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G
iven their large surface-area-to-
volume ratios, the physical chemistry
of nanomaterials is dominated by

their surface interactions and, in particular,
their ability to adsorb smaller molecules
onto their surfaces. In nanomedicine, these
interactions permit nanomaterials to deliver
high loads of drugs and target specific cells
or tissues.1�3Moreover, nanomaterials in vivo
typically possess a “corona” of adsorbed
proteins on their surfaces4�6 that affects
their cellular uptake,7,8 physiological distri-
bution and excretion,7,9,10 and interaction
with the immune11�13 and coagulation
systems.14,15 Outside of living organisms, sur-
face interactions drive applications of nano-
materials in purification of biological mol-
ecules16�18 andremovalof contaminants19�23

from complex mixtures. With particular re-
levance for the materials considered in
the present work, carbon nanotubes are
used as superior substrates in solid phase
extraction,24 allowing sensitive detection of
environmental contaminants25,26 including
agricultural chemicals such as the widely
used herbacide atrazine.27,28

However, designing nanomaterials to ob-
tain desired surface interactions remains a
challenge. Nanomaterials today are based
on a wide range of carbon allotropes,
metals, ceramics, and synthetic polymers,
which may be surface-modified with a wide
variety of functional groups. Such enormous
diversity promises to drive revolutions in
many fields; however, little guidance exists
in sorting through the astronomical number

* Address correspondence to
jeffcomer@ksu.edu.

Received for review June 12, 2015
and accepted October 27, 2015.

Published online
10.1021/acsnano.5b03592

ABSTRACT Computational techniques

have the potential to accelerate the de-

sign and optimization of nanomaterials

for applications such as drug delivery and

contaminant removal; however, the suc-

cess of such techniques requires reliable

models of nanomaterial surfaces as well

as accurate descriptions of their interac-

tions with relevant solutes. In the present

work, we evaluate the ability of selected models of naked and hydroxylated carbon nanotubes to predict adsorption equilibrium constants for about 30 small

aromatic compounds with a variety of functional groups. The equilibrium constants determined using molecular dynamics coupled with free-energy calculation

techniques are directly compared to those derived from experimental measurements. The calculations are highly predictive of the relative adsorption affinities

of the compounds, with excellent correlation (r g 0.9) between calculated and measured values of the logarithm of the adsorption equilibrium constant.

Moreover, the agreement in absolute terms is also reasonable, with average errors of less than one decade. We also explore possible effects of surface loading,

although we demonstrate that they are negligible for the experimental conditions considered. Given the degree of reliability demonstrated, we move on to

employing the in silico techniques in the design of nanomaterials, using the optimization of adsorption affinity for the herbacide atrazine as an example.

Our simulations suggest that, compared to other modifications of graphenic carbon, polyvinylpyrrolidone conjugation gives the highest affinity for

atrazine;substantially greater than that of graphenic carbon alone;and may be useful as a nanomaterial for delivery or sequestration of atrazine.

KEYWORDS: nanoparticles . free-energy calculations . surface physicochemistry . virtual screening . benzene derivatives . graphene .
surface functionalization . aromatic
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of possibilities to find optimal solutions. In the field
of drug design, computational methods have been
applied to solve similar problems,29�33 permitting the
rapid screening of candidate compounds for high
affinity to the target and, importantly, insight into
the atomic-level interactions giving rise to this affinity.
The application of such approaches to nanomaterial
design is fairly new.34 Recent work has been directed
at computational tools for predicting the toxicity
of nanomaterials,35 their cellular uptake,36 and their
biological activity.37

To assess surface interactions specifically, coauthors
of the present work have developed a surface adsorp-
tion index,38�40 wherein the adsorption properties of
adsorbates are assumed to be governed by selected
molecular descriptors (e.g., molecular volume, polar-
izability, hydrogen-bond acidity or basicity). A structure�
activity relationship linking these descriptors to the
adsorption equilibrium constant is found for each nano-
material of interest, parametrized by measuring this
equilibriumconstant for a training set of smallmolecules.
It was demonstrated that this surface adsorption index
can reliably predict adsorption affinities for distinct
sets of adsorbates on a wide range of nanomaterials,
including naked and functionalized carbon nanotubes.
However, a limitation is that experiments must be per-
formed to characterize each new nanomaterial sur-
face. For nanomaterial design and screening, it would
be useful if the surface adsorption index could be
determined in silico, directly from the physicochemical
properties of thenanomaterial. Here,weexplorewhether
computational techniques can be used to rapidly esti-
mate adsorption constants of organic molecules on
nanomaterials while also revealing nanoscale interac-
tions that drive adsorption.
In recent years, molecular dynamics simulation

with atomistic models and explicit solvent has been
applied to elucidate interactions between common
nanomaterials and organic molecules. For example,
simulation has provided insight on peptide adsorption41

onmetals42�44 and carbon nanotubes.45 The encapsula-
tion of drugs and nucleic acids by dendrimers46�50 and
polymer-based nanoparticles51,52 has also been better
understood through simulation. Brancolini et al.53 stud-
ied binding of a complete protein to naked and citrate-
coated gold surfaces using docking and molecular
simulation, while Carr et al.54 considered protein adsorp-
tion to an amorphous silica surface under hydrodynamic
flow. Moreover, free-energy calculation techniques,
based on biased sampling, permit molecular dynamics
simulation to explore the thermodynamics of long time
scale processes.33,55�59 With sufficiently accurate inter-
atomic potentials for the materials of interest, these
techniques are capable of yielding precise agreement
with experiment for free energies of binding.60�63 For
nanomaterials, free-energy techniques have been used
to calculate adsorption affinities of amino acids onmodel

gold,64�67 silver,68 zinc oxide69 surfaces, and graphenic
materials,70,71 as well as for contaminants on amorphous
silica.72 For carbon nanotubes, Klein and co-workers
computed adsorption free energies of DNA, reveal-
ing the base selectivity and most thermodynamically
favorable conformations of DNA-wrapped carbon nano-
tubes,73,74while Lin et al.75 performed similar calculations
for adsorption of several surfactants. Especially relevant
to the present work is a study by Ulissi et al.76 in which
free energies of adsorption on a graphenic surface were
computed for more than 50 compounds and exhibited
good correlation with the predictions of structure�
activity models.
Reliable predictions frommolecular models of nano-

materials require both a realistic representation of the
nanomaterial structure and an accurate description
of the forces between atoms of the adsorbate, nano-
material, and solvent (i.e., an accurate force field). For
somematerials, such as unmodified carbon nanotubes
with few defects, the structure of the surface is well
known. However, for other materials, the surface
chemistry and topography at the atomic scale is not
well known, and thesemaybe sensitive to details of the
synthesis and may vary considerably among different
nanoparticles or at different locations on the same
nanoparticle. For example, the density of hydroxyl
groups on the surface of hydroxylated carbon nano-
tubes can depend on the oxidant used to create these
groups.77

In the present work, we leverage experimental
measurements of small-molecule adsorption39,40 to
test whether a number of plausible models of carbon
nanotubes combined with a classical molecular dy-
namics force field can predict adsorption properties
in agreement with the experiments. Free-energy cal-
culations are performedwith all-atom explicit-solvent
models to determine the potential of mean force
of each aromatic adsorbate as a function of distance
from the model surfaces. On the basis of a theoretical
derivation, we compute adsorption equilibrium con-
stants from these potentials, which should be directly
comparable to experimental values. The adsorption
equilibrium constants determined from the simula-
tion are of similar orders of magnitude to the values
derived from experiment and show a high degree
of correlation with the latter values, implying that
the simulations reliably predict the relative affinities
of the different aromatic compounds. We also con-
sider several possible models of hydroxylated nano-
tube surfaces and find the best agreement with
experiment for one of the most plausible. With this
validation of the molecular dynamics approach to
estimating adsorption affinity, we perform similar
free-energy calculations for polymer-conjugated
carbon nanotubes with an aromatic herbacide widely
used in agriculture for weed control78 serving as the
adsorbate.
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RESULTS AND DISCUSSION

Theoretical Link between Experiment and Simulation. In
the relevant experiments,39,40 a solution containing
various concentrations of several small aromatic com-
pounds is added to a vial containing a colloid of water
and a known mass of nanoparticles (nanotubes). The
final concentration of compound not adsorbed to
the nanoparticles is accurately measured using solid
phase microextraction and gas chromatography mass
spectrometry. Thus, the adsorption affinity for a given
compound, i, is conveniently characterized by an
adsorption equilibrium constant

Kexpt
i ¼ V(c0i � ceqi )

mceqi
¼ V

m

Neq
i:NP

Neq
i

(1)

where V is the volume of liquid in the vial, ci
0 is the

concentration of compound i in the vial prior to contact
with the nanoparticles, ci

eq is the concentration of free
compound i remaining in the vial after equilibrium has
been reached, andm is the total mass of nanoparticles.
Ni:NP
eq and Ni

eq are the equilibrium numbers of com-
pound i adsorbed to the nanoparticle and remaining
free in solution, respectively.

For the lowest concentration considered in the
experiments, the surface density of adsorbedmolecules
is relatively low. By eq 1, we can find the surface density
of each compound by Si = (MNP/ANP)(V/m)(ci

0 � ci
eq)/Mi,

where Mi is the molecular mass of component i and
ANP/MNP is the specific surface area of the nanotubes.
Summing over all compounds, we obtain a total surface
density of ∑iSi = 0.013 molecules/nm2, which implies a
typical distance of about 8.8 nm between each mole-
cule, much larger than the diameter of the molecules
(the largest, biphenyl, has a diameter of∼1.0 nm). Thus,
for much of the present work, we neglect interactions
among adsorbates, although we consider such interac-
tions in the section Adsorption under Conditions of
Significant Surface Loading.

The ratio Ni:NP
eq /Ni

eq in eq 1 can be estimated from
free-energy calculations, given by72

Neq
i:NP

Neq
i

¼

Z
ads

dr exp[�βwi(r)]Z
free

dr exp[�βwi(r)]
(2)

where the integrals in the numerator and denominator
are over molecule positions in the adsorbed and free
regions of space, β = (kBT)

�1 is the reciprocal thermal
energy, and wi(r) is the potential of mean force59 as a
function of the three-dimensional position in the vial.
By convention, w(r) = 0 for positions of the molecule r
far from any nanoparticle. Assuming that the colloid is
sufficiently dilute, we can approximate the denomina-
tor of eq 2 by V. Because the typical diameters of
the nanomaterials considered in this work (g8 nm)
are much larger than those of the small aromatic

compounds (<1 nm), we assume that the overall
curvature of the cylindrical nanotubes has a negligible
effect on adsorption of the compounds.76 Thus, in
the simulation, each nanomaterial is represented by a
patch of solid surface, with an interface roughly corre-
sponding to the xy plane. We perform free-energy
calculations59 to obtain wi

calc(z), the potential of mean
force as a function of the distance between the center
of mass of compound i and a reference plane at
the nanoparticle interface. Given sufficient sampling,
wi
calc(z) incorporates any lateral variability in the

adsorption affinity. This has been verified for the
calculations here in Figures S2�4 in the Supporting
Information (SI). Equation 2 can therefore be written

Neq
i:NP

Neq
i

� NNPANP

V

Z c

0
dz exp[�βwcalc

i (z)] (3)

where NNP is the number of nanoparticles in the vial,
ANP is the typical accessible surface area of a single
nanoparticle, and c is a distance cutoff defining the
adsorbed region. For the systems considered here,
all reasonable definitions of the integration limit c yield
effectively identical Ki values, as verified in Figure S9
of the SI. Substituting eq 3 into eq 1 gives us a route to
estimate the adsorption equilibrium constant from the
simulations:

Kcalc
i ¼ ANP

MNP

Z c

0
dz exp[�βwcalc

i (z)] (4)

whereMNP =m/NNP is the typicalmass of a single nano-
particle. The specific surface areaANP/MNP = 233m2/g is
experimentally determined by the Brunauer�Emmett�
Teller method.39 Further discussion of the appropriate-
ness of eq 4 for the nanotubes used in the experiment
can be found in the SI.

Adsorption on Multiwall Carbon Nanotubes. We now con-
sider adsorption onto large carbon nanotubes, which is
a particularly simple case given that the chemical struc-
ture and topography of the surface are well known
and homogeneous (barring large densities of defects).
The carbon nanotubes used in the experiments to
which we are comparing were characterized by trans-
mission electronmicroscopy as having outer diameters
of 8�15 nm and lengths of ∼50 μm. The number
of walls within these multiwall nanotubes and the
spacing between them are unknown (see the section
Considerations of the Appropriateness of the Theory
in the SI for an analysis). We postulate that a few flat
graphene sheets should represent the typical local
environment of the adsorbate. Figure 1A shows an
example of themodels used in themolecular dynamics
simulations. The presence of four graphene sheets
versus a single graphene sheet has only a mild effect
on Ki

calc (see Figure S8 of the SI), implying that such
models are reasonable representations of any rela-
tively flat graphenic surface, including free-standing
graphene and graphene nanoplatelets. We note that
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our models and approach to computing adsorption
free energies on nanotubes are similar to those of Ulissi
et al.76 As in previous work,79 we model graphene
by a simple adaptation of the CHARMM additive
force field,80 while the parameters describing the small
aromatic molecules were obtained from the CHARMM
general force field (CGenFF). While force fields expli-
citly accounting for electronic polarizability81,82 have
the potential to improve accuracy of molecular dy-
namics simulation and can be applied to a growing
range of molecules,83�86 force fields with fixed atomic
charges have the advantage of decades of refinement,
lower computational cost, and calibrated parameters
for a wider variety for materials. Recent work has used
a polarizable model to study adsorption at graphenic

surfaces,70,71 although the polarizability was represented
only in graphene, while the adsorbates and water used
fixedchargemodels. It is not yet completely clear that the
increased computational expense of existing polarizable
models (which translates into less simulated time and,
thus, poorer sampling) is justified by greater accuracy.85

For unmodified multiwall carbon nanotubes, experi-
mentally derived adsorption equilibrium constants40

are available for 29 of the 32 small aromatic compounds
detailed in Table 1. These molecules have a variety of
functional groups, including some common biological
motifs, while others may be relevant for understanding
interactions with drug molecules, e.g., the haloge-
nated compounds. For each adsorbate, we performed
a free-energy calculation using the adaptive biasing
force59,87,88 technique to determine the potential of
mean force as a function of the distance between the
center of mass of each adsorbate and the plane passing
through the centers of the carbon atoms in thefirst layer
of graphene,wi

calc(z). The convergence ofwi
calc(z) during

Figure 1. Comparison of experiment and simulation for
adsorption on naked carbon nanotubes. (A) Model for
molecular dynamics simulation of adsorption of smallmole-
cules onto the surface of multiwall carbon nanotubes. The
relatively largemultiwall nanotubes are modeled as several
flat graphene sheets, which, through periodic boundary
conditions, form an effectively infinite surface in the xy
plane. The atoms of the graphene sheets and an exemplary
adsorbate (3-bromophenol) are shown as spheres, with
hydrogen, carbon, oxygen, and bromine atoms shown in
white, green, red, and crimson. Here, for clarity, the water is
indicated by a translucent cyan surface; however, in the
simulations, water molecules were represented explicitly.
(B) Calculated free energy as a function of distance between
the first graphene sheet and the center of mass of the
adsorbate (the coordinate z) for exemplary adsorbates.
(C) Comparison of the logarithm of the adsorption equilib-
rium constant measured in experiment and the same quan-
tity calculated in simulation for all 29 adsorbates. Following
Chen et al.,40 the adsorption constant K (in units of mL/g) is
defined according to eq 1. Values derived from simulation
are calculated using eq 4 and the free-energy profiles, such
as those shown in panel B. The abbreviations of the com-
pounds used here are listed in Table1.

TABLE 1. List of Adsorbate Molecules Considered in This

Worka

abbrev compound name substituent halogen

Ah acetophenone ketone
bPh biphenyl aromatic
BrPl 3-bromophenol hydroxyl X
ClAh 4-chloroacetophenone ketone X
ClAn 4-chloroanisole ether X
ClPl 3-chlorophenol hydroxyl X
ClT 4-chlorotoluene alkyl X
dMPl 3,5-dimethylphenol alkyl, hydroxyl
EtBa ethylbenzoate ester�alkyl
EtPh ethylbenzene alkyl
EtPl 4-ethylphenol alkyl, hydroxyl
FPl 4-fluorophenol hydroxyl X
mCr m-cresol alkyl, hydroxyl
MeBa methylbenzoate ester�alkyl
MeBl (3-methylphenyl)methanol alkyl, hydroxyl
MeNh 1-methylnaphthalene aromatic
MMBa methyl-2-methyl benzoate alkyl, ester�alkyl
Nh naphthalene aromatic
NoPh nitrobenzene nitro
NoT 4-nitrotoluene alkyl, nitro
PhAc phenylacetate ester�alkyl
PhAm 4-chlorophenylamine amine X
PhBr bromobenzene X
PhCl chlorobenzene X
PhCN benzonitrile nitrile
PhEl 2-phenylethanol alkyl�hydroxyl
PhI iodobenzene X
PhMl phenylmethanol alkyl�hydroxyl
Pl phenol hydroxyl
PrPh propylbenzene alkyl
pXy p-xylene alkyl
T toluene alkyl

a For clarity in our plots, the compounds are indicated by the short, but sometimes
nonstandard abbreviations given here. The other columns indicate how the
molecule differs from a benzene prototype and whether the compound is
halogenated.

A
RTIC

LE



COMER ET AL . VOL. 9 ’ NO. 12 ’ 11761–11774 ’ 2015

www.acsnano.org

11765

the free-energy calculations was carefully monitored as
summarized in Figure S1 of the SI.

Figure 1B shows the potentials of mean force for
a few representative compounds. At large distances,
z > 1.4 nm, the interaction between the surface and
adsorbate becomes negligible, yielding a plateau at a
fixed value, which by convention is anchored to zero.
On the other hand, steric interaction leads to a rapidly
rising free energy as the adsorbate attempts to pene-
trate the surface (z < 0.33 nm). Given the relatively
hydrophobic natures of both the small aromatics and
carbon nanotubes,89 one would expect adsorption to
be thermodynamically favored. Indeed, we findminima
in the potentials of mean force with magnitudes
of several times the thermal energy for all adsorbates,
occurring at distances from z = 0.35 to 0.37 nm. The
deepest free-energy well of �8.7 kcal/mol is seen
for 1-methylnaphthalene, while the shallowest is for
toluene. As exemplified in Figure 1A, in all cases the
lowest free-energy configuration corresponds to the
adsorbates lying flat on the graphene, with the aromatic
moieties parallel to the surface.

The fraction of adsorbed molecules is not deter-
mined solely by the depth of the free-energy well,
but also by its shape, according to eq 4. For example,
although 4-nitrotoluene possesses a slightly deeper
minimum in Figure 1B than biphenyl, the larger size
of biphenyl leads to a broader well, which gives it a
larger equilibrium constant. Because the potential of
mean force appears in an exponent in eq 4, only the
few points with free-energy values near the global
minimum contribute significantly to the equilibrium
constant; however, accurate determination of wi

calc(z)
out to the plateau is required to characterize the free-
energy difference between adsorbed and free states.
Invoking mean first-passage time theory,90 one can
also calculate rates of desorption from the potentials
of mean force and position-dependent diffusivity. The
latter is obtained from simulation trajectories by a pre-
viously reported method.91 As shown in Figure S10 of
the SI, typical times for escaping the free-energy mini-
mum to reach a distance of 1.5 nm range from∼100 ns
for phenol to ∼30 μs for biphenyl.

We plot log10 Ki
calc against the corresponding ex-

perimentally determined value for each compound in
Figure 1C. Substantial linear correlationof log10 Ki

expt and
log10 Ki

calc is unmistakable and can be quantified by a
Pearson correlation coefficient of r = 0.90. Furthermore,
in absolute terms, values of log10 Ki

expt range from
2.0 to 5.7, while those of log10 Ki

calc occupy a similar
range of 1.7 to 4.2. Thus, there is excellent consistency
betweenexperiment and simulation in the relative values
for different adsorbates and substantial agreement in
an absolute sense as well, although some discrepancies
are apparent, as will be discussed further below.

Figure 1C demonstrates that the simulations
yield many insights that would be difficult to predict

from basic chemical principles. Although the surface
of carbon nanotubes is considered to be relatively
hydrophobic,89 the hydrophobicity of an adsorbate,
as characterized by its octanol�water partition coeffi-
cient, log10 Pi

OW, is a poor predictor of log10 Ki
expt with a

correlation coefficient of only r = 0.53. For example,
with its polar nitro group, 4-nitrotoluene is only mod-
erately hydrophobic, with log10 PNoT

OW = 2.4; however,
both experiment and simulation assert that it adsorbs
strongly to carbon nanotubes, much more strongly
than, for instance, propylbenzene, for which log10
PPrPh
OW = 3.7. The enhanced adsorption of nitroaromatics

with respect to other aromatics on carbon nanotubes
has been recognized previously and attributed to
strong π�π interactions,92,93 which are implicitly and
approximately represented by the classical models
used here.94 Previous experimental work92 also corrobo-
rates our observation that chlorination of the benzene
ring increases adsorption, which can be clearly seen
for toluene and 4-chlorotoluene in both experiment and
simulation. No simple property appears to completely
predict the affinity; indeed, the surface adsorption index
(structure�activity model) developed by Riviere and
co-workers39,40 relates the adsorption equilibrium con-
stant to a set offivemolecular descriptors. Themolecular
dynamics approach compares well to this structure�
activity model, which attained only slightly better corre-
lation (r = 0.92) when applied to a set of molecules
distinct from those used to parametrize it.40 In terms of
computational cost, free-energy calculations required
a few days of continuous simulation on a modest com-
puting cluster, while the surface adsorption index is
effectively free. On the other hand, parametrizing the
surface adsorption index required experimental assays
to characterize each new nanomaterial. What is remark-
able about the results of the simulations presented here
is that they require only information on the chemical
structures of the surface and adsorbate. Thus, Figure 1C
shows that, at least in this case, one could parametrize
the surface adsorption indexwith relatively highaccuracy
from computation alone, avoiding costly, labor-intensive
experiments.

Despite the fact that the calculations may yield
useful predictions of relative affinity, some discrepancies
can be identified, most notably the fact that the adsorp-
tion affinity appears systematically underestimated,
with log10 Ki

calc deviating from log10 Ki
expt by �0.92 on

average. Another perceptible disagreement is that the
spread of log10 Ki

calc is somewhat smaller than that
of log10 Ki

expt, as characterized by standard deviations
of 0.73 and 0.89. Plotting a least-squares fit line through
the data in Figure 1C, we find that all of the haloge-
nated benzenes (PhCl, PhBr, PhI) and alkyl-substituted
benzenes (T, EtPh, PrPh), exceptpXy, lie belowthefit line,
while the benzoates and nitro compounds are located
above it. Therefore, it appears that, with respect to
the experiments, the adsorption affinities of adsorbates
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with nonpolar substituents are underestimated relative
to those with polar moieties. Another possibility is
inaccuracy in the specific surface area derived from the
experiments in the context of small-molecule adsorp-
tion; however, different estimates of ANP/MNP will result
only in a uniform shift of all log10 Ki

calc values, so the
specific surface area has no bearing on the correlation
coefficient nor the standard deviations quoted above.

Adsorption under Conditions of Significant Surface Loading.
So far we have considered the dilute limit, neglecting
interactions between adsorbed molecules. However,
even when solutes are present only at low ambient
concentrations, those with high adsorption affinity
can occupy a non-negligible fraction of the surface.
Indeed, such high loading of the surface is desirable for
applications in drug delivery and decontamination.
Heavy loading of small molecules on the surface to
form a homogeneous adsorbed phase poses little
difficulty for the approach applied above, assuming
the time for rearrangement of the adsorbedmolecules is
much shorter than the simulated times. In Figure 2 we
consider adsorption of an additional molecule to sur-
faces already loaded with the same molecules at multi-
ple densities. Although adsorption remains chiefly in a
monolayer, at the highest concentrations, Figure 2C,D
show local minima near z = 0.71 nm, indicating the
formation of a weakly bound second layer. Interestingly,
we observe that adsorption becomes more favorable
as the surface density of molecules is increased from
0 to 1.2 nm�2, which is especially significant for toluene.
While a loading of 1.2 nm�2 increases the adsoption
affinity, higher levels appear to have the opposite effect.
In both cases, doubling the surface density to 2.4 nm�2

results in decreased adsorption affinity likely due to
steric effects. In the case of m-cresol, the adsorption

affinity at a loading of 2.4 nm�2 is less than even on a
pristine surface. Thus, depending on the surface density,
loading led to both significant increases and significant
decreases in adsorption affinity.

Although the total surface density in the experi-
ment was considerably lower (∼0.013 nm�2), it would
be prudent to determine the magnitude of corrections
due to loading. The low density of 32 different compo-
nents used in experiment yields a heterogeneous ad-
sorbedphase at themolecular scale, posing a significant
challenge for sampling in explicit-solvent molecular
dynamics. Todescribe heterogeneous adsorbed phases,
Ulissi et al.76 have combined results from molecular
dynamics with an analytical model of multicomponent
adsorption. As an alternative to the analytical approach,
here we leverage results of explicit-solvent molecular
dynamics to build a large-scale implicit-solvent simu-
lation using Brownian dynamics with grand-canonical
Monte Carlo.95 The details of these simulations are
given in the section Grand-Canonical Monte Carlo/
Brownian Dynamics in the SI. As described there,
we find that accounting for interactions between
adsorbates has only a negligible effect on log10 Ki

calc.
Thus, intermolecular interactions are probably not
sufficient to explain the discrepancies between simu-
lation and experiment and are neglected for the rest
of this paper.

Adsorption on Hydroxylated Multiwall Carbon Nanotubes.
We now move to the case of hydroxylated nanotubes,
which is more complex due to the lack of informa-
tion on the spatial arrangement of OH groups on the
nanotube surface. In the SI of the original reference,39

the quantity of OH groups was given as 3.70% by
weight. Thus, the number of OH groups per unit
area can be estimated by SOH = (MNP/ANP)MOHf, where
f = 0.037 is the fraction of OH groups by weight and
MOH = 17.01 Da is themass of anOHgroup. The density
of OH on the surface of the nanotubes should be roughly
5.6 nm�2. How to arrange these groups along the surface,
however, is not altogether clear. The most obvious way,
which may not be physically motivated, is to distribute
themuniformly.On theotherhand, hydrogen-bond inter-
actions between OH groups may favor configurations
where multiple groups are placed nearby.96 Here we
consider several densities and arrangements, rendered
in Figure 3. Highly symmetric arrangements that tiled
the system's periodic cell were chosen to accelerate con-
formational averaging in the free-energy calculations.
As shown in Figures S2 and S3 in the SI, the arrangement
of the OH groups strongly affects the conformational
ensemble of adsorbedmolecules. Themodels considered
in Figure 3 may also be relevant for graphene oxide;
however, a more realistic graphene oxide model might
include epoxide groups in addition to hydroxyls.96

The comparison of log10 Ki
expt and log10 Ki

calc for the
various hydroxylated graphene models is summarized
in Table 2, with the results for the model of naked

Figure 2. Adsorption on carbon nanotube surfaces with
significant surface loading. (A, B) Tolueneorm-cresol adsorp-
tion on surfaces loaded with like molecules. The carbons of
the molecule that is the subject of the free-energy calcula-
tion are shown in yellow. The surface density of the remain-
ing molecules is 2.4 nm�2. (C, D) Calculated free-energy
profiles for toluene/m-cresol adsorption on bare or toluene/
m-cresol-loaded surfaces.
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carbon nanotubes included for reference. The RMS
error, calculated by

1
n ∑

n

i¼ 1
[log10K

calc
i � log10K

expt
i ]2

 !1=2

(5)

indicates the typical absolute error for individual
compounds, while the “mean deviation”, defined by
Ælog10 Ki

calcæ � Ælog10 Ki
exptæ, gives some sense of the

systematic deviation between the experimental and
calculated results. The fact that the mean deviation
is in all cases negative shows that the simulations
systematically underestimate the strength of adsorp-
tion with respect to the experiments. However, for
some models this bias is quite large, while for others
it is less considerable. Furthermore, while correla-
tion coefficients near unity do not imply the lack of
systematic error, we observe that models with higher
correlation coefficients are associated with lower sys-
tematic errors, as reflected inmean deviations of lesser
magnitude. The simultaneous convergence of the
correlation coefficient, which depends on the relative
adsorption affinities of the compounds, and the mean
error, which depends on the mean affinity of all the

compounds, suggests that the best performingmodels
could be associatedwithmore realistic representations
of the physicochemical environment of the adsorbates.

The experiments indicate that hydroxylation, with a
fewexceptions, reduces the affinity of the aromatics for
the surface, with an average change of �0.6 in
log10 Ki

expt values from naked to hydroxylated nano-
tubes. All of our simulations qualitatively agree with
this observation; however, models graph�OH(A) and
graph�OH(B) evidently reduce the affinity too much,
as can be seen from the large negativemean deviations
in Table 2. This reduction can be attributed to the
OH groups sterically blocking the adsorbates from
accessing the graphenic surface. Consistent with this,
the free-energy minima for graph�OH(A) average
0.15 nm farther from the center of the graphene
sheet than for nakedgraphene, occurring at distances of
0.49e ze 0.55 nm. The limited surface area available for
adsorptionongraph�OH(B) is clearly visible in Figure S3A.
Thus, the uniform arrangement of OH at 2.4 nm�2 con-
tinues to underestimate the affinity for all compounds
and to give mediocre correlation r = 0.75. The best
performing uniform arrangement, shown in Figure 3C,

Figure 3. Comparison of experiment and simulation for different models of hydroxylated carbon nanotubes. The experi-
mental log10 K values, plotted on the horizontal axis, are identical in each plot, while the log10 K values on the vertical axis are
derived from simulations using the arrangement of OH groups illustrated to the right of the plot. The Pearson correlation
coefficients (r) of the experimental and calculated values are indicatedwith the plots. Note that the vertical scales vary among
the plots. TheOHgroupswere free to rotate in the simulations; thus, only one exemplary configuration is shown. The systems
used here are identical to that shown in Figure 1A except for the addition of the OH groups; only the uppermost graphene
sheet is shown for clarity. TheOHgroup arrangementswere chosen to regularly tile the hexagonal periodic cell of the system.

TABLE 2. Summary of Comparison between Experimental and Calculated Adsorption Constants on Carbon Nanotubes

for a Set of Small Aromaticsa

expt syst model density OH [nm�2] no. of compounds RMS error mean deviation correlation coeff

MWCNT graph 0.0 29 0.99 �0.92 0.90
MWCNT�OH graph�OH(A) 9.6 31 3.10 �3.00 0.70
MWCNT�OH graph�OH(B) 2.4 31 2.05 �1.94 0.75
MWCNT�OH graph�OH(C) 1.2 31 0.85 �0.68 0.87
MWCNT�OH graph�OH(D) 2.4 31 0.69 �0.47 0.93

a “Expt syst” indicates the naked or hydroxylated multiwall carbon nanotubes used in the experiments of Xia et al.39 and Chen et al.40 The definitions of the “RMS error” and
“mean deviation” are described in the text.
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gives a much improved correlation coefficient (r = 0.87),
but in this case the OH density is 1.2 nm�2, less than a
quarter of that indicated by 3.70%OHcontent byweight.

Depending on the method of synthesis, OH groups
might be expected to form hydrogen-bonding pairs or
clusters on the nanotube surfaces.96 The configuration
in Figure 3D has an arrangement of pairs of OH groups
with the same overall OH density as the configuration
in Figure 3B. This simple modification of the graph�
OH(B) arrangement changes the correlation between
simulation and experiment frommediocre (r = 0.76) to
excellent (r = 0.93). Furthermore, the paired arrange-
ment yields an improvement in absolute terms, with
the mean deviation Ælog10 Kicalcæ � Æ log10 Kiexptæ chan-
ging from �1.9 for model graph�OH(B) to �0.47 for
model graph�OH(D). While the OH density for this
model (2.4 nm�2) is still less than half the value
suggested (5.6 nm�2), we were not able to obtain
a correlation > 0.8 nor a mean deviation of a similarly
small magnitude attempting another arrangement
with a density of 4.8 nm�2 (see Figure S12 in the SI).
This apparent discrepancy in the OH densities may
indicate an unrealistic design of the OH arrangement
or carbon structure (oxidation-induced defects may be
important96), an imbalance in the force field, or, per-
haps, inaccuracy in the quoted value of OH content.
Another possibility is that a significant fraction of
OH groups are clustered near the end of the nanotube
or at defects,96,97 leaving most of the surface with
a relatively low density of OH groups. Somewhat
surprisingly, our results for model graph�OH(D) are
in better agreement with experiment than those for
the naked nanotube model. Interestingly, the struc-
ture�activity model40 also correlated better with the
hydroxylated nanotube experiments than those with
the naked nanotube (0.96 vs 0.92).

Adsorption of Atrazine on Surface-Modified Carbon Nano-
tubes. The results above strongly suggest that mole-
cular dynamics can make useful predictions of the
adsorption affinity of small aromatics on carbon nano-
tubes and graphene-like surfaces. Hence, in this section,

we apply the same techniques to take the first steps in
optimizing the affinity of surface-modified graphenic
carbon for the herbacide atrazine. Atrazine is a chlori-
nated aromatic compound possessing a 1,3,5-triazine
ring and has substantial structural similarity with several
other herbacides, such as simazine and cyromazine,
as well as triazine dendrimers, which have been studied
as delivery vehicles for cancer drugs.98 A rendering of
the molecule is included in Figure 4A.

We first considered the adsorption of atrazine on
a naked graphene surface. As shown in Figure 4A, the
potential of mean force is qualitatively similar to those
considered previously (Figure 1B). Yan et al.20 provides
experimental characterization of the adsorption of
atrazine on naked multiwall carbon nanotubes, which
should be comparable to our calculated value. We can
determine the adsorption equilibrium constant in the
dilute limit from the fit of Yan et al. to the Langmuir
model to give

log10(K
expt) ¼ log10(KLqmax) (6)

where KL and qmax are parameters of the Langmuir
model as defined by Yan et al.20 and the units of the
argument of the logarithm are converted to mL/g, con-
sistent with the convention used thus far. Yan et al.20

considered nanotubes of two different geometries and
distinct synthesis techniques (specific surface areas of
167 and 300 m2/g as determined by the Brunauer�
Emmett�Teller method), as well as two temperatures
(298 and 303 K) that straddle the temperature in our
simulations (300 K). By eq 6, the experimental log10 K

expt

values are 4.5 at 298 K and 4.3 at 303 K for the smaller
nanotube and 5.2 at both temperatures for the larger
nanotube. Part of thedifferencebetween these values for
the larger and smaller nanotube is attributable to their
different specific surface areas (log10(300/167) ≈ 0.25);
however, a discrepancy as large as 0.7 remains, which
was ascribed to chemical or structural differences of
unknown nature between the two types of nanotube.20

From our potential of mean force (Figure 4A), we calcu-
late log10 K

calc values of 2.7 and 2.9 for the smaller and

Figure 4. Adsorption of the herbacide atrazine on functionalized graphenic surfaces. (A) Free energy as a function of distance
between an atrazine molecule and hydroxylated and polymer-conjugated graphene surfaces. The labels graph�OH(B) and
graph�OH(D) refer to the OH arrangements in Figure 3B and D. For reference, the structure of the molecule is represented
here with H, C, Cl, and N atoms shown as white, yellow, magenta, and blue spheres, respectively. (B) Mass density of polymer
andwater as a function of distance from the surface in the absence of atrazine. Black, green, blue, andpurple lines correspond
to naked, PE, PEG, and PVP systems. (C, D, and E) Representative simulation snapshots of atrazine adsorbed on graphene
surfaces conjugated with PE, PEG, and PVP, respectively. For contrast, C atoms of the polymers and graphene are shown in
gray and green, respectively.
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larger nanotubes, respectively; however, as can be seen
from the mean deviation in Table 2, we systematically
underestimate the adsorption equilibrium constant on
naked carbon nanotubes by �0.92. It would therefore
be reasonable to apply a correction of 0.9 to log10 K

calc for
atrazine, to give a corrected values of 3.6 and 3.8, which
might be considered acceptable agreement given the
substantial variation in the experimental values for the
different nanotubes.

Therefore, it is with some degree of confidence in
themolecular dynamics description of atrazine adsorp-
tion that we study the effect of different surface
modifications to graphenic carbon. We consider ad-
sorption onto the hydroxylated graphene surfaces
with the previously discussed arrangements shown in
Figure 3B,D. As for the benzene derivatives, with
atrazine, we find that hydroxylation generally reduces
the adsorption affinity (see Figure 4A and Table 2).
Quite distinct behavior is seen for our polymer-
conjugated models, which comprise polyethylene
(PE), polyethylene glycol (PEG), and polyvinylpyrrolidone
(PVP) chains having molecular weights of 170, 470,
and 580 Da attached via ester linkages to the gra-
phene surface at areal densities of 1.20, 0.53, and
0.53 chains/nm2, respectively. First, the fluctuating
polymer brushes on average extend some distance
from the surface; hence, as shown in Figure 4A, the
potential of mean force is significantly less than zero
even at distances greater than 1 nm from the surface,
owing to intermittent interactions with the polymer
brush at these distances. The extension of the polymer
from the surface is quantified in Figure 4B, which plots
both the mass density of polymer near the surface
and themass density of water, which is reduced on the
polymer-conjugated surfaces. Furthermore, the simu-
lations reveal hydrogen bonding between the NH
groups of atrazine and oxygen atoms in the linker
(see Figure S4C in the SI), as well as in the PEG and PVP
chains. Examples of these hydrogen bonds are appar-
ent in Figure 4C,D,E. Despite the favorable nature of
these interactions, the global free-energy minimum
remains associated with atrazine lying flat against the
graphene surface, as it is for the naked surface. For
reasons clarified below, the free-energy minima for
PE- and PEG-conjugated graphene are only slightly
deeper than for nakedgraphene, while atrazine adsorp-
tion on PVP-conjugated graphene is significantly more
favorable than on any other surface considered here.

Molecular simulation gives reliable estimates of free
energies, while simultaneously revealing atomic-level
details of molecular interactions that would be difficult
to probe with any experimental method. Thus, we not
only find that our PVP-conjugated graphene surface
yields a high affinity for atrazine but also identify
the mechanism for its especially high affinity, which
could inform further design of graphenic materials to
optimize atrazine adsorption. A particularly important

aspect of the polymer-conjugated systems is that the
polymers themselves tend to adsorb to the surface,
competing with the small-molecule adsorbates for
space at the interface. PE and PEG, in particular, possess
large peaks in density (Figure 4B) at the graphene
interface and concomitant reductions in water density
at this interface. As exemplified in Figure 4C,D, these
two polymers form constantly reorganizing adsorbed
monolayers on the graphene surface, atop which a
transient second layer is sometimes formed. In contrast
to these polymers, the PVP chains remain much more
erect on the surface, leaving free space for both water
and atrazine to adsorb (Figure 4E). Although the
density of water at the PVP-conjugated surface is less
than for the naked surface, nearly a third of the surface
remains uncovered for the PVP density considered
here. The distinct behavior of PVP as compared to
the other polymers is due to PVP's greater stiffness and
bulkier geometry, making it difficult for the PVP chains
to bend toward the surface and pack there. For in-
stance, PVP is much more rigid than PEG, possessing a
persistence length of 0.67 nm in the isotactic form,99

while PEG's persistence length100 is about 0.37 nm.
Thus, while all three polymers form favorable interac-
tions with atrazine, only PVP is able to do this without
strongly competing with atrazine for the graphene
surface.

CONCLUSION

As validation of themolecular dynamics approach to
nanomaterial design, we have shown that simulation
reliably predicts relative adsorption affinities of a range
of small aromatics on naked and hydroxylated nano-
tubes, a feat that cannot be accomplished by simple
models, such as those considering only the octanol�
water partition coefficient. Molecular simulation may
also help in the determination of the atomic-scale
structure of nanomaterial surfaces by comparison, to
experimental data, of simulation results for multiple
atomistic models, exemplified in our exploration of dif-
ferent hydroxylated nanotube models. Moreover, using
atrazine as an example, we have illustrated the invalu-
able insight that can be obtained from simulation for
engineering materials with high affinities for particular
adsorbates.
Implicit in the agreement we found between experi-

ment and simulation is the basic validity of the CHARMM
general force field101 for describing interactions between
the atoms of the system. However, despite the high cor-
relation between the experiment and simulation, molec-
ular dynamics predictionsmust still be regarded as semi-
quantitative. Notably, the predicted concentrations at
the surface are anorder ofmagnitude too small for naked
graphene. The affinity of atrazine for the naked surface
also appeared to be underestimated, even after making
an empirical correction to log10 Ki

calc based on our results
for the other compounds.
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There are several possible factors that could con-
tribute to the discrepancy between the experimental
and calculated results. It is very likely that some
the disagreement is due to imperfections in the force
field and water model. The graphene�water interface
possesses a very sharp change in dielectric properties,
which is known to be a point of failure for fixed-charge
atomic models;82 thus, some explicit treatment of
electronic polarizability may be necessary.70,85 Some
of the discrepancy may even be inherent to the
classical molecular dynamics approach, which is incap-
ableof fully describingquantumchemical systems.On the
other hand, poor convergence of the free energy calcula-
tions or lack of adequate sampling could yield unreliable
results; however, this is unlikely given the validation
detailed in Figures S1�4. As shown in Figures S5�9 and
Table S1 in the SI, we have also considered several aspects
of the simulation protocol, all of which appear to be
negligible compared to the deviation between experi-
ment and simulation. Due to the low surface concentra-
tions in experiment, it appears that the discrepancy
cannot be explained by interactions between adsorbed
molecules; however, the presence of unknown adsorbed
contaminants may have similar effects to those seen on
surfaces with substantial loading (see Figure 2).
While the present work has, to some extent, validated

existing atomistic models of graphenic and modified
graphenic surfaces, there has been little systematic

evaluation of models used for other nanomaterials.
Existing force fields for materials such as metals and
ceramics may require further evaluation to demonstrate
whether they perform consistently for a wide variety
of organic adsorbates. Moreover, many exciting new
materials lack any force fields with even minimal valida-
tion. On the experimental side,more consistent synthesis
and better characterization can also help in constructing
more accurate models.
The experimental data used in the present work

were originally obtained to construct a surface adsorp-
tion index38�40 that relates adsorbate physicochemical
properties to their affinity for nanomaterial surfaces.
We have shown here that, in some cases, this surface
adsorption index could be constructed more conveni-
ently in silico.Whilemolecular dynamics candirectly yield
adsorption free energies, such calculations become ra-
pidly more expensive and time-consuming as the sys-
tems become larger and more complicated. Therefore,
we recognize the potential of combining information
gleaned from simulation with a structure�activity ap-
proach exemplified by the surface adsorption index. The
optimal strategy may be a multiscale approach, using
explicit-solvent molecular dynamics and coarser descrip-
tions derived from it, such as the grand-canonical Monte
Carlo/Brownian dynamics approach, to build predictive
structure�activity models for complex heterogeneous
systems.

METHODS
Adsorbate Models. Structures of atrazine and the molecules

listed in Table 1 were obtained from ChemSpider102 and con-
verted to mol2 format using Open Babel.103 The molecules
were parametrized in accordance with CGenFF,101 version 2b8,
using the ParamChem Web interface (CGenFF program version
0.9.7.1 beta).104,105 The penalties reported by the CGenFF
program, indicating the reliability of the generated parameters,
were zero in most cases and surpassed 10 (meaning “some
validation may be required”) only for phenyl acetate, phenyl-
ethanol, and methyl-2-methyl benzoate. Atrazine also gave
a particularly high penalty; however, as discussed in the Results
and Discussion, the deviation of the equilibrium constant
adsorption on carbon nanotubes from experiment20 was not
considerably larger than for the other compounds.

Unmodified Multiwall Carbon Nanotube Model. Four layers of
graphene in a graphite arrangement were generated using
the InorganicBuilder plugin106,107 of VMD.108 Each layer was a
supercell of the graphene lattice, with the form of a regular
hexagon of side length 1.702 nm. The layers were periodically
continued throughout in the xy plane, forming an effectively
infinite flat surface. After adding 758watermolecules above and
below the membrane, the systems had the form of a hexagonal
prism, with an equilibrium (at T = 300 K and P = 1 atm) height
of ∼4.4 nm. A representation of one such system is shown in
Figure 1A. For convenience, weak harmonic restraints kept
the carbon atoms near their initial positions. Although these
restraints have a negligible effect on the calculated free energy
(<0.15 kcal/mol), we have subsequently found them to be
unnecessary anddonot recommend their use in future simulations.
See Figure S7 in the SI for a discussion.

Hydroxylated Multiwall Carbon Nanotube Models. Beginning with
the four-layer graphite model above, we generated five models

of hydroxylated graphenic carbon with different densities and
arrangements of hydroxyl groups. To yield homogeneous
surfaces that could be more easily sampled in the free-energy
calculations, we placed the hydroxyl groups so that the system's
cross section in the xy plane was an exact supercell of identical
tiled subcells. The configurations of the systems are summar-
ized in Table 2 and illustrated in Figure 3. The first three systems,
denoted graph�OH(A), (B), and (C), had 72, 18, and 9 uniformly
spaced hydroxyl groups. The fourth system, denoted graph�
OH(D), had the same arrangement as graph�OH(C) except that
a second hydroxyl group was added at the 4-position of the first
hydroxyl's six-membered ring. Thus, the two adjacent hydroxyl
groups formed hydrogen-bonding pairs. A fifth system was
created with 36 OH groups arranged in clusters of effectively
infinite lines; the results for thismodel are available in Figure S12 in
the SI. Atomic charges, Lennard-Jones parameters, and bonded
parameters were assigned to the hydroxyl groups and asso-
ciated carbon atom by analogy to the CGenFF parametrization
of tert-butanol. Notably, the hydrogen, oxygen, and attached
carbon atoms were assigned charges of 0.419e, �0.65e, and
0.228e, respectively. For charge neutralization, the three graphenic
carbons bonded to the modified carbon were given charges of
0.001e. Harmonic restraints (see Figure S7 in the SI) were applied
only to unsubstituted carbon atoms so that the hydroxylated
carbon atoms adopted a somewhat tetrahedral arrangement.

Polymer-Conjugated Nanotube Models. We constructed models
of methyl-terminated PE, PEG, and PVP with molecular weights
of about 170, 470, and 590 Da, respectively. The carefully
calibrated PEG CHARMM force field100 was used for that polymer,
while CGenFF was used for the other two. The parameters for PE
should be reliable, as they are identical to those in alkyl chains of
CHARMM lipids and proteins. The CGenFF program104,105 indi-
cated relatively high penalties for the PVPmolecule, so thismodel
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may be more approximate. The PVP molecule was generated in
an isotactic configuration. To represent realistic surface conjuga-
tion of carbon nanotubes, 4 or 9 carboxylate groups were first
covalently attached to the upper graphene sheet shown in
Figure 1A. As with the addition of hydroxyl groups, the carbox-
ylate groups were placed so as to be repeated subcells within the
system's periodic cell. Three systems were created, covalently
linking the carboxylates to 9 PE, 4 PEG, or 4 PVP fragments.
Beginning from the bond attaching the carboxylate to the
graphene surface, the resulting structures were �C(dO)OC11,
�C(dO)OC(COC)11CH3, and�C(dO)OC[C(�Py)C]5CH3, where Py
is the 2-pyrrolidone group. Force field parameters for the linker
werederived fromaCGenFFmodel of butyl pivalate. Thepolymer
chains extended some distance from the surface; thus, an addi-
tional layer of water was added along the z axis to prevent
spurious interaction between periodic images, giving an average
z dimension of about 6.8 nm and increasing the number of water
molecules in the system to about 1250. For the naked graphene
surface, calculations were performed both with the four-layer
model as shown in Figure 1A and with a single-layer model. As
shown in Figure S1 in the SI, the difference in the potentials of
mean force was detectable, but small enough to be irrelevant
compared to other factors in comparison to experiment. All other
calculations for atrazine includedonly a singlemodified graphene
layer.

Molecular Dynamics Simulations. All simulations were executed
in the molecular dynamics software NAMD 2.10109 using com-
puting resources maintained by Kansas State University, as well
as those supplied through the Extreme Science and Engineering
Discovery Environment (XSEDE).110 All simulations employed
the standard TIP3P water model used by the CHARMM force
field. The temperature and pressure were maintained at 300 K
and 101.325 kPa, respectively, by the Langevin thermostat and
Langevin piston111 methods. The area of the systems was fixed
in the xy plane, and the Langevin piston acted only along the z
axis. As shown in Figure S5 in the SI, no significant differences
were seen between an exemplary free-energy calculation em-
ploying a smooth 0.8�0.9 nm cutoff of van der Waals forces and
another with the more conventional 1.0�1.2 nm cutoff; thus, the
former cutoff scheme was chosen for efficiency. Electrostatic
interactions were computed via the particle-mesh Ewald algo-
rithm,112 with amesh spacing of <0.12 nm. The length of covalent
bonds involving hydrogen atoms was constrained113,114 to the
values prescribed by the CHARMM force field. The equations
of motion were integrated using a multiple time-stepping
scheme115 with steps of 2 and 4 fs for short- and long-range
interactions. VMD 1.9.2 was used for analysis and visualization.108

Free-Energy Calculations. For each surface model considered,
29�32 independent systems were constructed, each containing
a different adsorbate molecule. Each system underwent 2000
steps of energy minimization followed by 20 ps of equilibration
before beginning the free-energy calculation. The adaptive bias-
ing force59,87,88 method was applied to the z component of the
vector between the center ofmass of the adsorbate and center of
mass of atoms of the first surface layer of the nanomaterial, using
the Colvars module116 of NAMD 2.10. The motion of the adsor-
bates in the xy plane was not restricted, and they sampled a
variety of lateral positions and orientations during the simula-
tions (see Figures S2�4 in the SI). Unless otherwise stated,
the calculations were performed using a single window on the
interval 0.3 e z e 1.5 nm, and force samples were collected in
bins having widths of 0.005 nm to capture small-scale variations
in the potential of mean force. All calculations were performed
using the simulation conditions described in the section Molec-
ular Dynamics Simulations for 300�600 ns of simulated time.
Convergence of the calculations is detailed in Figure S1 of the SI.
Plotted potentials ofmean forcewere anchored so that themean
value on 1.45 e z e 1.5 nm was zero. Equation 4 was applied
with c = 0.8 nm, although the precise value was irrelevant
(see Figure S3 in the SI). As an additional check, we performed
free-energyperturbation117 for the three systems toverify theΔG
of adsorption (see Table S1 in the SI).

The free-energy calculations for atrazine on polymer-
conjugated surfaces were performed slightly differently than
above. To equilibrate the polymer chains, the systems were

first simulated for 50 ns in the absence of atrazine. Because of
the extension of the polymers from the surface, a greater distance
from the surface z was required to reach the plateau of wi

calc(z);
thus, the free-energy calculations for the polymer-conjugated
surfaces were performed in two overlapping windows, 0.3 e
z e 1.2 nm and 1.0 e z e 2.0 nm. Due to the flexibility of the
polymers and the greater conformational space that needed to be
sampled (see Figure S4 in the SI), these calculations employed
multiple-walker adaptive biasing force118 using 3 walkers for each
window and a simulated time of 200 ns per walker per window
(totaling 1.2 μs per system).
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