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ABSTRACT Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker
information to predict genetic merit of animals and plants typically assume homogeneous residual variance.
However, variability is often heterogeneous across agricultural production systems and may subsequently
bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed
specifications and variable selection to explicitly account for environmentally-driven residual heteroske-
dasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or
heterogeneous residual variances were fitted to training data generated under simulation scenarios
reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also
on prediction accuracy of genomic breeding values computed on a validation data subset one generation
removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP
models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin
muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual
heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors.
Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets
of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved
model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the
magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy).
Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on
individuals of extreme genetic merit.
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Use of whole-genome prediction (WGP) models to predict individual
genetic merit in complex traits is being increasingly utilized in modern
animal, plant and human genetics. By incorporating genotypic infor-
mation from single-nucleotide polymorphism (SNP) markers, WGP

models can enhance accuracies ongeneticmerit prediction compared to
the use of pedigree information alone (Meuwissen et al. 2001; de los
Campos et al. 2013a). Currently popular WGP models include ridge-
regression best linear unbiased prediction (RR-BLUP), BayesA and
BayesB, all proposed by Meuwissen et al. (2001), and subsequently
modified or extended to a wide array of models collectively dubbed
as Bayesian alphabet models (Habier et al. 2011; Gianola 2013).
Typically, these Bayesian models specify either heavy-tailed distribu-
tions (i.e., BayesA), variable selection (BayesCp), or both (BayesB) on
the distribution of the SNP effects.

An often underappreciated, though pervasive, assumption underly-
ing classicalWGPmodels across the “Bayesian alphabet” (Gianola et al.
2009) is that of homogeneous residual variances, often referred to as
residual homoskedasticity. Yet, heterogeneity of residual variances
across environments, or residual heteroskedasticity, is awell-documented
phenomenon in livestock production systems (Cardoso et al. 2005, 2007;
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Kizilkaya and Tempelman 2005; Bello et al. 2012; Cernicchiaro et al.
2013), thereby raising concern about the implications of the residual
homoskedasticity assumption almost universally assumed in current
WGP models (Gianola and Rosa 2015). Indeed, the use of heteroske-
dastic models for genetic evaluations dates back to work by Foulley and
Gianola (1996), who first modeled the logarithm of residual variances
as a linear function of fixed effects. SanCristobal-Gaudy et al. (2001)
presented further extensions to incorporate random effects,
including correlated genetic effects, followed by a unifying framework
for the structural modeling of heterogeneous variances proposed by
Kizilkaya and Tempelman (2005). With the advent of genomic selec-
tion, Yang et al. (2011) was among the first to propose a WGP model
with heterogeneous residual variances for livestock populations,
though only a genetic component was specified on both mean and
residual variance.

Environmentally-driven heteroskedasticity has been shown to have
practical implications for the prediction of genetic merit. Hill (1984)
demonstrated that proportionally more individuals were likely to be
selected frommore variable groups if substantial heteroskedasticity was
ignored using homoskedastic error models, especially if selection pres-
sure was intense. Early attempts to remedy this problem included the
preadjustment of phenotypes, e.g., by centering and scaling (Hill 1984).
More modern approaches include explicit specification and
modeling of sources of heteroskedasticity. For instance, Kizilkaya
and Tempelman (2005) showed improved precision in estimated sire
genetic merit for a birth weight trait when residual variance was
specified as a function of sex and herds, finding that estimates of
residual variances differed by as much as 20 times across herds.

The objectives of this study were 1) to extend classical parametric
WGP models, specifically RR-BLUP, BayesA, BayesB and BayesCp, to
explicitly account for residual heteroskedasticity, and 2) to assess po-
tential gains in prediction accuracy by explicit modeling of residual
variances as a function of various environmental or management fac-
tors in simulated and actual livestock performance data.

We first introduce extensions to classical WGP models to accom-
modateheteroskedasticity, includingadelineationof thecriteriaused for
model performance. We then describe and present comparisons based
on a simulation study and also an application to carcass traits data from
pigs.

MATERIALS AND METHODS

Classical WGP models
The classical base WGP model expresses the phenotype yi of an indi-
vidual i (i = 1, 2,. . .,n) as a linear regression function of SNP marker
effects, as follows:

yi ¼ x’ibþ
Xp
j¼1

zij gj þ ei (1)

where b is a vector of unknown fixed effects connected to the phe-
notypes via a known design vector x’i; gj is the unknown random effect
of SNPmarker j = 1, 2,. . ., p connected to yi via a known genotype zij
coded as 0, 1 or 2 to represent the dosages of the minor allele, and ei is
the residual for animal i. Most current WGP models assume
e ¼ feigni¼1 �iid Nð0; Is2

e Þ.
Differences between WGP models RR-BLUP, BayesA, BayesB and

BayesCp are based upon the specification of the distribution of

g ¼ fgjgpj¼1
. For RR-BLUP, gj �iid Nð0;s2

gÞ"j, whereas for BayesA

gj j ng ; s2g �iid tng ð0; s2gÞ, i.e., independently and identically distributed

scaled Student-t with common degrees of freedom ng and scale param-
eter s2g . This prior specification on BayesA is marginally equivalent

to gj js2
gj

�iid Nð0;s2
gj
Þ such that s2

gj

���ng ; s2g � x�2ðng ; ng s2gÞ

with Eðs2
gj

����ng ; s2gÞ ¼ ng
ng 2 2s

2
g (de los Campos et al. 2009; Yang and

Tempelman 2012). BayesB further extends BayesA and specifies the dis-
tributionof gj j ng ; s2g as amixture of tng ð0; s2gÞwithprobability ð12pÞand
a point mass at 0 with probability p (Meuwissen et al. 2001). BayesCp is
a particular special case of BayesB with ng/Nsuch that the nonzero
component of the mixture is Nð0;s2

gÞ (Habier et al. 2011).

Heteroskedastic extension of WGP models
Following Kizilkaya and Tempelman (2005), we extend WGP models
to flexibly model the residual variance s2

e as a multiplicative function
of both systematic and nonsystematic environmental components,
thereby explicitly accounting for heteroskedasticity. Expressed in the
natural logarithmic scale, this is equivalent to writing the following

lnðs2
eiÞ ¼ w’

ilnðtÞ þm’
ilnðvÞ; (2)

where s2
ei is the residual variance corresponding to the environmental

or management circumstances for individual i; t is a s · 1 vector of
unknown fixed effect parameters connected to s2

ei via a known design
vector w’

i ; and similarly, v is a t · 1 vector of unknown ran-
dom effects connected to s2

eivia a known design vector m’
i. Ran-

dom effects on the residual variance may include environmental
effects (i.e., contemporary groups), genetic effects or both. A priori,
elements of v ¼ fvlgtl¼1 can be assumed independently distrib-
uted as inverted gamma IGðan;an � 1Þ, an.2 such that
EðvlÞ ¼ 1 and s2

v ¼ VarðvlÞ ¼ 1=ðav � 2Þ. As a result, variation
across vl can be characterized by defining a coefficient of variation

CV ¼ standard deviation
mean ¼ sv ¼ ðav � 2Þ21

2. So specified, the magnitude
of the heteroskedasticity across levels of the random effect factor v di-
minishes (i.e., s2

v/0) with larger values of av(i.e., av/N) (Kizilkaya
and Tempelman 2005).

Prior specifications
We specify a flat prior on b such that pðbÞ}constant. Here,s2

e in the
homoskedastic error model, as well as elements of t in Equation (2),
were specified with noninformative priors x�2ð-1; 0Þ (Gelman 2006).
The hyperparameter an was assigned the vague, though proper, prior
density pðanÞ}ð1þ anÞ22, which is commonly used for strictly posi-
tive parameters (Kizilkaya andTempelman 2005). As previously shown
by Albert (1988), this prior defines a uniform prior density U(0,1) on

the transformed variable § ¼ gðavÞ ¼ ð1þ avÞ21. Then, by change of

variables, fav ¼ f§ðg21ðavÞÞ
���� @
@av

g21ðavÞ
���� ¼ ð1þ avÞ22; where f de-

notes the probability density function.
For RR-BLUP and BayesCp, we specify s2

g � x�2ð-1; 0Þ whereas
for BayesA and BayesB, we specify s2

gj
� x�2ðng ; ng s2gÞ with

ng � pðngÞ}ð1þ ngÞ-2 and s2g � x�2ð-1; 0Þ. Finally, for BayesB and

BayesCp, p is assigned a Beta(10,1) prior to reflect a relatively weak
assumption that most markers have null effects for any given trait.

Simulation study
We compared the performance of classical WGP models, namely RR-
BLUP, BayesA, BayesB and BayesCp, to that of their heteroskedastic
error counterparts using a simulation study.
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Ten data set replicates were each generated frombase populations of
150 unrelated individuals subjected to random mating for 6000 gener-
ations. Population size was kept constant until generation 6000, after
which it was expanded 10 times to 1500 individuals. The genome was
composed of three chromosomes, each of length 1 Morgan, and each
containing a total of 10,000 equally-spaced monomorphic loci. The
number of crossover events per meiosis was simulated from a Poisson
distribution with mean 1 and the location of crossover was assumed
uniformly distributed in a chromosome. The mutation rate for all loci
was specified to be 2:5 · 1024per locus per generation and to be re-
current so as to ensure biallelic loci.

In Generation 6001, loci with minor allele frequency (MAF) , 0.1
or loci that failed to meet Hardy-Weinberg equilibrium based on an
exact test (Wigginton et al. 2005) at a significant level of 0.0001 were
discarded. For each dataset replicate, 60 loci were randomly selected to
serve as quantitative trait loci (QTL), and an additional 3000 different
loci were randomly selected to serve as SNPmarkers. For each of the 60
QTL, an allelic substitution effect a

k
(k = 1, 2,. . ., 60) was drawn from a

t5(0,0.005), i.e., a Student-t distribution with 0 mean and a scale of
0.005 based on five degrees of freedom. Our choice of a heavy-tailed
distribution for the QTL effects is consistent with current notions of the
genetic architecture of quantitative traits in livestock population, by
which traits seem to be controlled by many genes of small effect and
few of large effects (Hayes and Goddard 2001; Goddard et al. 2009).
The total additive genetic variance s2

a was constructed from the
weighted sum of genetic variances across the QTL effects, namely

s2
a ¼ 2

P60
k¼1 qkð12 qkÞa2k , where qk is the MAF at QTL k. The true

breeding value (TBV) for an individual i was obtained as the
aggregated allelic substitution effects a

k
over the selected 60 QTL loci,

each weighted by its corresponding allelic dosage zik , such that

TBVi ¼
P60

k¼1 zik ak
. Trait heritability was set at h2¼ 0:4.

Within each data replicate, we considered five different simulation
scenarios reflecting various degrees of residual heteroskedasticity. That
is, the replicated datasets described in the previous paragraph were used
as blocking factors to compare scenarios across a heteroskedastic error
gradient. Simulation scenarios included the case of homoskedastic
residuals whereby t1 ¼ t2 ¼ s2

e and vl ¼ 1 for all l =1, 2,. . ., 50 levels
of a random effects factor, such that s2

ei ¼ s2
e"i. In this study, speci-

fication of an/Nrepresents the homoskedastic error scenario, as
s2
v/0. In turn, other scenarios were defined by increasing levels of

residual heteroskedasticity; i.e., an = 50, 12, 5, and 3, such that the

standard deviations sv ¼
ffiffiffiffiffiffiffiffiffi

1
av 2 2

q
of the relative variances (vl) across

these random effects were
ffiffiffiffi
1
48

q
;
ffiffiffiffi
1
10

q
;
ffiffi
1
3

q
and 1, respectively. In addi-

tion, all heteroskedastic error scenarios (i.e., an= 50, 12, 5, and 3)
further incorporated systematic sources of heterogeneity whereby
t1 ¼ 0:8 � s2�

e and t2 ¼ s2�
e , where s2�

e is a “fixed” reference residual
variance. For data generation, the residual ei was sampled from
Nð0;s2

eiÞ where s2
eiwas obtained as a function of t and v, as described

in Equation (2). The phenotypic observation for individual i was gen-
erated as yi ¼ mþ TBVi þ ei, with m ¼ 3 set as a common mean for
all observations. Observations from Generation 6001 were used as a
training set to fit the competing WGP models and to estimate SNP
effects. For each simulated dataset, individuals from Generation 6001
were randomly mated to produce Generation 6002 consisting of ad-
ditional 1500 animals. Genotypes and TBV from individuals in
Generation 6002 were generated to be used for validation in the
simulation study. The average level of linkage disequilibrium (LD)
between adjacent markers in the simulation study ranged be-
tween 0.23 to 0.25 across all replicated datasets, to represent current

livestock populations (Meuwissen et al. 2001; Calus et al. 2008; Hayes
et al. 2009; Yang et al. 2011).

Each replicated dataset was fitted using homoskedastic and hetero-
skedastic error versions of the selectedWGPmodels, namelyRR-BLUP,
BayesA, BayesB and BayesCp. Programming code needed to imple-
ment these models is available in Supporting Information, File S1.
Across models, Markov Chain Monte Carlo (MCMC) was imple-
mented with burn-in lengths of 10,000 to 35,000, followed by subse-
quent saving of the next 140,000 to 480,000 cycles, depending on the
WGP models and diagnostics as described subsequently.

Application to MSU swine resource population data
Data corresponding to a three-generation Duroc · Pietrain swine
resource population developed at Michigan State University (MSU)
was used in this study. A detailed description of the dataset is avail-
able in Edwards et al. (2008a, 2008b). Briefly, a total of 19 F0, 55 F1
and 928 F2 pigs were included in the pedigree. All F0 and F1 animals
as well as 336 F2 animals were genotyped using the commercial
Illumina PorcineSNP60 beadchip (GeneSeek a Neogen Co., Lincoln,
NE) panel with a total of 62,163 SNP markers (Gualdron Duarte et al.
2014). Markers with more than 10% missing data, unknown physical
positions, or with MAF , 0.01 were removed from further analyses.
Quality control procedures followed those described in Badke et al.
(2012). Genotypes for the remaining 592 F2 animals were
obtained using a low-density panel of 9K tagSNP set referred to
as the GeneSeek Genomic Profiler for Porcine LD (GGP-Porcine
LD, GeneSeek a Neogen Company) consisting of a subset of the
PorcineSNP60 panel. The F2 animals genotyped with the 9K low
density panel were imputed to 60K with imputation accuracy of
approximately 0.99, as previously described (Gualdron Duarte
et al. 2013). From the 60K SNP, a subset of 6210 markers was
selected for this study. The selected SNP subset matched the panel
of 10K tagSNP previously described by Badke et al. (2014). Phe-
notypes corresponding to 29 growth traits and 25 carcass and meat
quality traits were obtained for F2 animals, as described by
Edwards et al. (2008a, 2008b). Traits were subjected to preliminary
screening for heterogeneous residual variances using standard linear
mixedmodels and approximately 80% of the traits showed some degree
of residual heteroskedasticity. Two traits, namely carcass temperature
at 45 min postmortem, and loin muscle pH at 45 min postmortem,
were selected for further consideration based on potentially high and
mild levels of heteroskedasticity, respectively, and were thus subjected
to follow-up WGP analysis (see next section). Phenotypes for 921 and
908 F2 individuals were available for 45 min postmortem carcass tem-
perature and for loin muscle pH, respectively. Phenotypes of the
selected traits, genotypes and pedigree of the available animals were
contained in the Supporting Information, File S2.

Each of the two selected traits were fitted using RR-BLUP, BayesA,
BayesB and BayesCp WGP models in both their homoskedastic and het-
eroskedastic error specifications. For both traits, bincluded the fixed effect
of sex and a regression coefficient on carcass weight. The general WGP
model in Equation (1) was further expanded to incorporate clustering

effects of slaughter dates d ¼ fdqg33q¼1 � Nð0;s2
dÞas well as polygenic

effects u � Nð0;As2
uÞ, where A is a known pedigree-based additive re-

lationshipmatrix. Therefore, in our data application, the genomic expected
breeding value (GEBV) for individual i (i = 1,2,. . .,n) was defined asPp

j¼1 zij ĝ j
þ ûi. We modeled heterogeneous residual variances as pre-

sented in Equation (2), with t and v ¼ fvlg33l¼1 specifying the fixed effects
of sex and the random clustering effects of slaughter dates, respectively.
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Thus, the hyperparameter anin vl � IGðan;an � 1Þ reflects the magni-
tude of residual heteroskedasticity in the responses of interest due to slaugh-
ter dates clusters.

Prior specificationswere similar to thosedescribed for the simulation
study, with the following exceptions due to problems with parameter
identifiability. For BayesCp, the prior hyperparameter ng was set at
ng = 3 for both traits to maximize prior uncertainty while retaining a
defined mean (i.e., ng . 2). Instead, the prior scale s2g for BayesCp
was specified as s2g ¼ 4:95· 1027for carcass temperature and
s2g ¼2:01· 1028for loin muscle pH, based on the posterior medians
of s2g obtained in BayesA. For BayesB, the hyperparameter s2g was as-
sumed known and set at 6:35· 1027 for carcass temperature and
2:64· 1028 for loin muscle pH, whereby these values were obtained
based on the posterior median of s2

g under BayesCp with a homoske-
dastic error assumption. Sensitivity analyses were conducted to assess the
influence of specifying s2g on posterior inference of interest. Also due to
parameter identifiability issues, the variance s2

u of the polygenic effects
was first estimated from traditional (i.e., non-WGP) animal models that
either assumed residual homo- or heteroskedasticity. These estimates of
s2
u under homo- and heteroskedastic assumptions were then specified as

known constants when fitting homo- and heteroskedastic WGP models,
respectively. Homoskedastic and heteroskedastic error specifications of
the selectedWGPmodels were fitted to each trait. In every case, a total of
20 parallel MCMC chains were run, each consisting of 12,000 to 27,000
burn-in cycles followed by 6,000 to 14,000 saved cycles. Post burn-in
samples from the 20 parallel MCMC chains run on a given model
can be considered samples from the joint posterior density of in-
terest, and were thus combined for inference. Initial values of hyper-
parameters in each parallel chain were dispersed by an arbitrary
small value while constraining them to fall within their allowable
parameter space (Gelman and Rubin 1992). Posterior inference on
parameters of interest was summarized for the overall dataset.

Model comparison
For each of the WGP models considered, namely RR-BLUP, BayesA,
BayesB and BayesCp, the performance of the homoskedastic vs. its
heteroskedastic error model counterparts was compared in both sim-
ulated data and real data using various criteria for model fit and for
prediction, as follows.

First, we compared quality of global model fit using pseudo-Bayes
factor (PBF) (Gelfand 1996), defined as the ratio of the conditional
likelihood function under each heteroskedastic error WGP model over
its homoskedastic counterpart, expressed in logarithmic scale of base
10, as follows:

log10 PBFHT;HO ¼
Xn
i¼1

log10 Lðyijy2 i;HTÞ

�
Xn
i¼1

log10 Lðyijy2 i;HOÞ (3)

where the abbreviation HT and HO hereafter refer to the candidate
heteroskedastic and homoskedastic models, respectively. Moreover,
Lð � Þ denotes the likelihood function of observation yi conditional on
all remaining observations fitted with the correspondingWGPmodel.
This conditional likelihood, also known as the conditional predictive
ordinate (Gelfand 1996) for observation i, can be approximated by

Lðyi
�����y2 i;modelÞ �

 
1
B

PB
b¼1

1
LðyijuðbÞ ;modelÞ

!21

, where B is the num-

ber of post burn-in MCMC iterations; uðbÞ represents the posterior

sample for model parameters u after b iterations post burn-in
(b =1,2,. . .,B). A positive value of log10 PBFHT;HO indicates support
for the heteroskedastic error model based on enhanced fit to the data
relative to its homoskedastic error WGP counterpart, thereby indi-
cating evidence for heterogeneity of residual variances.

We further compared predictive performance of breeding values
between competing homoskedastic and heteroskedastic error alterna-
tives of each WGP model. For simulated data, we assess genomic
prediction accuracy using the Pearson correlation between TBV in
the simulated validation set and corresponding estimates
GEBVi ¼

Pp
j¼1 zij ĝ j

, whereby ĝ
j
were obtained by fitting the WGP

model to the simulated training set. Within each WGP model, we
compared homoskedastic vs. heteroskedastic error specifications
across the various scenarios using a multifactorial ANOVA on geno-
mic prediction accuracy, with the simulated replicated dataset as a
random blocking factor.

For the real data application, predictive performance was assessed
using a five-fold cross-validation (Daetwyler et al. 2013), whereby an-
imals within each slaughter dates cluster were randomly assigned to five
nonoverlapping data partitions or folds of nearly equal size (175–191
animals). Each one of the five data folds was assigned to be a validation
set exactly once. When a data fold was selected as a validation set,
phenotypes of this particular fold were excluded from estimation of
marker effects. Instead, phenotypes of the validation fold were pre-
dicted using estimates of SNP markers, polygenic and nongenetic ef-
fects obtained from fitting a model to the remaining data folds, referred
to here at training folds. This procedure was repeated until each of the
five data folds had served as a validation set once. Consequently, every
phenotyped animal was excluded from estimation of marker effects
once, in which case their phenotypes were predicted using estimates
obtained from animals in corresponding training folds (Meuwissen
et al. 2013). We defined cross-validation predictive ability as the
Pearson correlation coefficient between observed phenotypes in the
validation fold, and the corresponding predicted phenotypes from pa-
rameter estimates obtained from the training folds. That is, rðyi; ŷiÞ,
where yi and ŷi are the observed and predicted phenotypes, respec-
tively, for animal i in the validation fold. The predicted phenotypes ŷi
included estimatedmarker effects (weighted by their allelic frequencies)
and estimated polygenic effects, as well as the estimated fixed effects of
sex and carcass weight, and the random blocking effects of slaughter
dates.

We also characterized potential practical implications of heteroske-
dasticity in the context of breeding decisions based on WGP. More
specifically, we computed the Spearman’s rank correlation coeffi-
cient between GEBV from homoskedastic vs. heteroskedastic error
specifications for the top and bottom 10% ranked individuals. Rel-
ative ranking of top and bottom 10% individuals was assessed by
fitting a linear mixed model to the estimated Spearman rank corre-
lations obtained from data replicates, and testing for differences
between simulation scenarios. For real data, rank correlations of
GEBV for top and bottom 10% individuals in the validation sets
were compared between homoskedastic and heteroskedastic WGP
models.

MCMC diagnostics
Convergencediagnosticswere implementedusing theRpackageCODA
(Plummer et al. 2006). We monitored convergence using trace plots.
Diagnostic tests by Raftery and Lewis (1992) and by Heidelberger and
Welch (1983) were conducted on the simulation study. For the data
application, the Gelman and Rubin’s diagnostic on multiple MCMC
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chains produced a shrinkage factor , 1.2 (Colosimo and Del Castillo
2007). We also determined effective sample size (ESS) for key hyper-
parameters (Kass et al. 1998). In each case, the number of MCMC
cycles was adjusted to ensure that the ESS was greater than 100 for
all hyperparameters.

Data availability
Data and R code are available in File S1 and File S2 (refer to “README_
data.txt” and “README_mcmc.txt”, respectively, for details).

RESULTS

Simulation study
For each of the WGP models considered in this study, Figure 1 shows
comparisons of global fit, expressed as log10 PBFHT;HO, between homo-
skedastic and heteroskedastic model specifications for scenarios reflect-
ing a gradient of increasing residual heteroskedasticity. Recall that
positive values of the log10 PBFHT;HO indicate support for the hetero-
skedastic, as opposed to the homoskedastic error version of the corre-
sponding WGP model. When residual heteroskedasticity was high
(an= 3 or 5), log10 PBFHT;HOwas estimated to be between 12.8 and
77.3 across MC replicates fitted with any of the WGP models. This
supports a strong advantage in global fit for heteroskedastic, rather than
homoskedastic, error specifications, regardless of the specific WGP
model. As the amount of residual heteroskedasticity decreased (an=
12), so did the values of log10 PBFHT;HO and thus the relative advantage
of the heteroskedastic error WGP model over its homoskedastic
error counterpart. Under scenarios of low heteroskedasticity (an=
50), or of homogeneous residual variance (an/ N), the values of
log10 PBFHT;HO under RR-BLUP and BayesA were closer to zero, thus
indicating no apparent advantage of heteroskedasticWGPmodels over
their homoskedastic error counterparts; in turn, BayesB and BayesCp
showed greater uncertainty in these conditions. Overall, we note that,
when the amount of residual heteroskedasticity in the data was high
(an= 3 or 5), log10 PBFHT;HO consistently selected the appropriate
heteroskedastic error specification for all WGP models; however, as
mentioned above, the discriminatory capability of log10 PBFHT;HO to
detect random sources of residual heteroskedasticity was partially,
though incrementally, impaired when heteroskedasticity was moderate
(an= 12) or low (an= 50).

Table 1 presents a summary of the posterior inference on the hyper-
parameter andefining the degree of heterogeneity of residual variance
across levels of the random effect factor for 10MC replicates under each
of the simulation scenarios fitted with the heteroskedastic WGP mod-
els. Coverage probabilities for an , defined as proportion MC replicates
for which the 95% highest posterior density (HPD) included the true
parameter value, underWGPmodels RR-BLUP and BayesA were mu-
tually identical at 100%, 90%, 100%,100% when true an= 3, 5, 12, 50,
respectively. In turn, coverage probabilities were 100%, 90%, 70%, 20%
for BayesB and 100%, 90%, 80%, 20% for BayesCp, when true an= 3, 5,
12, 50, respectively. As might be expected, inferential precision on
anwas maximized when heteroskedasticity was high, as indicated by
the smallest difference between minimum and maximum values of the
lower and upper boundaries of the 95% HPD on an (Table 1). The
reverse was also true, as inference on anwas most uncertain when
heteroskedasticity was not present. That is, enhanced model fit of a
heteroskedastic WGP model relative to its homoskedastic counterpart
under conditions of heterogeneous variances may be explained by in-
creased precision of inference on the hyperparameteran , and vice versa.
These results on posterior inference of the heteroskedasticity parameter
an are consistent with those presented for overall goodness of fit in
Figure 1.

To validate inferential performance on the fixed effect parameters t
specified on the residual variance, we considered the posterior density
of the ratio of t1 over t2. Coverage probability of the 95% HPD for the
true value of the parameter ratio under heteroskedastic WGP models
was 92% for both BayesB and BayesCp, and 94% for both RR-BLUP
and BayesA across simulation scenarios. In all cases, the observed
coverage was within probabilistic expectation.

Estimated genomic prediction accuracies (and corresponding stan-
dard errors) of heteroskedastic and homoskedastic error versions of
WGPmodels are shown in Figure 2. For all RR-BLUP, BayesA, BayesB
and BayesCp models, the heteroskedastic specification showed a gain
on genomic prediction accuracy relative to the homoskedastic WGP
counterpart whenever the amount of residual heteroskedasticity in the
data were high (i.e., an= 3 or 5, P , 0.001 in all cases). However, no
evidence for any predictive advantage of heteroskedastic WGP specifi-
cationswas apparent if the data had been generated under conditions of
low or null heteroskedasticity (i.e., an= 50 orN; P. 0.30 in all cases).
For situations of moderate heteroskedasticity (i.e., an= 12) fitted with

Figure 1 Assessment of global fit, expressed as
log10 pseudo-Bayes factor (PBF), between het-
eroskedastic and homoskedastic whole-genome
prediction (WGP) models, namely RR-BLUP,
BayesA, BayesB, and BayesCp, for 10 replicated
data sets from each of five simulated scenarios
defined by either residual homoskedasticity
(av/ N) or a gradient of residual heteroskedas-
ticity ranging from high (av= 3, 5) to moderate
(av= 12) to low (av= 50). A horizontal reference
line is provided at zero.
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RR-BLUP or BayesA WGP models, the heteroskedastic error specifi-
cation yielded greater (P , 0.05) genomic predictive accuracy than its
homoskedastic counterpart but this difference was not apparent using
variable selection models like BayesB or BayesCp. Despite the signifi-
cant increase in genomic prediction accuracy by heteroskedastic WGP
models when the data were highly heteroskedastic, we note that the
gain in accuracy relative to the homoskedastic specification was of a
relatively small magnitude (i.e., range from 0.009 to 0.018 foran= 3 and
from 0.005 to 0.008 for an= 5 across MC replicated data sets).

To further characterize potential practical implications of het-
eroskedastic vs. homoskedastic WGP models in the context of
breeding programs, we explored differences in the ranking of in-
dividuals of extreme genetic merit. We computed the Spearman
correlation of the top 10% individuals whose GEBV had been esti-
mated from homoskedastic and heteroskedastic WGP models
across the simulated gradient of residual heteroskedasticity (Figure
3). Results on the bottom 10% ranked individuals showed a similar
pattern and are thus not discussed further. For homoskedastic sce-
narios (an/ N) or scenarios of low heteroskedasticity (an= 50),
the Spearman rank correlation between homoskedastic- and
heteroskedastic-based GEBVs from RR-BLUP, BayesA, BayesB or
BayesCpWGP models for the top 10% animals was close to 1, thus
indicating minor concerns for selection purposes. However, as the
amount of heteroskedasticity increased, the Spearman correlation

between heteroskedastic-based GEBV and homoskedastic-
assuming GEBV for the top 10% individuals decreased to an esti-
mated value of 0.85. This result suggests nonnegligible reranking of
top individuals for selection purposes. Given response to selection,
this finding could potentially have direct implications for breeding
programs despite the small magnitude of the overall gain on genomic
prediction accuracy described before.

MSU swine resource population data
For carcass temperature at 45 min postmortem, the variance s2

u of
polygenic effects were estimated at 0.022 and 0.036 for homoskedastic
and heteroskedastic error specifications, respectively. For loin muscle
pH at 45 min, the corresponding estimates ofs2

u were 0.006 and 0.005,
respectively.

Wefirst assessed evidence for residualheteroskedasticityon the traits
carcass temperature and loin muscle pH 45 min postmortem selected
for this study from the MSU resource population. Table 2 summarizes
the posterior inference for an in the heteroskedastic specification of
WGP models on the complete dataset. Recall that the hyperparameter
an defines the magnitude of non-systematic heterogeneity of residual
variances for each of the selected traits as a function of slaughter dates
clusters. For carcass temperature at 45 min postmortem, the posterior
mean ofanwas smaller than two in all cases. Similarly, themagnitude of
the upper boundaries of the 95% HPD on an did not exceed three

n Table 1 Posterior inference on the hyperparameter av for simulated datasets

True av

RR-BLUP BayesA BayesB BayesCpe�av (minL, maxU) e�av (minL, maxU) e�av (minL, maxU) e�av (minL, maxU)

3 3.83 (1.55, 7.94) 3.63 (1.66, 8.57) 3.37 (1.50, 7.65) 3.43 (1.47, 7.53)
5 6.94 (1.45, 19.84) 6.59 (1.48, 23.89) 4.54 (1.28, 11.74) 4.58 (1.31, 11.87)
12 22.74 (3.31, 301.75) 28.07 (3.48, 307.89) 10.70 (2.82, 27.77) 11.03 (2.83, 28.23)
50 116.11 (3.78, 586.82) 99.05 (4.04, 526.37) 11.96 (3.64, 106.07) 12.26 (3.62, 174.62)
N 224.67 (3.71, 1363.73) 315.31 (3.85, 1324.12) 16.16 (3.56, 149.61) 16.67 (3.47, 136.10)

Median of the posterior mean of av (e�av ) [as well as minimum and maximum values for the respective lower and upper boundaries (minL, maxU) of the 95% highest
posterior density intervals of the posterior distribution of av ] based on 10 Monte Carlo replicates across simulation scenarios consisting of a gradient of increasing
heteroskedasticity. Simulated data were fitted with heteroskedastic specifications of whole-genome prediction models, namely RR-BLUP, BayesA, BayesB, and
BayesCp.

Figure 2 Genomic prediction accuracy (least
square mean estimates and 95% confidence
intervals) for heteroskedastic (gray) and homo-
skedastic (white) specifications of WGP models
considered in this study, namely RR-BLUP,
BayesA, BayesB, and BayesCp, under simulation
scenarios defined by either residual homoske-
dasticity (av/ N) or a gradient of residual het-
eroskedasticity ranging from high (av= 3, 5) to
moderate (av= 12) to low (av= 50). Genomic
prediction accuracy was defined as the Pearson
correlation coefficient between true breeding
value and expected breeding value. �� and � in-
dicate differences between heteroskedastic and
homoskedastic versions of each WGP model at
P = 0.001 and P = 0.05, respectively.
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under any of the heteroskedastic WGP models considered, thereby
providing evidence for strong cluster-based heterogeneity of residual
variances for this trait. In fact, the range of posterior means of slaughter
date-specific vl for carcass temperature at 45 min postmortem was
greater than eight-fold, thereby indicating that the residual variance
for some slaughter dates clusters was estimated to be as large as eight
times greater than the residual variance in other slaughter clusters. In
turn, for loin muscle pH at 45 min postmortem, the posterior mean of
an was below six, and the corresponding upper boundaries of its 95%
HPD was approximately 10 in all cases, thus indicating milder cluster-
driven residual heteroskedasticity for this trait, whereby the range of
posterior means of vlwas close to three-fold across all 33 slaughter dates
clusters. These results are consistent with our findings during prelim-
inary data screening.

We also explored the effect of sex as an additional source of
heteroskedasticity on the selected traits, as represented by parameter
t in Equation (2). Based on the set-to-zero parameterization imple-
mented in this study, the parameter t may be interpreted as a ratio of
female-to-male residual variances, whereby a ratio of one indicates
homogeneous residual variances for both sexes. For carcass tempera-
ture at 45 min postmortem, the 95% HPD of t fitted with any of the
WGPmodels ranged from a lower boundary of 0.7 to an upper bound-
ary of 1.2. For loin muscle pH, the corresponding 95% HPD range was
0.9 to 1.5. It then follows no evidence for sex-based heteroskedasticity
of either trait regardless of WGP model.

Next, we consider relative global fit of homoskedastic vs. hetero-
skedastic error WGP models to the actual data using PBF (Gelfand
1996), and use a threshold value of log10 PBFHT;HO ¼ 2 to conclude
upon a decisive difference in fit between models (Kass and Raftery
1995). For carcass temperature at 45 min postmortem, the range of
log10 PBFHT;HO across the five cross-validation folds was [45.7, 81.3]
for RR-BLUP, [46.9, 81.0] for BayesA, [44.3, 77.5] for BayesB, and
[43.8, 76.9] for BayesCp WGP models. In turn, for loin muscle pH
at 45 min postmortem, the range of log10 PBFHT;HOwas [9.7, 14.4],
[9.8, 14.6], [8.8, 13.7] and [8.6, 13.8]. These results favor the use of
heteroskedastic WGP error models for both traits, and under all
WGP specifications considered here. The larger magnitude of
log10 PBFHT;HO, and hence greater evidence of residual heteroskedas-
ticity for carcass temperature relative to loin muscle pH, is consistent
both with our preliminary screening and with our posterior inference
on an as described previously.

We also assessed predictive performance of homoskedastic and
heteroskedastic WGP models. We first conducted a sensitivity analysis
to evaluate the stability of cross-validation predictive ability using
BayesCp under different choices of s2g as 4:95· 1025, 4:95· 1027and
4:95· 10210for carcass temperature and 2:01· 1026, 2:01· 1028and
2:01· 10211for loin muscle pH trait. Similarly, sensitivity assessments
were also conducted for BayesB looking at choices of s2g as 6:35· 1025,
6:35· 1027 and 6:35· 10210for carcass temperature and 2:64· 1026,
2:64· 1028 and 2:64· 10211 for loin muscle pH trait. As expected,

n Table 2 Posterior inference on the hyperparameter av for two quantitative traits from the Michigan State University
swine resource population

Carcass Temperature at 45 Min Loin Muscle pH at 45 Min

�av 95% HPD �av 95% HPD

RR-BLUP 1.66 (1.05, 2.45) 5.14 (2.09, 8.90)
BayesA 1.62 (1.06, 2.43) 5.01 (2.03, 8.59)
BayesB 1.89 (1.09, 2.86) 5.76 (2.27, 9.94)
BayesCp 1.88 (1.11, 2.84) 5.84 (2.26, 10.01)

Posterior mean for av (�av ), as well as 95% highest posterior density (HPD) intervals, based on heteroskedastic whole-genome prediction
models, namely RR-BLUP, BayesA, BayesB, and BayesCp, are presented.

Figure 3 Spearman’s correlation coeffi-
cient (least square mean estimates and
95% confidence intervals) between top 10%
homoskedastic-assuming predicted genomic
breeding values (GEBV), and their heteroske-
dastic-assuming counterpart GEBV across
WGP models under simulation scenarios de-
fined by either residual homoskedasticity
(av/ N) or a gradient of residual heteroske-
dasticity ranging from high (av= 3, 5) to
moderate (av= 12) to low (av= 50). (a,b,c,d)
Different letters indicate significant differ-
ences in ranking at a = 0.05.
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changes in the specification of s2g were compensated with changes in the
estimates of the proportion of SNPmarkers with nonzero effects (Yang
et al. 2015). In turn, the estimated median cross-validation prediction
accuracies for carcass temperature, and its corresponding standard
deviation, across cross-validation folds at any choice of s2g were
0.86 6 0.05 for homoskedastic error BayesCp or BayesB and
0.86 6 0.04 for heteroskedastic error BayesCp or BayesB. For loin
muscle pH, cross-validation prediction accuracy based on homoske-
dastic error BayesCp or BayesB ranged from 0.31 6 0.06 to
0.29 6 0.07 across prior specifications of s2g . For heteroskedastic er-
ror BayesCp or BayesB, cross-validation predictive ability ranged from
0.32 6 0.07 to 0.29 6 0.07 across values of s2g . Overall, sensitivity
analyses assessment indicated little reason to be concerned about spec-
ification of hyperparameters for the purpose of prediction accuracy.

Figure 4 depicts estimated cross-validation predictive abilities across
five folds for both carcass temperature and loin muscle pH at 45 min
postmortem. Across WGP models, cross-validation predictive abilities
for carcass temperature and loin muscle pH 45 min postmortem were
estimated to be approximately 0.85 and 0.32, respectively. For neither
trait did we find any evidence for differences in cross-validation pre-
dictive ability between homoskedastic vs. heteroskedastic specifications
of any of the WGPmodels considered (P . 0.25 in all cases for either
trait).

Often in animal breeding, greater interest is directed toward animals
that exhibit extreme GEBV, as they are the ones likely to be selected as
parents for the next generation. Table 3 reports Spearman’s rank cor-
relation coefficient between homoskedastic-error vs. heteroskedastic-
error GEBV for animals of extreme genetic merit. For both traits, and
regardless of WGP model, we observed considerable reranking of the
top and bottom 10% individuals, particularly as the degree of residual
variance heterogeneity in the data increased. In fact, for loin muscle pH
at 45 min postmortem, the corresponding estimated median rank cor-
relations ranged from 0.52 to 0.70 (top), and from 0.64 to 0.70 (bottom)
across WGP models; in turn, for the more heteroskedastic trait (i.e.,
carcass temperature at 45 min postmortem), the median rank corre-
lation of GEBV for top and bottom 10% animals ranged from 0.05 to
0.38 (top) and from 0.43 to 0.54 (bottom) across WGP models. Such
variability in rankings of GEBV may be partially due to the relatively
small sample size (i.e., only 10% animals within a cross-validation fold)
used to estimate the rank correlation coefficient. This is further sup-
ported by the considerable variability observed among cross-validation
folds in the reranking of individuals based on homoskedastic-based
GEBV relative to their heteroskedastic counterpart, though this vari-
ability was particularly noticeable for carcass temperature. Again, this
may be partially explained by the relatively largermagnitude of residual
heteroskedasticity detected for this trait.We further note that reranking

of extreme GEBV using homoskedastic vs. heteroskedastic errors
seemed to be particularly extreme when the BayesB WGP specification
was implemented.

For further illustration, we selected a cross-validation fold and
depicted a scatterplot of homoskedastic-error vs. heteroskedastic-error
GEBV for carcass temperature (Figure 5A) and for loin muscle pH
(Figure 5B) under each WGP model. For both traits, individuals that
showed extreme genetic merit under homoskedastic error assumptions
had their GEBV considerably attenuated when residual heteroskedas-
ticity was accounted for (e.g., Figure 5A, BayesB). In fact, an individual
with extremely high GEBV inferred under a homoskedastic error
modelmay not be considered as a viable selection candidate if its GEBV
was estimated from a heteroskedastic error WGP model. This was in-
deed the case for the two individuals with top homoskedastic-based
GEBV in the complete dataset. It is interesting to note that these top
two individuals derived from one slaughter date cluster that had the
largest posterior mean for the relative residual variance vl (data not
shown). Conversely, candidate individuals with top or bottom genetic
merit may be overlooked by using conventional homoskedastic error
models (e.g., Figure 5B, BayesB).

Taken together, the observed reranking could have practical impli-
cations from a selection point of view. In support of this observation, we
note that themeanofgenomicbreedingvalues in the top10%individuals
was between 1.2· (based on BayesA) to 10· (based on BayesCp)
greater in magnitude when estimated based on the heteroskedastic
WGPmodel relative to the homoskedastic specification for either trait.
Similar results were observed for the bottom 10% individuals with
extreme genetic merit based on the hetero- vs. homoskedastic WGP
specification. It should be acknowledged, though, that these compari-
sons are conditioned on the models used to predict mean genomic
breeding values.

DISCUSSION
In this study, we extend classical WGP models to account for potential
heterogeneous residual variances across environments, and further
assess whether explicit accounting for such heteroskedasticity may
impact accuracy of prediction of genomic breeding values.

Environmental residual heteroskedasticity is a rather common
phenomenon across agricultural environments in livestock production.
For instance, residual variance estimates for birth weight in an Italian
Piemontese cattle population differed by approximately 10-fold across
herds (Kizilkaya and Tempelman 2005), and that of average daily gains
in feedlot cattle from the US Midwest differed by more than 12-fold
across contemporary groups (Cernicchiaro et al. 2013). Backfat thick-
ness in pigs was shown to display considerable residual heteroskedas-
ticity based on an animal model, whereby residual variances ranged by

Figure 4 Estimated cross-validation predictive
ability (and 95% confidence intervals) of geno-
mic breeding values for (A) carcass temperature
45 min postmortem and (B) loin muscle pH
45 min postmortem fitted with heteroskedastic
(gray bars) and homoskedastic (white bars) spec-
ifications of WGP models considered in this
study, namely RR-BLUP, BayesA, BayesB, and
BayesCp. Cross-validation predictive ability is
represented by the Pearson correlation coeffi-
cient between observed phenotypes in the val-
idation fold, and their corresponding predictions
based on estimates from the training folds in a
five-fold cross-validation study.
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approximately eight-fold across herds (See 1998). Similarly, in this
study, we found evidence for considerable environmentally-driven het-
erogeneity of residual variances in other swine carcass traits, as indi-
cated by the small magnitude of posterior means of an for carcass
temperature and loin muscle pH. These results indicate considerable
departure from the residual homoskedasticity assumption commonly
invoked by standard WGP models.

Gianola and Rosa (2015) adverted that modeling heterogeneous
residual variances across environments was likely to be important
for reliable genomic selection, as further supported by our results.
Unaccounted-for heteroskedastic errors can potentially impact
breeding decisions as animals from the most diverse environments
might then be disproportionally selected (Hill 1984). Indeed, previous
studies have shown nonnegligible reranking of top and bottom 10%
progenitors when heterogeneity of residual variances across environ-
ment or management groups is properly modeled (Cardoso et al.
2005; Kizilkaya and Tempelman 2005). In fact, incorrectly assuming
homogeneous residual variances could cause a substantial reduction
in selection efficiency, particularly under conditions of low heritabil-
ity (Garrick and VanVleck 1987). Heritabilities of most technological
quality traits of meat in swine, such as the ones evaluated in this study,
has been reported to range from low to moderate, as the average value
for many studies fall into the range 0.10–0.30 (reviewed by Sellier and
Monin 1994 and Ciobanu et al. 2011).

Based on this evidence, we extended homoskedasticWGPmodels to
allow for environmental heterogeneity of residual variances, and eval-
uated the relative performance of heteroskedastic and homoskedastic
error WGP models in terms of both global fit and predictive perfor-
mance. Our simulation study showed considerable improvements in
global model fit when extreme residual heteroskedasticity was properly
accounted for, though the advantage of heteroskedastic error WGP
models seemed to dissipate quickly for even moderate amounts of
environmental heterogeneity in residual variances, particularly under
WGP models without variable selection (i.e., RR-BLUP and BayesA).
Furthermore, the observed advantage of heteroskedastic error WGP
models in global fit translated into very small (�1–2%), albeit signifi-
cant, gains in genomic prediction accuracy under conditions of extreme
data heteroskedasticity. As the amount of residual heteroskedasticity
decreased, so did the power to detect differences in genomic prediction
accuracy between heteroskedastic and homoskedastic model specifica-
tion. This was particularly noticeable for WGP models with variable
selection (i.e., BayesB or BayesCp) relative to those without variable
selection (i.e., RR-BLUP and BayesA). For the specific data application
used in this study corresponding to the MSU swine resource popula-
tion, there was no evidence of any gains in cross-validation predictive
ability for selected carcass traits when heterogeneous residual variances
across environments were explicitly modeled. This finding was some-
what unexpected given the extreme level of environmental heterogene-
ity of residual variances observed in at least one of those traits. The high

level of environmental heteroskedasticity in the carcass temperature
trait was recognized both by posterior inference on the hyperparameter
av and by improved global model fit of the heteroskedastic error model
relative to the homoskedastic error model. Yet, it is possible that addi-
tional gains in prediction accuracy from specifying heteroskedasticity,
either of environmental or genetic origin, may be difficult to observe
due to the already large magnitude of “baseline” cross-validation pre-
dictive ability for this trait (�0.85) based on standard homoskedastic
error WGP models.

It is unclear whether a genetic component might have contributed
to the high level of residual heteroskedasticity observed in the carcass
temperature trait. A recent study by Yang et al. (2011) explored the
use of parametric genomic models that specify genetic control of
environmental variance in a swine production system. In particular,
classicalWGPmodels were extended to assess putative marker effects
not only on GEBV but also on environmental variability. Consistent
with our results, that study indicated enhanced fit of heteroskedastic
error models. However, the gains in accuracy of prediction were
either of small magnitude in simulated data or not at all apparent
when applied to back fat thickness data in pigs, as was also observed
in our application. Additional statistical methods for detecting ge-
netic loci affecting phenotypic variability were recently introduced;
proposed approaches range from fully-parametric (Rönnegård and
Valdar 2011; Yang et al. 2011) through classical nonparametric
(Paré et al. 2010; Struchalin et al. 2010), including a two-stage
semi-parametric approximation (Hill and Mulder 2010). Following
a thorough review, Rönnegård and Valdar (2012) highlighted the
inferential importance of simultaneous estimation of effects on mean
and variance as a strength of parametric methods for modeling
variance-controlling QTL.

Ideally, heterogeneous genetic and residual variances should be
modeled simultaneously, for example with multiple breed studies (de
Roos et al. 2009) or genotype by environment interaction (Edwards and
Jannink 2006; Jarquin et al. 2014; Lopez Cruz et al. 2015) studies, both
of which require the specification of heterogeneous genetic variances. A
study by Chen et al. (2014) explored multi-population genomic pre-
diction for milk production traits on two dairy breeds using a multi-
task Bayesian learningmodel.When error variances and marker effects
variances were explicitly specified as heterogeneous across breeds (as
opposed to assumed homogeneous), gains in prediction accuracy
across traits ranged from 0.04 to 0.14 using a 50K SNP panel, and from
0.02 to 0.11. Also, a yield variety trial of 40 oat genotypes across 34
environments reported “stabilized” genetic predictions (i.e., higher re-
peatability) when genetic and environmental sources of heterogeneity
were explicitly specified on residual and genotype-by-environment var-
iance components (Edwards and Jannink 2006).

It is often the case that deregressed expected breeding values are
weighted and used as response variables inWGPmodels (Garrick et al.
2009) instead of actual phenotypes. In a way, modeling of weighted

n Table 3 Estimated Spearman’s rank correlation coefficient between homoskedastic-based and heteroskedastic-based estimated
genomic breeding values corresponding to the top and bottom 10% individuals (approximately 17–20 within a cross-validation fold) for
two quantitative traits of swine data

Traits
RR-BLUP BayesA BayesB BayesCper (min, max) er (min, max) er (min, max) er (min, max)

Carcass temperature 45 min Top 0.17 (0.03, 0.65) 0.28 (0.12, 0.63) 0.05 (–0.16, 0.69) 0.38 (0.06, 0.46)
Bottom 0.54 (0.15, 0.62) 0.44 (0.19, 0.59) 0.43 (0.27, 0.74) 0.52 (0.39, 0.89)

Loin muscle pH 45 min Top 0.70 (0.46, 0.79) 0.64 (0.33, 0.82) 0.52 (0.18, 0.74) 0.66 (0.46, 0.81)
Bottom 0.70 (0.57, 0.79) 0.69 (0.44, 0.81) 0.64 (0.22, 0.77) 0.70 (0.60, 0.83)

Median rank correlation (er) between predicted genomic breeding values, as well as minimum and maximum estimates, across five cross-validation folds.
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deregressed expected breeding values may be considered an approach
to account of heterogeneous variance, in this case the variance of the
expected breeding value. However, this approachmay be considered ad
hoc as its effectiveness depends on several factors such as the number
of repeated measured observations, size of training data and the
reliability of the breeding values (Garrick et al. 2009; Ostersen et al.
2011; Boddhireddy et al. 2014).

Despite the observed lack of any appreciable gain in overall accuracy
of prediction of carcass trait phenotypes by heteroskedastic WGP

models, the differential ranking of animals with the 10% most extreme
genetic merit suggest important practical implications for the assump-
tion of homogeneous residual variance. Substantial reranking was
apparent for these candidate animals depending on whether environ-
mental residual heteroskedasticity was explicitly accounted for in
obtaining their breeding values. In fact, noticeable differences in the
mean of genomic breeding values for individuals of extreme genetic
merit were apparent based on heteroskedastic vs. homoskedastic WGP
specifications. To reconcile these results, we notice that the magnitude

Figure 5 Illustrative scatter plots of predicted
genomic breeding values obtained from
homoskedastic (HO) and heteroskedastic
(HT) specifications of RR-BLUP, BayesA,
BayesB, and BayesCp WGP models fitted to
carcass temperature (A) and loin muscle pH
(B) at 45 min postmortem. Symbols indicate
individuals ranked among the top 10% (:),
bottom 10% (♦) or remainder (s) based on
the homoskedastic WGP model. Plots are
based on a single cross-validation fold and
are meant for illustration only.
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of the difference in GEBV between most extreme individuals and the
rest seems to be rather small, and thus difficult to detect, particularly
given the relatively narrow range of GEBV observed for the selected
traits in this population. In turn, a localized performance metric,
such as the Spearman correlation coefficient among the top and
bottom 10% individuals, could detect regional patterns that may
not be necessarily apparent from overall performance metrics, such
as cross-validation predictive ability. However, we acknowledge that,
given the low-to-moderate heritabilities of the traits evaluated in this
study, it is not possible to discard nonnegligible sampling variability
on the estimates of Spearman correlation coefficients or other sta-
tistical reasons related to unstable behavior of correlations within
extreme tails.

The very lowmagnitude of the posterior mean of anobserved in the
swine data application indicates that residual variability is not homo-
geneous across environmental subclasses. However, extreme within-
cluster residuals, for example, due to preferential treatment, may be a
reasonable concern even after accounting for residual heteroskedastic-
ity. Biased prediction of breeding values is a problem often encountered
under conditions of preferential treatment (Kuhn and Freeman 1995).
Our observation of substantial reranking of extreme breeding values
suggests that heteroskedastic WGPmodels may, at least partially, offset
prediction bias due to preferential treatment. Yet, preferential treat-
ment is a concern that further motivates the need to extend hetero-
skedastic error WGP models to allow for outlier robustness, as
advocated by Gianola and Rosa (2015). In a nongenomic application,
Cardoso et al. (2007) extended the univariate t-models proposed by
Stranden and Gianola (1999) to attenuate adverse effects of preferential
treatment and specified Student-t distributed residual heteroskedastic-
ity across environments to potentially accommodate a more robust
analysis capable of muting the influence of extreme observations on
inferences of cluster specific residual variances. Given the breeding
objective of ranking candidates for selection, a heavy-tailed residual
distribution combined with explicit modeling of environmental hetero-
skedasticity is likely to yield more robust genomic predictions in the
sense of reducing influence from outlying identifiable clusters and ex-
treme individual datapoints.

Most recently, WGP models have been used to predict complex
human traits, such as risk of disease and life expectancy (de los Campos
et al. 2012; Vazquez et al. 2012). One can surmise that environmentally-
driven heteroskedasticity is likely present in this context as well, though
the full extent of it remains unclear. Predictive performance of WGP
models for human traits can be low, mostly due to factors unique to
human populations, such as unrelatedness of individuals and short LD
patterns (de los Campos et al. 2013b). Extending WGP models for
complex human traits to explicitly model heterogeneous residual var-
iances across environments could potentially help account for still-
unexplained variance, and thus affect the extent of missing heritability
in human populations.

Finally, WGP models often require estimation of a large number of
SNPmarker effects andconsiderations for computing efficiencybecome
paramount, particularly sinceMCMC inference can be computationally
expensive. Computational enhancements for homoskedastic WGP
models have been developed based on expectation-maximization
(EM) based algorithms (Hayashi and Iwata 2010), or analytically de-
rived posterior densities of each marker effect (Meuwissen et al. 2009).
Heteroskedastic error extensions to WGP models, such as those pre-
sented here, could also be further modified to enhance computational
efficiency. For example, an EM-like algorithm such as that proposed by
Gianola et al. (1992) may be adapted to obtain empirical Bayes esti-
mates of environment-specific variances in a WGP context.

Conclusions
In this study, we describe extensions to classical whole-genome
prediction models that incorporate modeling of heterogeneous re-
sidual variances across environments and evaluate potential impact
of specifying heteroskedastic vs. homoskedastic error models on the
accuracy of prediction of genomic breeding values. Heteroskedastic
error models were overwhelmingly supported by improved global fit
to the data. The advantages of heteroskedastic error WGP models
on overall predictive ability of carcass traits in pigs was of small
magnitude, if at all present; however, considerable reranking of
individuals with extreme genetic merit was observed when hetero-
skedasticity was explicitly accounted for. Heteroskedastic error
WGP modeling should be carefully considered in breeding pro-
grams as environmental residual heteroskedasticity seems prevalent
and, if unaccounted, can have considerable practical implications
for selection of individuals of extreme genetic merit. Additional
work tackling simultaneous modeling of heterogeneous genetic var-
iances jointly with heterogeneous error variances and potential out-
lier robustness extensions is warranted.
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