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Abstract 

Although risky decision-making tasks present some a priori risk (i.e., base-rate), decision 

makers often have an opportunity to modify this level of risk through their behaviors. Broadly 

speaking, risk can be modified by assigning additional resources to an ongoing task or by 

engaging in specific risk-mitigation strategies before or after the risky decision is made. The 

modification of risk requires ongoing awareness of task demands, resource constraints, and risk-

mitigation strategies that can be used to adapt behavior over time. This thesis explores risk 

modification that occurs during difficult tasks. Difficult tasks hold greater risks because they fall 

at the edge of the decision maker’s abilities and are likely to require a greater number of 

resources to overcome. As resources are engaged they become unavailable for other tasks or 

strategies to cope with changing task demands. I studied how individuals monitor risks and 

develop risk mitigation strategies using a videogame task designed to mirror contingencies that 

would be encountered in the real world. Results from two experiments that involve this task 

suggest that decision-makers adequately monitor and develop active strategies for dealing with 

risks. These strategies change over time and vary as a function of task difficulty and experience. 

 

key words: RDOs, risk mitigation, dynamic decision making, metacognitive judgments, 

difficulty 
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Perceptions of Effort and Risk Assessment 

Physical and cognitive resources are necessary for survival (Krebs, 1977; Shaw & Shaw, 

1977) and are integral to growth and exploration (Kurzban, Duckworth, Kable, & Myers, 2013). 

These resources are limited and finite across a variety of domains, including food (Krebs, 1977), 

consumer goods (Cobb & Douglas, 1928), attention (Wickens, 2002), and working memory (for 

a review see Cowan, 2010). The limited nature of physical and cognitive resources requires 

organisms to strategically allocate these resources during the pursuit of specific goals, such as 

energetic homeostasis (Krebs, 1977) or the successful completion of multiple tasks (Wickens, 

2002). Although much attention has been dedicated to evaluating organisms’ ability to monitor 

and manage physical resources within a dynamic context, similar research on cognitive resources 

is noticeably lacking. In this paper, I will outline a model of cognitive resource management and 

test predictions related to two components of this model, specifically humans’ ability to monitor 

task difficulty and to evaluate and mitigate risks with respect to changing internal and external 

conditions. 

 A Model of Cognitive Resource Management 

The strategic allocation of cognitive resources in pursuit of a goal requires an awareness 

of environmental changes and the ability to self-assess cognitive resource availability over time, 

a process referred to as metacognition. Metacognitive knowledge is acquired after an initial 

allocation of cognitive resources towards elements of a task. As the task progresses, individuals 

acquire metacognitive knowledge about their abilities, the demands and constraints of the task, 

and the efficacy of the strategies they employed in pursuit of task-related goals. This 

metacognitive knowledge can be used to iteratively “select, evaluate, revise, and abandon 

cognitive tasks, goals, and strategies in light of their relationships with one another and with 
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[one’s] own abilities and interests with respect to that enterprise” (Flavell, 1979, p. 908). In other 

words, cognitive resources are reallocated in response to new information several times 

throughout the duration of a task. 

 

The process of resource allocation is illustrated in Figure 1, which depicts resource 

allocation across three cognitively demanding tasks (Challenges 1, 2, and 3). Initially, a decision-

maker uses existing internal and external information to estimate and distribute resources among 

tasks (see Figure 1A). As tasks progress, the decision-maker gathers additional information that 

may influence cognitive resource allocation. For example, Figure 1B depicts a decision to shift 

cognitive Resource C away from Challenge 3 to Challenge 2 and to increase the amount of 

Resource B allocated to address Challenge 3. This shift could be motivated by task 

characteristics or by an increase in the difficulty level of Challenge 2. Each reallocation of 

cognitive resources has the potential to alter performance on other tasks. Thus, reallocation is an 

iterative process that occurs throughout the course of task performance. 

Figure 1. An iterative model of cognitive resource allocation. 
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Because this type of cognitive resource management occurs within a dynamic 

environment, decision-makers must update their representation of the environment frequently 

enough to support their predictions about task difficulty, cognitive resource allocation, and the 

resulting probability of success and/or failure (i.e., risk) associated with potential actions. The 

fidelity of this representation depends on the frequency of an individual’s difficulty and risk 

assessments and the rate at which the environment changes. In general, higher fidelity 

representations result in more accurate metacognitive judgments, the appropriate allocation of 

cognitive resources, and successful risk mitigation (see Figure 1C); however, not all decisions 

require high fidelity information (e.g., making long-term business plans). 

The process of resource reallocation becomes particularly important when there is great 

disparity between an individual’s abilities and a task’s demands. In these circumstances, strong 

metacognitive skills can be used to assess risks and to reallocate resources appropriately (per 

Brunswik, 1956). For instance, decision-makers that recognize when a task nears or exceeds the 

level of their skills and abilities can address this challenge through the use of strategies such as: 

seeking additional help from a decision aid (Slovic, Fischhoff, & Lichtenstein, 1977) or 

colleague (for a review of advice-taking see Bonaccio & Dalal, 2006), conserving cognitive 

resources during less effortful tasks (similar to the conservation of physical resources observed 

by Smith, Marcoroa, & Coutts, 2015), improving the accuracy of one’s perceptions of effort 

(e.g., Bjorkman, 1994) and risk assessment (e.g., Erev et al., 2009; Camilleri & Newell, 2013), 

and engaging in additional behaviors to reduce the risks associated with negative outcomes (i.e., 

Risk Diffusing Operators per Huber, 2012).  

For example, an air traffic controller must maintain cognitive vigilance throughout a shift 

as well as respond quickly to acute challenges that threaten the security of passengers and 
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aircraft. These challenges involve many dimensions of difficulty: an unanticipated weather event 

may tax controllers’ working memory as they struggle to maintain alternative flight paths for 

many aircraft, but an errant pilot may require controllers to emphasize speed and allocate 

attentional resources to quickly clear the airspace. Regardless the nature of the challenge, a 

controller’s goal is to minimize the negative impact of an event outcome. The most successful air 

traffic controllers will identify the dimensions of difficulty presented by a task and balance these 

characteristics with their own abilities, skills, and resources. This may be accomplished by 

utilizing available tools (e.g., radar) and colleagues, reallocating cognitive resources toward 

addressing effortful tasks, engaging in intensive simulation and on-the-job training, and actively 

seeking alternative strategies to reduce risks during difficult and/or risky situations. 

The skills and awareness required to accurately predict task difficulty (e.g., Bjorkman, 

1994), risk (e.g., Erev et al., 2010; Camilleri & Newell, 2013), and cognitive resource allocation 

(Kanfer & Ackerman, 1989) can be learned, especially when individuals gain repeated 

experience and are highly motivated. Still, even task “experts” retain some degree of 

miscalibration (for a review see Koehler, Brenner, & Griffin, 2002; but see also Keren, 1987; 

Murphy & Winkler, 1977). This poses a conflict: unsuccessful risk mitigation strategies may 

occupy cognitive resources and thereby reduce an individuals’ ability to mitigate future risks – 

including those which were unsuccessfully diminished.  

 For this reason, metacognitive awareness and appropriate resource allocation is 

particularly relevant to workers who must sustain cognitive vigilance over long shifts, such as 

nurses and police officers. People working long shifts may not notice changes in their level of 

attentional focus, memory, or physical energy. The effects of fatigue on decision-making 

performance are widely noted. For example, fatigue increases on-the-job incidents among air 
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traffic controllers (FAA, 2009), biases police officers toward the use of force (Kop & Euwema, 

2001), and increases the likelihood of nursing errors (for a review see Rogers, 2008). These 

examples underscore the need to better understand the relationship between metacognition, 

resource allocation, and performance so as to provide workers with strategies that reduce losses 

and successfully mitigate risk. 

This paper will focus on the relationship between perceptions of effort and 

risk-mitigation strategies on performance in a dynamic task. I will begin by outlining three 

theoretical perspectives (Rational Choice, Prospect Theory, and Ecological Rationality) on 

resource allocation in risky environments, and consider the generalizability of these findings to 

decision making in dynamic environments. I will conclude with a review of existing literature on 

effortful choice and will advance the perspective that metacognitive processes, such as 

perceptions of difficulty, play a key role in an individual’s ability to mitigate risks during 

difficult or challenging tasks.  

 Theoretical Perspectives on Decision Making 

In an ideal environment, the probability and value of outcomes are known and the 

relationship between one’s resources and desired outcomes is well-understood. Decision-makers 

that engage in accurate metacognitive monitoring can develop sustainable resource allocation 

and risk mitigation strategies that maximize gains and minimize losses. Yet many researchers 

acknowledge that the ideal environments that facilitate such strategies do not exist and that 

decision-makers appeal to alternative strategies to make decisions. Here, I will review three 

perspectives on decision making that predict different patterns of resource allocation and risk 

mitigation. 
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Rational Choice Theory 

Rational Choice Theory suggests that a decision-maker considers the consequences of all 

possible actions and outcomes and compares them to available resources before pursuing an 

outcome that maximizes total gains and minimizes losses (Arrow, 2004). Specifically, actions 

are evaluated with respect to their expected value or subjective utility, a function of both the 

value of and the probability with which an outcome will occur (von Neumann & Morgenstern, 

1947). These evaluations are then used to create a preference ordering of potential actions that 

remains consistent over time (Arrow, 2004). 

Because Rational Choice Theory assumes that decision-makers consistently maximize 

gains and minimize losses, resource allocation and risk mitigation strategies should be driven by 

the expected utility of the strategies that are available, irrespective of individual differences in 

metacognitive abilities. Thus, Rational Choice Theory predicts that consistent and optimal 

resource allocation and risk mitigation strategies will always occur. Because Rational Choice 

Theory reflects optimal decision making, many researchers believe it lacks utility (for a review 

of Rational Choice Theory and its limitations see Burns & Roszkowska, 2016) and does not 

accurately predict human behavior (e.g., Harsanyi, 1994). These researchers argue that 

constraints, such as time and memory capacity, undermine a decision-maker’s ability to form an 

accurate representation of the decision space (Simon, 1956). This revelation has led researchers 

to propose alternative models of decision making that consider systematic biases and 

misestimations that may underlie human behavior. 

Prospect Theory 

One systematic bias that seems to affect decision making under conditions of risk is the 

tendency to overweight losses and underweight gains. Prospect Theory predicts that this 
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asymmetry leads individuals to make riskier choices when they anticipate losses and to prefer 

more certain outcomes when anticipating gains. This behavior can be modeled using the 

equation: 

    𝑉 =  ∑ 𝜋(𝑝𝑖)𝑣(𝑥𝑖)
𝑛
𝑖=1             (1) 

where vi is the value of a particular outcome associated with a decision, x; pi is the probability of 

this outcome occurring; and 𝜋 is a decision weight that reflects humans’ propensity to 

overweight unlikely events and underweight those that are likely to occur. The perception of an 

outcome as a loss or gain is determined by a reference point, which is commonly described as an 

individual’s current assets or as an “expectation or aspiration level” they hope to attain. Gains 

follow a concave function with diminishing return, while losses follow a convex function that 

strongly overvalues small losses. This value is further modified by a decision weighting function 

which reflects humans’ tendency to overweight the probability of unlikely outcomes 

and to underweight the probability of more certain outcomes (Kahneman & Tversky, 1979).  

In decisions involving resource allocation and risk mitigation, losses take two forms: 

resources are temporarily unavailable when they are engaged by a task or risk mitigation 

strategy, and collateral losses are incurred when decision outcomes are unsuccessful. If decisions 

are primarily driven by an avoidance of any type of loss, decision-makers may pursue “easier” 

strategies that occupy fewer resources even if those strategies increase the risk of collateral 

losses. In a dynamic environment, this behavioral pattern may manifest as a cycle of poor 

decisions: a decision-maker allocates fewer resources to challenging tasks, which increases the 

probability of failure and encourages the decision maker to engage in suboptimal resource 

allocation and risk mitigation strategies that further promote loss. For example, a police officer 

nearing the end of a shift may insufficiently attend to a suspect’s non-verbal cues and 
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misinterpret anxiety as a “loss.” This perception may lead the officer to look more favorably 

upon riskier choices, such as an escalation of force which could further upset the suspect. Thus, 

Prospect Theory predicts that decision-makers will pursue “easier” tasks and will pursue riskier 

mitigation strategies when losses are unavoidable. 

Support for Prospect Theory originates in research conducted within a static environment. 

In these experiments, participants read a vignette before deciding to pursue one of two actions 

that were identical in expected value, but that differed in how this value was expressed. That is, 

one action represented a “risky” choice while the other offered certainty. Take, for instance, the 

options offered to Tversky and Kahneman’s (1985) participants that were instructed to prevent 

the outbreak of a deadly Asian disease. These participants learned that “[i]f Program C is 

adopted, 400 people will die. If Program D is adopted there is a 1/3 probability that nobody will 

die, and 2/3 probability that 600 people will die.” The expected value of each option can be 

calculated by multiplying the probability with which an outcome will occur by its overall value. 

Because the expected value of Program D, in terms of “people [that] will die,” is  
2

3
 × 600 =

400, the two options are equal in objective value. Still, participants prefer riskier Program D in 

the face of loss. When the wording of the question is expressed in terms of the number of 

“people [that] will be saved,” participants reverse their preference and become more likely to 

choose the certain gain (Kahneman & Tversky, 1985). 

The findings from empirical studies involving hypothetical scenarios, such as Kahneman 

and Tversky’s (1985) Asian Disease Problem, are largely assumed to generalize to everyday 

decisions involving everything from sunscreen application (Detweiler, Bedell, Salovey, Pronin, 

& Rothman, 1999) to the under-utilization of annuities (Brown, Kling, Mullainathan, & Wrobel, 

2008). Yet emerging research suggests that external framing may be context-dependent (e.g., 



 

9 

Neale, Huber, & Northcraft, 1987) or limited to descriptive contexts (Rakow & Newell, 2010; 

Hau, Pleskac, & Hertwig, 2010) and that decision-makers may create their own hedonic frames 

(e.g., Wang, 2004). Thus, it is unclear whether Prospect Theory is a viable theoretical model for 

decisions that occur within dynamic environments. 

Ecological Rationality and the Description-Experience Gap 

A third alternative is that humans evolved to interpret probabilities in specific contexts 

and cannot accurately do so when risks are presented as single-event probabilities (Cosmides & 

Tooby, 1996). This theory suggests that description-based decision making scenarios are difficult 

to interpret because they associate a single probability with each outcome. The reliability of 

described outcome estimates is relatively unknown and cannot be updated with new information 

gained through experience. Thus, the risky decision making of Prospect Theory arises from the 

artificial context in which the problem is encountered (e.g., Cosmides & Tooby, 1990; 

Gigerenzer, 1991; Barron & Erev, 2003). 

In dynamic environments, information is encountered iteratively and representations can 

be updated as individuals integrate feedback with information about their internal and external 

environment to adapt behavior to more closely align with optimal strategies. When decision-

makers actively experience losses and gains as a series of interactive gambles, the preferences 

exhibited in static environments reverse such that participants prefer certain losses and risky 

gains (Rakow & Newell, 2010) and behave conservatively when faced with losses (Barron & 

Erev, 2003). Although this “description-experience gap” is well-documented (for a review see 

Camilleri & Newell, 2013), the underlying cause is unclear. Researchers whose findings strongly 

support the description-experience gap have appealed to distributional properties, cognitive 

limitations, presentation formats (e.g., Hau, Pleskac, & Hertwig, 2010), and the salience of 
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individual outcomes (Spetch & Ludvig, 2011) to explain the phenomenon. Other researchers 

propose that working memory influences decision-making, but not enough to effectively or 

consistently reverse choice preference (e.g., Rakow, Demes, & Newell, 2008).  

Although there is considerable diversity in how this preference reversal is explained, 

researchers largely agree the phenomenon is related to the uncertainty present in decisions made 

from experience. A participant who encounters a descriptive decision is provided with a known 

probability with which each outcome will occur. This degree of certainty is rarely available 

during dynamic decision making tasks because working memory limits the number of samples 

that can be used to estimate the probabilities associated with each decision’s outcome (Kareev, 

2000). This distinction between a priori (i.e., known) and statistical (i.e., experienced) 

probabilities (Knight, 1921) has been modeled across studies involving decks of cards (Hau, 

Pleskac, Kiefer, & Hertwig, 2008), virtual monetary gambles (Camilleri & Newell, 2013; Ludvig 

& Spetch, 2011), and point-based gambles (Rakow, Demes, & Newell, 2008). The findings of 

these studies all provided at least some support for the description-experience gap. 

Thus, the ecological rationality account would seem to suggest that while decision-

makers will not minimize losses and maximize gains flawlessly (per Rational Choice Theory), 

they should be sensitive to changes in the environment and capable of monitoring outcome 

success. Additionally, decision-makers should exhibit risk aversion in the face of losses (per 

Barron & Erev, 2003) and develop conservative resource allocation and risk mitigation strategies 

as situations become more challenging. However, the experiments that support this prediction do 

not allow individuals to influence the probability or risks associated with future outcomes. 

Extending this possibility allows participants to change the contingencies of the task and may 

alter subsequent behavior. 
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 Perceptions of Difficulty and Risk 

Regardless of the underlying mechanism, all three competing perspectives on resource 

allocation and risk mitigation assume decision-makers estimate and track performance losses and 

gains. “Difficult” tasks that near or exceed the level of an individual’s skills, abilities, or 

available cognitive resources result in poorer performance than do less challenging tasks. 

Therefore, estimations of task difficulty and performance should underlie resource allocation and 

risk mitigation decisions. In the section that follows, I will briefly discuss how perceptions of 

difficulty inform risk mitigation strategy and suggest potential patterns of behavior that emerge 

from decision-makers engaged in difficult tasks. 

Perceptions of Difficulty 

Perceptions of difficulty are important because they serve as an indicator of the number 

of physical and cognitive resources that remain available for completing a task (Kahneman, 

1973; Kanfer & Ackerman, 1989; for a review see Kurzban, 2016). Perceptions of difficulty can 

also help individuals select and prioritize tasks and strategies that will allow them to achieve 

their goals (Kurzban, Duckworth, Kable, & Myers, 2013). Traditionally, this is reflected in an 

aversion towards effortful tasks (Hull, 1932): engaging fewer resources in a task reserves them 

for future deployment. Although this behavior is often viewed as detrimental to one’s safety 

(Sigurdsson, Taylor, & Wirth, 2013) and achievement (Ostaszewski, P., Bąbel, P., & 

Swebodzińsk, 2013), it can be adaptive under certain conditions. 

An aversion towards effortful tasks can be reframed as an aversion towards the under- or 

over-allocation of resources (Kurzban, Duckworth, Kable, & Myers, 2013). Effortful tasks that 

are unnecessary or insufficiently rewarded should be avoided because they consume resources 

that could be otherwise allocated toward more rewarding endeavors. Choosing to engage in these 
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tasks represents an over-allocation of cognitive resources. Similarly, if a task nears or exceeds 

the level of an individual’s skills, abilities, or available cognitive resources, no amount of 

resource allocation will sufficiently improve performance: it will be consistently under-allocated. 

In accordance with these principles, the value of effort is discounted rapidly (e.g., Freeman, 

Morgan, Brandner, Almahdi, & Curran, 2013; Nishiyama, 2014; Hartmann, Hager, Tobler, & 

Kaiser, 2013; Sugiwaka & Okouchi, 2004; for a review of the animal literature see Walton, 

Kennerley, Bannerman, Phillips, & Rushworth, 2006) and people quickly become demotivated 

by very difficult tasks (for a review, see Locke & Latham, 2002). 

Research on effortful decision making often occurs in a laboratory context that does not 

provide individuals with recourse to strategies that reduce risk by changing the difficulty level of 

the situation or improving the decision-maker’s abilities. As such, these experiments may 

provide limited information about how and when people choose to pursue effortful tasks. There 

is a great need to investigate human behavior in situations that involve realistic scenarios, 

particularly those that provide decision-makers with an opportunity to mitigate risks (Huber, 

2012), and to understand how risk mitigation decisions relate to perceptions of task difficulty. 

Risk Mitigation Strategies: Effective use of Risk Diffusing Operators (RDOs) 

In realistic situations, decision-makers can mitigate risk by employing a risk diffusing 

operator (RDO) before or after a loss occurs (Huber & Huber, 2008). For example, a dentist 

might reduce a patient’s risk of tooth decay by applying a dental sealant, which forms a shield 

that protects teeth from bacteria and food waste (NIH, 2016). Alternatively, the dentist may wait 

and halt decay with a dental amalgam filling after the decay has occurred (USFDA, 2015). Pre-

event RDOs, such as the dental sealant, have a high initial cost but a certain outcome (i.e., they 

prevent a negative outcome from occurring). Post-event RDOs, such as the dental amalgam, do 
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not have an initial cost but are inherently riskier because they do not change the probability of a 

negative outcome but seek to reduce its impact if it occurs. In the event that a negative outcome 

occurs, post-event RDOs are associated with greater overall costs because decision makers 

experience a negative outcome and must reallocate resources to tasks and strategies that will help 

them recover from that loss. 

 RDOs can be used to mitigate the risks associated with challenging tasks. That is, a 

decision-maker can seek to prevent the negative consequences of poor performance in a 

challenging task by employing a pre-event RDO. Similarly, decision-makers can rely on post-

event RDOs when engaged in low-risk, simple tasks, and free resources for alternative pursuits. 

In both of these situations, the best decisions are made by those with strong metacognitive skills 

that allow them to gauge the difficulty level of the task and, in turn, which RDO is most 

appropriate. 

 The competing perspectives on resource allocation and risk mitigation predict different 

patterns of RDO selection by decision-makers engaged in difficult tasks. Ecological rationality 

predicts that decision-makers’ risk mitigation strategy is driven by previous successes and 

failures with RDOs: individuals will consistently use risk mitigation strategies that are most 

effective given their skills and abilities. As tasks become increasingly difficult and losses 

become more likely, decision-makers should gradually shift towards taking preventative 

measures (pre-event RDOs) to reduce their losses. In less-challenging situations, decision-

makers should rely on post-event RDOs that only expend resources in the unlikely event of a 

loss. In contrast, Prospect Theory predicts that decision-makers will be strongly motivated by 

loss avoidance and will resist the certain loss associated with a pre-event RDO in favor of the 

probabilistic loss of a post-event RDO. Preventative actions should only be taken if they are not 
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perceived as costly or when overshadowed by the expected value of the loss associated with 

post-event RDOs. A third alternative, supported by Rational Choice Theory, is that decision-

makers’ risk mitigation strategy will be directly related to anticipated and experienced losses. 

That is, decision makers will utilize pre-event RDOs when tasks are challenging and the 

probability of loss is high but prefer post-event RDOs in alternative circumstances. 

The Effect of Time-on-task on the Decision-making Process 

Research exploring the relationship between time-on-task and strategic planning 

underscores the importance of selecting appropriate risk mitigation strategies during sustained, 

challenging tasks. Evidence from EEG research suggests that as time-on-task increases 

participants become less likely to take corrective actions to reduce future errors (Lorist, Boksem, 

& Ridderinkhof, 2005) and become more likely to perseverate in the use of inappropriate 

strategies (van der Linden, Frese, & Meijman, 2003). Together, this evidence seems to suggest 

that time-on-task will negatively impact task performance and reduce decision-makers’ ability to 

adapt risk mitigation strategies in response to changes in performance. Given that fatigue is 

responsible for the loss of about 4 hours of productivity per work week per person (Ricci, Chee, 

Lorandeau, & Berger, 2007) and nearly doubles an individual’s risk of being involved in a 

workplace accident (Swaen, Amelsvoort, Bultmann, & Kant, 2003), it is important to explore the 

effects of time-on-task on risk mitigation strategy. Addressing the relationship between effort, 

loss, and risky choice in a realistic environment requires the use of a dynamic experimental task. 

 The Experimental Environment 

The experiments were conducted in a virtual environment developed with the Unity 

Game Engine (Unity, 2016), a freely available software package that allows users to design 

videogames using existing or custom-made graphic elements. Designing a videogame was 



 

15 

advantageous because it allowed for the selection and control of all properties of the virtual 

environment, with the exclusion of the player’s behavior. In this section, I will describe the 

experimental environment in brief detail; readers interested in a more thorough description may 

view a video clip at https://www.k-state.edu/psych/people/graduatestudents/vangsness.html. 

The Videogame Task 

In the videogame, participants controlled the avatar of a young boy and explored a large-

scale version of a bedroom while avoiding the stuffed-animal zombies that aimed to attack the 

avatar. Participants guided the avatar through the game space using the arrow/ASWD keys and 

could eliminate enemies using a laser cap gun that was controlled with the computer mouse. The 

goal of the videogame was to successfully progress through as many levels as possible within a 

40 min session. Experimenters encouraged participants to pursue this goal by stating that “most 

participants clear eight levels before the session ends.” 

To achieve the goal, participants needed to prioritize 

their performance in the game because death was a time-costly 

event that reduced their likelihood of successfully completing 8 

levels. Death occurred once the avatar’s health was completely 

depleted by enemy attacks, which occurred each time an enemy 

character touched the avatar (see Figure 2). When the avatar 

died, the game was paused and a loading screen appeared. After approximately 30 s, the game 

resumed and the avatar was resurrected (with full health) in a random location within the game 

space. 

Figure 2. Enemy attacks 

negatively impact the avatar's 

health, as reflected by a full 

(top) and partially depleted 

(bottom) health bar. 

https://www.k-state.edu/psych/people/graduatestudents/vangsness.html
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Much like in a traditional videogame, participants advanced to a new level (or block of 

trials) by eliminating enemies. Once participants eliminated 30 enemies from the game space, the 

game was paused and a loading screen appeared. The level reloaded and the game resumed after 

approximately 7 s. This new level could be easier or harder than the last: unlike a traditional 

videogame, the degree of difficulty was randomly assigned at the beginning of each level. 

 

At the beginning of each level, and every subsequent 2 min, a pop-up window invited 

participants to indicate whether the videogame was “easier” or “harder” than it was before (see 

Figure 3). This format allowed participants to make comparative assessments without 

interpreting scale anchors or values and without making assumptions about the scaling of 

subjective perceptions of difficulty (for additional information, see Böckenholt, 2004). Once 

participants selected one of the two options with the computer mouse, the pop-up window 

disappeared from the screen. Gameplay remained paused for 3 s before and after the pop-up 

window’s appearance to the reduce the performance costs associated with task interruption 

(Altmann & Trafton, 2007). 

Figure 3. Participants indicated their perceptions of difficulty using a 

dialogue box. 
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After 40 min of gameplay, the videogame ended and participants completed a 

demographic questionnaire that included questions about sex and videogame experience. 

Participants also completed a modified version of the Game Engagement Questionnaire 

(Brockmyer et al., 2009; see Appendix A). Researchers debriefed participants and allowed them 

to leave the session. 

Task difficulty. Task difficulty was manipulated by adjusting one characteristic of the 

enemy characters’ behavior at the start of each level. All other characteristics of the enemy 

characters’ behavior remained constant during the session. For example, participants in the 

“speed” condition saw the enemy characters’ rate of movement change from one level to the next 

but did not experience changes in the enemy characters’ population rate, attack damage, hit 

points, or line-of-sight. Changes in enemy characters’ behavior were randomly determined at the 

start of each level using an algorithm developed during the pilot study. For a full list of the 

conditions included in these thesis experiments, see Table 1. 

Tutorial level. The videogame task included a tutorial level to help participants become 

familiar with the controls of the game. The tutorial level was identical to the videogame task in 

all respects but contained only three enemies. Players did not progress to the first level of the 

videogame task until they successfully eliminated all three enemies from the tutorial level. 

Experimenters encouraged participants to ask questions during the tutorial. 
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Table 1 

The videogame task had five possible conditions. 

Condition Description Unit of measurement 

Population The rate at which enemies appeared in the game 

space. 

seconds 

Damage The amount of damage that enemies could inflict 

upon the avatar in a single attack. 

hit points 

Strength The number of hit points enemies had when they 

first appeared in a level. 

hit points 

Line-of-sight How near the avatar needed to be before an 

enemy began to move towards the avatar. 

Unity units 

Speed The speed at which enemy characters could 

travel. 

Unity units 

Note. Unity units are an arbitrary measure that can be used to scale game objects with respect to one another. 

 Pilot Study 

Task characteristics influence which cognitive resources must be directed towards 

navigating a challenge and overcoming risks (Wickens, 2002); however, the relationship 

between difficulty, performance, and subjective perceptions of difficulty may change depending 

on the cognitive resources required by the task. Before exploring the nature of this relationship 

across tasks with differing characteristics, I sought to first ensure these tasks presented similar 

levels of challenge. Few – if any – other research studies conduct preliminary analyses to ensure 

that manipulating a particular task dimension does, indeed, make that task more difficult, and 

many assume experimenters’ perceptions of difficulty will align with participants’ task 

performance. Because intuitions about the characteristics of effortful tasks are not always 

accurate (Ganskopp, Cruz, & Johnson, 2000), and that multiple factors (e.g., exertion, sleepiness, 

discomfort) contribute to individual perceptions of effort (Åhsberg, 2000), I decided to conduct a 
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pilot study to explore the effects of task manipulations on participant performance to ensure that 

subsequent studies (Experiments 1 & 2) involved an accurate and systematic variation of task 

difficulty across condition. 

Method 

Participants. A total of 31 participants (15 female) from the graduate student body of the 

Department of Psychological Sciences at Kansas State University completed 15-min or 40-min 

segments of the experimental task. These students volunteered and did not receive compensation 

for their participation in the study. 

Procedure. To calibrate the difficulty of the videogame task, I conducted a series of pilot 

experiments that took place across four groups of participants. In these studies, participants 

completed short, 15-min segments in each condition of the videogame task (group 1) or 

completed a full-length, 40-min session in a single condition (groups 2-4). Other than the minor 

change in session duration for group one, the videogame task was identical to that discussed 

previously. Performance during these experiments informed the range of difficulty used in 

Experiment 1. 

Experimental Manipulation. Task difficulty was manipulated in each condition by 

changing a single characteristic of the enemy characters’ behavior at the start of each level (for a 

list of these characteristics, see Table 1. All other characteristics of the enemy characters’ 

behavior remained the same throughout the session. 

After collecting each group of calibration data, I standardized the difficulty of each 

condition (parameter value/parameter range) and calculated participants’ rate of damage received 

(damage of a single attack/time since last attack), an objective measure of task performance. I 

then created a graph relating task difficulty and task performance and used this graph to 
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determine changes in the random algorithm that manipulated task difficulty at the start of each 

level. A full disclosure of these changes can be found in Table 2. 

Table 2 

The videogame task was calibrated across four groups. The difficulty of each condition was 

determined by range and constant values of each characteristic of enemy characters’ behavior. 

Calibration group Condition Range Constant 

1 

(n = 4) 

population 5 - 20 10 

damage 5 - 20 10 

strength 90 - 250 100 

line-of-sight 5 - 26 100 

speed 1 - 7 3 

2 

(n = 7) 

population 1 - 15 10 

damage 5 - 75 35 

strength 70 - 300 185 

line-of-sight 3 - 30 100 

speed 1 - 12 6 

3 

(n = 6) 

population 5 - 15 10 

damage 5 - 90 20 

strength 70 - 300 115 

line-of-sight 6 - 30 100 

speed 1 - 10 5 

4 

(n = 14) 

population 5 - 17 10 

damage 10 - 90 20 

strength 70 - 270 115 

line-of-sight 6 - 30 100 

speed 1 - 10 5 
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Discussion 

This pilot study demonstrates that objective performance measures (e.g., damage rate) 

can and should be used to calibrate difficulty across conditions or tasks, especially when 

challenges involve different dimensions of difficulty. Task characteristics that underlie 

dimensions of difficulty may depend on relative scaling or non-comparable scales. For example, 

enemy characters’ speed is contingent upon the size of the game space and how quickly the 

participant’s avatar moves. Standardizing difficulty across task characteristics (here, conditions) 

ensures that performance differences are due to similar changes in task difficulty rather than a 

byproduct of scaling complexity. 

 Experiment 1 

Appropriate resource allocation strategies are sensitive to the impact that changing 

internal and external factors have on task performance (i.e., gains and losses) and risk. 

Specifically, the relative success of a decision-making strategy depends on a decision-maker’s 

metacognitive ability: how closely subjective perceptions align with objective measures of 

performance and by extension, risk. While objective measures of performance improve over time 

(for a review see Ericsson, Krampe, & Tesch-Romer, 1993), it is not clear whether decision-

makers recognize these performance gains. Subjective perceptions of effort are impacted by task 

characteristics unrelated to performance such as boredom (Gilbertova & Glivicky, 1967), 

attention (Razon, Hutchinson, & Tenenbaum, 2013), and time-on-task (D’Huyvetter as cited in 

Ackerman, 2011). As time-on-task increases, participants become less flexible in their decision-

making strategies (Lorist, Boksem, & Ridderinkhof, 2005; van der Linder, Frese, & Meijman, 

2003). Together, these findings seem to suggest a dichotomy between subjective perceptions and 
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objective measures of difficulty. However, existing research methods involve a post-hoc 

evaluation of task difficulty and make it difficult to draw conclusions about participants’ 

perceptions of difficulty during task completion. 

This experiment sought to establish the relationship between subjective perceptions and 

objective measures of difficulty, and to determine the effects of time-on-task on this relationship. 

It was predicted that perceptions and objective measures of performance would be affected by 

game difficulty: as task difficulty increases, performance (defined as the avatar’s damage rate) 

should suffer (H1) and the task should be perceived as more challenging (H2). However, there 

should be some degree of miscalibration between subjective perceptions of effort and objective 

measures of performance (H3), as advanced in the earlier core predictions. The existing literature 

advanced competing hypotheses regarding the effects of time-on-task on task performance, and it 

was predicted that time-on-task would affect perceptions of task difficulty (H3a) and perhaps 

also objective measures of task performance (H3b). Finally, it was anticipated that some 

dimensions of effort would be more difficult than others (H4). 

Method 

Participants. A total of 107 participants (65 female) from the General Psychology pool 

at Kansas State University completed the experimental task and received 1 hr of research credit 

compensation. One participant experienced a panic attack during the session, and this data has 

been excluded from analyses. A small subset of the participants (n = 10) did not complete all 

40 min of the experiment due to computer issues; however, no participant experienced fewer 

than 31 min of gameplay. Thus, all remaining data were retained. 

Procedure. Participants completed a full-length, 40 min session of the videogame task 

identical to that discussed previously. 
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Experimental manipulation. As before, task difficulty was manipulated in each 

condition by changing a single characteristic of the enemy characters’ behavior at the start of 

each level (for a list of these characteristics and number of participants in each condition, see 

Table 1). All other characteristics of the enemy characters’ behavior remained the same 

throughout the session. The values assigned to each characteristic at the start of a level can be 

found in Table 3. 

Table 3 

The difficulty of each condition was determined by range and constant values of each 

characteristic of enemy characters’ behavior. 

Condition Range Constant Unit of measurement 

population (n = 16) 1 - 25 10 seconds 

damage (n = 23) 10 - 90 20 hit points 

strength (n = 22) 20 - 400 115 hit points 

line-of-sight (n = 22) 6 - 30 66 Unity units 

speed (n = 24) 0.2 - 15.0 5.0 Unity units 

Note. Unity units are an arbitrary measure that can be used to scale game objects with respect to one another. 

Results 

Variables. Participants’ rate of damage from enemy characters served as an objective 

measure of performance during the experimental task. A Box-Cox analysis (λ = 0) indicated a 

log transform was necessary to restore the distribution of this variable to normality (Box & Cox, 

1964). However, when log-transformed rate of damage was used as a criterion variable in 

subsequent analyses, it produced a model with non-normal residuals (see Figure 4). Because the 

residuals appeared to be bimodal, a k-means cluster analysis was used to dichotomize rate of 

damage received into high and low damage groups without a significant loss of power (Irwin & 

McClelland, 2003). The reported analyses use cluster group as a dependent measure of task 
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performance (rate of damage) and take appropriate measures to account for the bimodality of the 

data. 

 

 

The value assigned to the condition-specific difficulty parameter at the start of each level 

was used as an objective indicator of task difficulty. Because each difficulty parameter occupied 

a program-specific scale, task difficulty was standardized across conditions by applying the 

following equation: 

 standardized difficulty =
𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑑 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑑 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑑 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦−𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑑 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦
  (2) 

which produces a value in the range of 0 to 1. For example, a participant in the Strength 

condition that encounters opponents with 100 hit points would experience a standardized 

difficulty of (100-20)/(400-20), or 0.21. Participants’ ratings of game difficulty (“easier/harder 

than before”) were used as a subjective measure of task difficulty, with “harder” responses coded 

as 1. Participant experience was determined by summing responses to a nine-item videogame 

questionnaire that asked participants to indicate the frequency of their videogame play on a scale 

from 0 (never) to 4 (daily) for several different types of videogames (e.g., “Multiplayer Online: 

Figure 4. Diagnostic plots of the residuals from a linear mixed effects model that predicts log 

transformed rate of damage received using main effects of game difficulty, condition, time, 

videogame experience, and the Difficulty x Condition interaction. 
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e.g., World of Warcraft, Everquest”). All predictors were effect coded and centered before 

analysis, and time-on-task was scaled to occupy a range similar to other predictors.  

Because the probability of making a “false discovery” increases with each statistical test, 

I conducted only those analyses outlined by my hypotheses. Pairwise comparisons are only 

conducted when necessary to address specific predictions, and appropriate corrections are made 

to reduce familywise error. Together, these steps effectively reduce researcher degrees of 

freedom and limit the probability of a Type I error (Gelman & Loken, 2013). 

Performance is Affected by Game Difficulty, Time-on-task, and Videogame 

Experience. A multilevel logistic regression was used to test the predictions of H1, H3a, and H4. 

The fixed effect structure tested for the main effects of game difficulty, condition (damage, line-

of-sight, strength, population, & speed), time-on-task, and videogame experience, as well as the 

Difficulty  Condition interaction. The random effect structure was selected using the Akaike 

Information Criteria (Akaike, 1973; see Table 4), a goodness-of-fit measure based on Log 

Liklihood, and included intercept, game difficulty, and time-on-task to account for participant 

differences in overall ability, sensitivity to differences in difficulty, and rates of learning.  

Table 4 

AIC for proposed random effect structures. 

Random Effect Structure AIC 

intercept 19037.3 

intercept + time 19009.1 

intercept + standardized difficulty 18973.0 

intercept + standardized difficulty + time 18953.9 

Note: A difference in AIC greater than 10 is very strong evidence in favor 

of the model with the lower AIC (Raferty, 1995). 

 

Game difficulty significantly affected participants’ performance in the game. Participants 

were more likely to experience high rates of damage during difficult levels than during easy 
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levels (B = 0.12, z = 4.62, p < .001), confirming that difficulty can be manipulated across a 

continuous dimension and that this manipulation is reflected in performance (H1; see Figure 5). 

Figure 5 also illustrates that performance improved over time as players became less likely to 

experience high rates of damage in the game (B = -0.16, z = -7.77, p < .001). This suggests that 

participants gained familiarity with the videogame and developed strategies to become more 

successful players (H3a). Additionally, videogame experience affected participants’ 

performance, such that players with gaming experience were less likely to experience high rates 

of damage overall than their less experienced peers (B = -0.04, z = -5.39, p < .001), as shown in 

Figure 6. 

 

[INSERT FIGURES 5 AND 6 HERE] 

 

 

 

 

 

 

 

 

Some Conditions were More Difficult than Others. A Wald 2 confirmed that the 

probability of receiving a high (vs. low) rate of damage varied across conditions (2(4) = 26.57, 

p < .001). A post-hoc Tukey’s HSD revealed significant differences between participants’ P(high 

damage rate) in the Speed and Damage conditions. Specifically, P(high damage rate) was greater 

Figure 5. Game (standardized) difficulty and time-on-task significantly affect predicted 

performance. Time-on-task is depicted across panels, with earlier cross-sections of data 

appearing on the left and those from alter in the game appearing on the right. Error bars represent 

1 standard deviation above and below the predicted values. 
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in the Speed condition than in any other condition, and significantly lower in the Damage 

condition than in all other conditions except Line-of-sight (see Table 5 and Figure 7). 
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Figure 6. Videogame experience also affected participants’ performance in the game. 

more experienced players performed better (i.e., had lower rate of damage received) 

than their less experienced peers across all levels of standardized game difficulty. 

Error bars represent 1 standard deviation above and below the predicted values. 
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Table 5 

Tukey’s post-hoc pairwise comparisons illustrate the difference 

in P(high damage rate) between conditions. Estimates represent 

the difference in average damage rate across conditions. 

comparison estimate z p 

Damage – Line-of-sight -0.78 -2.66 0.06 

Damage – Population -1.54 -4.53 < .001 

Damage – Speed -2.47 -8.55 < .001 

Damage – Strength -0.99 -3.59 0.003 

Line-of-Sight – Population -0.76 -2.21 0.174 

Line-of-Sight – Speed -1.69 -5.79 < .001 

Line-of-Sight – Strength -0.22 -0.78 0.937 

Population – Speed -0.93 -2.77 0.044 

Population – Strength 0.54 1.66 0.459 

Speed – Strength 1.48 5.40 < .001 
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Perceptions of Game Difficulty were Affected by Performance Measures and Time-

on-task. A second multilevel logistic regression was used to test the predictions of H2 and H3b. 

The fixed effect structure tested for the main effects of participants’ rate of damage received 

since last question, condition, time-on-task, and videogame experience. The random effect 

structure included intercept to account for participant differences in overall ability. There was 

insufficient evidence, as assessed by AIC and convergence errors to include the slope random 

effects in the model (Bates, Kliegl, Vasishth, & Baayen, 2015). 

Performance significantly affected participants’ perceptions of game difficulty (see 

Figure 8). Participants were more likely to say the game was “harder than before” when they 

recently took lots of damage from enemy characters (B = 0.34, z = 3.74, p < .001). Thus, 

participants seemed capable of tracking their performance in the game over time (H2). Time-on-

Figure 8. Rate of damage from enemy characters and time-on-task significantly affect 

participants’ perceptions of game difficulty. Time-on-task is depicted across panels, with earlier 

cross-sections of data appearing on the left and those from later in the game appearing on the 

right. Each panel represents one-fifth of the total time-on-task. Error bars represent 1 standard 

deviation above and below the predicted value. 
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task also affected perceptions of game difficulty such that players became more likely to say the 

game was “easier than before” as time passed (B = -0.33, z = -3.38, p < .001; see Figure 8). 

These ratings aligned closely with the practice effect observed in previous analyses, and 

confirmed hypothesis H3a. 

Other Factors Influence Perceptions of Difficulty. An exploratory analysis was 

conducted to determine whether factors beyond participants’ rate of damage received since last 

question affected perceptions of difficulty. Adding standardized difficulty, an objective measure 

of level difficulty, to the second multilevel logistic regression significantly improved model 

predictions (∆𝐴𝐼𝐶 = 39.963). This suggests that several performance-related factors influence 

participants’ perceptions of difficulty during task completion. 

Other Factors Influence Perceptions of Difficulty. An exploratory analysis was 

conducted to determine whether factors beyond participants’ rate of damage received since last 

question affected perceptions of difficulty. Adding standardized difficulty, an objective measure 

of level difficulty, to the second multilevel logistic regression significantly improved model 

predictions (∆𝐴𝐼𝐶 = 39.963). This suggests that several performance-related factors influence 

participants’ perceptions of difficulty during task completion. 

Discussion 

The results of this study confirmed my hypothesis (H1) that specific manipulations of 

task difficulty affect participants’ rate of damage, and further validated the use of the videogame 

task to study difficulty and risk-related decisions over time. Player performance was also 

affected by individual differences in videogame experience, a finding that provided additional 

face validity to the paradigm. More experienced participants had better overall performance, and 

all participants improved over time. Participants could track these changes in performance, and 
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correctly identified when the game became “easier” or “harder,” confirming hypotheses H2. 

Contrary to hypotheses H3a and H3b, participants’ perceptions of game difficulty were 

appropriately calibrated and did not reflect increasing levels of fatigue. Finally, some versions of 

the videogame were more difficult than others, supporting hypothesis H4. 

 These findings suggest that decision-makers effectively track characteristics that 

contribute to task difficulty and may be able to use this information to adjust decision-making 

strategies over time. Encouragingly, exploratory analyses seemed to suggest that 

decision-makers’ ratings of game difficulty are based on factors beyond those related to 

performance. Although my analyses only involved damage rate, it is possible that participants 

track difficulty using gameplay characteristics (e.g., number of enemies on-screen) that could 

also be used to anticipate changes in performance and then adjust gameplay strategy before 

negative consequences occur.  

 Experiment 2 

The purpose of Experiment 2 was to determine whether participants’ performance and 

perceptions of difficulty affected risk mitigation strategy during dynamic tasks. Previous 

literature on decision-making in risky situations suggested three competing hypotheses (see 

Table 6). This experiment seeks to better understand how individuals utilize risk mitigation 

strategies when making decisions within a videogame environment that is responsive to the 

previous choices and behavior of the player. 
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Table 6. 

Theoretically motivated competing hypotheses regarding decision-makers’ risk mitigation 

strategies in difficult situations involving risks. 

Theoretical 

interpretation 
Hypothesized risk mitigation strategy 

Rational Choice 

Theory (H1a) 

Decision-makers engage in optimal risk mitigation strategies. The losses 

associated with difficult tasks (i.e., levels) are mitigated through the use of 

pre-event RDOs; post-event RDOs are utilized during less difficult tasks. 

Prospect Theory 

(H1b) 

Decision-makers use riskier strategies to mitigate loss. As tasks become 

difficult and the probability of failure increases, decision-makers turn to 

post-event RDOs to mitigate their risks; pre-event RDOs are preferred 

during less difficult tasks 

Ecological 

Rationality (H1c) 

Decision-makers’ risk mitigation strategies shift over time as they gain 

experience with the environment and improve their metacognitive 

abilities. 

 

Method 

Participants. A total of 79 participants (43 female) from the General Psychology pool at 

Kansas State University completed the experimental task and received 1 hr of research credit 

compensation. One participant experienced a computer malfunction and needed to restart the 

videogame. The remaining data from this participant is included in the analysis. 

Procedure. Experiment 2 involved only three of the five conditions from experiment 

one. Specifically, participants were assigned to one of three conditions: Speed (n = 23), Strength 

(n = 30), or Population (n = 26). The videogame task was similar to that used in experiment one, 

but included an experimental manipulation that affected gameplay and the look-and-feel of the 

game. 

Experimental manipulation. At the beginning of each level, and every 5 min, a pop-up 

window invited participants to “select a tool” that would assist them in playing the game (see 

Figure 9). This pop-up window was a slightly different color than the pop-up window that 
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allowed participants to indicate their subjective perceptions of game difficulty, but behaved 

similarly in all other respects. Once participants selected an option, the avatar was granted a set 

of five tools that could be used at any point before the tool selection pop-up window appeared 

again. 

 

Figure 9. Participants selected a tool to use as part of their gameplay strategy. 

 

Participants could choose between receiving five 

shields, each of which could be used to block 20 hit 

points of damage from enemy characters, or five health 

packs, each of which could be used to immediately 

restore 20 hit points of the avatar’s health. These tools 

represented different RDOs. The shield, which needed to be deployed before an enemy attack, 

represented a pre-event RDO. The health pack, which could only be deployed successfully after 

 

 

Figure 10. Icons near the health bar 

allowed participants to track the 

number of tools available for use. 
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an enemy attack, represented a post-event RDO. Thus, each tool had distinct strengths and 

weaknesses that participants could use to improve their gameplay strategy and task performance. 

Once participants selected a tool option, five icons appeared to the right of the avatar’s 

health bar (see Figure 10). Participants could deploy a tool by pressing the F key. Each time a  

tool was used, participants were notified 

by visual (see Figure 11) and auditory 

cues. Specifically, participants heard a 

250-ms sound and saw a bubble appear 

around the avatar for the tool’s duration. 

Both the sound and the bubble were 

specific to the tool and could be used to 

differentiate tool choice. The health pack bubble remained engaged for approximately 1 s, while 

the shield bubble remained engaged for approximately 5 s or until the shield was struck by an 

enemy character. Health packs were consumed following deployment while shields were only 

consumed following an enemy attack. When a tool was consumed, one of the five icons 

disappeared from the screen. 

Because participants were asked to select a tool every 5 min during the task, it was 

possible for participants to either retain or switch gameplay strategies in the middle of a level. 

However, participants “lost” all unused tools after making a tool selection. That is, participants 

could not carry more than five tools at a time, and tools were always of the same type. 

Results 

Variables.  Participants’ rate of damage received since the last tool selection served as an 

objective measure of game performance during the experimental task. Rate of damage received 

 

Figure 11. A visual indicator notified 

participants when they used a shield (left) or a 

health pack (right). 
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was calculated in three different ways by including only experienced damage (“hits-only rate of 

damage received”), both experienced damage and damage to the shield (“shielded rate of damage 

received”), or by adjusting the rate of damage received by adding 20 hit points when a health 

pack was used (“health pack-adjusted rate of damage received”), excluding instances in which a 

health pack was deployed after the avatar died. All three predictors were tested to ensure the 

correct interpretation of the data. Subsequent model comparisons using AIC suggested that the 

predictors had a similar influence on each measure; for simplicity, only the analysis of 

experienced damage is included here. For a full disclosure of all model comparisons, see 

Appendix B. 

Risk mitigation strategy was determined by participants’ tool choices during the game. 

Health packs, which represented pre-event RDOs, were coded as 1. Participants’ ratings of game 

difficulty (“easier/harder than before”) were used as a subjective measure of task difficulty, with 

“harder” responses coded as 1. Participants’ videogame experience was determined by summing 

responses to a nine-item videogame questionnaire that asked participants to indicate the 

frequency of their videogame play on a scale from 0 (never) to 4 (daily) for several different 

types of videogames (e.g., “Multiplayer Online: e.g., World of Warcraft, Everquest”). All 

predictors were effect coded and centered before analysis, and time-on-task was scaled to occupy 

a range similar to other predictors. As before, an effort was made to conduct only those tests 

outlined in the hypotheses to reduce the probability of a Type I error (Gelman & Loken, 2013). 

Resource Allocation and Risk Mitigation Strategies are Driven by Difficulty but 

Altered by Time-on-task. A multilevel logistic regression was used to test the predictions of H1 

and H3. The fixed effect structure tested for the main effects of rate of damage received, 

condition (population, speed, & strength), time-on-task, and videogame experience, as well as 
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the Rate of damage received  Time-on-task interaction. The random effect structure was 

selected using the AIC (see Table 7) and included intercept, rate of damage received, and time-

on-task to account for participant differences in overall ability, experiences of difficulty, and 

rates of learning. 

Table 7. 

AICs for proposed random effect structures. 

Random Effect Structure AIC 

intercept 647.9 

intercept + rate of damage received 642.2 

intercept + rate of damage received + time 632.5 

Note: A difference in AIC greater than 10 is very strong evidence 

in favor of the model with the lower AIC (Raftery, 1995). 

 

Game performance systematically affected participants’ risk mitigation strategy during 

the game such that participants were more likely to select a shield when they received a higher 

rate of damage from enemy characters (B = -0.51, z = -2.26, p = 0.024), suggesting that resource 

allocation and risk mitigation strategies are driven by individual sensitivities to environmental 

changes (H1c; see Figure 12). Risk mitigation strategy was significantly affected by time-on-task 

(B = 0.36, z = 2.15, p = 0.03), but not in the direction predicted by hypothesis H3. Participants 

became less likely to engage in the predominant risk mitigation strategy as they progressed 

through the game. 

Subjective Perceptions of Game Difficulty Do Not Improve Model Predictions 

Regarding Risk Mitigation Strategy. A second multilevel logistic regression was used to test 

the predictions of H2. The fixed effect structure tested for the main effects of rate of damage 

received, condition (Population, Speed, & Strength), time-on-task, videogame experience, and 

perceptions of game difficulty, as well as the Rate of damage received  Time-on-task 
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interaction. The random effect structure included intercept, game difficulty, time-on-task, and 

perceptions of game difficulty to account for individual differences in overall ability, experiences 

of difficulty, rates of learning, and metacognitive abilities across participants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AIC (Akaike, 1973) can be used to compute the likelihood of one model producing 

the data as compared to another (Wagenmakers & Farrell, 2004): 

    𝐿(𝑀𝑖|𝑑𝑎𝑡𝑎) ∝ 𝑒𝑥𝑝 {−
1

2
∆𝑖(𝐴𝐼𝐶)}    (2) 

This measure is advantageous because it provides a concrete measure of comparison 

between two models without requiring that those models be nested. Adding perceptions of game 

difficulty to the multilevel model used to test hypothesis H1 did not improve the model’s 

predictions. In fact, a model including perceptions of game difficulty was 2.3 times less likely to 

have produced the data, providing weak support for a model that excluded this predictor.  

Figure 12. Rate of damage from enemy characters affects the probability that participants will 

select a health pack during the game. As players move through their game, preference shifts to 

favor health packs. Each panel represents an equal amount of time-on-task. Error bars represent 

1 standard deviation above and below predicted values. 
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Discussion 

 Several theoretical models predict behavior in risky environments. Rational Choice 

Theory (Arrow, 2004) predicts that decision makers will behave optimally and develop 

idiosyncratic strategies that benefit their own abilities and decision making style. Prospect 

Theory (Kahneman & Tversky, 1979) and Ecological Rationality (Gigerenzer, Todd, & ABC 

Research Group, 1999) predict that decision makers will engage in preferred risk mitigation 

strategies by selecting either riskier, post-event RDOs or preventative pre-event RDOs 

respectively. I investigated whether risk mitigation strategies changed in response to 

environmental changes, specifically whether changes in task difficulty would affect performance 

and risk mitigation decisions. 

 Decision-makers’ risk mitigation strategies most closely aligned with those predicted by 

Ecological Rationality: decision-makers became more likely to select preventative, pre-event 

RDOs (i.e., shields) as task difficulty increased and performance worsened (H1c). Perceptions of 

difficulty seemed to explain this behavior as well as objective measures of performance. This 

finding did not support hypothesis (H2), but instead suggests that decision-makers’ perceptions 

of difficulty may align with objective measures of performance. This congruency emerged in 

Experiment 1, but remained limited: decision-makers improved in their ability to discriminate 

“easier” levels but were not completely accurate. Thus, decision-makers track losses and risks in 

dynamic situations but maintain some degree of error while doing so. 

 As time-on-task increased, participants became more likely to select riskier post-event 

RDOs (i.e., health packs). While it is possible that this shift towards riskier mitigation strategies 

is due to a fatigue effect, results from Experiment 1 supported a practice effect rather than a 

fatigue effect. Therefore, it seems more likely that participants’ shift in risk mitigation strategy 
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reflects a greater efficiency with or preference for that tool. This suggestion aligns with 

Ecological Rationality, which predicts that behavior will be imperfectly driven by sensitivities to 

environmental changes including those that are related to the decision maker. It is also possible 

that participants’ shift in risk mitigation strategy was motivated by improvements in 

metacognitive ability: some research suggests that post-event RDOs become more frequently 

selected as risk detection ability improves (Kirchler, Hoelzel, & Huber, 2010). 

 General Discussion 

 The present findings indicated that videogame tasks can be used to study effort and risk 

mitigation, and explored the factors that contribute to decision-makers’ risk mitigation strategies 

and metacognition. Decision-makers appear to appropriately gauge task difficulty and 

performance in real time, updating risk mitigation strategies as situations change. Specifically, 

decision-makers tended to prefer preventative risk mitigation strategies when task difficulty 

increased and negatively affected performance. Over time, decision-makers’ performance 

improved and they became less likely to take preventative measures to mitigate risks. These 

findings align with the theory of Ecological Rationality, which proposes that decision-makers 

can adequately track losses and manage risks without engaging in optimal practices, affirm the 

existence of the description-experience gap (Camilleri & Newell, 2013), and support previous 

work exploring the use of RDOs in description-based decision making (e.g., Huber & Huber, 

2008). 

 It is important to consider how these findings relate broadly to cognitive resource 

management, specifically with respect to resource reallocation. Resource reallocation is an 

iterative process that allows organisms to adapt to a changing environment. As decision-makers 

receive feedback regarding task characteristics and performance, they may shift cognitive 
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resources from one pursuit (e.g., gameplay) to another (e.g., deployment of a health pack). The 

appropriate allocation of resources is learned through experience with the task, and more 

“expert” decision-makers can predict which resource allocation strategies will be most successful 

and when to employ those strategies. Within this experiment, metacognitive abilities seemed to 

align with game performance and improved over time. How risk mitigation strategies are 

affected by metacognitive skills is uncertain, an issue that will be visited in discussing the 

limitations of this experiment. 

 Although decision-makers’ shift in RDO preference seems to diverge from optimality, it 

is important to recall that optimal performance in a dynamic environment requires the occasional 

exploration of alternative strategies (Kurzban, Duckworth, Kable, & Myers, 2013). Shifts in 

preference from pre-event to post-event RDOs may reflect strategic exploration that occurs as 

decision-makers develop greater familiarity with their environments. Indeed, tool preference and 

performance both shifted across gameplay: post-event RDOs were most frequently selected in 

later levels, when task performance was strongest. However, it is also possible that the shift to 

post-event RDOs represents the exploitation of a successful strategy: perhaps decision makers 

discovered that their abilities and gameplay strategy led post-event RDOs (i.e., the health pack) 

to become more efficient than pre-event RDOs (i.e., the shield). Further analyses will be 

necessary to differentiate these competing hypotheses. 

 Regardless of decision-makers’ motivation for shifting risk mitigation strategies, the 

results underscore the importance of ecological validity in experimental design. Unlike previous 

research designs that explored decision-making in a static, descriptive environment (Huber & 

Huber, 2003), my participants tracked performance and employed risk mitigation strategies 

during engaging and dynamic tasks. While participants in static tasks exhibit a preference for 
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risky choice (Barberis, 2013) and do not actively seek outcome probability information (Huber & 

Huber, 2003), my participants were more likely to employ preventative strategies and appeared 

to be sensitive to probability information relating to overall task performance (i.e., difficulty and 

probability of failure). This evidence suggests that decision-makers behave differently in 

dynamic environments and underscores the need to bring methodologies into alignment with the 

type of decision-making in question. While description-based paradigms may be appropriate to 

study decisions that are made with written evidence (e.g., policy or future planning decisions), 

dynamic paradigms should be used to study decisions made in changing environments (e.g., job-

related tasks or investment decisions). 

 This research also appears to contradict existing literature on time-on-task effects in that 

performance and perceptions of difficulty improved over time (Lorist & Faber, 2011). However, 

participants became more rigid in their decision-making strategies over time. While it is possible 

that the increased P(health pack selection) is due to exploitation of a successful strategy, it may 

also represent a perseveration in decision-making strategy (per Lorist, Boksem, & Ridderinkhof, 

2005; van der Linden, Frese, & Meijman, 2003). Both may be affected by changes in 

metacognitive ability, and future research should explore these competing hypotheses in greater 

depth. 

Limitations 

 Conducting research in a dynamic environment introduces additional variables that may 

affect performance in systematic ways. In this study, I assume that pre-event RDOs represent a 

low-risk, high-resource tool for mitigating risk. That is, pre-event RDOs can be implemented 

before losses occur but require additional cognitive resources to deploy. Conversely, I assume 

that post-event RDOs represent a high-risk, low-resource tool for mitigating risk because they 
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can only be implemented once losses occur but require fewer cognitive resources to deploy. 

While this assumption is intuitively appealing, participants’ skills may affect the risk and 

resource trade-offs associated with each option. Pre-event RDOs may be riskier for a player that 

struggles to coordinate shield deployment because using this tool results in certain loss. Future 

analyses should consider the relative risks of available RDOs to account for differences in 

abilities between participants. 

 It is also possible that risk mitigation strategies are affected by task goals. In this task, 

participants mitigate risks while eliminating enemy characters from the screen. This behavior is 

different from that of an air traffic controller or physician who reduces risks while saving lives. 

Additional research must be conducted to explore the generalizability of these findings to other 

tasks and environments. 

Conclusion 

 In summary, decision-makers shift risk mitigation strategies when provided an 

opportunity to acquire information about their environments during dynamic tasks. The ability to 

shift risk mitigation strategies appears to be rooted in performance and metacognitive abilities, 

which continue to improve over time as decision-makers gain experience with task and 

environmental characteristics. This pattern of shifting risk mitigation strategies most closely 

aligns with the predictions of Ecological Rationality; however, the present analyses were 

insufficient to determine whether these strategic adjustments were due to a systematic bias that 

arose as time-on-task increased, an exploratory strategy that arose as decision-makers gained 

familiarity with their environment, or in response to the probability of success associated with a 

specific risk mitigation strategy. Future research should explore the factors that motivate these 

shifts with the intention of identifying optimal behavior and predicting when shifts should occur. 
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Appendix A -  

The Game Engagement Questionnaire 

 

Please answer the following questions with respect to the game you just played. 

 

1. I lost track of time. 

 

1 2 3 

Yes Sort of No 

 

2. Things seemed to happen automatically. 

 

1 2 3 

Yes Sort of No 

 

3. I felt different. 

 

1 2 3 

Yes Sort of No 

 

4. I felt scared. 

 

1 2 3 

Yes Sort of No 

 

5. The game felt real. 

 

1 2 3 

Yes Sort of No 

 

6. If someone talked to me, I wouldn’t hear them. 

 

1 2 3 

Yes Sort of No 

 

7. I got wound up. 

 

1 2 3 

Yes Sort of No 
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8. Time seemed to kind of stand still or stop. 

 

1 2 3 

Yes Sort of No 

 

9. I felt spaced out. 

 

1 2 3 

Yes Sort of No 

 

10. I didn’t answer when someone talked to me. 

 

1 2 3 

Yes Sort of No 

 

11. I couldn’t tell that I was getting tired. 

 

1 2 3 

Yes Sort of No 

 

12. Playing seemed automatic. 

 

1 2 3 

Yes Sort of No 

 

13. My thoughts went fast. 

 

1 2 3 

Yes Sort of No 

 

14. I lost track of where I am. 

 

1 2 3 

Yes Sort of No 

 

15. I played without thinking about how to play. 

 

1 2 3 

Yes Sort of No 

 

16. Playing made me feel calm. 

 

1 2 3 

Yes Sort of No 
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17. I played longer than I meant to. 

 

1 2 3 

Yes Sort of No 

 

18. I really got into the game. 

 

1 2 3 

Yes Sort of No 

 

19. I felt like I just couldn’t stop playing. 

 

1 2 3 

Yes Sort of No 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

  



 

57 

Appendix B -  

Table 8 

Random effect structures considered when testing the effects of the within-subject variables rate 

of damage from enemy characters and time-on-task on risk mitigation strategies. 

Random Effect Structures AIC 

intercept 647.9 

intercept + hits-only rate of damage received 642.2 

intercept + shielded rate of damage received 645.7 

intercept + health pack-adjusted rate of damage received 643.1 

intercept + hits-only rate of damage received + time-on-task 632.5 

intercept + health pack-adjusted rate of damage received + 

time-on-task 

631.7 

intercept + Hits-only Rate of damage received  Time-on-task 636.3 

intercept + Health pack-adjusted Rate of damage received  

Time-on-task 

634.4 
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Table 9 

Random effect structures considered when testing the effects of the within-subject variables rate 

of damage from enemy characters and time-on-task on risk mitigation strategies. 

Fixed Effect Structures AIC 

Hits-only Rate of damage received  Time-on-task + 

videogame experience + condition 

629.6 

Health pack-adjusted Rate of damage received  Time-on-

task + videogame experience + condition 

626.4 

Hits-only Rate of damage received  Time-on-task + 

Perception  Time-on-task videogame experience + condition 

629.9 

Health pack-adjusted Rate of damage received  Time-on-

task + Perception  Time-on-task videogame experience + 

condition 

625.5 
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