 

shown in table 7, crosslinked camelina protein had higher dry and wet adhesion strength than 

native protein and crosslinking effect was not influenced by pH condition. But little synergistic 

effect was found between T and PAE.  

4.4.8.3 Three layer wood adhesion performance  

Formulations with significant difference were selected to do three layer wood adhesion test and 

further characterization. Sample names were coded as following camelina protein: C; camelina 

protein + 10% PAE: CP; camelina protein+7%UA+10%PAE: CUP; camelina protein + 30%WPU 

+10%PAE: CWP; camelina protein +10% T: CT; camelina protein + 10%T+ 10% PAE: CTP. 

Table 8 shows the three layer wood adhesion and three-cycle soaking results. The dry strength of 

native camelina protein was acceptable to use as plywood adhesive but camelina protein hardly 

had any wet adhesion strength. Wet adhesion strength of PAE modified camelina protein was 

dramatically increased to 1.30 ± 0.23 MPa, which met commercial standards and was higher than 

modified soy protein adhesion strength (25). When WPU was added into the PAE modified 

camelina protein, the adhesion performance was further improved. The multiple chains of WPU 

enhanced the adhesive structure mainly through physical entanglements and hydrophobic 
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interactions. When adding UA into the PAE modified camelina protein, the dry strength decreased 

and wet strength was comparable to C and CP. Single chains of UA may have covalently grafted 

onto the protein surface, which partly blocked adhesion of the protein directly to the wood surface. 

The hydrophobic chain of UA still protects protein from water penetration, which ensured a 

relatively high wet adhesion strength, 1.12 ± 0.31 MPa. When protein was covalently crosslinked 

by T, both dry and wet adhesion strength decrease because larger protein aggregates have relatively 

small reactive surface with wood cells.  

4.5 Conclusion 

Compared with soy protein, camelina protein (CP) is more economical and doesn’t cause potential 

political and economic concerns regarding famine and therefore could potentially serve as a new 

primary source of protein in biomaterial field. Camelina protein was successfully modified into 

adhesive meeting industrial standards for application on plywood in terms of adhesion strength.  

Due to the constrained globular structure of control camelina protein, it had poor dry and wet 

adhesion strength. PAE works on opening camelina protein structure into flexible chains with more 

adhesive groups and hydrophobic packs on the surface confirmed by TEM imaging and SEC data. 

The open and flexible protein structure with more functional groups available for reaction had 

better adhesion performance. Hydrophobic chains from WPU and UA further improved water 

resistance of protein. The CWP sample had improved dry strength to 2.75 ± 0.22 MPa and wet 

strength to 1.40 ± 0.25 MPa on three layer plywood. CUP has lower try strength compared with 

CWP because UA partly covering adhesion groups and resulting in weak three dimensional 

network in cured adhesive. CT and CTP samples prove that too much crosslinking in protein 

structure impeded the adhesion performance. Modified camelina protein adhesive is not only safe 

and renewable but also economic compared with soy source materials. 
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4.7 Figures and tables 

Figure 4.1 SEC molecular weight distribution of C, CP, CUP, and CWP 
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Figure 4.2 SEC molecular weight distribution of C, CPT, and CT 

Figure 4.3 Total SEC peak area of control and modified camelina protein  

 

 

804,821

33,278
74,379

41,503

130,946
147,380

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

8.E+05

9.E+05

C CP CUP CWP CT CTP

To
ta

l p
ea

k 
ar

ea
/m

A
U



96 

 

Figure 4.4 IR spectra of PAE, C, and CP  

 

Figure 4.5 The infrared absorbance of camelina protein with different modification 
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Figure 4.6 Shear rate dependent viscosities of camelina protein adhesives with different 

formulations 
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Figure 4.7 TEM images of camelina protein and sample modified with PAE     

 Note: Left: C Right: CP+10%PAE 

 

Figure 4.8 SEM images of CP and PAE treated CP               

Note: Left: CP   Right: CP+10%PAE 
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Figure 4.9 Particle size distributions of camelina protein adhesives with different 

formulations 
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Figure 4.10 Derivate thermal degradation analysis curves of control and modified camelina 

proteins  
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Table 4.1 The turbidity of camelina protein adhesives with different formulation 

 

sample absorbance Solubility association 

C 0.20±0.02 High Low 

CP 0.75±0.05 Low High 

CWP 0.84±0 Low High 

CUP 0.89±0.04 Low High 

CT 0.86±0.02 Low High 

CTP 0.89±0.03 Low High 

 

Table 4.2 Derivative thermogravimetric peaks temperature data of control and modified 

camelina proteins 

Sample ID Peak 1 (℃) Peak 2 (℃) 

One 

set 

End Peak One set End Peak 

C 255 374 321 550 639 599 

CP 268 400 338    

CUP 264 365 321    

WP 273 480 347    

CTP 182 237 208 303 365 333 

CT 178 231 207 306 363 337 
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Table 4.3 Two layer cherry wood adhesion strength of camelina protein modified with 

different amount PAE at neutral pH 

       Sample ID 
Dry Strength 

(MPa) 

CWF 

 
Wet Strength 

(MPa) 

CWF 

            CP 2.39  ± 0.52C 0 0.37 ± 0.22D 0 

    CP+3% PAE 4.14 ± 0.39B Fiber pulled out 1.66 ± 0.12C 0 

    CP+5% PAE 4.10 ± 0.64B Fiber pulled out 2.00 ± 0.17B 0 

    CP+10% PAE 5.39 ± 0.50A 100% 2.35 ± 0.17A 0 

    CP+15% PAE 5.11 ± 0.48A 67% 2.34 ± 0.15A 0 
Note: CWF means cohesive wood failure. Dry strength data were the average of six duplicates and wet strength data 

were the average of nine duplicates. Capital letters after data were results for statistical analysis. α = 0.05 

 

Table 4.4 Two layer cherry wood adhesion strength of camelina protein modified with 10% 

PAE at different pH 

Sample pH 
Dry Strength 

(MPa) 

CWF Wet Strength 

(MPa) 

CWF 

4 3.98  ± 0.60B 0 1.79 ± 0.28BC 0 

6 5.14 ± 0.49A 67% 1.94 ± 0.34B 0 

7 5.45 ± 0.50A 100% 2.34 ± 0.17A 0 

8 5.36 ± 0.37A 100% 2.34 ± 0.44A 0 

9 5.18 ± 0.60A 67% 1.54 ± 0.27C 0 

 

Table 4.5 Synergistic effect of PAE with UA on two layer yellow pine wood adhesion 

performance at pH8 

Sample Name Dry strength 

(MPa) 

CWF Wet strength  

(MPa) 

CWF 

CPI+10%PAE 6.32 ± 0.18BC 100% 2.59 ± 0.17B 0 

CPI+5%UA+10%PAE 7.40 ± 0.44A 100% 2.78 ± 0.12AB 0 

CPI+7%UA+10%PAE 6.86± 0.69AB 100% 2.87 ± 0.21A  0 

CPI+10%UA+10%PAE 5.89 ± 0.17CD 100% weak 2.28 ± 0.25C 0 

CPI+15%UA+10%PAE 5.80 ± 0.05D 100% weak 2.29 ± 0.20C 0 
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Table 4.6 Synergistic effect of PAE with WPU on two layer yellow pine wood adhesion 

performance at pH8 

Sample Name Dry strength 

(MPa) 

     CWF Wet strength 

(MPa) 

CWF 

CPT+10%PAE 6.32 ± 0.18 100%B 2.59 ± 0.17B 0 

CPI+20%WPU+10%PAE 7.59 ± 0.19 100%A 3.05 ± 0.17A 0 

CPI+30%WPU+10%PAE 6.91 ± 0.32 100%AB 3.12 ± 0.20A Fiber pulled out 

CPI+40%WPU+10%PAE 6.43 ± 0.60 100%B 2.80 ± 0.50AB 0 

CPI+50%WPU+10%PAE 5.41 ± 0.80 100%C 2.60 ± 0.22B 0 

Table 4.7 Synergistic effect of PAE with T on two layer yellow pine wood adhesion 

performance at Ph4.5 and Ph8 

Sample Name Dry Strength 

(MPa) 

CWF Wet 

strength(MPa) 

CWF 

CP+10%T ph4.5 3.79±0.29 50% WF 2.16±0.35 0 

CP+10%T+10%PAE 4.5 3.96±0.75 75% WF 2.47±0.23 83%WF,17%FIBER 

CP+10%T  Ph8  3.79±0.29 Weak WF 2.16±0.53 0 

CP+10%T+10%PAEph8 5.4±0.45 Weak WF 2.35±0.23 Fiber pulled out 
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Table 4.8 Three layer wood test results of selected adhesive formulations and literature 

reference data 

                                                       Adhesion   strength results 

Sample Name Dry strength 

(MPa) 

Wet strength 

(MPa) 

Reference 

C 2.12 ± 0.17 NA  

CP 2.55 ± 0.22 1.30 ± 0.23  

CWP 2.75 ± 0.22 1.40 ± 0.25  

CUP 1.45 ± 0.16 1.12 ± 0.31  

CTP 1.30 ± 0.34 0.69 ± 0.08  

CT 1.56 ± 0.06 0.23 ± 0.16  

Polyamide modified SPI 2.71 ± 0.23 1.12 ± 0.13 Bo Fan, 2016 Ref. 25 

Commercial  standards 0.98 0.98 Japan JIS K6806-2003 

Interior-use plywood 0.7 0.7 China GB/T 17657-

1999 

Three cycle soaking results 

Sample Name Cycle 1 Cycle 2 Cycle 3 

Score Pass Score Pass Score Pass 

C 2.25 100% 4.50 75% 8.00 0 

CP 0 100% 0 100% 0 100% 

CWP 0 100% 0.50 100% 1.00 100% 

CUP 0 100% 0.50 100% 0.88 100% 

CTP 4.25 100% 5.88 50% 6 0 

CT 5.75 75% 6.25 0 NA NA 
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Chapter 5.  Adhesion and physicochemical properties of camelina 

meal with different modification 

5.1 Abstract 

Camelina meal is the byproduct after oil extraction from camelina seed. Camelina meal has drawn 

research attention because it is an economical resource for biomaterials. The major components in 

camelina meal are protein, carbohydrate, and oil, which is proved by Fourier transfer infrared 

spectrum (FTIR) in this study. Native camelina meal hardly has any adhesion strength. Polymeric 

amine epichlorohydrine (PAE) and Laccase were used to modify camelina meal. The modified 

camelina meal showed dramatically improved adhesion strength and potential to imply for wood 

adhesive industry. 

5.2 Introduction  

For over 150 years petroleum has been the foundation for the majority of the resins on the market. 

The United States’ dependence on petroleum is depleting the sources much faster than they can be 

restored. Due to the unbalanced relation between supply and demand, oil prices have doubled since 

2010. The over-use of this chemical has created two major issues within the industry. First, the 

emissions from petroleum-based product production and petroleum burning are a leading source 

of pollution. Secondly, it is inability to replenish petroleum source.  There is strong necessity to 

release modern industry from its dependence on depleting resources. Synthetic petrochemical 

adhesives not only generate severe problems including environmental pollution and detrimental to 

human health but also limited resource. Due to their biodegradability, worldwide availability and 

relative low prices, plant based resins are now attractive raw materials for many applications.  

Since the formaldehyde based adhesives containing residual toxic chemicals, many researches 

have been done to find more natural and renewable resources for wood adhesives industry (1, 2). 

Soy has been considered as the most promising plants for biobased materials and soy protein has 

a very long history to use as adhesive (3). Many green modification technics such as chemical 

unfolding and crosslinking, ultra sound unfolding, and enzyme catalyze have been studied to 
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improve the adhesion performance of soy protein and soy flour based adhesives(4-6). There are 

already commercial products developed from soy protein and soy meal. However, soy based 

biomaterials have the potential political and economic concerns regarding famine.  

Camelina which contains 40% of protein in its defatted meal, haven’t been extensively used and 

could potentially serve as a new primary source of protein.  P. Moriel has studied using camelima 

coproducts to replace conventional corn-soybean meal supplements in the diets of developing 

replacement beef heifers (7). Camelina would be a desirable new resource to replace soy protein 

in biomaterial field. Camelina [Camelina sativa L. Crantz] is an annual oil seed plant growing in 

North America since 4000 BCE. The unique oil composition and properties make camelina oil a 

great resource for biofuels and jet fuel. Camelina meal which is the byproduct after oil extraction 

is mainly used as animal feed with a value about $100 Mg-1 (8). The non-food research of camelina 

meal are still limited. J.T. Kim used recycled newspaper as a reinforcing agent to improve tensile 

properties and increase water resistance of the camelina meal-based biodegradable composite 

sheets and fibers (9). Ningbo Li and Guangyan Qi isolated gum from camelina seed and studied 

the effects of glycerol and nanoclay on camelina gum based films. The physically crosslinked 

network in modified camelina gum proved to increase affinity between the camelina gum matrix 

and intercalated nanoclay and thus make contribution to mechanical strength of camelina gum 

based film (10, 11). The vinyl monomers grafted camelina meal was made into thermoplastic films 

with excellent wet tensile strength (12).  

Previous studies proved that camelina meal which is rich in carbohydrate, protein, oil, and other 

trace component is a promising resource for biomaterial. The adhesion properties of camelina meal 

has not been studied yet. In this study, protein and carbohydrate in camelina meal were modified 

to open the original structure and crosslink to form strong network to enforce the adhesion strength. 

It found that laccase could catalyze fiber or lignin crosslinking and had the possibility for industrial 

bonding and modification of carbohydrates (13). Polymeric amine epichlorohydrine (PAE) can 

stimulate the unfolding of protein and further conformation changes through electrostatic and 

hydrophobic interactions (14, 15). The goal of the present study are to discover and characterize 

the adhesion performance of camelina meal modified with laccase and PAE.  
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5.3 Materials and methods  

5.3.1 Materials 

Camelina meal was provided by commercial processor (Field Brothers Inc., Pendroy, MT, U.S.) 

and it was milled into particle size < 0.5mm using a cyclone sample mill (Udt Corp., Fort Collins. 

CO, U.S.). The Camelina meal content around 15% (db) oil, and 32% protein. Polymeric amine 

epichlorohydrine (PAE) was provided by Wuhu Hangchen Trading Co. Ltd (WuHu, China). PAE 

is in aqueous solution at a 12.7% solid content and pH 3.9. Laccase from agaricus bisporus was 

brought from Sigma-Aldrich, Inc. (St. Louis, MO, U.S.). Its catalyze ability is ≥ 4 U/mg.  

5.3.2 Preparation of modified camelina meal based adhesives  

Camelina meal was dispersed into water at 10% solid content at neutral pH 7.0. Varied amount of 

PAE solution (10%, 20% 30%, 40%, volume ratio to camelina meal slurry) were added into 

camelina meal slurry with consistent stirring. The pH of the slurry was maintained using 3M 

sodium hydroxide. Camelina meal slurry was stirred under the same conditions without PAE to 

use as control. The 30% PAE-camelina meal formulation was further modified with different 

amount of laccase (0.2% and 0.4% w/w). Laccase was added to 30% PAE-camelina meal slurry 

and the slurry was heating at 50 to 60 °C for 30 min with stirring. After heat treatment, 3M sodium 

hydroxide was added to adjust pH to 7.0. The modified adhesive sample was then stirring at room 

temperature for three hour before mechanical tests.  

5.3.3 Wood bonding strength tests  

Two layer wood specimen Cherry or yellow pine wood pieces were preconditioned at 23 ℃ and 

50% RH in a chamber (Electro Tech Systems, Inc., Glenside, PA, US) for at least one week prior 

to use. According to previous studies, the camelina protein adhesives were brushed on wood at 

2.36 mg/cm2. The wood pieces were rested for 15 min before assembling together. To avoid the 

influence of hot press condition on adhesion strength, a relative higher temperature of 170 ℃ and 

a longer time of 10 min were used at a pressure of 1.4 MPa. The wood assemblies were cooled at 

room temperature and conditioned at the chamber at 23 ℃ and 50% RH for one day before cutting.  
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Each wood assembly was cut into five small pieces at a dimension of 50 mm × 20 mm (length × 

width). Two of the small wood pieces were further conditioned and used for dry strength testing. 

Three of the small wood specimen were soaked in water at room temperature for 48 h. Wet strength 

was tested immediately after soaking. Adhesion strength was expressed as the stress at maximum 

load. Wood failure was evaluated in accordance to the standard for estimating the percentage of 

wood failure in adhesive-bonded joints (16). Wood specimens were tested with an Instron tester 

(Model 4465, Canton, MA) based on ASTM Standard Method D2339-98 at a crosshead speed of 

1.6mm/min (17). Water resistance of the two layer wood specimen was measured based on ASTM 

Standard Methods D1183-96 and D1151-00 (18).  Dry strength data were the average of four 

replicates and wet strength data were the average of six replicates.  

 

Three layer wood specimen The 300 × 300 × 3.5mm dimension yellow pine veneers were 

preconditioned in a 27 ℃, 30% RH chamber at least one week before wood adhesion test. The 

three veneers were layered up in a way that grain lines of the middle panel were perpendicular to 

the grain lines of the top and bottom panels. Around 20 to 22 g/ft2 (wet basis) adhesive was brushed 

on the two faces of the middle veneer panel only. The assembled wood specimen was standing for 

15 min before hot press. The hot press conditions were 150 ℃, 10 min at 1.03 MPa.  

The bonded three layer wood specimen were conditioned in a chamber at 23 ℃ and 50% RH for 

two days and then cut into ten small pieces (82.6 × 25.6 mm) and four large wood pieces (50 × 

127 mm) based on the ASTM standard method D906-98 (19). Four of the small wood pieces were 

used to test dry adhesion strength. Water resistance was evaluated in terms of wet shear adhesion 

strength and three cycle soaking test (20). Six of the small wood pieces were soaked in water for 

24 h at 23 ℃ and then wet adhesion was tested immediately after soaking.  The four large pieces 

were used for three cycle test. In each cycle, the wood pieces were soaked at 23 ℃ for four hours 

and then dried at 50℃ with air circulation for 19 h. After drying, the wood pieces were evaluated 

for delamination. The delamination score is rated from zero to ten. Zero means no delamination, 

five is the maximum allowable delamination to pass the test, and ten means completely veneer 

separation. Any individual value higher than 5 is considered as fail to pass the three cycle test 
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5.3.4 Characterization  

5.3.4.1 Fourier transform infrared spectroscopy (FTIR) 

The control and modified camelina meal based adhesives were freeze dried after reaction and 

ground into fine particles. The IR spectra were recorded by a PerkinElmer Spectrum 100 FTIR 

spectrometer (Waltham, MA) in the MID-IR range (4000-600 cm-1) with a universal attenuated 

total reflectance (ATR) sampling device. Each sample was scanned 32 times at a resolution of 2 

cm-1. Data from ATR is converted to sample transmission data. 

5.3.4.2 Rheology properties 

The apparent viscosities of control SPI and WPU-SPI slurries were measured by a Bohlin 

CVOR150 rheometer (Malvern Instruments, Southborough, MA) with a parallel plate (PP20, 20-

mm plate diameter). The distance between cone and plate was set as 500 nm for all samples. Shear 

rate was in the range of 0.1 to 100 S-1, and the testing temperature was 23℃. To prevent 

dehydration during testing, a thin layer of silicone oil was spread over the circumference of the 

samples. 

5.3.4.3 Thermogravimetric analysis (TGA) 

Control and PAE-laccase modified camelina adhesive were freeze-dried, and then the thermal 

hydrolysis curves of dry samples were determined using Thermogravimetric analysis (TGA, 

PerkinElmer Pyris1 TGA, Norwalk, CT). For each sample, about 5 mg was loaded in the pan and 

heated from 50 to 700 ℃ at a rate of 10 ℃/min. Onset (To) and peak temperatures (Tp) were 

calculated by TGA software. 

5.3.4.4 Differential scanning calorimetry (DSC) 

Thermal denaturation of control and PAE-laccase modified camelina adhesive were measured via 

differential scanning calorimetry (DSC, Q200, TA instrument, Schaumburg, IL). Samples (about 

2.5 mg) were hermetically sealed in Tzero aluminum hermetic pans. The samples were heated 

from 0 to 250 ℃ with a heating rate of 10 ℃/min. 
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5.4 Results and discussion  

5.4.1 Bonding strength of camelina meal based wood adhesive 

The influence of PAE on adhesion strength of camelina meal on two layer cherry wood. PAE 

improved the adhesion strength of camelina meal dramatically. Table 1 is the summary of dry and 

wet adhesion strength of control and modified camelina meal. The native camelina meal has very 

low dry strength and hardly has any wet strength. After modification with PAE, both dry and wet 

adhesion strength significantly increased. With 40% PAE, the dry adhesion strength increased to 

4.84 ± 0.43 MPa, and wet strength increased to 2.62 ± 0.61 MPa. PAE is a positive charged 

aqueous polyelectrolyte, which ensured good compatibility with camelina meal slurry. Charged 

PAE chains could absorb onto protein and carbohydrate segments in camelina meal through 

electrostatic interaction and thus enforce the crosslinking network in camelina meal. The initial 

electrostatic association may form salt bridges or hydrogen bonding between protein/carbohydrate 

and polyelectrolyte, which promotes partial unfolding resulting in more conformational flexibility 

and molecular mobility (21, 22). The azetidinium groups from PAE and carboxyl groups from 

protein/carbohydrates also can form ester bonds during hot-press. Carboxyl with negative charge 

also serve as anionic retention sites of cationic PAE (23). 

5.4.2 Synergistic effect of PAE with laccase on adhesion strength of camelina meal  

The formulation with 30% PAE-camelina meal was further improved by adding laccase, which 

can contribute to the bonding of fiber. The adhesion performance of new formulation were tested 

on three layer plywood. Table 2 shows that addition laccase help with dry strength but has little 

effect on wet adhesion strength. When increase solid content from 10% to 15%, wet adhesion 

strength increased significantly up to 1.04 ± 0.19 MPa. Therefore, solid content has more impact 

on adhesion strength of camelina meal then chemical modification. 

5.4.3 FTIR analysis of control and modified camelina meal  

Camelina meal is the material after extracting oil from camelina seed. The FTIR spectrum of 

camelina meal in Figure 1 indicates three major components, protein, carbohydrate, and oil in 

camelina meal. The peaks at 1635 and 1539 cm-1 representing the vibrations of amides I and II, 

are from the protein in camelina meal (24).  Peak at 1051 cm-1 is the C-O and C-C vibrations from 
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carbohydrates (25). The weak peak at 1743 cm-1 is from ester and reveal the existence of camelina 

oil. After modification with PAE and Laccase, the carbohydrate peak move to lower wavenumber 

which prove the functional groups changes in carbohydrates. The protein peaks remain the same 

after modification, which indicates that PAE and Laccase only influence the spatial structure not 

the peptide or amino acid structures.  

5.4.4 Rheology properties of control and modified camelina meal 

Viscosity is one of the most important factors when considering handling and surface wetting 

abilities of adhesives. The intrinsic viscosity against shear rate in the range of 0.1 to 100 S-1 were 

measured and plotted in Fig.2. The gum component in camelina meal makes camelina meal slurry 

gain very high viscosity. Viscosity of camelina meal at low shear rate (0.1 S-1) can rich to 5000 

cp. Viscosity of camelina meal showed shear thinning properties and all the viscosities of modified 

samples were within the range for good industrial applications (26). PAE and Laccase have on 

significant influence on camelina meal viscosity.  

5.4.5 Thermal degradation analysis of control and modified camelina meal  

Thermal analysis gives the information of sample decomposition as a function of temperature. The 

thermal stability of an adhesive is important reference for further process conditions such as hot 

press temperature. Figure. 3 and Table 3 shows the derivation weight loss information of camelina 

meal samples when heating under nitrogen.  Figure 3 shows three major components in camelina 

meal degraded at different temperatures. The first peak at 77 °C in camelina meal was the loss of 

water and for other samples no obvious water loss peaks were found. The second component of 

camelina meal showed three ladder peaks between 251-373 °C. The noncovalent bonds including 

hydrogen bonds, electrostatic interactions, and other intramolecular interactions are first 

decomposed and then the covalent bonds broke and decomposed at a higher temperature (27, 28). 

The third component was decomposed at 616 °C which may assign to protein subunits with more 

stable crosslinking network. The PAE-Laccase modified camelina meal loss the three ladder peaks 

and peaks were broadened. PAE and Laccase interacted with protein and carbohydrates in 

camelina meal and disturbed the original structure and thus the modified camelina meal showed 

different thermal stability. 
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5.4.6 Differential scanning chromatography (DSC) study of camelina meal  

Proteins are macromolecular assemblies can form well defined structures that undergo thermally-

induced conformational changes. DSC measure the absorption of heat caused by the redistribution 

of non-covalent bonds and reveal the stability of protein and other macromolecules (29). The DSC 

peak in camelina meal at 75.3 °C with enthalpy change of 2.9 J/g is considered as protein 

denaturation peak. When adding PAE, the DSC peak temperature moves to 58.4 °C with much 

smaller enthalpy change 0.6 J/g. PAE first interacts with protein through electrostatic interactions 

among charged groups and then stimulates protein unfolding to loose structure, which makes 

protein less stable and easier for thermal denaturation. Laccase doesn’t influence protein 

denaturation temperature very much but samples with both Laccase and PAE have higher enthalpy 

than sample with only PAE. Laccase has the potential to covalently link protein subunits or protein 

subunit with carbohydrate and therefore stabilize protein structure and increase the energy need 

for protein denaturation. DSC analysis of the thermal denaturation of camelina meal provides an 

insight into the unfolding of camelina protein and forces involved in conformation stability.  

5.5 Conclusion  

Compared with soy and other plants, camelina meal is more economical with little competition 

with food industry. FTIR spectra revealed that protein, carbohydrate, and ester were three main 

components in camelina meal. Native camelina meal hardly had any adhesion strength. But with 

PAE and Laccase modification, camelina meal got a dry strength of 1.86 ± 0.32 MPa and wet 

strength of 1.04 ± 0.19 MPa. PAE interacted with protein and carbohydrate through electrostatic 

and other non-covalent forces, which broke down the native spatial structure of protein and 

carbohydrate. Laccase worked as catalyst for oxidation and enforced crosslinking network of 

camelina meal. It was also found that solid content had significant influence on adhesion strength. 

Modified camelina meal shows great potential for implication in wood adhesive and serves as a 

new resource in biomaterial field.   
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5.7 Figures and Tables  

Figure 5.1 FTIR spectra of control and modified camelina meal 
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Figure 5.2 Shear rate dependent viscosities of control and modified camelina meal adhesives 

Figure 5.3 Derivate thermal degradation analysis curves of control and modified camelina 

meals 
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Figure 5.4 DSC of control and modified camelina meal  

 

 

 

 

 

 



118 

 

 

 

 

 

Table 5.1 Two layer cherry wood adhesion strength of camelina meal modified with different 

amount PAE at neutral pH 

       Sample ID 

Dry Strength 

(MPa) 

CWF 

 

Wet Strength 

(MPa) 

CWF 

            CM 1.17 ± 0.51C 0 NA  NA 

    CM+10% PAE 4.66 ± 1.09A 0 1.21 ± 0.31C 0 

    CM+20% PAE 4.10 ± 0.64AB 0 2.21 ± 0.14B 0 

    CM+30% PAE 4.54 ± 0.72A 0 2.33 ± 0.52A 0 

    CM+40% PAE 4.84 ± 0.43A 0 2.62 ± 0.61A 0 

Note: CWF means cohesive wood failure. Dry strength data were the average of six duplicates and wet strength data 

were the average of nine duplicates. Capital letters after data were results for statistical analysis. α = 0.05; CM is 

abbreviation for camelina meal.  
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Table 5.2 Three layer yellow pine wood adhesion strength of modified camelina meal  

Adhesion   strength results 

Sample Name Dry strength (MPa) Wet strength (MPa) 

CM 0.91 ± 0.12 NA 

CM+30%PAE 1.63 ± 0.16 0.49 ± 0.26 

CM+0.2%Laccase+30%PAE 1.76±0.44 0.27±0.22 

CM+0.4%Laccase+30%PAE 1.95 ± 0.50 0.47 ± 0.52 

15% solid content 

CM+0.4%Laccase+30%PAE 

1.86 ± 0.32 1.04 ± 0.19 

Three cycle soaking results 

Sample Name Cycle 1 Cycle 2 Cycle 3 

Score Pass Score Pass Score Pass 

CM NA 

CM+30%PAE 0.25 100% 1.38 100% 2.34 75% 

CM+0.2%Laccase+30%PAE 0.82 100% 4.5 100% 7 0 

CM+0.4%Laccase+30%PAE 4.75 75% 5.62 50% 6.67 0 

15% solid content 

CM+0.4%Laccase+30%PAE 

0 100% 0.88 100% 1 100% 

Note: Higher score means larger delamination 
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Table 5.3 Derivative thermal degradation peaks of control and modified camelina meal 

 

  

Sample ID Peak 1 (℃) Peak 2 (℃) Peak 3 (℃) 

Onset End Peak Onset End Peak Onset End Peak 

CM 36 101 77 251 266 258 282 310 298 

CM+30%PAE 53 78 74 229 257 245 272 266 293 

CM+0.2%Laccase+30

%PAE 

   241 256 250 271 387 344 

CM+0.4%Laccase+30

%PAE-1 

   244 252 248 267 383 338 

CM+0.4%Laccase+30

%PAE-2 

   245 260 253 273 400 355 

Sample ID Peak 4 (℃) Peak 5 (℃)  

Onset End Peak On set End Peak    

CM 328 373 351 546 644 616    

CM+30%PAE 327 318 350 552 696 639    

CM+0.2%Laccase+30

%PAE 

   585 697 652    

CM+0.4%Laccase+30

%PAE-1 

   552 688 606    

CM+0.4%Laccase+30

%PAE-2 

   613 698 649    
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Table 5.4 DSC peaks of control and modified camelina meal 

Sample name Peak Temperature (°C) ΔH (J/g) 

       CM 75.3 2.9 

           CM+30% PAE 58.4 0.6 

CM+0.2%Laccase+30%PAE 50.6 1.6 

CM+0.4%Laccase+30%PAE-1 52.8 1.56 

CM+0.4%Laccase+30%PAE-2 50.8 1.3 

Note: ΔH means enthalpy change 
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Chapter 6.  Conclusion and future outlook 

6.1 Conclusion  

The physiochemical properties of oilseed proteins were successful modified to meet the 

application needs as wood adhesive. The forces stabilizing protein three dimensional structure 

including hydrophobic interactions, hydrogen bonds, and electrostatic interactions were altered by 

fatty acyl chains and polyelectrolytes. The water sensitive groups (WSG) were reduced by 

interacting or reaction with hydrophobic molecules. Introducing fatty acyl chains to protein 

increased the system hydrophobicity and then benefit mechanical properties of oilseed proteins. 

Polyelectrolytes could stimulate protein unfold and explore more active groups to further influence 

other protein characteristics. Both the interactions between protein and aliphatic chemicals, protein 

and polyelectrolytes improve the wet adhesion strength of protein based adhesive. 

Undecylenic acid (UA) with 11-carbon chain was grafted onto soy protein through reaction 

between carboxyl from UA and amine from protein. The fatty acyl chain of UA had significantly 

increased the wet adhesion strength of soy protein from 2.04 MPa to 3.03 MPa testing on cherry 

wood. Hydrophilic amine groups replaced by hydrophobic fatty acyl chains was the main reason 

for improved water resistance of protein structure. Decreased particle size as observed by AFM 

and laser scattering particle sizer revealed that the cross linkage between protein molecules were 

decreased because the blocking effect of UA chains. The protein thermal denaturation and 

degradation peaks observed by DSC and TGA gave evidence for a less stable structure and the 

increased viscosity and modules proved protein unfolding and increased intermolecular 

interactions with UA.  

Soy oil with three fatty acid chains was converted into waterborne polyurethane (WPU) and then 

interacted with protein to reduce the WSG. The oil based WPU had good compatibility and 

reactivity with aqueous protein. The main forces between WPU and protein were physical 

entanglement, hydrophobic interactions, and hydrogen bond. WPU modification had increased wet 

adhesion strength up to 3.81 ± 0.34 MPa with fiber pulled out compared with 2.01 ± 0.46 MPa of 

SPI testing on cherry wood. Also, the dry wood adhesion strength were improved from 5.78 ± 0.37 

to 7.30 ± 0.61 MPa with 100% cohesive wood failure. A new crosslinking network structure were 
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built between protein and WPU. The particle size of different WPU had effects on the interactions 

with protein. The larger contact surface from smaller size WPU0002 facilitated the interaction with 

protein and led to a massive aggregates as observed by TEM images. Particle size and viscosity 

data agreed well with TEM images. WPU0002-SPI adhesive had larger particle size and higher 

viscosity while interaction between WPU0500 and SPI had little impact on particle size and 

viscosity.   

UA and WPU had reduced the WSG on soy protein and improved its wet adhesion strength, 

however, these methods can’t apply to camelina protein directly. The camelina protein is more 

compact than soy protein in structure. Native camelina protein has poor mechanical strength, 2.39 

± 0.52 MPa dry strength and 0.37 ± 0.22 MPa wet strength testing on cherry wood. Polymeric 

amine epichlohydrine (PAE) were used to unfold camelina protein and explore more reactive 

groups or adhesion groups. TEM images revealed that PAE worked as bridges among protein 

molecules and after PAE modification, protein had more flexible and loos structures. PAE 

modified camelina protein had an increased dry strength at 5.39 ± 0.50 MPa with 100% cohesive 

wood failure and wet strength at 2.35 ± 0.17 MPa testing on two layer cherry wood. The three 

layer yellow pine wood testing results of PAE treated camelina protein had a wet adhesion strength 

of 1.30 ± 0.23 MPa, which already met China and Japan standard for plywood application. When 

brought UA and WPU to the PAE pretreated camelina system, the wet adhesion strength were 

further improved to 2.87 ± 0.21 MPa and 3.12 ± 0.20 MPa testing on two layer yellow pine wood. 

For the three layer wood testing, WPU can further improved both dry and wet adhesion strength 

of PAE pretreated camelina protein to 2.75 ± 0.22MPa and 1.40 ± 0.25MPa respectively. But UA 

had negative effect on dry strength when testing on three layer yellow pine wood. Because the 

small UA molecule partly covered reactive groups on camelina protein and resulted in weak three 

dimensional network while WPU didn’t directly cover reactive groups but strongly physical 

entangled with protein structure. When brought crosslinker, Tetrakis(hydroxymethyl)-

phosphonium chloride, into the PAE pretreated camelina system, both dry and wet adhesion 

strength were decreased, which proved that crosslinking occupied too many reactive groups and 

not favored for adhesion strength. 
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Camelina meal is more economical to use as adhesive than extracted camelina protein. Native 

camelina meal hardly has any adhesion strength. After introducing PAE and laccase to camelina 

meal slurry at neutral pH, camelina meal got a dry strength of 1.86 ± 0.32 MPa and wet strength 

of 1.04 ± 0.19MPa on three layer yellow pine wood, which already met China and Japan standards. 

PAE interacted with protein and carbohydrates through charged groups and broken the spatial 

structure in camelina meal. Laccase could enforce meal structure by stimulating oxidation reaction 

of protein and carbohydrates.  

Oilseed protein are great resource for bio-based adhesives. The methods studied in this dissertation 

has successful improve the wet mechanical performance of soy protein, camelina protein, and 

camelina meal, showing the potential for application in other proteins. The modified protein based 

adhesives meet industrial needs for good performance and environmentally-friendly characters. 

6.2 Recommendation  

The future study of this project could consider these following aspects: 

1. The purity of the oilseed protein isolate is usually between 80% and 90%. The other 

contents include polysaccharose, fiber, and oil. The discontinues in structure between protein and 

other impurities may results in weak crosslinking network. Improving the linking between protein 

and the other polysaccharides, fiber and oil contents should enhance the networking structure of 

the curried protein based adhesive. The amine, carboxyl, and hydroxyl groups from protein are 

active for amidation, acylation, and condensation reactions. The suitable reaction condition and 

catalyzes for reaction between protein and other contents need to be studied. 

2. Study the influence of temperature, charge density, and ionic strength on the interactions 

between protein and polyelectrolytes/fatty acyl chains. External conditions affect chemical 

reaction and covalent and non-covalent interactions between molecules. The extent of reaction 

directly influences protein conformation and then perform differently on adhesion properties. 

3. In this dissertation, protein with polyelectrolytes or acyl chains was modified after 

extraction. Actually, during the alkali dissolution, protein is in a highly unfolded state with larger 

contact surface and more reactive groups on the surface. Modification during extraction should 
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increase the reaction efficiency and the unreacted chemical agents are easily removed during acidic 

precipitation.  

 


