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Abstract 

Microbial lipids derived from oleaginous yeasts are a promising alternative source of edible 

oils due to the following advantages: no requirement of broad lands; availability of year-round 

production; and no food versus fuels controversy. Oleaginous yeast has an inherent ability to 

accumulate lipids inside cells and their lipids are preferable as starting materials in oleo-chemical 

industries because of their distinct fatty acid composition. Lignocellulosic biomass is a promising 

substrate to supply carbon sources for oleaginous yeast to produce lipids due to the high content 

of polysaccharides and their abundancy. Lignocellulosic-based sugar streams, which can be 

generated via pretreatment and enzymatic hydrolysis, contained diverse monosaccharides and 

inhibitors. The major objectives of this study were: 1) to develop a novel purification method to 

generate clean sugar stream using sorghum stalks after acid pretreatment; 2) to optimize 

fermentation conditions for Trichosporon oleaginosus to achieve high yields and productivity of 

microbial lipids using lignocellulosic hydrolysates; 3) to investigate the potentials of sorghum 

stalks and switchgrass as feedstocks for microbial lipid production using oleaginous yeast strains, 

such as T. oleaginosus, Lipomyces starkeyi, and Cryptococcus albidus; 4) to develop an integrated 

process of corn bran based-microbial lipids production using T. oleaginosus; and 5) to develop 

bioconversion process for high yields of lipids from switchgrass using engineered Escherichia 

coli.   

In our investigation, major inhibitory compounds of lignocellulosic hydrolysates induced by 

pretreatment were acetic acid, formic acid, hydroxymethyl furfural (HMF) and furfural. The 

activated charcoal was effective in removing hydrophobic compounds from sorghum stalk 

hydrolysates. Resin mixtures containing cationic exchangers and anionic exchangers in 7:3 ratio 

at pH 2.7 completely removed HMF, acetic acid, and formic acid from sorghum stalk hydrolysates. 



  

T. oleaginosus was a robust yeast strain for lipid production. In the nitrogen-limited synthetic 

media, total 22 g/L of lipid titers were achieved by T. oleaginosus with a lipid content of 76% 

(w/w). In addition, T. oleaginosus efficiently produced microbial lipids from lignocellulosic 

biomass hydrolysates. The highest lipid titers of 13 g/L lipids were achieved by T. oleaginosus 

using sorghum stalk hydrolysates with a lipid content of 60% (w/w). L. starkeyi and C. albidus 

also successfully produced microbial lipids using lignocellulosic hydrolysate with a lipid content 

of 40% (w/w). Furthermore, corn bran was a promising feedstock for microbial lipid production. 

The highest sugar yields of 0.53 g/g were achieved from corn bran at the pretreatment condition 

of 1% acid and 5% solid loading. Microbial lipids were successfully produced from corn bran 

hydrolysates by T. oleaginosus with lipid yields of 216 mg/g. Engineered E. coli also effectively 

produced lipids using switchgrass as feedstocks. E. coli ML103 pXZ18Z produced a total of 3.3 

g/L free fatty acids with a yield of 0.23 g/g. The overall yield of free fatty acids was 0.12 g/g of 

raw switchgrass and it was 51 % of the maximum theoretical yield. This study provided useful 

strategies for the development of sustainable bioconversion processes for microbial lipids from 

renewable biomass and demonstrated the economic viability of a lignocellulosic based-

biorefinery.  
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Abstract 

Microbial lipids derived from oleaginous yeasts are a promising alternative source of edible 

oils due to the following advantages: no requirement of broad lands; availability of year-round 

production; and no food versus fuels controversy. Oleaginous yeast has an inherent ability to 

accumulate lipids inside cells and their lipids are preferable as starting materials in oleo-chemical 

industries because of their distinct fatty acid composition. Lignocellulosic biomass is a promising 

substrate to supply carbon sources for oleaginous yeast to produce lipids due to the high content 

of polysaccharides and their abundancy. Lignocellulosic-based sugar streams, which can be 

generated via pretreatment and enzymatic hydrolysis, contained diverse monosaccharides and 

inhibitors. The major objectives of this study were: 1) to develop a novel purification method to 

generate clean sugar stream using sorghum stalks after acid pretreatment; 2) to optimize 

fermentation conditions for Trichosporon oleaginosus to achieve high yields and productivity of 

microbial lipids using lignocellulosic hydrolysates; 3) to investigate the potentials of sorghum 

stalks and switchgrass as feedstocks for microbial lipid production using oleaginous yeast strains, 

such as T. oleaginosus, Lipomyces starkeyi, and Cryptococcus albidus; 4) to develop an integrated 

process of corn bran based-microbial lipids production using T. oleaginosus; and 5) to develop 

bioconversion process for high yields of lipids from switchgrass using engineered Escherichia 

coli.   

In our investigation, major inhibitory compounds of lignocellulosic hydrolysates induced by 

pretreatment were acetic acid, formic acid, hydroxymethyl furfural (HMF) and furfural. The 

activated charcoal was effective in removing hydrophobic compounds from sorghum stalk 

hydrolysates. Resin mixtures containing cationic exchangers and anionic exchangers in 7:3 ratio 

at pH 2.7 completely removed HMF, acetic acid, and formic acid from sorghum stalk hydrolysates. 



  

T. oleaginosus was a robust yeast strain for lipid production. In the nitrogen-limited synthetic 

media, total 22 g/L of lipid titers were achieved by T. oleaginosus with a lipid content of 76% 

(w/w). In addition, T. oleaginosus efficiently produced microbial lipids from lignocellulosic 

biomass hydrolysates. The highest lipid titers of 13 g/L lipids were achieved by T. oleaginosus 

using sorghum stalk hydrolysates with a lipid content of 60% (w/w). L. starkeyi and C. albidus 

also successfully produced microbial lipids using lignocellulosic hydrolysate with a lipid content 

of 40% (w/w). Furthermore, corn bran was a promising feedstock for microbial lipid production. 

The highest sugar yields of 0.53 g/g were achieved from corn bran at the pretreatment condition 

of 1% acid and 5% solid loading. Microbial lipids were successfully produced from corn bran 

hydrolysates by T. oleaginosus with lipid yields of 216 mg/g. Engineered E. coli also effectively 

produced lipids using switchgrass as feedstocks. E. coli ML103 pXZ18Z produced a total of 3.3 

g/L free fatty acids with a yield of 0.23 g/g. The overall yield of free fatty acids was 0.12 g/g of 

raw switchgrass and it was 51 % of the maximum theoretical yield. This study provided useful 

strategies for the development of sustainable bioconversion processes for microbial lipids from 

renewable biomass and demonstrated the economic viability of a lignocellulosic based-

biorefinery.  
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Chapter 1 - Sustainable production of  

lignocellulose-based microbial lipids 

Microbial lipids 

Bio-based lipids produced by oleaginous microorganisms are promising feedstocks for use in 

the oleochemical and biodiesel industry. Microbial lipids are primarily composed of 

triacylglycerides (TAG), which can be easily converted to biodiesel fatty acid methyl esters 

(FAME) via a transesterification process (Figure 1.1). Also, phospholipids, sphingolipids, sterols, 

and free fatty acids can be produced but the amount is insubstantial (Probst et al., 2015).  

Microbial lipids were known to have a similar composition of fatty acids with plant oils 

containing high oleic acid (Table 1.1). Normally, plant oil is composed of 55% oleic acid and 20% 

linoleic acid (Sitepu et al., 2014). Microbial lipid composition varies depending on the species, but 

oleic acid is the most predominant fatty acid species produced by oleaginous microorganisms. 

Oleic acid is preferred in the biodiesel industry because of its improvement of cold-flow properties, 

ignition quality, ideal melting point, kinematic viscosity, and oxidative stability (Matsakas et al., 

2014; Zhou et al., 2016; Steen et al., 2010; Knothe, 2008). Other than utilization in the biodiesel 

industry, microbial lipids can be alternative starting materials in the oleochemical industry, used 

to convert invaluable oleochemicals via chemical or biological synthesis. In addition, a few studies 

attempted to develop oleaginous strains to produce microbial lipids for food additives, since 

specific polyunsaturated fatty acids (PUFAs) can be produced via metabolic engineering. 

Homologous or heterologous expression of specific enlongases or desaturases in oleaginous 

microorganisms are capable of synthesizing essential fatty acids such as γ-linolenic acid (GLA), 

arachidonic acid (ARA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), which 
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are in high demand in the food industry (Huang et al., 2013) (Table 1.2). The attention of PUFA 

— usually provided from seafood oil and vegetable oil — is an essential oil in human metabolism 

to prevent cardiovascular and inflammatory diseases, brain disorders, and diabetes (Béligon et al., 

2016). Also, such PUFAs are known to contribute to the brain development of infants, proper 

functioning of the eye, synthesis of hormones, and signaling of molecules (SanGiovanni and 

Chew, 2005). As their nutritional importance has led to increased demand, PUFAs synthetized by 

oleaginous microorganisms are anticipated to meet the growing PUFA market in the food industry. 

Oleaginous microorganisms for lipid production 

Microbial lipids can be produced by oleaginous microorganisms such as yeast, fungi, and 

microalgae. Oleaginous microorganisms have an inherent ability to accumulate lipids, mainly in 

the form of triacylglycerides (TAG), with more than 20% (dry-mass basis) using carbon sources 

(Ageitos et al., 2011). Table 1.3 shows lipid production of oleaginous microorganisms from 

different families. Numerous yeasts and fungi accumulate higher percentages of lipids compared 

with other oleaginous microorganisms. Each oleaginous microorganism has its own properties, 

which affects cost of lipid production during fermentation (Table 1.4). Microalgae are 

photosynthesizing organisms requiring sunlight, water, and carbon dioxide for their growth and 

lipid accumulation. Many species of microalgae, such as, Chlorella sp or Schizochytirum sp, grow 

rapidly and accumulate more than 60% (w/w) lipids. Their lipid accumulation properties are 

dependent on temperature, nitrogen concentration, or CO2 enrichment of the environment (Calvey 

et al., 2016). Despite their ability of higher lipid accumulation, a larger acreage and longer 

fermentation period are required to grow microalgae, compared to other bacteria and yeast cells 

(Meng et al., 2009). Some species of bacteria also are capable of accumulating lipids, such as 

Acinetobacter calcoaceticus and Rhodococcus opacus. Their rapid growth and easy cultivation 
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methods are the biggest advantages. However, lipid contents are substantially lower than other 

oleaginous species, and bacterial lipids exist in the outer membrane, which makes extracting lipids 

from the cell wall challenging. Therefore, many limitations remain for developing lipid production 

using oleaginous bacteria in a biorefinery. Many studies successfully developed non-oleaginous 

bacterial strains — typical industrial bacteria with fully identified genetic information such as 

Escherichia coli and Corynebacterium glutamicum — for lipid production, mainly free fatty acids 

or unusual fatty acids synthesis (Haushalter et al., 2014; Bule et al., 2016; Yuan et al., 2016). With 

use of synthetic biology, tailored fatty acid species can be produced such as odd-number fatty acids 

and unusual fatty acids, which are insubstantial chemicals in oleochemistry. Still, challenges 

remain to achieve high titers of fatty acids using metabolically engineered bacteria species, due to 

antibacterial properties of free fatty acids (Cray et al., 2015; Desbois and Smith, 2010; Sherkhanov, 

Korman and Bowie, 2014). Some filamentous fungi are classified as oleaginous species, including 

Aspergillus oryzae, Mortierella isabellina, and Mucor circinelloides. While other oleaginous 

microorganisms accumulate lipids mainly in TAG, lipids produced by oleaginous fungus are 

composed of a high content of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid 

(DHA), γ-linolenic acid (GLA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) (Pinzi 

et al., 2014). Mortierella, especially, are regarded as the most efficient fungus species for PUFA 

synthesis with the capacity of 20-70% of total lipids containing mostly PUFAs (Coradini et al., 

2015). However, filamentous fungus preferably grows under solid-state fermentation, where it is 

not easy to control fermentation conditions, and requires precise moisture control. There have been 

many attempts to grow them in a traditional bioreactor to reduce production cost and wastes. Only 

a few studies successfully cultivated them in a liquid environment, with low lipid content and 

fungal oil production still at laboratory scale (Pinzi et al., 2014). Another interesting microbial 
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system for lipid production is oleaginous yeast. Compared to microalgae and fungus, oleaginous 

yeast grows fast and accumulates lipids of high content in submerged cultivation. Oil accumulation 

varies depending on the yeast species and cultivation conditions. Among a variety of oleaginous 

species, Rhodosporidium toruloides, Lipomyces starkeyi and Trichosporon oleaginosus have been 

found to accumulate lipids up to 60 or 70% in dry-cell mass (Görner et al., 2016). Since high titers 

and productivity can be achieved, compared to other oleaginous microorganisms, microbial lipid 

production using oleaginous yeast cultures has gained substantial attention in biorefineries. 

Metabolic pathway for TAG synthesis from diverse sugar sources in 

oleaginous yeast cultures 

Importance of acetyl-CoA for a lipid synthesis  

Figure 1.2 shows the metabolic pathway of lipid synthesis in oleaginous yeast. Acetyl-CoA 

represents a key node in metabolism due to its intersection with many metabolic pathways (Shi 

and Tu, 2015). Also, acetyl-CoA is an important intermediate metabolite for acetylation of several 

enzymes involved in lipid synthesis (Galdieri and Vancura, 2012; Baumann, 2015; Cai et al., 

2011). Carbon sources are metabolized to cytosolic pyruvate via glycolysis and then enter the 

mitochondria. The mitochondrial pyruvate is converted to acetyl-CoA by pyruvate dehydrogenase 

and utilized for ATP synthesis via Kreb cycle and oxidative phosphorylation at the electron 

transport chain.  

Oleaginous microorganisms have interesting metabolic properties with which to synthesize 

TAG as a form of a lipid body. In the nitrogen-starvation condition, mitochondrial cAMP levels 

are decreased via increased AMP-deaminase activity (Calvey et al., 2016). It causes a decrease of 

isocitrate dehydrogenase activity, and subsequently, citrate — an intermediate of the Kreb cycle 
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— is accumulated in the mitochondria. Finally, it leads to the export of mitochondrial citrate to the 

cytosol through citrate/malate translocase (Kosa and Ragauskas, 2011). The citrate is converted to 

oxaloacetate and acetyl-CoA by ATP-cytrate synthetase (ACL), and acetyl-CoA carboxylase 

(ACC) converts it to malonyl CoA as a starting step of FA synthesis (FAS) (Kosa and Ragauskas, 

2011). Therefore, the ACL enzyme provides an important function for carbon flow to synthesize 

TAG. Oxaloacetate produced from citrate is converted to malate and joins again to the Kreb cycle. 

Fatty acyl-CoA is synthesized by FAS and undergoes elongation and desaturation (Probst et al., 

2015).    

De novo lipid synthesis  

De novo lipid synthesis begins from glycerol-3-phosphate (G3P), which is the glycolysis 

intermediate. G3P provides glycerol backbone to synthesize TAG. G3P is converted to 

lysophosphatidic acid (LPA) by glycerol-3-phosphate acyltransferase (GPAT), followed by the 

action of lysoPA-acyltransferase (LPAAT) to form phosphatidic acid (PA). PA is an another key 

intermediate for synthesizing storage lipids (TAG). The cellular level of PA regulates the 

transcription of several genes, including ACC and FAS, which play a crucial role in lipid synthesis 

(Kosa and Ragauskas, 2011). PA is further dephosphorylated to DAG by phosphatidic acid 

phosphatase (PAP). The final step in the biosynthesis of storage lipids, TAG, is catalyzed by 

diacylglycerol acyltransferase (DGAT). The de novo lipid synthesis is an acyl-CoA-dependent 

reaction required for three acyl-CoAs during TAG synthesis.   
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Production of lignocellulose-based microbial lipids 

Cost effective sugar sources for microbial lipid production: lignocellulosic biomass 

Lignocellulosic biomass is a promising new sugar supplier to replace expensive carbon sources 

such as starch and refined sugars. Lignocellulosic biomass, which is known widely as an existing 

renewable carbohydrate source, generally consists of ~75% carbohydrate polymers (cellulose and 

hemicellulose) and ~25% lignin in a dry-mass basis (Lopes, 2015). Table 1.5 shows the 

composition of the most commonly utilized lignocellulosic biomass, which varies among species. 

Cellulose has a highly crystalline structure consisting of β-1,4-linked glucose polysaccharides, and 

is tightly linked with hemicellulose and lignin in the plant structure (Limayem and Ricke, 2012; 

Guerriero et al., 2016). Hemicellulose is an amorphous and branched single-chain polysaccharides 

mainly composed of glucuronoxylan, glucomannan, and other polysaccharides (Anwar, Gulfraz 

and Irshad, 2014). Among the hemicelluloses, xylan is the most abundant polymer and is 

characterized by a linear backbone of β-1,4-linked xylosyl residues substituted with acetyl, 

glucuronic acid, and arabinose(Guerriero et al., 2016). Hemicellulose interacts with more than one 

cellulose polymer with non-covalent cross-links between cellulose bundles (Yang et al., 2011). 

Lignin, the smallest fraction of the lignocellulosic biomass, fills the gap between and around the 

cellulose and hemicellulose complexion with a long-chain polymer composed of phenyl-propane 

units normally linked by either bond (Anwar, Gulfraz and Irshad, 2014).  

Cellulose and hemicellulose can be separated via pretreatment, and depolymerized to 

monosaccharides — mainly glucose, xylose, and arabinose — via enzymatic hydrolysis. 

Pretreatment is an energy-intensive process to efficiently recover hemicellulose and cellulose 

fractions without substantial loss due to breaking the lignin structure. Therefore, harsh conditions, 

such as high temperature and pressure with chemical reagents, are required for successful 
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pretreatment. Acid- and alkali-based pretreatments are the most commonly utilized methods. The 

exposed cellulose and hemicellulose portions were depolymerized to a fermentable sugar stream 

via hydrolysis process of synergic action of several enzymes. Cellulases, including endoglucanases, 

exoglucanases (cellobiohydrolases), and β – glucosidases, catalyze the hydrolysis reaction of 

cellulose to hexose sugars (Ding et al., 2016). Since hemicellulose is composed of more varied 

compounds, a mixture of more diverse enzymes — endo-xylanase, acetyl xylan esterase, β-

mannosidase, α-L-arabinofuranosidase, α-glucoronidase, and ferulic acid esterase — is required 

for the effective hydrolysis (Dashtban et al., 2010).    

Promising lignocellulosic feedstocks for bioconversion 

One key factor to improve the viability of lignocellulose-based biorefinery is the economics of 

bioenergy crop production. The most important consideration in the production of lignocellulosic 

crops are (1) yield, (2) land costs, and (3) the price of other feedstocks for biofuel production 

(Rinehart, 2006). High-biomass-yielding energy crops will reduce the total acreage required, 

minimizing potential competition for land utilization (Olson et al., 2012). The promising bioenergy 

crops would have high resistance to pest and disease, tolerance of poor soils, high yields of 

cellulose, drought and flood tolerance, efficient water use and low fertility requirement to achieve 

high yield crop productions (Rinehart, 2006). Most of the perennial C4 grasses being developed 

for bioenergy purposes are due to low input requirements on land, its tolerance to water limited 

environments and C4 photosynthesis which contributes to improved nitrogen use efficiency 

(Mullet et al., 2014).  Sorghum and switchgrass are the typical C4 perennial bioenergy crops that 

have been identified as the most promising renewable feedstocks among a variety species of crops 

(Fu et al., 2016). Table 1.5 shows that both sorghum stalks and switchgrass contain high contents 

of polysaccharides (cellulose and hemicellulose), which is a key requirement for bioenergy crops.  
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Switchgrass 

Switchgrass - a perennial C4 grass and warm seasons species - evolved across Central and 

North America and has recently gained huge attention as energy crops because of its low-cost 

investment and abundance. A study demonstrated that switchgrass can be grown on the soils of 

moderate fertility without fertilizing, or with limited additions of fertilizer, and still maintain 

productivity (Parrish and Fike, 2005). Higher net energy efficiency was obtained from switchgrass 

among energy crops because of moderate inputs including N fertilizer and facile management 

(Schmer et al., 2008). In addition, many studies reported high yield of switchgrass compared with 

other energy crops. In a recent study, more than 20 Mg/ha per year was observed in systems 

managed for maximum sustained biomass (Parrish and Fike, 2005). The productivity of 

switchgrass (13.4 – 22.3 t/ha) exceeds the yield range of corn (6.3 – 8.7 t/ha) (McLaughlin and 

Kszos, 2005).  

Sorghum   

Sorghum is a fast growing C4 plant native to tropical zones, but with a wide adaptability to 

different environmental conditions due to its relative lower agronomic requirements compared to 

other crops (Zegada-Lizarazu and Monti, 2012). Sorghum was not initially targeted for energy 

crop development, but was principally grown as an annual grain and forage crop. The studies 

demonstrated the potential of sorghum as a bioenergy crop, specifically due to its high drought 

tolerance (Monk, Miller and McBee, 1984; Borrell et al., 2006; Rosenow and Clark, 1995). 

Sorghum has an extensive root system, which enables it to penetrate 1.5 to 2.5 meters into the soil 

and extend one meter away from the stem. Its unique stomata in their leaves makes them tolerate 

water deficit conditions (Mullet et al., 2014). The biomass yield of energy sorghum grown in small 
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irrigated plots was ~45-50 dry Mg/ha compared with ~15-25 dry Mg/ha under non-irrigated 

conditions when grown in larger plots (Olson et al., 2012).  

Sustainable production of lignocelluose-based microbial lipids 

The platform of lignocellulose-based microbial lipids was proposed to identify and evaluate 

environmental impacts associated with process operations (Figure 1.3). The proposed platform 

utilized alkaline pretreatment was utilized to effectively remove lignin compounds with minimal 

sugar loss. For the lipid extraction produced by oleaginous yeast, the traditional method developed 

by (Bligh and Dyer, 1959) was utilized. Also, the lignin fraction obtained after enzymatic 

hydrolysis was collected and utilized for energy generation via combustion or a source of high-

value aromatic monomers. One of the merits of biorefineries is their environmental friendly 

process compared with chemical reactions. Many life-cycle assessments (LCAs) showed a 

reduction of CO2 emissions in biofuel production (Jin et al., 2015). However, the generation of a 

waste stream and usage of hazardous organic solvent during the process is inevitable. Possible 

waste streams are identified in Table 1.6. The major waste stream is effluent. A large quantity of 

water is required during the overall process, such as for pretreatment, enzymatic hydrolysis, and 

fermentation. After these processes, huge amounts of liquid effluents are generated, which are 

normally contained organic compounds. The pretreatment process generates diluted alkaline or 

acidic effluents, containing various phenolic compounds and aliphatic acids. Even if they are 

considered as wastes in the proposed biorefinery, this waste stream contains a variety of invaluable 

products to the industry. Development of a novel separation method to harvest valuable industrial 

compounds will increase the substrate utilization and sustainability of the proposed biorefinery. 

The fermentation process also causes huge amounts of waste water streams, which normally 

contain spent broth, buffer solution, and secondary metabolites of microorganisms. Extraction 
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methods developed by (Bligh and Dyer, 1959) are known as the most efficient lipid extraction 

methods, with 95% efficiency. However, this method requires hazardous chemicals such as 

chloroform and hexane. It can be the drawback of this proposed platform for the sustainable 

production of microbial lipids.  

Suggestions for improving sustainability of the proposed platform for lignocellulosic-based 

microbial lipid production are efficient procurement of raw feedstocks which is one of the 

challenges. To increase competitiveness and sustainability, the efficient procurement of raw 

material is required. In 2030, 10% of global residues could yield around 4.1 % of the projected 

transport fuel demand (Eisentraut, 2010). Although more than one billion tons of biomass per year 

would be potentially available to meet the 30% replacement of petroleum-derived gasoline in 

2030, the high cost of biomass could be a serious hindrance if potential lands and feedstocks are 

not managed and utilized efficiently (Perlack et al., 2005). Therefore, it is important to develop 

efficient management strategies for energy crops. It will help alleviate land competition with food 

crops and reduce costs for feedstock production. Another important factor to make bio-refineries 

sustainable and economically viable is optimization and achievement of high process efficiency 

(Cherubini and Strømman, 2011). Pretreatment is an energy-intensive process directly affecting 

product yield. Therefore, optimized and effective pretreatment conditions will reduce production 

costs and environmental concerns. Many attempts have been explored to efficiently recover the 

portion of polysaccharides from lignocellulosic biomass. However, the pretreatment process 

remains one of the challenges for the sustainability of biorefineries.  
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Table 1-1 Fatty acid composition of oleaginous microorganisms 
 

 

NA = Not Available 

  

Organisms 
Relative average fatty acids (%, w/w) 

References 
C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 

Plant  

Palm oil NA 33 0.1 4.7 55.1 1.6 NA (Coradini et al., 2015) 

Sunflower oil NA 6.9 NA 6 26.5 66.5 NA (Pinzi et al., 2014) 

Rapeseed oil 0.9 40 NA 4.1 43 11 0.2 (Pinzi et al., 2014) 

Microalgae         

Psedokirchneriella 

subcaptiata 

0.1 16.2 1.0 1.3 31.1 5.1 11.4 (Patil et al., 2007) 

Chlorella vulgaris NA 16 11.9 2 58 9 14 (Wynn and Ratledge, 2005) 

Nanochloropsis oceanica 16.9 17.2 18.2 1.8 4.1 9.7 0.5 (Patil et al., 2007) 

Oleaginous yeast         

Cryptococcus albidus NA 19.4 NA 4.9 10.9 27.3 7.4 This study 

Lipomyces starkeyi NA 22.3 8.9 2.7 62.9 2.7 0.5 (Probst and Vadlani, 2015) 

Trichosporon oleaginosus 0.8 25.4 0.47 10.8 40.5 20.1 2.0 This study 

Yarrowia lipolytica NA 11 6 1 28 51 1 (Li, Du and Liu, 2008) 

Oleaginous bacteria 

Rhodococci sp. 2.3 7.0 27 13.9 14.5 11.4 NA (Wei et al., 2015) 

Rhodococcus opacus 2 27.3 9.3 3.3 14.0 NA NA (Kurosawa et al., 2015) 

Oleaginous fungi 

Mucor circinelloides NA 20 2.3 2 37 14.3 18.5 (Vicente et al., 2009) 

Fugal strain IBB G4 1.1 22.9 NA 23.7 26.9 17.8 NA (Kakkad et al., 2015) 
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Table 1-2 Production of polyunsaturated fatty acids using oleaginous microorganisms 

 

Polyunsaturated fatty acids Microorganisms References 

γ-Linolenic acid (GLA) Gunninghamella echinulate Oleaginous fungi (Fakas et al., 2007) 

 Mortierella ramanniana Oleaginous fungi (Dyal and Narine, 2005) 

 Mucor rouxii Oleaginous fungi (Muniraj et al., 2015) 

Deocosahexaenoic acid (DHA) Candida guilliermondii Oleaginous fungi (Guo and Ota, 2000) 

 Chlorella sp. Microalgae (Lee et al., 2013) 

 Aurantiochytirum sp. Microalgae (Choi et al., 2014) 

Arachidonic acid (ARA) Sirodotia Kylin Microalgae (Bhosale, Velankar and Chaugule, 2009) 

 Mortierella alpine Oleaginous fungi (Kikukawa et al., 2013) 

Eicosapentaenoic acid (EPA) Schizochytrium limacinum Microalgae (Chi et al., 2007) 

 Mortierella alpina Oleaginous fungi (Okuda et al., 2015) 

 Vischeria stella Microalgae (Gao et al., 2016) 

 Nannochloropsis oceanica Microalgae (Meng et al., 2015) 
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Table 1-3 Lipid accumulation by oleaginous microorganisms  

Organisms Nutrient 
Lipid content 

(%, w/w) 
References 

Microalgae    

Chlorella sp. - 45-47 (Pinzi et al., 2014) 

Schizochytrium sp. - 50-77 (Pinzi et al., 2014) 

Nitzschia sp. - 45-47 (Pinzi et al., 2014) 

    

Yeast    

Trichosporon oleaginosus Woody biomass 61 This study 

Lipomyces starkeyi Sorghum stalk 44 This study 

Cryptococcus albidus Woody biomass 50 This study 

Yarrowia lipolytica Sugarcane baggase 58.5 (Tsigie et al., 2011) 

Trichosporon fermentans  Rice straw 40.1 (Huang et al., 2009) 

    

Bacteria    

Acinetobacter sp. - 27-38 (Pinzi et al., 2014) 

Bacillus alcalophilus - 18-24 (Pinzi et al., 2014) 

Rhodococcus opacus Glucose 38 (Kurosawa et al., 2010) 

    

Fungi    

Mortierella alpina Glucose 64 (Nie et al., 2014) 

Mucor circinelloides Corn stillage 61 (Mitra et al., 2012) 

Mortierella isabellina Rice hull 64 (Economou et al., 2011) 

Aspergillus oryzae Potato waste 40 (Muniraj et al., 2013) 
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Table 1-4 Properties of oleaginous microorganisms (Cray et al., 2015; Desbois and Smith, 2010; 

Sherkhanov, Korman and Bowie, 2014) 

 

  

Advantages Drawbacks 

Microalgae   

▪ High content of lipids 

▪ Submerge fermentation 

 

▪ High energy requirement to provide 

CO2 and light 

▪ Intracellular product 

▪ Requirement of large acreages 

▪ Long fermentation period 

Oleaginous yeast   

▪ High content of lipids 

▪ Fast growth rate 

▪ High-density growth 

▪ High intolerance to toxic compounds 

and high concentrations of sugars 

▪ Submerge fermentation 

▪ Intracellular product 

Oleaginous bacteria  

▪ Submerge fermentation 

▪ Fast growth rate 

▪ Low content of lipids 

▪ Vulnerable to toxic compounds 

▪ Vulnerable to high concentrations 

of substrate and product 

▪ Intracellular product 

Fungi  

▪ High content of lipids 

▪ High content of unsaturated fatty acids 

▪ Solid-state fermentations 

▪ Intracellular product 
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Table 1-5 Composition of lignocellulosic biomass (% dry mass) 

 

  

Biomass species Hemicellulose Cellulose Lignin References 

Switchgrass 29 35 17 This study 

Sorghum stalks 28 21 20 This study 

Waste papers 25-40 40-55 6-10 (Limayem and Ricke, 2012) 

Nut shell 20-30 30-40 25-30 (Anwar, Gulfraz and Irshad, 2014) 

Corn stover 26 38 19 (Zhu, Lee and Elander, 2005) 

Rice straw 24 32.1 18 (Prasad, Singh and Joshi, 2007) 

Soybean hulls 33 17 10 (Brijwani, Oberoi and Vadlani, 2010) 

Poplar 40 20 21 (Guragain, Wang and Vadlani, 2016) 

Douglas fir 37 20 29 (Guragain, Wang and Vadlani, 2016) 

Sugarcane bagasse 25 42 20 (Anwar, Gulfraz and Irshad, 2014) 

Wheat straw 16-21 26-32 29-35 (Anwar, Gulfraz and Irshad, 2014) 

Banana waste 14.8 13.2 14 (Anwar, Gulfraz and Irshad, 2014) 
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Table 1-6 Identified waste stream in proposed platform 

 

  

Process Waste 

Transport CO2 emission 

Pretreatment Liquid effluent- phenolic, aliphatic 

 Gas emission – volatile compounds 

Enzymatic hydrolysis Lignin residue 

Fermentation Solid effluent – cell biomass 

 Liquid effluent – nutrient residue, by-product 

 CO2 emission, volatile metabolites 

Downstream – lipid extraction Liquid effluent: solvents – chloroform, hexane 

 Gas emission 
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Figure 1-1 Conversion of triacyglycerides to fatty acid methyl esters via transesterification 
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Figure 1-2 Metabolic pathway for lipid accumulation in oleaginous yeast 
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Figure 1-3 Lignocellulosic biomass (A) switchgrass; (B) sorghum (Teel, 2003; Assefa et al.,)   
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Figure 1-4 Diagram of proposed process for lignocellulose-based lipid production 
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Chapter 2 - Research Objectives 

Lignocellulose-based microbial lipids are attractive substrates to replace edible oils. However, 

several challenges remain for economically feasible production of microbial lipids. This study 

explored how to improve the potential of an industrially viable bioconversion platform of 

microbial lipids through utilization of non-edible agricultural wastes. Therefore, the purpose of 

this study was to develop and evaluate an efficient bioconversion process, to achieve high yields 

and productivity of microbial lipids from inexpensive sugar sources by oleaginous yeast cultures 

and engineered E. coli. Specific objectives for this dissertation are listed below:  

• Develop a novel purification method to generate a clean sugar stream using sorghum stalks 

after acid pretreatment. (Chapter-3) 

• Optimize fermentation conditions for T. oleaginosus to achieve high yields and 

productivity of microbial lipids using lignocellulosic hydrolysates. (Chapter-4) 

• Develop a bioconversion process for high yields of microbial lipids from switchgrass using 

engineered E. coli. (Chapter-5) 

• Investigate the potential of sorghum stalk and switchgrass as feedstock for microbial lipid 

production, using oleaginous yeast strains such as T. oleaginosus, L. starkeyi, and C. 

albidus. (Chapter-6) 

• Develop an integrated process of corn-bran-based microbial lipid production using T. 

oleaginosus. (Chapter-7) 
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Chapter 3 - Innovative methods to generate clean sugar stream  

from biomass feedstocks for efficient fermentation1 

 Abstract 

The objective of this study was development of a novel purification method using activated 

charcoal and ionic exchangers to utilize xylose-rich stream of sorghum stalk hydrolysates after 

acid pretreatment. Sorghum stalks were evaluated to generate clean sugars; enzymatic hydrolysis 

efficiency of acid pretreated biomass was low (12.3 g sugar/g pretreated biomass) compared to 

alkali method (49.1 g sugar/g pretreated biomass). Inhibitory compounds derived from acid 

pretreatment, such as, hydroxymethyl furfural (HMF) and furfural, were effectively removed using 

an appropriate detoxification method using 1% (w/v) activated charcoal. The resin mixture 

containing cationic exchangers (DOWEX 50WX8) and anionic exchangers (IRA 743) in 7:3 ratio 

at pH 2.7 completely removed HMF, acetic acid, and formic acid with less than 2% (w/w) sugar 

loss, leading to efficient detoxification of inhibitory compounds. The information is pertinent to 

develop a detoxification method based on the inhibitory compounds present in the biomass 

hydrolyzate and the relative adverse effect of these compounds to the targeted culture used in the 

subsequent fermentation process.   

 Introduction 

Lignocellulosic biomass, including forest and agricultural residues, represent widespread and 

cost effective resources for the production of specialty chemicals and advanced biofuels (Chandra, 

Takeuchi and Hasegawa, 2012).  Lignocellulosic biomass is composed of three types of bio-

polymers: cellulose, hemicellulose, and lignin. Cellulose is a structural linear component of a 

                                                 

1 Chapter 3 is published as a part of Lee et al., (2016) Bioprocess and Biosystems Engineering 40:4, 633-641 
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plant’s cell wall consisting of a long-chain of glucose monomers linked by β (1→4) glycosidic 

bonds that reach to several thousand glucose units in length (Limayem and Ricke, 2012). 

Hemicelluloses are repeated polymers of both hexoses (D-glucose, D-galactose and D-mannose) 

and pentoses (D-xylose and L-arabinose) (Anwar, Gulfraz and Irshad, 2014). Lignin is an aromatic 

and rigid biopolymer, and acts as glue by filling the gap between and around the cellulose and 

hemicellulose complexes. It is considered as a byproduct in the bioconversion of lignocellulosic 

feedstocks via the sugar platform route (Anwar, Gulfraz and Irshad, 2014). Monomer sugars are 

mainly obtained via hydrolysis of cellulose and hemicellulose which are utilized as carbon sources 

during fermentation to produce targeted fuels and chemicals.  

Lignocellulosic biomass is recalcitrant to the action of cellulolytic enzymes to depolymerize 

carbohydrate polymers to monomer sugars because of the strong biomass structure due to lignin-

hemicellulose-cellulose complex (Anwar, Gulfraz and Irshad, 2014). Harsh conditions, such as, 

high pressure and temperature and/or high chemical concentrations, should be employed during 

pretreatment process to deconstruct the complex biomass structures and to recover cellulose and 

hemicellulose. Pretreatment processes mainly focus on disrupting and removing the cross-linked 

matrix of lignin and hemicelluloses to increase porosity and surface area of cellulose for 

subsequent enzymatic hydrolysis (Li et al., 2010). There are several physical, chemical, and 

biological techniques for biomass pretreatment, such as ball milling, steam explosion, acid, alkali, 

and enzymes (Guragain et al., 2011). Among those pretreatment techniques, a dilute sulfuric acid 

pretreatment has been shown as a leading pretreatment process that is currently under commercial 

development (Li et al., 2010). In order to develop an economically feasible biofuel production 

process, several factors should be considered, such as labor requirement and cost, sample size, and 

cost of process to overcome biomass recalcitrance (Wyman, 1999). Recently, many studies tried 
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to integrate or combine the pretreatment and enzymatic hydrolysis process because of a number of 

attributes of such combined process, such as requirement of smaller quantity of biomass, highly 

automated process, reduced labor, and production time (Schell et al., 2016; Banerjee et al., 2012).  

The pretreatment process inevitably generates several compounds from lignocellulosic 

biomass depending upon pretreatment methods and severity of the pretreatment processes 

(Guragain et al., 2016). Some of the pretreatment-induced compounds inhibit microbial growth 

and product formation during the fermentation process. Such inhibitory compounds can be divided 

into three groups, as shown in Figure 3.1.: (1) Monomer sugar derivatives, such as, 5-

hydroxymethylfurfural (HMF) and furfural, (2) lignin degradation products, such as phenolics, and 

(3) compounds derived from lignocellulosic structure, such as acetic acid released from acetyl 

groups on hemicellulose and lignin. HMF and furfural are generated due to the degradation of 

hexose and pentose sugars, respectively (Palmqvist and Hahn-Hagerdal, 2000). Many studies 

reported that these furans (HMF and furfural) have negative influence on the enzymatic hydrolysis, 

as well as fermentation process. The study by Rajan and Carrier (Rajan and Carrier, 2016) showed 

that furans and organic acid reduced the specific activity of cellulytic enzymes. Also, furans inhibit 

the microbial growth and output. The microorganism converts HMF and furfural to their respective 

alcohols by oxidizing NADPH to NADP+ or NADH to NAD+ (Almeida et al., 2007). Furans, at a 

concentration of 10 g/L or greater, affect yeast metabolism and cellular growth by inhibiting 

glycolytic enzymes, such as alcohol dehydrogenase (Palmqvist et al., 1999). Lignin degradation 

products generated during the pretreatment process include a variety of compounds, such as 

phenolics and aldehydes. Phenolics are known as the strongest inhibitors for the action of cellulytic 

and hemicellulytic enzymes (Ximenes et al., 2010). In addition, phenols inhibit microbial 

fermentation by reducing integrity of biological membranes (Almeida et al., 2007). The major 
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compound derived from lignocellulosic structure is acetic acid. It is mainly released from acetyl 

groups of hemicellulose during enzymatic hydrolysis. Acetylated lignin also generates acetic acid 

during the pretreatment process (Guragain et al., 2015). Acetic acid leads to the depletion of the 

reducing agent, such as NADH or NADPH and ATP, and thereby adversely effects the microbial 

metabolism. It also has an adverse impact on the function of membrane embedded protein 

(Almeida et al., 2007). Therefore, the biomass-derived inhibitory compounds produced during 

pretreatment and hydrolysis retard microbial growth and product formation. In addition to these 

biomass-derived compounds, a number of heavy metal ions, such as iron, chromium, nickel, and 

copper, can be leached from processing equipment, and act as inhibitors for microbial fermentation 

(Mussatto and Roberto, 2004). Therefore, detoxification is an essential process to eliminate 

pretreatment- and hydrolysis-induced inhibitory compounds in lignocellulosic biomass 

hydrolysates, and to generate a clean sugar stream for efficient fermentation.  

A number of detoxification methods are available to remove inhibitory compounds in biomass 

hydrolyzate depending on the types of inhibitors and scale of operation. These methods can be 

physical (such as evaporation and membrane filtration), physicochemical (such as activated 

charcoal, ion exchange, neutralization, over-liming, and extraction with organic solvents) or 

biological (such as use of specific enzymes or microorganisms) (Mussatto and Roberto, 2004). 

Among these detoxification methods, adsorption is a convenient and effective technique to remove 

low concentrations of chemicals from the aqueous phase because of simple operation, easy 

recovery, and reuse of adsorbent (Jeong et al., 2014). Activated charcoal was utilized for several 

years to eliminate pollutants due to its high adsorption capacity (Kim et al., 2013). Adsorption 

using activated carbon shows high effectiveness in the removal of hydrophobic compounds (Ra et 

al., 2015). However, the high cost to regenerate the exhausted charcoal, due to the energy-intensive 
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regeneration process, is the greatest challenge for economic viability of the charcoal detoxification 

process. The most common exhausted charcoal regeneration process is a thermal method using 

more than 600 °C (Cazetta et al., 2013). Use of ion exchangers is another effective adsorption 

method for the detoxification of biomass hydrolyzates. This method encomoasses on easy 

regeneration process using dilute chemicals, such as sodium hydroxide or hydrochloric acid 

(Chandrasekara and Pashley, 2015). The ion-exchange resins are normally used to remove low or 

medium levels of undesirable ions (Rudnicki, Hubicki and Kolodynska, 2014). The binding 

efficiency of ionic exchangers are affected by a number of factors, such as size exclusion, Donnan 

exclusion by functional group of resins and hydrophobic interactions with matrix of resins 

(Valentin et al., 2014). Cationic exchange resins effectively remove hydrophobic compounds, such 

as HMF and furfural, without substantial sugar loss, but they cannot remove acetic acid. While 

anionic exchange resins effectively remove acetic acid, the monomer sugar loss is the biggest 

challenge in this resin (Fernandes et al., 2012). Therefore, an optimum mixture of cationic and 

anionic resins could be an alternative approach for the detoxification of biomass hydrolyzates. 

Since commercial mixed resins were developed to purify water using a higher level of anionic 

exchangers, they may lead to substantial sugar loss and hence may not be appropriate for the 

detoxification of biomass hydrolyzates. To the best of our knowledge, no attempt has been made 

thus far to detoxify biomass hydrolysates using a mixture of cationic and anionic resins. 

In this study, we evaluated detoxification methods using activated charcoal and three types of 

commercial resins: cationic exchangers (DOWEX-50WX), anionic exchangers (IRA-743), and 

mixed resins (MB-20). We also evaluated the mixture of cation exchange (DOWEX-50WX) and 

anion exchange resins (IRA-743) at a specific ratio. The objective of this study was to optimize 
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the detoxification process for biomass hydrolyzates in order to maximize toxin removal with 

minimum sugar loss.     

 Materials and Methods 

 Materials 

Sorghum stalks were obtained from Texas A&M University, College Station, TX. The 

hydrolytic enzymes, Cellic C-Tec2 and Cellic H-Tec2, were provided by Novozymes Inc., 

Franklinton, NC, USA. Activated carbon (50-200 Mesh) was purchased from Fisher Scientific, 

USA. DOWEX 50WX8, Amberlite IRA743 and MB-20 were purchased supplied from Sigma 

Aldrich, USA. DOWEX 50WX8 is a gel type cationic resin with a sulfonic acid functional group.  

Amberlite IRA is a weakly basic resin with N-methylglucaomine (free base form) functionality. 

MB-20 resin is a mixed resin with 60% anionic exchangers and 40% cationic exchangers 

containing sulphonic acid and trimethylammonium as functional groups. 

Pretreatment and hydrolysis stream preparation 

Sorghum stalks were ground with a Thomas-Whiley Laboratory Mill (Model 4) using a 1 mm 

sieve, and the biomass hydrolyzate samples were prepared as shown in Figure 3.2. Biomass 

pretreatment was conducted by mixing ground sorghum stalks with 1% (w/v) sodium hydroxide 

or 1% (v/v) sulfuric acid solution at the rate of 10% (w/v) solids loading, that is, 20 g biomass in 

200 mL alkali or acid solution in a 500-mL flask. The biomass slurry was autoclaved at 121 °C for 

30 min. Acid pretreatment was also conducted at 140 °C for 30 min using a 1% (v/v) sulfuric acid 

solution and 10% solids loading in a Parr Reactor (4520 Bench Top Reactors, Parr Instrument 

Company, Moline, Illinois). The pretreated biomass slurry was filtered, and the filtrate (called 

“pretreated stream”) was collected for the detoxification study. The solid residues of the biomass 

were washed using distilled water until the filtrate became clear and neutral to litmus paper; around 
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5 L of water was used to wash 20 g biomass. The pretreated biomass was dried at room temperature 

for 48 h so that the moisture content was decreased to less than 10% (w/v). The pretreated sorghum 

stalks were mixed with a citrate buffer (0.05 M and 4.8 pH) at the rate of 5% (w/v) solids loading, 

that is, 2 g of pretreated biomass in 40 ml of buffer solution in a 125 ml screw cap flask. The Cellic 

C-Tec2 and Cellic H-Tec2 enzymes were added in each flask at the rate of 5.4% and 0.6% (w/v) 

of biomass, respectively, and incubated in a temperature-controlled shaker (Innova 4300, New 

Brunswick Scientific, NJ, USA) at 50 °C for 48 h. The supernatants for the hydrolysate (called 

“hydrolysis stream”) were separated by centrifugation (Sorvall Super T21, Thermo Fisher 

Scientific Inc., Waltham, MA, USA) at 13,000 rpm for 15 min and used for detoxification study. 

Detoxification using activated charcoal 

Activated charcoal detoxification was carried out by mixing using 1% or 2% (w/v) charcoal in 

30 mL of sample solution in 250 mL flasks. The flasks were incubated in a temperature-controlled 

shaker at 50 °C and 150 rpm for 1h. The exhausted charcoal was separated by filtration using 90 

mm pore size of filter papers (Whatman, Fisher Scientific, Hamton, NH).  The filtrate was analyzed 

for sugar and inhibitors.  

Detoxification using resins 

Four types of resins were evaluated in this study to remove inhibitors from sample solutions: 

cationic resin (DOWEX 50WX8), anionic resin (IRA743), commercial mixed resin (M-20), and 

mixture of DOWEX and IRA743 (in 7:3 ratio). The glass column (Pyrex, ID 1.5 cm, height 16-20 

cm, bed volume 30 mL) was packed with each type of resins as shown in Figure 3.3. The flow rate 

of outlet was controlled to one drop per 2 to 3 sec by adjusting a valve at the bottom of column, 

and the experiment was carried out at room temperature. A 10 mL aliquot of each sample solution 
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was poured from top of the column, and 40 mL of distilled water was added as an eluent. The 

eluted samples were analyzed for sugars and inhibitors.    

Analytical methods 

The monomer sugars and inhibitors were measured using High Performance Liquid 

Chromatography (HPLC, Prominence LC20AB, Shimadzu Scientific Instruments, Columbia, MD, 

USA). All samples were diluted ten times and filtered using a 0.45 μm membrane filter 

(Phenomenex, Torrance, CA). The organic acid column (RezexTM ROA-Organic Acid 150 x 

7.8mm, Phenomenex), and both refractive index detector (RID) and Photodiode Array detector 

(PDA) were used. The mobile phase (0.005 N sulfuric acid) was pumped at a rate of 1.0 mL/min 

at a column temperature of 80 °C.  

Statistical analysis 

All experiments were conducted in triplicate, and data were statistically analyzed using JMP 

software (SAS Institute Inc., Cary, NC, USA). The least significant difference (LSD) test was 

carried out with 95% confidence level (P < 0.05). 

 Results and Discussion 

The mass balance study from sorghum stalks to released sugars 

The dilute acid and alkali pretreatment processes were evaluated and compared for mass 

balance from ground sorghum stalks to sugar released from enzymatic hydrolysis of the pretreated 

biomass. Figure 3.4 shows that using equal acid and alkali concentrations, and the same processing 

conditions for time, temperature and solids loading, acid pretreatment led to 10% higher mass 

recovery after pretreatment compared with alkali pretreatment. The pretreatment was carried out 

at 121 °C for 30 min with 10% solids loading using 1% acid (v/v) or alkali (w/v) solutions. On the 

other hand, because of the lower saccharification efficiency in acid pretreated biomass, less sugar 
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was released from acid pretreated biomass compared with alkali pretreated biomass. Starting from 

100 g of raw biomass in each pretreatment method, acid pretreatment process released 12.28 g 

total monomer sugars during enzymatic hydrolysis of pretreated biomass whereas alkali 

pretreatment process released 49.14 g total monomers sugars. These data shows that, if similar 

pretreatment conditions, including acid/alkali concentration, time, temperature and solids loading, 

were used, the alkali pretreatment process was four times more effective than acid pretreatment at 

improving the enzymatic hydrolysis efficiency of pretreated biomass. However, further research 

is necessary in order to optimize pretreatment conditions for each acid and alkali process using a 

three-factor (3k) factorial design for acid/alkali concentration, time and temperature. Taking 

conversion factors of 0.90 from glucose to glucan, and 0.88 from xylose (or arabinose) to xylan 

(or arabinan) (Guragain et al., 2014), the monomer sugar recoveries were 88%, 81%, and 86% of 

theoretical maximum value for glucose, xylose and arabinose, respectively, for the alkali 

pretreatment process. Higher glucose recovery compared with xylose could be because of higher 

amount of hemicellulose loss during the pretreatment process. In the case of acid pretreatment, 

glucose and xylose recoveries were 32% and 9% of the theoretical maximum value, respectively, 

and no arabinose was recovered at all. The very low monomer sugar recovery from the acid 

pretreatment process was because of inefficient saccharification during the enzymatic hydrolysis 

of acid pretreated biomass, as well as hemicellulose loss during pretreatment (Guragain, Wang and 

Vadlani, 2016). The above results show that, compared to the alkali pretreatment process, the acid 

process required harsher pretreatment conditions, such as higher acid concentration, higher 

processing temperature and a longer time processing to make the process more effective at 

improving the hydrolysis efficiency of pretreated biomass. Therefore, we increased the 
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pretreatment temperature to 140 °C for the acid pretreatment process, keeping all other conditions 

(time, acid concentration and solids loading) same, in subsequent experiments of our study. 

Sugars and inhibitors released during acid pretreatment and enzymatic hydrolysis 

Sorghum stalks were pretreated using 1% (v/v) sulfuric acid at 140 °C for 30 min, and the 

pretreated biomass was hydrolyzed using an enzyme cocktail, as shown Figure 3.2. The 

pretreatment stream and hydrolysis streams were analyzed to identify and quantify compounds 

released from sorghum stalk during acid pretreatment and hydrolysis, respectively. Table 3.1 

shows that a total 23 g/L of sugars were detected in the pretreatment stream, which was three times 

higher than sugars in the hydrolysis stream. The Table 3.1 and Figure 3.4 show that increasing 

temperature from 121 °C to 140 °C for acid pretreatment did not improve saccharification 

efficiency of pretreated biomass, indicating even harsher pretreatment conditions are necessary for 

efficient saccharification. Xylose was the major sugar in the pretreatment stream, whereas the 

glucose was the main sugar in hydrolysis stream. This was because most hemicellulose was 

solubilized during pretreatment in the diluted acidic condition, and remaining hemicellulose and 

cellulose were hydrolyzed during enzymatic hydrolysis (Guragain, Wang and Vadlani, 2016). 

Besides monomer sugars, acetic acid, formic acid, 5-hydroxymethylfurfural (HMF), and furfural 

were identified in the pretreatment stream, whereas the hydrolysis stream contained less than 0.01 

g/L of these inhibitory compounds. Djioleu and Carrier (Djioleu and Carrier, 2016) reported that 

severe pretreatment conditions, especially temperature, was an important factor for the generation 

of inhibitors and directly affected the saccharification efficiency. Therefore, detoxification of 

pretreated biomass slurry is critical for efficient hydrolysis, especially for the acid pretreatment 

process because of the requirement of higher temperature compared to the alkali pretreatment 

process. The results also showed that the acid pretreatment stream can be utilized as a xylose-rich 
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medium for fermentation with an appropriate detoxification method to eliminate inhibitory 

compounds, and the hydrolysis stream can be utilized as a glucose rich medium; however, further 

research is needed to optimize pretreatment conditions in order to improve enzymatic hydrolysis 

efficiency.  

Detoxification of sorghum hydrolysate using activated charcoal 

The sorghum hydrolysate samples were detoxified using two concentrations (1% or 2%, w/v) 

of activated charcoals. Monomer sugars and inhibitors were measured in the hydrolyzate before 

and after detoxification. Table 3.2 shows that 1% (w/v) activated charcoal effectively removed 

both HMF and furfural from sample solutions with minimal (around 7%) sugar loss, but acetic 

acid was not removed at all. By increasing activated charcoal concentration from 1% to 2%, acetic 

acid removal was slightly improved; however, detoxification efficiency of acetic acid was still 

very low (less than 4% removal).   

The adsorption behavior of any compound to a specific activated charcoal depends on the 

micropore diameter distribution of the granular activated charcoal, and the molecular weight of 

the compound (Hidaka, Kohno and Eida, 1981). In addition, the activated charcoal has 

hydrophobic surface, and hence more hydrophobic compounds are absorbed on the charcoal 

(Nobre, Teixeira and Rodrigues, 2012). Therefore, the differences in absorption of the sugars, 

acetic acid, HMF, and furfural on activated charcoal can be explained based on the hydrophobic 

property (Log P value) and molecular weight of these compounds. Table 3.3 shows that HMF and 

furfural had a substantially higher Log P value compared with sugars and acetic acid and, hence, 

effectively absorbed on the activated charcoal surface. Though, Log P value of acetic acid is higher 

than sugars, but it has a lower molecular weight, which might be the reason for the substantially 

higher sugar loss in activated charcoal detoxification compared with acetic acid removal. The 



33 

 

results also indicated that the effect of hydrophobic property is more profound compared with 

molecular weight.  

Selection of an appropriate resin for detoxification 

Experiments were conducted to select an appropriate resin for the detoxification of biomass 

hydrolyzates using a synthetic sample solution containing sugars and inhibitors of the following 

concentrations: 40 g/L glucose, 20 g/L xylose, 1.3 g/L acetic acid, 0.5 g/L formic acid, 0.5 g/L 

HMF, and 0.1 g/L furfural. Three types of commercial resins, with the properties as shown in Table 

3.4, were evaluated for these experiments. Monomer sugars and inhibitors of synthetic sample 

solutions were measured before and after each type of resin detoxification. Figure 3.5 shows that 

the cationic exchanger (DOWEX-50WX) led to a minimum sugar loss during the detoxification 

process, but was not effective at removing aliphatic acids (acetic acid and formic acid). On the 

other hand, the anionic exchanger (IRA 743) effectively removed all inhibitors; however, all 

glucose and a substantial amount of xylose were also lost during the detoxification process. Mixed 

resin (MB-20) removed all of the compounds, including sugars and inhibitors.  

Monosaccharides have several hydroxyl groups in their structures and they could be 

deprotonated in the aqueous phase (Lopes and Gaspar, 2008). Therefore, cationic exchangers, 

which are in hydrogen ion form in the aqueous phase, did not interact with the deprotonated sugar; 

therefore, it was not absorbed in the cationic exchangers. Similarly, the negatively charged 

aliphatic acids were not absorbed by cationic exchangers. Though, HMF has a structure and pKa 

value similar to sugars, but cationic exchangers effectively removed HMF without sugar loss. The 

removal of HMF could be due to the hydrophobic interaction between HMF and resin matrix. It 

was reported that HMF has hydrophobic interactions with the polystyrene-divinylbenzene 

copolymer, a matrix of cationic exchanger (Valentin et al., 2014). Mixed resins and anion 



34 

 

exchangers removed all inhibitory compounds, including aliphatic acids, because cations (free 

base in IRA 743 and hydrogen group in mixed resins) in the resins effectively bind with the anions 

of dissociated acids, which are negatively charged in the aqueous medium. The sugar loss in 

anionic and mixed resins is probably due to the formation of covalent bonds between hydroxyl 

groups of sugars and resins’ functional groups. Based on these results, it was proposed that 

mixtures of cationic exchangers (DOWEX 50WX) and anionic exchangers (IRA743) with the ratio 

of 7 to 3 could be an appropriate resin for effective detoxification of biomass hydrolyzate with 

minimum sugar loss.  

Detoxification of sorghum hydrolysate using resin mixture 

The cationic exchangers (DOWEX 50WX) and anionic exchangers (IRA743) were mixed in 

7:3 ratios to prepare a resin mixture, and preliminary experiments were carried out to optimize the 

initial pH of the hydrolyzate to minimize sugar loss during the detoxification process. The data 

show that the initial pH of 2.7 led to the minimum sugar loss (data not shown here), and hence, 

further experiments were carried out using hydrolyzate with pH 2.7. Equal volumes of sorghum 

pretreatment stream and hydrolysis stream (Figure 3.2) were mixed, and pH of the mixture was 

adjusted to 2.7 to prepare hydrolyzate samples for these experiments. Table 3.5 shows that all types 

of monomer sugars in the sample solution were completely recovered without being absorbed in 

the resin mixture. It is possible that most sugars in the sample solutions were not dissociated at pH 

2.7; so, net charge may be close to zero. In addition, monomer sugars have higher molecular weight 

compared to other compounds of sample solutions so they may migrate faster according to the 

principle of size-exclusion (Valentin et al., 2014). The aliphatic acids, including acetic acid and 

formic acid, were completely removed by the resin mixture. This was probably because the two 

aliphatic acids, based on their pKa values, are present in the anionic form, and they easily bind 
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with the functional groups of anionic exchangers. HMF was also completely removed in the 

detoxification process, and the removal could be due to the hydrophobic interaction with the matrix 

of DOWEX-50WX (polystyrene-divinylbenzene copolymer) based on the observation made by 

Valentin and coworkers (Valentin et al., 2014).   

Furfural was not removed during the detoxification process. The Log P value of furfural 

indicates that it has the highest hydrophobicity compared to other compounds of the hydrolyzate 

sample, but furfural was not retained in the resin matrix by hydrophobic interaction. Hydrophobic 

interaction with the resin matrix is not only dependent on the hydrophobicity, but also on the 

molecular size of the compound (Kim, Snoeyink and Saunders, 1976). Furfural has a lower molar 

mass than HMF, and therefore, a weak hydrophobic interaction was expected between the resin 

matrix and the furfural, despite its high hydrophobicity. Our results showed that the 7 to 3 ratio of 

DOWEX 50WX8 and IRA743 efficiently removed most inhibitory compounds, including 

aliphatic acids, without substantial sugar loss. The above results indicate that an appropriate 

detoxification strategy can be made depending on the type of inhibitory compounds in biomass 

hydrolyzates and relative adverse effect of these compounds to the targeted culture used in the 

subsequent fermentation process. However, the economics of the detoxification process is equally 

critical for large-scale commercial use. Therefore, the economic analysis of the detoxification 

process must be simultaneously evaluated, in addition to technical efficiency of the process. 

 Conclusions 

Acid pretreatment process possessed the possibility to generate separate glucose-rich and 

xylose-rich streams from biomass hydrolyzates. However, harsher acid pretreatment conditions 

were required in order to make the process effective at improving enzymatic hydrolysis efficiency 
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of pretreatment biomass to generate sugar. This led to the requirement of developing appropriate 

detoxification methods to remove pretreatment-induced inhibitors, such as HMF, furfural, and 

acetic acid. A 1% (w/v) activated charcoal was effective to remove HMF and furfural with 7% 

sugar loss, but acetic acid was not removed in this method. The mixture of cationic exchangers 

(DOWEX 50WX8) and anionic exchangers (IRA 743) in 7:3 ratio at pH 2.7 was effective at 

removing HMF, acetic acid and formic acid with less than 2% sugar loss, but the furfural was not 

removed in this method. These results indicated that the appropriate detoxification method depends 

on the type of inhibitors present in the biomass hydrolyzate and the relative adverse effect of these 

compounds to the targeted culture used in the subsequent fermentation process. 
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Table 3-1 Sugar and inhibitors released during acid pretreatment and enzymatic hydrolysis     

Sample 

stream 

Glucose 

(g/L) 

Xylose 

(g/L) 

Arabinose 

(g/L) 

Acetic acid 

(g/L) 

HMF 

(g/L) 

Furfural 

(g/L) 

Pretreatment 

stream 
3.2±0.2A 17.2±0.7A 2.1±0.2A 0.9±0.1A 0.06±0.01A 1.5±0.1A 

Hydrolysis 

stream 
6.2±0.2B 0.9±0.1B ≤0.01B ≤0.01B ≤0.01B ≤0.01B 

Acid pretreatment was carried out at 140 °C for 30 min using 1% (v/v) sulfuric acid with 10% (w/v) solids loading. Enzymatic 

hydrolysis of pretreated biomass was carried out at 50 °C for 48 h using C-Tec2 and H-Tec2 enzymes with 5% (w/v) solids loading. 

Data represent average value of triplicate experiments ± sample standard deviation. The values with the same letters, in superscripts, 

within the same column are not significantly different from each other at the p<0.05. 
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Table 3-2 Sugar and inhibitors removal during activated charcoal detoxification 

 

 

 

 

 

 

Activated charcoal detoxification was carried out at 50 °C and 150 rpm for 1 h, and the removal percentage (w/w) was calculated 

for each compound based on the concentration of the compound before and after detoxification. Data represent average value of 

triplicate experiments ± sample standard deviation. The values with the same letters, in superscripts, within the same column are 

not significantly different from each other at the p<0.05 

  

  

Charcoal 

(%)  

Total sugars 

(%) 

Acetic acid 

(%) 

HMF 

(%) 

Furfural 

(%) 

1 6.8±0.1A 0.9±0.9A 100±0.0A 100±0.0A 

2 7.5±0.3B 3.6±1.3B 100±0.0A 100±0.0A 



39 

 

Table 3-3 Properties of monomer sugars and inhibitory compounds 

 

 

a Log P = log 
[ concentrations in 1−octanol]

[concentration in water]
  

 

  

Compounds 
Molecular 

formula 

Molar mass 

g/mol 
Log Pa pKa at 25 °C Precursor 

Glucose C6H12O6 180.16 -3.1 12.28 Cellulose 

Xylose C5H10O5 150.13 -3.4 12.15 Hemicellulose 

Arabinose C5H10O5 150.13 -3.02 12.43 Hemicellulose 

Acetic acid C2H4O2 60.05 -0.17 4.76 Hemicellulose 

Formic acid CH2O2 46.03 -0.54 3.75 
Furfural, 

HMF 

5-Hydromethyl furfural C6H6O3 126.11 -0.09 12.82 Hexose 

Furfural C5H4O2 96.08 0.41 Not available Pentose 
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Table 3-4 Ionic exchange resins used in this study and their properties 

 

Resins Type Structure Mesh size 

DOWEX 50WX8-200 Strongly acidic cation exchangers Gel 100-200 

Amberlite IRA743 Weakly basic anion exchangers Macroporous 20-35 

Amberlite MB-20 Mixed bed ion exchangers Macroporous 20-50 

Resin mixture 
Mixture of 50WX8-200  

and IRA743 with the ratio of 7 to 3 
Gel/Macroporous 20-200 
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Table 3-5 Sugar and inhibitors recovery during resin mixture detoxification  

 

 

 

 

 

 

 

 

 

Resin detoxification was carried out by passing the sample through the column packed with resin mixture, and the recovery 

percentage (w/w) was calculated for each compound based on the concentration of the compound before and after detoxification. 

Data represent average value of triplicate experiments ± sample standard deviation.  
 

  

Compounds Recovery (%) 

Glucose 99.5 ± 0.4 

Xylose 98.5 ± 0.4 

Arabinose 100 ± 0.0 

Acetic acid ≤ 0.01 

Formic acid ≤ 0.01 

HMF ≤ 0.01 

Furfural 95.3 ± 0.2 
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Figure 3-1 Sugar and inhibitors generated during pretreatment and hydrolysis. HMF = 

Hydroxymethyl fufural 
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Figure 3-2 Schematic diagram for sample preparation procedure. Pretreatment was carried out 

using either 1% (v/v) sulfuric acid or 1% (w/v) sodium hydroxide at different time and temperature 

combinations 
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Figure 3-3 Schematic diagram for the detoxification column used in ionic exchangers. A 10 mL 

sample followed by 40 mL water (eluent) was passed though the column packed with ionic 

exchange resins, and the throughput was analyzed for sugar and inhibitors 
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Figure 3-4 Mass balance of monomer sugar released from ground sorghum stalk. Pretreatment was conducted at 121 °C for 30 min 

using 1% (v/v) sulfuric acid and 1% (w/v) sodium hydroxide for acid and alkali pretreatment, respectively. All the experiments were 

carried out in triplicate, and the data are the mean value ± sample standard deviation. 
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Figure 3-5 Detoxification of sorghum hydrolysate using different resin; A. Sugar concentration 

before and after detoxification with different types of resins; B. Inhibitors concentration before 

and after detoxification with different types of resins. The data are average values of triplicate 

experiments, and the error bars represent sample standard deviation of the data. 
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Chapter 4 - Optimization of microbial lipids production from 

lignocellulosic hydrolysates using Trichosporon oleaginosus  

 Abstract 

For industrial feasibility of lipids production, achieving a high titer of lipids on a large scale is 

still challenging due to complex factors affecting the lipids production by oleaginous yeasts. The 

objective of this study was optimization of fermentation conditions for T. oleaginosus ATCC20509 

to obtain high concentrations and content of microbial lipids. In this study, the molar ratio of 

carbon and nitrogen sources (C:N ratio) for Trichosporon oleaginosus was optimized using 

response surface methodology (RSM). In fed-batch fermentation using optimized media, a total 9 

g/L lipids concentration was produced from the initial 50 g/L of glucose. A total of 22 g/L lipids 

were achieved with a 76 % (w/w) lipids content by supplementation of additional glucose. Also, 

the optimized C:N ratio was tested using different types of lignocellulosic hydrolysates such as 

switchgrass, sorghum stalks and woody biomass. T. oleaginosus showed the best performance in 

the sorghum stalk hydrolysates achieving 13g/L lipids concentrations with 60% (w/w) lipid 

accumulation. In the switchgrass and woody biomass hydrolysates, total 12 g/L and 9 g/L lipids 

were produced, respectively. Our investigation showed the potentiality of T. oleaginosus as an 

industrial strain for microbial lipid production from lignocellulosic biomass in biorefineries. 

 Introduction 

Recently, industrial production of microbial lipids from agricultural biomass has been gaining 

substantial attention. Microbial lipids are a third-generation biofuel source for biodiesel production 

via transesterification process (Sitepu et al., 2014). Life cycle assessments (LCAs) showed great 

reduction of CO2 emission in biofuel production (Jin et al., 2015). The main reason is CO2 
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produced by fuel combustion is offset by CO2 captured from the growing biomass, which is later 

utilized as feedstock for biofuel fermentation (d’Espaux et al., 2015). Microbial lipids contain high 

portions of oleic acid (more than 40%), which is preferred for the biodiesel industry (Firestone, 

1999). Also, biofuel production using microorganisms can avoid the public debate of “food vs 

fuel”, and year-round production is available (Sitepu et al., 2014). Conventional biofuel 

fermentation utilizes naturally occurring organisms that are highly competitive in specific 

operating environments (Shaw et al., 2016). There have been many attempts at producing 

microbial lipids using bacteria, yeasts and filamentous fungi. Among these microorganisms, yeasts 

are typical industrial microbes that have been utilized for the production of bio-based chemicals 

and fuels. The advantages of yeasts in biotechnology applications are faster growth, less 

susceptibility to infection, long history of safe use, and the ability to control bacterial 

contamination using low pH growth (Sitepu et al., 2014). Special types of yeasts are classified as 

“oleaginous” yeasts, which can accumulate at least 20% oils as a percentage of dry cell weight 

(Ratledge, 1979). Various species of lipids could be generated by oleaginous yeasts including 

triacylglycerols, diacylglycerols, monoacylglycerols, fatty acids, steryl esters, free sterols, 

glycerophospholipids, etc (Schweizer, 2004). However, oleaginous yeasts store lipids mainly in 

the form of triacylglycerides (TAG), and fatty acids are the primary components in TAG. (Sitepu 

et al., 2014).  

Oleaginous yeasts are known to accumulate higher levels of lipids in the nitrogen limited 

condition (Ratledge and Wynn, 2002). Nitrogen deficient conditions cause the reduced flux of 

citric acid cycle, and mitochondrial citrate are pumped into the cytosol inducing flux through lipid 

synthesis by increasing the cytosolic Acetyl-CoA pool (Calvey et al., 2016). For obtaining a high 

content of lipids within cells, molar ratio of carbon and nitrogen sources (C:N ratio) in the media 
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should be optimized. However, higher lipids content of oleaginous yeasts does not guarantee a 

high titer of lipids production because they are intracellular products. Cell density is also a critical 

factor for achieving high concentration of lipids using oleaginous yeasts. To the best of our 

knowledge, most research for optimizing C:N ratio have been focused on improving lipid content 

in oleaginous yeasts. 

Previous studies have reported a high level of lipid accumulation (30 to 70%) in 

Trichosoporon oleaginosus ATCC20509 using lignocellulosic hydrolysates, such as sweet 

sorghum bagasse, wheat straw, and corn stover (Liang et al., 2014; Gong et al., 2014; Yu et al., 

2011). T. oleaginosus ATCC20509 was previously referred to as Cryptococcus curvatus, Candida 

curvata or Apiotrichum curvatum, and recently was assigned to the basidomycetous genus 

Trichosporon (Görner et al., 2016). T. oleaginosus ATCC20509 is considered an ideal oleaginous 

strain for producing microbial lipids from lignocellulosic hydrolysates because their lipid 

composition resembles seed oils, which are preferred in biodiesel industry (Slininger et al., 2016). 

Also, T. oleaginosus ATCC20509 consumes a diverse variety of weak acids as nutrients, including 

acetic acid, levulinic acid, and formic acid, which are inevitable inhibitory compounds generated 

during processing for hydrolysates production (Liang et al., 2014). Therefore, the additional 

process for purifying lignocellulosic hydrolysates is not required for lipid production using T. 

oleaginosus.     

The purpose of this study is to optimize fermentation conditions for T. oleaginosus to achieve 

a higher titer of lipids from lignocellulosic hydrolysates. First, the C:N ratio of the fermentation 

medium was optimized using the response surface method (RSM) for obtaining a high 

concentration of lipids. In addition, lipid production was scaled up on the fermenter level to test 

the optimized C:N ratio using synthetic sugars. The optimized C:N ratio was applied for lipid 
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production from lignocellulosic hydrolysates, including switchgrass, sorghum stalks and woody 

biomass.   

 Materials and Methods 

 Microorganism and culture condition 

Trichosporon oleaginosus ATCC 20509 was obtained from the American Type Culture 

Collection (ATCC, Manassa, VA, USA) for this study. Inoculum of T. oleaginosus was prepared 

by growing them into 50mL of liquid YM media (YM broth, Difco Laboratories, Detroit, MI, 

USA). A 10% (v/v) solution of inoculum was transferred into the fermentation media. Cells were 

incubated at 25 ˚C and 200 rpm in the shakers (Innova 4300, New Brunswick Scientific, NJ, USA) 

for 120h. The initial pH was adjusted at 5 using 3M hydrochloric acid or 10N sodium hydroxide. 

Lignocellulosic hydrolysates preparation 

Woody biomass hydrolysates containing 403 g/L of glucose and 140 g/L of xylose were 

obtained from Technology Holding LLC, Salt Lake City, Utha, USA. Sorghum stalks were 

obtained from Texas A&M University, College station, Texas, USA, and switchgrass was obtained 

from the Kansas State University Agronomy Farm, Manhattan, Kansas, USA. These were all 

utilized as feedstock for producing hydrolysates via the developed process in our lab. Sorghum 

stalks and switchgrass were pretreated with 1.25 % (w/v) sodium hydroxides at 121 ˚C for 30 min. 

and 1 h, respectively. The pretreated biomass was washed with water until sodium hydroxide 

residue was removed, and completely dried at room temperature for 72 h.  The pretreated biomass 

was mixed with 50 mM citrate buffer solution, and Cellic C-Tec2 and Cellic H-Tec2 enzymes 

(Novozyme Inc, Franklinton, NC) were added with a dosage of 8 FPU per gram of biomass. 

Enzymatic hydrolysis was carried out at 50 ˚C for 48 h and harvested via centrifugation at 8500 

rpm for 20 min (Sorvall Super T21, Thermo Fisher Scientific Inc., Waltham, MA, USA). Sorghum 
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stalks were composed of 49.9 g/L of glucose, 22.2 g/L of xylose, 2.8 g/L of arabinose, and 

switchgrass hydrolysates were composed of 44.3 g/L of glucose, 19.7 g/L of xylose, and 2.8 g/L 

of arabinose. 

Fermentation media 

Shake flask fermentation was performed in 50 mL of synthetic minimal media or 

lignocellulosic hydrolysates (sorghum stalks, switchgrass and woody biomass hydrolysates). 

Minimal media contained 50 g/L of glucose, 0.65 g/L of urea, 2.7 g/L of KH2PO4, 0.95 g/L of 

NaHPO4, 0.2 g/L of MgSO4·7H2O, 0.1 g/L of yeast extract, 0.1 g/L of ethylene- diamine-tetra-

aceticacid, 0.04 g/L of CaCl2·2H2O, 0.0055 g/L of FeSO4·7H2O, 0.0052 g/L of citric acid·H2O, 

0.001 g/L of ZnSO4 · 7H2O, 0.00076 g/L of MnSO4 ·H2O. Each lignocellulosic hydrolysate 

(sorghum stalks, switchgrass and woody biomass hydrolysates) was diluted using water to adjust 

the total sugar concentrations to 50 g/L. The ratio of carbon to nitrogen was adjusted to 76. The 

pH of the media was adjusted to 5.0 using 3 M hydrochloric acid and 10 N sodium hydroxide.  

Fed-batch fermentation was carried out in a 7 L fermenter with a working volume of 5 L 

(Bioflo 110, New Brunswick Scientific Inc., Enfield, CT, USA). The fermentation broth was 

minimal media containing 50 g/L of glucose, 0.65 g/L of urea, 2.7 g/L of KH2PO4, 0.95 g/L of 

NaHPO4, 0.2 g/L of MgSO4·7H2O, 0.1 g/L of yeast extract, 0.1 g/L of ethylene- diamine-tetra-

aceticacid, 0.04 g/L of CaCl2·2H2O, 0.0055 g/L of FeSO4·7H2O, 0.0052 g/L of citric acid·H2O, 

0.001 g/L of ZnSO4·7H2O, 0.00076 g/L of MnSO4·H2O. Agitation speed was maintained at 300 
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rpm and the temperature was kept at 25 ˚C. The pH was maintained at 5 using 10 N sodium 

hydroxide and air was supplied at 1 vvm during fermentation.  

 Analytical methods 

Cell counting was conducted using a hemacytometer (Hausser Scientific, Horsham, PA, USA). 

Dry-cell weight (DCW) was determined by drying cells at 80 ˚C for 14h and then utilized for the 

calculation of lipid yields. Glucose, xylose, arabinose, acetic acid, hydroxymethylfurfural (HMF), 

and furfural were quantified using HPLC (Shimadzu Scientific Instruments, Columbia, MD, USA) 

equipped with a refractive index detector (RID-10A) and a UV/VIS detector (SPD-M20A). The 

mobile phase was 0.005 N sulfuric acid and went through the column with a flow rate of 0.6 mL 

/min. Oven temperature was maintained at 80 ˚C during analysis. 

Lipid extraction and fatty acid analysis 

Cells were harvested via centrifugation at 8500 rpm for 20 min and washed using dH2O two 

times to remove residues from the culture media. Yeast cells were concentrated to ≤ 109 cells m/L. 

The concentrated cells were transferred into micro tubes for short-term storage at -80 ˚C. Dry 

weight of the concentrated cells was measured to calculate the lipid content within yeast cells by 

drying cells at 80 °C for 14 h. Lipid content was calculated by dividing the weight of extracted lipids 

by the amount of dry cell mass.  

For lipid extraction, a 0.5 mL aliquot of yeast cells was centrifuged and the supernatant was 

discarded. To break the cells, 1mL of silica beads (0.55 mm cubic zirconia beads, BioSpec 

Products, Bartlesville, OK, USA) was added followed by the addition of 0.5 mL of chloroform 

and 0.5 mL of methanol. Cells were lysed by beads beating (Mini-Beadbeater-24, BioSpec 

Products, Bartlesville, OK, USA) for a total of six cycles of 45 sec intervals and cooling on ice for 

10 min. The cell lysates were transferred into a 16x150 mm kimax glass tube and additional 
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chloroform, methanol, and water were added with the ratio of 1:2:0.8 

(chloroform:methanol:water). The cell lysate mixtures were vortexed and centrifuged at 4000 rpm 

for 15 min. After centrifugation, two separated liquid layers were obtained. The bottom layer of 

chloroform containing lipids was collected using Pasteur pipette from the mixture and transferred 

into a clean Kimax tube. This step was repeated three times to completely take the chloroform 

layer to minimize lipid loss. The combined chloroform layer was filtered using a synringe filter 

(Whatman, Fisher Scientific., 0.22 μm of pore size) and completely dried out under nitrogen gas 

at 40 ˚C. The weight of residual lipids were measured to calculate the oil content in yeast cells. 

Lipids were re-dissolved in the chloroform for analyzing fatty acid composition.  

Transesterification of fatty acids was conducted for the analyzing the profile of fatty acids. 

Fatty acids were methylated using 3 M methanolic hydrochloric acid at 78 ˚C for 30 min. Hexane 

was added and vortexed to extract the fatty acid methyl esters (FAME). Pentadecanoic acid 

(C15:0) was added as an internal standard. Samples were analyzed using a gas chromatograph 

(GC-2014, Shimadzu Scientific Instruments, Columbia, MD, USA) equipped with a capillary 

column (Zebron ZB-Waxplus 30 m x 0.25 mm x 0.25 μm, Phenomenex, Torrance, CA, USA) and 

a flame ionization detector (FID). Samples were injected to 220 ˚C and the column temperature 

was increased to 160 ˚C with a flow rate of 3mL/min. The temperature of FID was set at 250 ˚C. 

An external standard (Supleco 37 Component FAME Mix) was utilized to confirm the retention 

time of each FAME compound.  

Statistical analysis 

All experiments were conducted in triplicate, and data were statistically analyzed using JMP 

software (SAS Institute Inc., Cary, NC, USA). The least significant difference (LSD) test was 

carried out with 95% confidence level (P < 0.05). 
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 Results and discussion 

 Lipid production by T. oleaginosus in batch fermentation 

Batch fermentation was performed in a fermenter scale to understand the fermentation 

properties of T. oleaginosus during lipids production. General YM broth containing 20 g/L of 

glucose was utilized as the fermentation medium without adjusting the C:N ratio. Figure 4.1 shows 

the fermentation profile of T. oleaginosus. A total of 30 % lipids per dry cell mass were 

accumulated within yeast cells and 8 g/L dry cell weight were sustained for 40h. Therefore, a total 

of 2 g/L lipids were produced using 20 g/L glucose by T. oleaginosus. The composition of fatty 

acids in lipids produced by T. oleaginosus was investigated (Figure 4.2). The major fatty acids 

were oleic acid (C18:1), palmitic acid (C16:0), and linoleic acid (C18:2) consisting of about 40 % 

(w/w), 28 % (w/w), and 20 % (w/w) respectively. The remaining fatty acids in the lipids were 

composed of stearic acid (C18:0), linolenic acid (C18:3), and palmitoleic acid (C16:1) which 

correlate with other studies. Gong and coworkers (2014) also reported that the major fatty acid 

produced by T. oleaginosus ATCC20509 was oleic acid, which was almost 50 % (w/w) of fatty 

acids in lipids, whereas palmitic acid was about 28 % (w/w).    

Optimization of initial sugar concentrations and C:N ratio using RSM 

To improve lipid concentrations by T. oleaginosus, initial glucose concentrations and C:N ratio 

were optimized using response surface methodology (RSM). Glucose concentrations and C:N ratio 

were selected as input factors, while DCW and lipid content were chosen as responses. Previous 

results in our lab showed that glucose inhibition was observed (not included in this study) when 

initial concentrations of glucose were more than 50 g/L. Due to this, the range of glucose 

concentrations were adjusted between 20 to 50 g/L. Table 4.1.B shows thirteen types of 

experimental runs with results for central composite design. The experimental design showed the 
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best desirability when glucose concentrations were 50 g/L and C:N ratio was 76 (Table 4.1.C).  

Figure 4.3 shows 3D surface plots to optimize C:N ratio and initial glucose concentrations. For 

high levels of lipids content, C:N ratio was a more critical factor than glucose concentrations 

(Figure 4.3.A). It seems that the C:N ratio is more related with lipids content rather than glucose 

concentrations. The experimental design expected that the highest content of lipids would be 

obtained when C:N ratio was 76 regardless of glucose concentrations. Figure 4.3.B shows that 

both glucose concentrations and C:N ratio were crucial for obtaining high concentrations of DCW. 

As glucose concentration was increased, cell density was also increased. The surface plot for lipid 

concentrations had similar patterns with DCW; both glucose concentrations and C:N ratio affected 

the final lipid concentrations (Figure 4.3.C). 

 Lipid production by T. oleaginosus in the optimized fermentation conditions 

Fed-batch fermentation was performed based on optimized conditions using RSM. Figure 4.4 

shows the fermentation profile of lipid production in nitrogen-limited medium. The initial glucose 

concentration was 50 g/L and the C:N ratio was adjusted to 76. Additional 50 g/L of glucose was 

fed into the fermenter at 40 h and all of the glucose was consumed at 76 h. The dry cell weight did 

not reflect an increase of cell numbers. Cell counting results showed that cell growth was stopped, 

and the stationary phase was started at 24 h. However, DCW was continuously increased during 

fermentation because the yeast cells kept accumulating lipid. It was assumed that the lipid 

accumulation mode was started at 24 h by increasing the flux of acetyl CoA toward lipid instead 

of the citric acid cycle. The initial 50 g/L of glucose was completely consumed at 40 h, and a total 

of 9 g/L of lipids were produced by accumulating 45% (v/v) lipids within 20 g/L of yeast cells (dry 

weight basis). Additional 50 g/L of glucose was supplemented at 40 h to induce more 

accumulations of lipids in yeast. Fermentation was continued until all of the glucose was 
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consumed. Finally, a total of 22 g/L of lipids were produced by 32 g/L of yeast cells (dry weight 

basis) with an accumulation of 67% (w/w) lipids (Table 4.2). Improved fermentation performance 

was observed for the 76 h of fermentation process compared with 40 h. Higher levels of 

productivity, oil content and product concentrations were achieved. This is because lipid 

accumulation of oleaginous yeast has mainly occurred during the stationary phase due to secondary 

metabolites (Calvey et al., 2016). 

Figure 4.5 shows the observed yields during the fed-batch fermentation of T. oleaginosus. As 

fermentation continued, Yps and Ypx were continuously increased with a rate of 0.02 g/g/h and 

0.01 g/g/h, respectively. However, Yxs was almost the same during fermentation. These results 

indicate that substrate utilization for biomass production was constant whereas the lipid 

accumulation rate rapidly increased as fermentation went on. This is probably because cells 

accumulated lipid using the remaining carbon sources when all of the nitrogen sources were 

depleted.  

Figure 4.6 shows the profile of fatty acids in lipid from T. oleaginosus produced during fed-

batch fermentation in nitrogen limited media. Major fatty acids are palmitic acid and oleic acid. 

Besides those, myristic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid were 

produced. The composition of fatty acids produced in nitrogen limited media were similar with 

fatty acids in YM broth (Figure 4.2). The percentage of palmitic acid and oleic acid were increased, 

and linoleic acid and linolenic acid were decreased as fermentation proceeded in the nitrogen 

limited media. A similar trend was reported by other studie; the major fatty acids were palmitic 

acid and oleic acid, and increased oleic acid and decreased linoleic acid percentages were observed 

as fermentation progressed in the nitrogen limited media (Tchakouteu et al., 2015).  
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 Lipid production from lignocellulosic hydrolysates using T. oleaginosus 

Switchgrass, sorghum stalks and woody biomass hydrolysates were utilized as a feedstock for 

lipid production using T. oleaginosus. Switchgrass and sorghum stalk hydrolysates were prepared 

via the alkali pretreatment and enzymatic hydrolysis processes, and woody biomass hydrolysates 

were obtained from its manufacturer. Each of the biomass hydrolysates were diluted to make the 

concentration of initial sugars to around 50 g/L, and the molar ratio of nitrogen and carbon sources 

was adjusted to 76. Figure 4.7 shows the composition of hydrolysates utilized for lipid production. 

During the production process of hydrolysates, citric and acetic acid were produced and were 

included in the fermentation media. All biomass hydrolysates contained a similar amount of 

glucose (30 g/L) and xylose (15 g/L), and arabinose was only in the switchgrass and sorghum stalk 

hydrolysates. In the switchgrass and sorghum stalk hydrolysates, about 10 g/L of citrate and less 

than 1 g/L of acetic acid were included and woody biomass hydrolysates had 2 g/L of citrate.  

Lipid production was carried out in the shake flask containing 50 mL of each hydrolysates 

media at 25 ˚C for 120 h and cells were harvested via centrifugation to extract lipids from the 

yeast. T. oleaginosus consumed all of the carbon sources and also citrate, acetate, and monomer 

sugars for 120 h. Consumption of organic acids by oleaginous yeasts were also reported by other 

studies (Slininger et al., 2016; Li et al., 2015). Normally, acid compounds were known to be 

inhibitory compounds for yeast growth by inducing a decrease of intracellular pH (Almeida et al., 

2007). However, the consumption of acid compounds by T. oleaginosus was desirable for lipid 

production from lignocellulosic hydrolysates. Table 4.3 shows the fermentation performances 

from lignocellulosic hydrolysates. In the sorghum stalk hydrolysates, it was observed that T. 

oleaginosus had the best performance of lipid production. The highest lipid concentration of (13 

g/L) was achieved using sorghum stalk hydrolysates. Yxs and Yps showed that the substrate 
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utilization for product and cell biomass was also the most efficient in the sorghum stalk 

hydrolysate. The highest lipid content was observed in the woody biomass hydrolysate, but the 

lowest lipid concentration of (15 g/L) was obtained from woody biomass hydrolysates because the 

lowest level of dry cell weight was achieved. This result showed that both lipid content and dry 

cell weight are crucial factors for getting high titers of lipids because lipids are intracellular 

products. A higher level of lipid concentration from switchgrass and sorghum stalk hydrolysates 

might be since they contained a higher level of citrate compared with woody biomass hydrolysates. 

Higher levels of cytosolic citrate increased the cytosolic acetyl-CoA pool, which is an important 

substrate for both lipid synthesis and the acetylation of enzymes participating lipid synthesis (Shi 

and Tu, 2015).  Therefore, citrate included during the process of hydrolysate production was a 

positive effect on the lipid production of T. oleaginosus. The fatty acid profile of lipids produced 

from different hydrolysate media is shown in Figure 4.8. The main fatty acids in T. oleaginosus 

were palmitic and oleic acid, regardless of the hydrolysate type. This result showed similar patterns 

with lipid production in YM broth and nitrogen limited media. Same species of fatty acids were 

produced by T. oleaginosus regardless of hydrolysate media types. However, a slightly higher level 

of oleic acid and a lower level of linoleic acid was obtained from woody biomass hydrolysates 

compared with switchgrass and sorghum stalks hydrolysates. Other studies also reported that 

slightly different relative fatty acid content was observed in the different media (Gong et al., 2014; 

Thiru, Sankh and Rangaswamy, 2011), thus, fermentation media has an effect on fatty acid 

composition.    

 Conclusions 

This study shows that T. oleaginous is an ideal cell factory for lipid production from 

lignocellulosic biomass. The optimized C:N ratio of both lipid content and cell density for T. 



59 

 

oleaginosus provided high levels of lipid accumulation and lipid concentrations in the fermenter 

level using synthetic medium. Also, this investigation revealed that microbial lipids can be 

successfully produced by lignocellulosic biomass such as switchgrass, sorghum stalks and woody 

biomass by applying the optimized C:N ratio for high titers of lipid production. Future work should 

be directed towards increasing the lipid production process using lignocellulosic hydrolysates.    
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Table 4-1 Central composite experimental design (A) Factors, inputs and responses utilized for 

central composite design; (B) Experimental design matrix suggested C:N ratio and initial glucose 

concentrations; (C) Optimized initial glucose concentrations and  C:N ratio for maximizing lipid 

concentrations.  

(A) 

 

 

 

 

 

 

 (B)  

 

 

 

 

 

 

 

 

 

  

 

 

(C) 

 

 

 

 

aC:N ratio = the molar ratio of carbon to nitrogen sources, bDCW = dry cell weight 

  

 Goal Lower limit Upper limit 

(A) Glucose In range 20 50 

(B) C:N ratioa In range 20 100 

DCWb Maximize 0.27 10 

Lipid content Maximize 0 81 

Run 
Suggested conditions Experimental results  

Glucose C:N Ratioa DCWb Lipid titers Lipid content 

1 35 60 9.40 6.70 71 

2 20 100 8.27 4.83 58 

3 20 20 8.87 5.76 65 

4 14 60 7.47 4.58 61 

5 35 60 9.27 7.51 81 

6 35 60 9.47 5.94 63 

7 35 117 8.40 5.17 62 

8 56 60 10.00 6.05 61 

9 50 100 9.87 5.58 57 

10 35 60 9.27 5.69 61 

11 50 20 7.60 4.66 61 

12 35 3 0.27 0.00 0 

13 35 60 9.80 4.25 43 

Rank Glucose C:N ratioa DCWb Lipid content Desirability 

1 50 76.14 10.7 67 0.91 

2 20 71.29 9.2 68 0.88 

3 20 70.42 9.2 68 0.88 
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Table 4-2 Fermentation performance of T. oleaginosus using nitrogen limited media 

This data represents the average value of triplicate experiments ± sample standard deviation. The values with the same letters, in 

superscripts, within the same column are not significantly different from each other at the p<0.05. 
aProductivity was defined as the amount of lipids produced per liter per hour.  
bLipid content was calculated by dividing the weight of extracted lipids by the amount of dry cell mass.  

 

  

Fermentation 

time 

Productivitya 

(g/L/h) 

Lipid 

concentrations 

(g/L) 

Lipid contentb 

(%) 

DCW 

(g/L) 

40h 0.2 ± 0.0A 9 ± 0.4A 45 ± 1A 20 ± 0.9A 

76h 0.3 ± 0.0B 22 ± 1.9B 67 ± 2B 21 ± 2B 
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Table 4-3 Fermentation performance during lipid production from different types of lignocellulosic hydrolysates 

This data represents the average value of triplicate experiments ± sample standard deviation. The values with the same letters, in superscripts, within the same column are not 

significantly different from each other at the p<0.05. 
aYpx was calculated by dividing the amount of lipids by the amount of dry cell mass  
bYps was calculated by dividing the amount of lipids by the amount of consumed glucose  
cYxs was calculated by dividing the amount of dry cell mass by the amount of consumed glucose 
dLipid content was calculated dividing the weight of extracted lipids by the amount of dry cell mass.  
eProductivity was defined as the amount of lipids produced per liter per hour.  

 

 

Lignocellulosic 

hydrolysates 

type 

Yxsa 

(g/g) 

Ypsb 

(g/g) 

Ypxc 

(g/g) 

Lipid 

contentd 

(%) 

DCW 

(g/L) 

Lipid 

concentrations 

(g/L) 

Productivitye 

(g/L/h) 

Switchgrass 0.46 ± 0.0A 0.27 ± 0.01A 0.58 ± 0.03A 58 ± 2.6A 21 ± 0.6A 12 ± 0.2A 0.1 ± 0.0A 

Sorghum stalks 0.48 ± 0.0A 0.29 ± 0.01B 0.60 ± 0.03A 60 ± 2.5A 22 ± 0.3A 13 ± 0.7A 0.1 ± 0.0A 

Woody biomass 0.3 ± 0.0B 0.2 ± 0.01C 0.60 ± 0.02A 62 ± 2.0A 15 ± 0.3B 9 ± 0.3B 0.1 ± 0.0B 
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Figure 4-1 Batch fermentation of lipid production by T. oleaginosus in a YM broth.  

Fermentation was carried out at 25 ˚C and 300 rpm in the fermenter level with a 5 L working 

volume. Data shows the average value of triplicate experiments and error bars representing sample 

standard deviation. 
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Figure 4-2 Fatty acid profile of lipids accumulated in T. oleaginosus from YM broth. The data 

shows average value of triplicate experiments and error bars representing sample standard 

deviation. 
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Figure 4-3 Surface plot for optimizing C:N ratio and initial glucose concentrations. (A) for maximizing lipid content; (B) for maximizing 

dry cell weight; (C) for maximizing lipid concentrations.  
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Figure 4-4 Fed-batch fermentation of lipid production by T. oleaginosus in N-limited media. 

Fermentation was carried out at 25˚C and 300 rpm in the fermenter level with a 5 L working 

volume and additional glucose was fed at 40 h. The data shows average value of triplicate 

experiments and error bars representing sample standard deviation. 
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Figure 4-5 Time courses of observed yields during lipid production by T. oleaginosus.  

Ypx was calculated by dividing the amount of lipids to the amount of dry cell mass; Yps was 

calculated by dividing the amount of lipids to the amount of consumed glucose; Yxs was calculated 

by dividing the amount of dry cell mass to the amount of consumed glucose. 
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Figure 4-6 Fatty acid profile of lipids accumulated by T. oleaginosus in N-limited media. 

The data shows average value of triplicate experiments and error bars representing sample standard 

deviation. 
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Figure 4-7 Composition of lignocellulosic hydrolysates utilized for fermentation.  

The data shows average value of triplicate experiments and error bars representing sample standard 

deviation. 
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Figure 4-8 Fatty acid profile of lipid accumulated in T. oleaginosus from lignocellulosic 

hydrolysates. The data shows average value of triplicate experiments and error bars representing 

sample standard deviation. 
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Chapter 5 - Production of free fatty acids from switchgrass  

using recombinant Escherichia coli 

 

 Abstract 

Switchgrass is a promising feedstock to generate fermentable sugars required for the 

sustainable operation of biorefineries because of their abundant availability, easy cropping system, 

and high cellulosic content. The objective of this study was to investigate the potentiality of 

switchgrass as an alternative sugar supplier for free fatty acid (FFA) production using recombinant 

Escherichia coli strains, ML103 pXZ18 and ML103 pXZ18Z. Both recombinant E. coli strains 

successfully produced FFA using switchgrass hydrolysates attaining substantially higher 

concentrations of FFA compared with synthetic sugars. Total of 2.8 and 3.3 g/L FFA were attained 

from switchgrass hydrolysates by ML103 pXZ18 and ML103 pXZ18Z strains, respectively, which 

were 8% and 14% higher amount of FFA, respectively than that of using synthetic sugars. Further, 

overall yield assessment of our bioconversion process showed that 88% and 46% of the theoretical 

maximal yields of glucose and xylose were attained from raw switchgrass during sugar generation. 

Additionally, 72% of theoretical maximum yield of FFA were achieved from switchgrass 

hydrolysates by ML103 pXZ18Z strain during fermentation. These shake-flask results were 

successfully scaled up to a laboratory scale bioreactor with 4 L working volume, in which the FFA 

productivity was doubled without affecting product yields.  This study demonstrated an efficient 

bioconversion process of switchgrass-based FFAs using engineered microbial system for targeted 

fatty acids production that are secreted into the fermentation broth with associated lower 

downstream processing cost, which is pertinent to develop an integrated bioconversion process 

using lignocellulosic biomass. 
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 Introduction 

Bio-based fatty acids (FAs) produced by microbes are promising chemical feedstocks for 

replacing plant oils. Microbial fatty acids can be effectively utilized for oleochemical industries 

such as lubricants, surfactants, soaps, and polymer additives (Lennen and Pfleger, 2012). The 

genetically modified Escherichia coli is an excellent cell factory for fatty acid production due to 

its abundance of genetic information and well-studied fatty acid metabolism (Tee et al., 2014). 

Fatty acids are inherent components in E. coli metabolism for energy storage, membrane integrity, 

and signaling metabolism (Jin et al., 2015). Despite the intrinsic ability for FAs synthesis, wild 

type E. coli normally does not secrete free fatty acids as intermediates in the fermentation medium  

(Tee et al., 2014). However, FA production in engineered E. coli is typically achieved by an 

expression of thioesterase with deletion of the ß-oxidation gene (FadE) to make E. coli secrete the 

FA in the medium (Torella et al., 2013). While most of the oleaginous microorganism accumulates 

lipids within their body, the recombinant E. coli strains secret the FA in the media, and thereby 

make easy to harvest final product from medium for the down-stream process without an extra 

process or using hazardous solvents during product extraction. 

Figure 5.1 shows the metabolic pathway for FFA production in the recombinant E. coli strains 

used in this study. FA synthesis is initiated by the carboxylation of acetyl-CoA to malonyl CoA, 

followed by condensation to a linear acyl chain, normally C12 to C22 carbons. The FAs are released 

by thioesterase and secreted into the medium (d’Espaux et al., 2015). Wu and coworkers expressed 

acyl-ACP thioesterase derived from Ricinus communis in the recombinant E. coli strains (ML103 

pXZ18 and ML103 pXZ18Z) and provided them for this study. Therefore, the recombinant E. coli 

strains (ML103 pXZ18 and ML103 pXZ18Z) used in this study have an ability to secrete FFA into 

media. The biggest difference between E. coli ML103 pXZ18 and pXZ18Z is the expression of β-
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hydroxyacyl-ACP dehydratase; plasmid pXZ18 is pTrc99a carries an acyl-ACP thioesterase, 

whereas plasmid pXZ18Z is pTrc99a carries an acyl-ACP thioesterase and β-hydroxyacyl-ACP 

dehydratase (Wu et al., 2014; Wu et al., 2015).  

Microbial lipid production from expensive sugar sources such as starch has been explored 

extensively, but it is yet to be economically viable as an alternative of plant oils and fats markets 

(Jin et al., 2015). For economic feasibility of microbial lipid production, lignocellulosic biomass 

has received extensive attention as a low-cost substrate in a biorefinery (Gong et al., 2016). 

Lignocellulosic biomass can be supplied on a large-scale from different low-cost materials such 

as industrial wastes, wood, and agricultural residues (Limayem and Ricke, 2012). Lignocellulosic 

biomass varies among species but generally consists of ~25% lignin and ~75% carbohydrate 

polymers in dry weight (cellulose and hemicellulose), and is the largest known renewable 

carbohydrate source (Zhang et al., 2016). Switchgrass (Panicum virgatum, L) is a warm season 

herbaceous crop, and  one of the most promising bioenergy crops among lignocellulosic biomass 

due to its high cellulose (40-45%) and hemicellulose (30-35%) content, low-cost investment, facile 

management, and abundance in the U.S. (Limayem and Ricke, 2012; Liu et al., 2015). The 

productivity of switchgrass is 13.4 – 22.3 t/ha, which is much higher than the yield range of corn 

(6.3 – 8.7 t/ha) (McLaughlin and Kszos, 2005). A recent energy model analyses estimated that 

switchgrass could produce >700% more output than input energy, whereas an estimated average 

greenhouse gas (GHG) has been estimated to be slightly positive for ethanol derived from 

switchgrass (Farrell et al., 2006). The switchgrass was chosen as an important herbaceous plant at 

the Bioenergy Feedstock Development Program (BFDP) in the Department of Energy (DOE) and 

Biofuels Feedstock Program in the Oak Ridge National Laboratory (Min et al., 2017). For these 



74 

 

reasons, switchgrass has been intensively studied as a new substrate for bio-based chemical 

production.  

Previous studies have confirmed that engineered E. coli successfully produced free fatty 

acids using renewable biomass hydrolysates such as woody hydrolysates, sorghum extract sugars 

(Wu et al., 2015; Bule et al., 2016). To the best of our knowledge, switchgrass has not previously 

been studied as a feedstock for free fatty acid production.  

The purpose of this study was to develop the overall process of FFA production from 

switchgrass using engineered E. coli. First, sugar stream was generated using switchgrass via 

pretreatment and fermentation. The switchgrass hydrolysates were, then, tested as feedstocks for 

FFA production using two types of engineered E. coli in flask fermentation level. The developed 

bioconversion process for switchgrass based-FFAs was evaluated for an overall yield assessment. 

Finally, the fermentation process for FFA production was evaluated using a bioreactor.   

 Materials and methods 

Composition of switchgrass 

Switchgrass was obtained from the Kansas State University Agronomy Farm, Manhattan, Kansas, 

and grounded using a Tomas-Wiley laboratory mill (model 4) fitted with a 1 mm sieve. The 

composition of ground switchgrass was determined by following protocol NREL/TP-510-42618 

(Sluiter et al., 2008).   

 Pretreatment of sorghum stalks and switchgrass 

Switchgrass was obtained from the Kansas State University agronomy farm, Manhattan, 

Kansas, and grounded using a Tomas-Wiley laboratory mill (model 4) fitted with a 1 mm sieve. 

Ground switchgrass was pretreated with 1.25% (w/v) sodium hydroxide at 121 ˚C for 1 h. 
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Pretreated biomass was washed with about 5 L of water to completely remove the sodium 

hydroxide residue, and dried at room temperature for 72 h. 

 Enzymatic hydrolysis of sorghum stalks and switchgrass 

C-Tec2 and H-Tec2 enzymes for producing sugar solutions were obtained from Novozymes 

Inc., Franklinton, North Carolina. Ten percent (w/v) of the pretreated biomass was suspended with 

50 mM of a citrate buffer solution (pH 4.8), and enzyme mixtures were added at a dosage of 8 

FPU per gram of pretreated switchgrass. Enzymatic hydrolysis was conducted at 50 ˚C and 140 

rpm for 72 h. Switchgrass hydrolysates, which were a supernatant after centrifugation, were 

harvested via centrifugation at 8500 rpm for 20 min (Sorvall Super T21, Thermo Fisher Scientific 

Inc., Waltham, MA, USA).  

 E. coli strain and plasmids 

Recombinant E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z were utilized in this study. 

Plasmids pXZ18 and pXZ18Z, and E. coli ML103 were obtained from Rice University, Houston, 

Texas. The plasmid pXZ18 contained an acyl-ACP thioesterase (TE) from Ricinus communis 

(Zhang et al., 2011) and pXZ18Z carried TE with the native (3R)-hydroxyacyl-ACP dehydrase 

(fadZ). Each plasmid was transformed into E. coli ML103 (fadD mutant) (Wu et al., 2015) using 

a traditional heat-shock method. Recombinant E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z 

were grown in the liquid LB media (LB broth, Difco, Detroit, MI, USA) with a 100 μg/mL of 

ampicillin at 37 ˚C and 250 rpm.  

 Culture media and fermentation conditions  

The seed culture was prepared by inoculating a single colony from an LB plate into 5 mL of 

LB media containing a 100 mg/L of ampicillin, and incubated overnight at 30 ˚C and 250 rpm.  

Shake-flask fermentation was conducted in the liquid LB media with a supplementation of 15 g/L 
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glucose. Also, switchgrass hydrolysates, containing a total of 57 g/L sugars composed of 40 g/L 

of glucose and 17 g/L of xylose, were utilized as carbon sources for fermentation. The initial pH 

was adjusted to 7 using 10 N sodium hydroxide, and TE and fadZ genes were induced by adding 

1 mM of isopropyl-β-D-thiogalactopyranoside (IPTG) into the fermentation media. Cells were 

incubated at 30 ˚C and 250 rpm for 72 h.  

Batch fermentation and fed-batch fermentation were carried out in a 7 L fermenter (Bioflo 110, 

New Brunswick Scientific Inc., Enfield, CT, USA) with a 4 L working volume. The fermentation 

broth was an LB media, supplemented by 15 g/L of initial glucose or switchgrass hydrolysates 

containing a total of 15 g/L sugars as carbon sources. Temperature was kept at 30 ˚C, agitation 

was 300 rpm, and pH was maintained at 7.0 by 5 N of sodium hydroxide. Air was supplied at 0.5 

vvm during the fermentation. 

Analytical methods 

Cell density was determined by measurement of dry-cell weight (DCW) and optical density. 

Dry-cell weight (DCW) was investigated by drying cells at 80 ˚C overnight, and optical density 

was estimated at 600 nm (Thermo Fisher Scientific, Lenexa, KS).  

Concentrations of sugars and acetic acid were measured via high-performance liquid 

chromatography (HPLC; Shimadzu Scientific Instruments, Inc., Columbia, MD, USA), equipped 

with a refractive index detector (RID) and a Rezex ROA organic acid column (150 x 7.8 mm, 

Phenomenex Inc., Torrance, CA, USA). A mobile phase (0.005 N sulfuric acid) was pumped at a 

rate of 1.0 mL/min, and oven temperature was maintained at 80 ˚C.  

For the free fatty acid analysis, 1 mL of fermentation media was taken into a 16 x 150 mm 

Kimax glass tube, and 0.5 g/L of pentadecanoic acid (C15) was added into each sample as an 

internal standard. A 7.5 mL of methanol was added into the each Kimax glass tube containing 
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sample solutions and vortexed for 1 min. A 700 μL of 10 M potassium hydroxide solution was 

added to the sample mixtures to hydrolyze E. coli cells and samples were incubated at 60 ˚C for 

1.5 h. Samples were vortexed every 20 min to properly permeate and dissolve the maximum free 

fatty acids. After 1.5 h of incubation, 580 μL of 24 N sulfuric acid was added, and incubated at 60 

˚C for 1.5 h to methylate the free fatty acids. Samples were vortexed every 30 min for 2 min during 

the 1.5 h incubation. Semi-polar compounds were dissolved by adding 2 mL of water, and 2 mL 

of hexane was added to solubilize fatty acid methyl esters (FAME). FAME were harvested via 

centrifugation at 4000 rpm for 10 min. Concentrations of FAME were analyzed using a gas 

chromatograph (GC-2014, Shimadzu Scientific Instruments, Columbia, MD, USA) equipped with 

a flame-ionization detector (FID) and an aqueous-stable polyethylene glycol capillary column 

(Zebron ZB-Waxplus 30m x 0.25 mm x 0.25 μm, Phenomenex, Torrance, CA, USA). The oven 

temperature was initially set at 160 ˚C and gradually increased to 200 ˚C at a rate of 5 ˚C/min, and 

held for 17 min. Detector temperature was set at 250 ˚C for identifying the fatty acid composition 

and the FAME mixture (Supelco, 37 component FAME mix) was utilized as an external standard. 

Also, a mass spectrometer (GC/MS-QP 2010 SE, Shimadzu Scientific Instruments, Columbia, 

MD, USA) was utilized to confirm the species of fatty acids. 

Statistical methods  

All experiments were conducted in triplicate, and the data were statistically analyzed using 

SAS software (SAS v9.1, SAS institute, Cary, NC, USA) by performing PROC GLM for the least- 

significant difference (LSD) test at a 95% confidence level (P<0.05).  
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 Results and discussion 

Composition of switchgrass and concentrations of monomer sugars released from 

switchgrass  

Figure 5.2 shows the composition of switchgrass used in this study. The ground switchgrass 

contented 35.2 ± 1.2% (w/w) of glucan, 29.2 ± 1.2% (w/w) of xylan and 16.9 ± 0.1% (w/w) of 

lignin, respectively. The switchgrass was utilized as a feedstock for FFA production using 

recombinant strains. Total 57 g/L sugars composed of 40 g/L glucose and 17 g/L xylose were 

generated from switchgrass. Also, 15.6 g/L of citric acid was also identified and it was included 

during enzymatic hydrolysis to adjust pH (Figure 5.2). Other pretreatment-induced inhibitory 

compounds such as hydroxymethyl furfural, furfural, acetic acid, were not detected in the 

switchgrass hydrolysates, probably due to washing of the pretreated biomass with excess of water. 

 Free fatty acid production at the flask level 

Free fatty acid (FFA) production using switchgrass hydrolysates and synthetic media by 

two types of recombinant E. coli (ML103 pXZ18 and ML103 pXZ18Z) was conducted at the flask 

level. Figure 5.3 shows FFA distributions produced from switchgrass hydrolysates and synthetic 

media by E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z. Fatty acids species produced by both 

recombinant E. coli were myristic acid (C14), palmitic acid (C16), palmitoleic acid (C16:1), and 

oleic acid (C18:1). Major FFAs produced by E. coli ML103 pXZ18 were myristic acid and 

palmitoleic acid, whereas E. coli ML103 pXZ18Z produced mainly myristic acid and palmitic acid. 

The FFA composition observed in switchgrass hydrolysates was similar to that of synthetic 

medium. These results were consented with the previous studies using same recombinant E. coli 

strains by Wu and coworkers (Wu et al., 2014). Plasmid pXZ18Z is carrying fabZ overexpressing 
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(3R)-hydroxyacyl-ACP dehydrase, which is involved in fatty acid elongation, whereas pXZ18Z 

contains only a TE gene (Wu, Karanjikar and San, 2014). The catalytic reaction of β-hydroxyacyl-

ACP dehydratase is dehydration of their substrates such as, short chain β-hydroxyacyl-ACP, long 

chain saturated β-hydroxyacyl-ACP and unsaturated β-hydroxyacyl-ACP. Overexpression of β-

hydroxyacyl-ACP dehydratase might cause decreasing the percentage of unsaturated fatty acids 

(Wu, Karanjikar and San, 2014). Therefore, E. coli ML103 pXZ18Z produced lower percentage of 

oleic acid and palmitoleic acid compared with E. coli ML103 pXZ18. It might affect the 

composition of FFAs produced by both recombinant E. coli.  

Fermentation performance of recombinant E. coli during FFA production has shown in Table 5.1.   

 Totals of 2.8 g/L and 3.3 g/L of FFAs were achieved by E. coli ML103 pXZ18 and E. coli ML103 

pXZ18Z, respectively, using switchgrass hydrolysates. The results showed that the E. coli ML103 

pXZ18Z produced 14% higher amount of FFA using switchgrass hydrolysate compared with 

synthetic sugars. The E. coli ML103 pXZ18 also produced 8% higher amount of FFA in 

switchgrass hydrolysate than in synthetic sugars; however, the difference was not statistically 

significant at the 95% confidence level. The FFA yield per gram of sugar (Yps) showed that 

synthetic sugar and switchgrass hydrolysates media did not affect FFA production for both E. coli 

strains. Further, compared with FFAs produced from woody hydrolysates in the previous study by 

Wu and coworkers (2015), 80% and 35% higher level of FFAs were produced from switchgrass 

by E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z, respectively.  

Both E. coli strains produced higher amounts of acetic acid than FFA in the switchgrass 

hydrolysates; a total of nearly 6 g/L of acetic acid was produced by both strains during 72 h of 

fermentation. Normally, microbes produce more carboxylic acid, such as acetic acid, to generate 

more ATP under severe stress conditions (Cray et al., 2015). This indicatedthat switchgrass 
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hydrolysates provided more stress conditions for recombinant E. coli compared with synthetic 

media. Since a total of 4 g/L citric acid remained at a constant level in the medium during the 

fermentation using switchgrass hydrolysates, it could be the major stress factor for E. coli strains. 

It is because organic acids are known as toxic compounds for microoraganisms such as E. coli. 

Weak acids accumulate with deprotonated form, and affect intracellular pH and activity of 

enzymes associated with metabolism or ATP production (Warnecke and Gill, 2005; Trček, Mira 

and Jarboe, 2015). Citric acid is a non-lipophilic acid; so, its antibacterial effect is lower than acetic 

acid, but it shows antibacterial effects against gram-negative bacteria such as E. coli (Erkmen and 

Bozoglu, 2016). However, further investigation is required to confirm that the citric acid in the 

switchgrass hydrolyzates was that main stress factor. In addition, a significantly higher DCW was 

produced using switchgrass hydrolysates compared with the synthetic medium. Therefore, lower 

Ypx and higher Yxs were obtained using switchgrass hydrolysates.  

To sum up, E. coli strains produced different types of FFA, and E. coli ML103 pXZ18Z strain 

showed better fermentation performance compared with E. coli ML103 pXZ18 strain. In addition, 

both E. coli strains produced FFA using switchgrass hydrolysates as efficient as synthetic sugars.    

 Overall yield of free fatty acids from switchgrass  

Overall yields of FFA production by E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z were 

evaluated to investigate the efficiency of the bioconversion process (Figure 5.4). Starting from 100 

g of switchgrass, 49 g of total monomer sugars were achieved via pretreatment and the enzymatic 

hydrolysis process. With the conversion factor of 0.9 from glucose to glucan, and 0.88 from xylose 

to xylan, monomer sugar recoveries during the process were investigated (Guragain et al., 2014). 

Glucose and xylose recoveries from raw switchgrass were 88% and 46% of the theoretical 

maximum value, respectively. Lower level of xylose was recovered compared with glucose 
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recoveries. This might be due to hemicellulos loss during the pretreatment process. Taking the 

normalized conversion factors of 0.35 from glucose to FFAs and 0.29 from xylose to FFAs 

(Lennen and Pfleger, 2012), 55% and 72% of maximum theoretical yields were achieved from 

hydrolysates by E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z, respectively. With the 

combined conversion factors of glucose (or xylose) to glucan (xylan) and glucose (or xylose) to 

FFAs, the overall theoretical maximum yield from 1g switchgrass to FFAs was determined to be 

0.23. This FFA production process from switchgrass achieved 39% and 51% of theoretical 

maximum yields by E. coli ML103 pXZ18 and E. coli ML103 pXZ18Z, respectively.  

 Free fatty acid production using E. coli ML103 pXZ18Z at the bioreactor scale 

FFA production using E. coli ML103 pXZ18Z was carried out in the 7 L fermenter with 4 L 

working volume. Initially, 15 g/L glucose was added as a carbon source, and an additional 15 g/L 

glucose was fed into the fermenter during the fermentation. Fermentation profiles in Figure 5.5A 

show that FFA production by recombinant E. coli was the mixed growth associated product 

formation; product formation was observed during all the phase of cell growth. A total of 2.2 g/L 

of FFAs were obtained from the initial 15 g/L glucose at 36 h. A slightly lower level of FFAs was 

obtained compared with results of the shake flask. All glucose was consumed at 100 h and a total 

of 4.2 g/L of FFAs were achieved using a total of 30 g/L glucose. Changes of FFA composition 

during fermentation in the synthetic medium were shown in Figure 5.5C. As the results in the flask 

level, myristic acid and palmitic acid were major FFAs. Interestingly, the relative percentage of 

these major FFAs (myristic acid and palmitic acid) was continuously increased during 

fermentation, and their final composition was up to 90%. Whereas, concentrations of oleic and 

linoleic acid were constant during fermentation. Even though sugars were consumed until 100 h, 
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FFA production was stopped and kept at the same level after 78 h. These results indicated that 

sugars were utilized for purposes other than product formation after 78 h.  

Table 5.2 shows that most yields (Yxs, Yps) and productivity (Qp) were higher during the first 

stage of fermentation. Additional glucose was fed into the fermenter at the stationary phase of the 

growth, and this led to a substantially lower value of Yxs in the second stage of fermentation. After 

more feeding of 15 g/L glucose, most fermentation parameters were decreased, except for FFA 

titers and Ypx. Lennen and Pfleger1 mentioned that yields and productivity are key metrics for 

judging FFA production to meet low price targets (Lennen and Pfleger, 2012). Based on these 

results, FFA production using 15 g/L glucose in the batch culture would be the appropriate 

fermentation condition for obtaining high productivity and yields. 

Batch fermentation using switchgrass hydrolysates containing 15 g/L total sugars was 

conducted with the 4 L working volume at 30 ˚C and 300 rpm. After all glucose was consumed, 

xylose consumption was started at 12 h, and a significant amount of acetic acid was produced by 

recombinant E. coli until 16 hours of fermentation compared with synthetic media as shown in 

Figure 5.6A. All sugars were completely consumed, and acetate switch was observed at 22 h. 

Acetate switch occurred by activating AMP-forming acetyl-CoA synthetase (AMP-ACS), when 

the sugars in the medium were almost exhausted and cells began the transition to stationary phase; 

this is common phenomena in E. coli metabolism (Nystrom and Neidhardt, 1993). An acetate 

switch leads to an increase in the acetyl-CoA pool, and activates AMP-ACS, which is involved in 

FFA synthesis (Wolfe, 2005). Therefore, it was anticipated that the acetate switch would improve 

FFA production. After complete consumption of all sugars, FFA titers were slightly increased, but 

the effect of acetate switch was insignificant. Our results showed that 5 g/L acetic acid did not 
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significantly influence improvement of FFAs containing hydrocarbons. Further molecular level 

investigation is required to confirm the effect of acetate switch during FFA production by E. coli. 

The change of pH during fermentation shown in Figure 5.6B reflected the acetate switch. As 

acetic acid production by E. coli rapidly increased, sodium hydroxide was pumped into the 

fermenter to maintain constant pH. When acetic acid consumption by E. coli was initiated at 20 h, 

pH started increasing, and nitric acid was pumped into the fermenter since 23 h.  

Total 2.1 g/L FFAs was achieved using switchgrass hydrolysates containing 15 g/L total sugars 

in the bioreactor level. Lower level of FFAs were produced in the fermenter compared with the 

shake flask. This might be due to the fact that high amounts of base and acid were continuously 

added into the fermenter to maintain constant pH, leading to the dilution ofthe product 

concentrations. Even though fermentation performance at the bioreactor levels were lower than at 

the flask level, same value of productivity was obtained. This was due to increased rates of sugar 

consumption and product formation reducing fermentation periods by two-fold. Since the 

productivity is one of the major factors for developing FFA production at the industrial level 

(Lennen and Pfleger, 2012), reduction of fermentation time is a meaningful result.  

The compositional changes of FFAs during fermentation using switchgrass hydrolysates are 

shown in Figure 5.6C. Similar to the other composition results, myristic acid and palmitic acid 

were major FFAs produced by E. coli ML103 pXZ18Z, showing a composition of nearly 70 to 

80%. Interestingly, E. coli ML103 pXZ18Z produced higher amounts of palmitic acid than myristic 

acid in the switchgrass hydrolysates, whereas myristic acid were higher than palmitic acid in the 

synthetic medium.  
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 Conclusion 

In this study, a bioconversion process for producing FFAs from switchgrass was developed 

using engineered E. coli strains of ML103 pXZ18 and ML103 pXZ18Z. Both E. coli strains 

efficiently produced FFAs using switchgrass hydrolysates; higher concentrations of FFAs were 

achieved in switchgrass hydrolyzates compared with synthetic sugar media. Overall yield 

assessment of FFA production from raw switchgrass by E. coli ML103 pXZ18Z showed that our 

bioconversion process achieved 51% of maximum theoretical yield. Additionally, the processes 

were successfully scaled up to a laboratory fermenter level for FFA production using switchgrass 

hydrolysates; consequently, fermentation time was reduced by two-fold. To the best of our 

knowledge, this study is the first attempt of FFA production from switchgrass hydrolysates at the 

fermenter level. While further improvement in product titer level is essential for commercial 

viability, targeted FFA has potential applications as bio-lubricant and in specialty chemical 

industry.  
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Table 5-1 Fermentation performance of engineered E. coli during FFA production in shake flasks  

Strains  
FFA 

(g/L) 

Yxs1 

(g/g) 

Yps2 

(g/g) 

Ypx3 

(g/g) 

Qp4 

(g/L/h) 

DCW 

(g/L) 

Synthetic sugars  

E.coli ML103 pXZ18  2.6 ± 0.1D 0.11 ± 0.0F 0.19 ± 0.0B 1.76 ± 0.3A 0.04 ± 0.0B 1.5 ± 0.3D 

E.coli ML103 pXZ18Z  2.9 ± 0.1C 0.13 ± 0.0 E,F 0.23 ± 0.0A 1.79 ± 0.4A 0.04 ± 0.0B 1.7 ± 0.3D 

Switchgrass hydrolysates  

E.coli ML103 pXZ18   2.8 ± 0.1C,D 0.3 ± 0.0A 0.19 ± 0.0B 0.62 ± 0.0B,C 0.04 ± 0.0B 4.6 ± 0.2B 

E.coli ML103 pXZ18Z   3.3 ± 0.2B 0.32 ± 0.0A 0.24 ± 0.0A 0.75 ± 0.1B 0.05 ± 0.0B 4.3 ± 0.1B 

FFA = free fatty acid, DCW = dry cell weight. The data represent average values of triplicate experiments ± sample standard deviation. Values with the same letters, in 

superscripts, within the same column, are not significantly different at the level of (P<0.05). 

1Yxs was calculated by dividing the amount of dry cell mass by the amount of consumed glucose.  
2Yps was calculated by dividing the amount of lipids by the amount of consumed glucose. 
3Ypx was calculated by dividing the amount of lipids by the amount of dry cell mass.   
4Qp was defined as the amount of lipids produced per liter per hour. 
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Table 5-2 Fermentation performance of E. coli ML103 pXZ18Z in the fermenter scale    

Sugars  

(g/L) 

FFA 

(g/L) 

Yxs1 

(g/g) 

Yps2 

(g/g) 

Ypx3 

(g/g) 

Qp4 

(g/L/h) 

DCW 

(g/L) 

Synthetic medium 

15 2.2 ± 0.1A 0.15 ± 0.0A 0.17 ± 0.0A 1.2 ± 0.1A 0.07 ± 0.0A 1.9 ± 0.2A 

30 4.2 ± 0.2B 0.07 ± 0.0B 0.14 ± 0.0B 2.0 ± 0.1B 0.04 ± 0.0B 2.1 ± 0.1B 

Switchgrass hydrolysates 

15 2.1 ± 0.0C 0.38 ± 0.0C 0.14 ± 0.0B 0.37 ± 0.0C 0.05 ± 0.0C 5.7 ± 0.2C 

FFA = free fatty acid, DCW = dry cell weight  

The data represent average values of triplicate experiments ± sample standard deviation. Values with the same letters, in 

superscripts, within the same column, are not significantly different at the level of (P<0.05). 
1Yxs was calculated by dividing the amount of dry cell mass by the amount of consumed glucose.  
2Yps was calculated by dividing the amount of lipids by the amount of consumed glucose. 
3Ypx was calculated by dividing the amount of lipids by the amount of dry cell mass.  
4Qp was defined as the amount of lipids produced per liter per hour. 
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Figure 5-1 Simplified metabolic pathway of the metabolically engineered E. coli strains for fatty 

acid synthesis using monomer sugars.  TE: gene for expressing the thioesterase derived from R. 

comunis; fabZ: gene for expressing the (3R)-hydroxymyristoryl-ACP dehydrase from E. coli   
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Figure 5-2 Composition of (A) switchgrass and (B) switchgrass hydrolysates. The data shows 

average value of triplicate experiments and error bars representing sample standard deviation. 
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Figure 5-3 FFA production using recombinant E. coli (A) using synthetic sugars (B) using 

switchgrass hydrolysates. The data shows average value of triplicate experiments and error bars 

representing sample standard deviation. 
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Figure 5-4 Mass balance of FFAs from switchgrass. The data shows average value of triplicate 

experiments and error bars representing sample standard deviation. 
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Figure 5-5  FFAs production using synthetic sugars by E. coli ML103 pXZ18Z in the fermenter 

scale (A) fermentation profile; (B) pH observation; (C) distribution of FFAs. The data shows 

average value of triplicate experiments and error bars representing sample standard deviation. 
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Figure 5-6 FFAs production using switchgrass hydrolysates by E. coli ML103 pXZ18Z in the 

fermenter scale (A) fermentation profile; (B) pH observation; (C) distribution of FFAs. The data 

shows average value of triplicate experiments and error bars representing sample standard 

deviation. 
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Chapter 6 - Microbial lipid production from lignocellulosic biomass 

using promising oleaginous yeast systems2  

 Abstract 

Microbial lipids derived from oleaginous yeast could be a promising resource for biodiesel and 

other oleochemical materials. The objective of this study was to develop an efficient bioconversion 

process from lignocellulosic biomass to microbial lipids using three types of robust oleaginous 

yeast: T. oleaginosus, L. starkeyi, and C. albidus. Sorghum stalks and switchgrass were utilized as 

feedstocks for lipid production. Among oleaginous yeast strains, T. oleaginous showed better 

performance for lipid production using sorghum stalk hydrolysates. Lipid titers of 13.1 g/L were 

achieved by T. oleaginosus, using sorghum stalk hydrolysates with lipid content of 60% (wt/wt) 

and high lipid yield of 0.29 g/g, which was substantially higher than the value reported in literature. 

Assessment of overall lipid yield revealed a total of 14.3 g and 13.3 g lipids were produced by T. 

oleaginosus from 100 g of raw sorghum stalks and switchgrass, respectively. This study revealed 

that minimization of sugar loss during pretreatment and selection of appropriate yeast strains 

would be key factors to develop an efficient bioconversion process and improve the industrial 

feasibility in a lignocellulose-based biorefinery. 

 

 Introduction 

Microbial lipids are promising candidates for replacing traditional oil sources in the production 

of biodiesel, oleo-chemicals, and nutraceuticals, due to their similar chemical composition and 

energy value (Mazzobre et al., 2005). Research by (Suh, Lee and Chung, 1997) estimated that cost 

                                                 

2 Chapter 6 is published as a part of Lee et al., (2017) Journal of Sustainable Bioenergy Systems, 7, 36-50 
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of microbial lipids would be $3.4/kg, excluding a feedstock price, and $5.5/kg, including glucose 

as a feedstock, whereas cost of vegetable oil is $1.5-3/kg less (Wu et al., 2014). A supply of low-

cost carbohydrates for microbes is required for sustainable and cost-effective production of bio-

based lipids. 

Lignocellulosic biomass, such as agricultural residues and woody crops, is a strong alternative 

substrate for microbial lipid production due to low-cost investment, and high content of 

polysaccharides (up to 75%) and their abundancy (Singh, Gamlath and Wakeling, 2007). More 

than 90% of global production of plant biomass is lignocellulosic biomass, which is composed of 

cellulose, hemicellulose, and lignin (Breitenbach, 2002). Recalcitrant lignocellulosic biomass is 

converted to monomer sugars via pretreatment and enzymatic hydrolysis. Many pretreatment 

methods maximize exposure of carbohydrate polymers (cellulose and hemicellulose) with 

effective separation of the lignin portion, which is an interference biopolymer during 

bioconversion. Among many attempts, an alkaline pretreatment is known to efficiently remove 

lignin from plant cell wall structures (Bondeson and Oksman, 2007). Cellulose and hemicellulose 

are depolymerized to monosaccharides by synergetic actions of enzyme mixtures (Smith et al., 

2003). The most abundant monomer sugars derived from lignocellulosic biomass are D-glucose, 

since cellulose represents 70% of total plant cell walls, repeating the β-(1→4) glycosidic bond 

(Holic et al., 2012). However, species of lignocellulosic-based monomer sugars depend on 

biomass types.  

Several challenges remain for successful bioconversion of lignocellulosic biomass to microbial 

lipids. A broad array of monomer sugars is generated from lignocellulosic biomass including 

glucose, xylose, mannose, and arabinose. Typically, the ratio of hexoses to pentoses ranges from 

1.5:1 to 3:1 (Carvalho and Mitchell, 2000). However, some species of microbes only utilize limited 
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types of monomer sugars as carbon sources. In addition, a number of by-products, such as furans, 

aldehydes, and organic acids, are generated during pretreatment and enzymatic hydrolysis (Chen 

et al., 2014; Choi and Oh, 2012). These compounds are known to inhibit microbes’ growth and 

product formation during fermentation. Particularly, acetic acid is inevitable compound, which are 

normally released from acetyl groups of hemicellulose during enzymatic hydrolysis (Karunanithy, 

Muthukumarappan and Gibbons, 2012). Acetic acid adversely affects the integrity of the cell 

membrane by accumulating in deprotonated form (Yoo et al., 2012).  

Oleaginous yeast, which has an inherent ability to accumulate lipids from 20% to 70% as a 

percentage of cell dry weight, offers many advantages to overcome challenges associated with 

lignocellulose-based lipid production (Duque et al., 2014). Basidiomycetous yeast species such as 

Cryptococcus albidus and Trichosporon oleaginosus are known to use a variety of carbon sources, 

and can be grown without costly supplemental nutrients (Rosentrater and Muthukumarappan, 

2006; Spiehs, Whitney and Shurson, 2002). In addition, oleaginous yeasts are tolerant to toxic 

compounds compared with bacteria. Previous studies reported some types of oleaginous yeast 

consumed weak acids, including acetic acid and formic acid (Hoover et al., 2012; Riesenberg, 

1991). Utilization of diverse monomer sugars and organic acids derived from lignocellulosic 

biomass are directly related to product yields of lipid production. Also, their fast and higher density 

growth are positives associated with productivity and product titers during fermentation.  

In this study, production of lignocellulose-based microbial lipids was investigated using three 

oleaginous yeast strains: Trichosporon oleaginosus ATCC20509, Lipomyces starieyi ATCC 

56304, and Cryptococcus albidus ATCC10672. Sorghum stalks and switchgrass, which are typical 

bio-energy crops, were utilized as sugar suppliers for microbial lipid production. In addition, 

fermentation performance of T. oleaginosus, L. starieyi, and C. albidus were evaluated using 
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sorghum stalks and switchgrass hydrolysates. To our knowledge, C. albidus ATCC 10672 has not 

previously been evaluated for lipid production using lignocellulosic hydrolysates. Also, overall 

yield of microbial lipids from raw biomass was studied to evaluate the lipid production process.   

 Materials and Methods 

 Lignocellulosic biomass and composition analysis 

Sorghum stalks were obtained from Texas A&M University, College Station, Texas, and 

ground by Mesa Associate Inc., Knoxville, Tennessee. Switchgrass was obtained from the Kansas 

State University agronomy farm, Manhattan, Kansas, and ground at a size of less than 1 mm, using 

a Tomas-Wiley laboratory mill (Model 4). Biomass composition was determined following the 

protocol of NREL/TP-510-42618 (Kim and Oh, 2013). 

Pretreatment and enzymatic hydrolysis of lignocellulosic biomass 

Figure 6.1 shows a schematic diagram of the process for lignocellulosic hydrolysate 

preparation.  The ground biomass was mixed with 1.25% (w/v) sodium hydroxide (NaOH), at the 

rate of 10% (w/v) solid loading, in a 500 mL flask for pretreatment. Sorghum stalks and 

switchgrass were pretreated at 121 °C for 30 min and 1 h, respectively. The pretreated biomass 

was washed with about 5 L of water until the residue of NaOH was completely removed and dried 

at room temperature for five days.  

The pretreated biomass was slurried with 50 mM of a citrate buffer (pH 4.8), at the rate of 5% 

(w/v) solid loading, for the enzymatic hydrolysis.  Commercial cellulolytic (Cellic C-Tec2) and 

hemicellulotyic (Cellic H-Tec2) enzymes, which were obtained from Novozymes Inc., 

Franklinton, North Carolina, were added into the pretreated biomass slurry at the rate of 5.4% and 

0.6% (w/v) of biomass, respectively. Enzymatic hydrolysis was conducted in the shaking incubator 

at 50 °C and 140 rpm for 48 h (Innova 4300, New Brunswick Scientific, NJ). The sorghum stalks 
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and switchgrass hydrolysates, which is a supernatant after centrifugation (Sorvall Super T21, 

Thermo Fisher Scientific Inc., Waltham, MA, USA) at 8500 rpm for 20 min, were harvested. 

Yeast strains, medium, and culture conditions 

Trichosporon oleaginosus ATCC20509, Lipomyces starkeyi ATCC 56304, and Cryptococcus 

albidus ATCC 10672 were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA, USA), and cultivated in a yeast mold broth (YM broth, Difco, Detroit, MI, USA) 

at 25 °C and 200 rpm. All yeast cultures were preserved in YM agar plates at 4 °C, and transferred 

to fresh plates once a month.  

 Fermentation 

Starter cultures of all yeast strains were begun by inoculating a single colony from a YM agar 

plate. T. oleaginosus, L. starkeyi, and C. albidus were grown in a YM broth at 25 °C and 200 rpm 

for 12 h, and cells were transferred into a 500 mL shake flask containing 100 mL of fermentation 

media. Sorghum stalks and switchgrass hydrolysates, containing a total of 50 g/L sugars, were 

utilized as carbon sources for lipid production. Yeast extract and peptone were supplemented into 

the fermentation media to achieve the initial molar ratio of carbon and nitrogen sources to 76. 

Fermentation was carried out at 25 °C and 200 rpm for 120 h. 

Analysis of sugar and organic acid 

Dry-cell weight (DCW) was used to determine cell concentrations. Cell pellets were washed 

with water two times, dried at 80 °C overnight, and measured for weight.   

 Sugars and organic acid concentrations were analyzed via a high-performance liquid 

chromatography (HPLC; Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) equipped 

with a refractive index detector (RID) and a Rezex ROA organic acid column (150 x 7.8 mm, 
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Phenomenex Inc., Torrance, CA, USA). Oven temperature was kept at 80 ˚C, and 0.005 N sulfuric 

acid was utilized as a mobile phase, with a pumping rate of 1.0 mL/min.  

Yeast cell lysis and lipid extraction 

Yeast cells were harvested via centrifugation (Sorvall Super T21, Thermo Fisher Scientific 

Inc., Waltham, MA, USA) at 8500 rpm for 20 min. Cells were washed two times with water and 

concentrated to 109 cells/mL. The concentrated cells were preserved at -80 ˚C for one day prior to 

lipid extraction. Thawed cell pellets (0.5 mL) were transferred into a 2.5 mL polypropylene 

microvial, followed by adding 0.5 mL of methanol, 0.5 mL of chloroform, and 1 mL of 0.5 mm 

cubic zirconia beads. Bead beating was performed using a bead-beater homogenizer (Mini-

Beadbeater-24, BioSpec Products, Inc., Bartlesville, OK, USA) in 45 sec intervals, with a cooling 

of 10 min on ice repeated six times.   

Lipid extraction was conducted by following a modified Bligh and Dyer method (Uemura, 

2012). The cell lysate after bead beating was transferred into a 7 mL Kimax tube, and 

chloroform:methanol:water were added with a ratio of 1:2:0.8, respectively. Tubes containing cell 

lysate mixtures were vortexed and centrifuged at 4000 rpm for 20 min. The lipid layer of the 

mixture was transferred into a clean tube using a Pasteur pipette, and 1 mL of chloroform was 

added into the mixture followed by vortexing and centrifugation. Lipid extraction was repeated 

three times and the combined lipid layers were filtered using PTFE filters with 0.22 µM pore size 

(Whatman, Fisher Scientific, Waltham, MA). The filtrates were washed two times with a 1 M 

potassium chloride solution, followed by drying under nitrogen gas at 40 °C until 1 ml of mixture 

was left in the Kimax tube. The residue was transferred into a glass vial and dried down under 

nitrogen gas, again to completely remove chloroform and measure the lipid weight.  After 

determination of lipid weight, 1mL of chloroform was added into each glass vial and kept at -80 
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°C for further compositional analysis of the lipids. Lipid content in the yeast cells was determined 

by dividing weight of lipids from yeast cells by weight of concentrated cells. Cell weight was 

determined by measuring DCW of the concentrated cell. 

Analysis of lipid composition 

Fatty acids in the lipids were converted to fatty acid methyl esters (FAMEs) via 

transesterification for compositional analysis. Lipid samples were transferred into a 7 mL Kimax 

tube with 25 nmol of internal standard (pentadecanoic acid) and the chloroform was evaporated 

under nitrogen gas at 40 °C. For transesterification, 1 mL of methanolic hydrochloric acid (3 M) 

was added into each tube and incubated at 78 °C for 30 min in the heating block. After cooling 

down the samples, 2 ml of water were added, followed by 1.6 mL of chloroform and 0.4 mL of 

hexane. The layers were then separated via centrigufation at 4000 rpm for 5 min. The lower layer 

was transferred into a clean Kimax tube and the organic phase was dried down under nitrogen gas. 

One hundred µL of hexane were added to solubilize FAMEs, and then transferred into a glass vial.   

FAMEs were analyzed by injecting 1 µL of the sample into a gas chromatograph (GC-2014, 

Shimadzu Scientific Instruments, Columbia, MD, USA) equipped with a flame-ionization detector 

(FID) and an aqueous-stable polyethylene glycol capillary column (Zebron ZB-Waxplus 30 m x 

0.25 mm x 0.25 μm, Phenomenex, Torrance, CA, USA). The initial oven temperature of 160 ˚C 

was gradually increased to 200 ˚C at a rate of 5 ˚C/min, and detector temperature was 250 ˚C. The 

FAME mixture (Supelco, 37 component FAME mix) was utilized as an external standard to 

identify fatty acid composition in the lipids. 
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Plasmid construction 

Plasmid pRS2u2 and pOleo-RnACLY were obtained from the Department of Biochemistry and 

Biophysics, Kansas State University, Manhattan, Kansas. Plasmid pRS2u2 was used as expression 

vector for oleaginous yeast with the digestion using SalI.  

Target gene RnACLY derived from Rattus norvegicus was applified using Phusin Flash High-

Fidelity PCR Master Mix (Thermo Scientific, Waltham, MA). RnACLY gene specific primers 

were used for this amplification (F-AGCGTCGACATGTCAGCCAAGGCAATTTC and R-

TGAGTCGACTTACATGCTCATGTGTTCCG). The amplified 3.3 kb DNA fragment was 

digested with SalI and ligated into SalI digested pRS2u2 harboring TEF promoter. Ligation was 

confirmed via colony PCR (1 cycle of pre-denaturation for 10 sec at 98 °C, 30 cycle of annealing 

for 5 sec at 75 °C and extension for 49 sec at 72 °C, 1 cycle of final extention for 1 min at 72 °C).     

Statistical methods 

SAS software (SAS v9.4, SAS institute, Cary, NC, USA) was used to analyze all data by 

performing PROC GLM for the least-significant difference (LSD) test at a 95% confidence level 

(P<0.05). 

 Results and discussion 

 Sugar recoveries from sorghum stalks and switchgrass 

The composition of ground sorghum stalks and switchgrass is shown in Figure 6.2. Sorghum 

stalks had a higher content of lignin (20%) compared with switchgrass (16.9%). Sorghum stalks 

contained three types of polysaccharides: 28.4% glucan, 19.4% xylan, and 1.7% arabinan. 

Switchgrass structure was 35% glucan and 29% xylan; containing a higher amount of total 

polysaccharides compared with sorghum stalks. Sorghum stalks and switchgrass were 

deconstructed using a 1.25% (w/v) sodium hydroxide solution, following the optimized conditions 
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in the previous study (Meesapyodsuk and Qiu, 2008). Pretreated biomass of 58.6 g and 58.4 g 

were obtained from sorghum stalks and switchgrass, respectively. Alkaline pretreatment was 

utilized to effectively eliminate lignin compounds without substaintial loss of polysaccharides 

(Bondeson and Oksman, 2007). After saccharification of each pretreated biomass, sugar recoveries 

from lignocellulosic biomass were investigated. Also, maximum theoretical yields of sugar 

recoveries were determined using a conversion factor of 0.9 from glucose to glucan, and 0.88 from 

xylose (arabinose) to xylan (arabinan) (Kim and Oh, 2013). Figure 6.3A shows sugar yields 

released from 100 g of each lignocellulosic biomass. Total 29.8 g of glucose, 17.8 g of xylose, and 

1.7 g of arabinose were released from 100 g of raw sorghum stalks. This was 94%, 81%, and 89% 

of maximum theoretical yields (TY) for glucose, xylose, and arabinose, respectively. Similar 

amounts of fermentable sugars were achieved from sorghum stalks and switchgrass, although they 

had a different content of polysaccharides. Total sugar yield from 100 g of switchgrass was 34 g 

of glucose and 15 g of xylose. Sugar recoveries from raw switchgrass were 88% and 45% of 

maximal TY for glucose and xylose, respectively. Even though switchgrass content showed higher 

amounts of polysaccharides, lower sugar recovery was obtained due to hemicellulose loss during 

pretreatment. Xylose recovery was substaintially low because harsher conditions were applied for 

pretreatment of switchgrass compared with sorghum stalks. Sugar yield from 100 g of each 

pretreated biomass is shown in Figure 6.3.B. Sugar yields of glucose, xylose, and arabinose from 

100 g of pretreated sorghum stalks were 51 g, 30 g, and 2.9 g, respectively. Whereas, 58 g of 

glucose and 26 g of xylose were released from 100 g of switchgrass. In spite of higher content of 

xylan in switchgrass, xylose yield from pretreated biomass was lower than from sorghum stalks. 

This also reflects substantial loss of hemicellulose during pretreatment. Total sugar yields from 

pretreated sorghum stalks and switchgrass were similar (84.1 g/100 g).    
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Microbial lipid production from lignocellulosic hydrolysates 

Sorghum stalks and switchgrass hydrolysates were utilized as feedstocks for lipid production 

using T. oleaginosus, L. starkeyi, and C. albidus. Both lignocellulosic hydrolysates contained 

acetic acid and citric acid. Acetic acid was released from acetylated hemicellulose (Karunanithy, 

Muthukumarappan and Gibbons, 2012), and citric acid was included to maintain pH during 

enzymatic hydrolysis. Figure 6.4 shows the fermentation profile of each oleaginous yeast using 

sorghum stalks and switchgrass hydrolysates. Sugar consumption rate of T. oleaginosus was 

fastest, compared with the other two strains. T. oleaginosus consumed all sugars in sorghum stalks 

and switchgrass hydrolysates at 72 h. L. starkeyi consumed all glucose in the biomass hydrolysates 

at 72 h, and started using xylose. C. albidus slowly consumed only glucose for 120 h. Other sugar 

sources were not utilized; this might be due to carbon catabolite repression. Citrate utilization was 

only observed by T. oleaginosus. T. oleaginosus consumed a total of 6 g/L citrate in both biomass 

hydrolysates after all glucose was utilized at 48h. L. starkeyi and C. albidus did not use citrate as 

nutrients. Instead of utilization, citrate accumulation was observed during lipid production by C. 

albidus. A total of 3 g/L of citric acid was produced as a secondary metabolite. As was our 

expectation, all strains utilized acetic acid as nutrients. Sorghum stalks and switchgrass 

hydrolysates contained 0.5 g/L acetic acid and completely consumed all yeast strains.  

  Table 6.1 shows fermentation parameters of oleaginous yeast during lipid production. T. 

oleaginosus showed the best performance of lipid production among yeast strains. T. oleaginosus 

accumulated a total of 60% and 58% of lipids using sorghum stalk and switchgrass hydrolysates, 

respectively. Similar levels of DCW (about 21 g/L) were achieved from sorghum stalk and 

switchgrass hydrolysates. Although utilized sugar concentration was higher in the switchgrass 

hydrolysates, higher levels of lipid concentrations (13 g/L) were attained in the sorghum stalk 
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hydrolysates. Therefore, sugar utilization for product formation was more efficient in the sorghum 

stalk hydrolysates. A high lipid yield of 0.29 g/g was obtained by T. oleaginosus using sorghum 

stalk hydrolysates. It was a similar value to the economically feasible lipid yield suggested by 

(Kourist et al., 2015). L. starkeyi also produced higher concentrations of lipids with higher lipid 

content in the sorghum stalk hydrolysates. However, lower lipid yield was obtained in the sorghum 

stalk hydrolysates because fewer amounts of sugars were consumed in the switchgrass 

hydrolysates. Results of statistical analysis showed that lipid accumulation of C. albidus was 

similar to L. starkeyi in the sorghum stalks hydrolysates, but C. albidus produced the lowest 

concentration of lipids in both biomass hydrolysates. This was because lower amounts of DCW 

were obtained using both biomass hydrolysates. These results demonstrated that both lipid content 

and DCW were important factors to achieve high titers of lipids by oleaginous yeast, because lipids 

are intracellular products.  

Figure 6.5 shows the composition of fatty acids produced by oleaginous yeast using sorghum 

stalks and switchgrass hydrolysates. Different species of fatty acids were produced by T. 

oleaginosus, L. starkeyi, and C. albidus. Major fatty acids of T. oleaginosus were palmitic acid 

(C16:0) and oleic acid (C18:1). This result was consistent with previous studies (Kim and Oh, 

2013). Myristic acid (C14) was only produced by T. oleaginosus, but the amount was marginal. 

The most abundant fatty acid of L. starkeyi was oleic acid, accounting for more than 60%. 

(Jaworski and Cahoon, 2003)  also reported that L. starkeyi contented relatively high levels of oleic 

acid (up to 70%), which is preferable in the oleochemical industry. Oleic acid was a major fatty 

acid for all yeast strains because most yeast species include a Δ9 desaturase, which incorporates a 

double bond at Δ9 position of stearic acid or palmitic acid (Probst et al., 2015). T.  oleaginosus 

and C. albidus produced relatively higher levels of linoleic acid (C18:2n6) and linolenic acid 
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(C18:3n3) compared with L. starkeyi. In addition, L. starkeyi did not produce linolenic acid. In the 

fatty acid elongation cycle, oleic acid can be further desaturated to linoleic acid and linolenic acid 

by Δ12desaturase and ω3 desaturase, respectively (Probst et al., 2015). It was assumed that L. 

starkeyi does not have ω3 desaturase, and Δ12desaturase enzyme activity would be insubstantial. 

Therefore, the highest amount of oleic acid, which is a substrate of both desaturase enzymes 

(Δ12desaturase and ω3 desaturase), contented in the L. starkeyi. Also, it is anticipated that a 

desaturase enzyme produced by T. oleaginosus or C. albidus, can be utilized to develop microbial 

strains for polyunsaturated fatty acid production. 

 Lipid yield from lignocellulosic biomass 

Our process of lignocellulosic-based microbial lipid production was evaluated by calculating 

the overall yield of lipid from raw sorghum stalks and switchgrass (Figure 6.6). The highest lipid 

yield was achieved by T. oleaginosus using sorghum stalk as a feedstock. Lipid yields from 

sorghum stalks and switchgrass were not substantially different because similar amount of sugars 

(about 49 g) were recovered from 100 g of both biomasses. This result revealed that species of 

yeast and their fermentation performance directly affected total lipid yield from sorghum stalks 

and switchgrass. The highest lipid yield was achieved by T. oleaginosus from both lignocellulosic 

biomasses, since T. oleaginosus showed the best fermentation performance among other yeast 

strains during lipid production. T. oleaginosus produced 8% higher amount of lipids from sorghum 

stalks containing a 14% lower content of polysaccharides compared with switchgrass. This might 

be due to a substantial hemicellulose loss during pretreatment of switchgrass. It showed another 

key factor to attaining high lipid yields from biomass was to maximize sugar recoveries during 

pretreatment and enzymatic hydrolysis for hydrolysate production. Lipid yields obtained by C. 

albidus and L. starkeyi were not substantially different because of their similar fermentation 



105 

 

performance. C. albidus produced higher amounts of lipids using sorghum stalks, although low-

lipid concentrations were obtained since higher product yield was achieved during fermentation 

using sorghum stalk hydrolysates. Lower amounts of lipids were obtained by L. starkeyi using 

sorghum stalks, even though higher lipid concentrations and contents were attained during 

fermentation of L. starkeyi using sorghum stalk hydrolysates. This was because lower sugar 

consumptions and product yields were observed in sorghum stalk hydrolysates. To sum up these 

results, maximization of sugar recoveries during pretreatment and enzymatic hydrolysis, and 

selection of proper microbial strains for lipid production, were key factors to achieve high yields 

of microbial lipids from lignocellulosic biomass.    

 Strategy to enhance the TAG level in oleaginous yeast systems  

Lipid titer and yields from wild strains were still not substantial for the viable production of 

lignocellulose-based lipids. To improve TAG levels in the oleaginous yeast cultures, a plasmid 

pRS2u2-ACL was constructed. Plasmids pRS2u2 (Figure 6.7) and pOleo-ACL (Figure 6.8) were 

obtained from the Department of Biochemistry and Molecular Biophysics, Kansas State 

University, to construct pRS2u2-ACL. ATP citrate lyase (ACL) catalyzes the cleavage of citrate to 

yield acetyl-CoA and oxaloacetate as described in the Introduction (Figure 1.4). ACL, which exists 

as an activated form in the oleaginous microorganisms, has a responsibility to increase cytosolic 

Acetyl-CoA pool, which is an important substrate for carbon flow to TAG synthesis. Therefore, 

our hypothesis that the overexpression of ACL would improve TAG level in the oleaginous yeast 

system. Construction of pRS2u2-ACL was confirmed by colony PCR (Figure 6.9). First line and 

last line are ladder to check gene size and second line is control of ACL gene; PCR product from 

pOleo-RnACLy was used as control marker. Size of ACL gene derived from Rattus norvegicus is 

3.3 Kb between fifth and sixth line in the ladder. Positive colonies were confirmed by colony PCR; 
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therefore, it seemed that ligation of plasmid pRS2u2-ACL was confirmed. However, disgestion 

using different enzymes and sequencing will be required to check direction of ACL gene in the 

plasmid.  

One of the challenges to express ACL genes in the oleaginous yeast system is that the 

transformation method was not developed for each strain. The chemical method using lithium 

acetate is widely used for yeast transformation. Lithium acetate is known to neutralize charges on 

DNA molecules and generate small holes in the plasma membrane. ssDNA was used to transfer 

DNA into the cells and polyethylene glycerol (PEG) helps bring the DNA into closer position with 

the membrane during lithium acetate transformation. Calvey and coworkers optimized the 

transformation protocol using lithium acetate for L. starkeyi (Calvey, Willis and Jeffries, 2014). 

Results showed that incubation time and heat shock temperature were key factors to increase 

transformation rates. Li and coworkers, which optimized transformation protocol for 

Trichosporonoides oedocephalis (Li et al., 2016), reported that incubation time and calcium 

chloride concentration were the critical factors. Another common transformation method recently 

used for oleaginous yeast is transfection; Agrobacterium mediated transformation. 

Agarobacterium harboring the plasmid are co-cultivated with oleaginous yeast on Hybond-N+ 

membranes in the IMAS plates and transferred to yeast media supplemented with cefotzxime in 

order to kill the Agrabacterium and select transformants (Görner, 2016). Recent researches 

successfully expressed a heterologous gene in the oleaginous yeast system using transfection 

(Salunke et al., 2015; Görner, 2016). 

 Conclusions 

Microbial lipid production from sorghum stalks and switchgrass was investigated using 

oleaginous yeast strains. High-sugar recoveries (89% of TY) from sorghum stalks were obtained 
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via an alkaline pretreatment. T. oleaginosus showed the best fermentation performance using both 

biomass hydrolysates. Lipid titers of 13.2 g/L and lipid yield of 0.29 g/g were achieved by T. 

oleaginosus using sorghum stalk hydrolysates. Results of overall lipid yield assessment revealed 

a key matrix to improve industrial feasibility of lignocelluosic-based microbial lipid production is 

maximal recovery of fermentable sugars from raw biomass and microbial strain development to 

attain better fermentation performance. Also, we anticipate that ACL expression will improve TAG 

levels in the oleaginous yeast.   
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Table 6-1 Fermentation performance of oleaginous yeast during lipid production.  

 
DCW=dry-cell weight 

The data represent average value of triplicate experiments ± sample standard deviation. Values with the same letters, in 

superscripts, within the same column, are not significantly different at the level of P<0.05. 
a Lipid content was defined as weight of extractable lipid relative to weight of dry cell mass. 
b Lipid yield was calculated by dividing amount of lipids by amount of sugar consumed. 

 

  

 

Lipid 

contenta 

(%) 

Lipid 

concentration 

(g/L) 

Lipid       

yieldb 

(g/g) 

DCW 

(g/L) 

Sugar 

consumption 

(g/L) 

Sorghum stalk hydrolysates 

T. oleaginosus 60 ± 2.5A 13.1 ± 0.7A 0.29 ± 0.0A 21.7 ± 0.3A 45 ± 0.7B 

L. starkeyi 44 ± 2.0B 7.9 ± 0.3C 0.16 ± 0.0C 18.1 ± 0.1B 48 ± 0.7A 

C. albidus 42 ± 2.0B, C 4.6 ± 0.2E 0.17 ± 0.0D 11.1 ± 0.1D 27 ± 0.6E 

Switchgrass hydrolysates 

T. oleaginosus 58 ± 2.6A 12.3 ± 0.2B 0.27 ± 0.0B 21.1 ± 0.6A 46 ± 1.1B 

L. starkeyi 39 ± 0.1C 6.5 ± 0.3D 0.17 ± 0.0D 16.6 ± 0.4C 38 ± 0.9C 

C. albidus 44 ± 0.0B 4.7 ± 0.1E 0.16 ± 0.0C 10.7 ± 0.3D 29 ± 1.4D 



109 

 

 
 

Figure 6-1 Schematic diagram of the overall process to produce fermentable sugars from 

lignocellulosic biomass 
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Figure 6-2 Composition of lignocellulosic biomass. The data shows average value of triplicate 

experiments and error bars representing sample standard deviation. 
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Figure 6-3 Sugar yield from (A) raw lignocellulosic biomass; (B) pretreated lignocellulosic 

biomass. The data shows average value of triplicate experiments and error bars representing 

sample standard deviation. 
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Figure 6-4 Fermentation profile during lipid production by (A) T. oleaginosus using sorghum stalk 

hydrolysates; (B) T. oleaginosus using switchgrass hydrolysates; (C) L. starkeyi using sorghum 

stalk hydrolysates; (D) L. starkeyi using switchgrass hydrolysates; (E) C. albidus using sorghum 

stalk hydrolysates; (F) C. albidus using switchgrass hydrolysates, The data shows average value 

of triplicate experiments and error bars representing sample standard deviation. 
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Figure 6-5 Composition of fatty acid produced from (A) sorghum stalk hydrolysates; (B) 

switchgrass hydrolysates. The data shows average value of triplicate experiments and error bars 

representing sample standard deviation. 
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Figure 6-6 Lipid yields from (A) sorghum stalk; (B) switchgrass. The data shows average value 

of triplicate experiments and error bars representing sample standard deviation. 
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Figure 6-7 Expression vector pRS2u2 

F1 ORI: origin of replication; HygroR: hygromycein B resistance gene; AP(R): ampicillin 

resistance gene; ScTEF1 promoter: TEF promoter derived from Saccharomyces cerevisiae; 

ScTEF1 terminater: TEF terminater derived from S. cerevisiae; MCS: multiple cloning site; 

SsACT: ACT promoter derived from S. cerevisiae; scTub terminater: Tub terminater derived 

from S. cerevisiae; LoxP-AgTEF2 promoter: TEF promoter derived from Ashnya gossypii 
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Figure 6-8 Plasmid harboring ACL gene pOeo-RnACLY 

f1 (+) ORI: origin of replication; amp: ampicillin resistance gene; RnACLY: ATP-citrate lyase 

derived from Rattus norvegicus 
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Figure 6-9 Colony PCR to confirm plasmid construction of pRS2u2-ACL. Control was the PCR 

product of plasmid pOleo-RnACLy. Colony 1 to 5 were randomly selected after ligation and 

confirmed the plasmid construction using colony PCR.  
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Chapter 7 - Corn bran bioprocessing: development of  

an integrated process for microbial lipids production 

 

 Abstract 

Corn bran is known as a low value co-product after dry or wet milling process due to their 

unappealing taste and flavor, as well as its technical drawback in the food industry. However, corn 

bran, which is a polysaccharides-rich material, is an attractive feedstock for bio-based chemical 

production. In this study, the potential of corn bran as a feedstock for microbial lipid production 

using oleaginous yeast, T. oleaginosus ATCC20509, was investigated. This study found the direct 

effect of pretreatment conditions on the lipid accumulation of T. oleaginosus during fermentation 

using response surface methodology (RSM). In addition, overall lipid yield from raw corn bran 

was calculated to evaluate our corn bran bioconversion process with different pretreatment 

conditions. Compared with synthetic media, up to 50% higher lipid accumulations in T. 

oleaginosus was achieved using corn bran hydrolysates during the fermentation process. Among 

pretreatment conditions, solid loading significantly affected the fermentation process for lipid 

accumulation. Overall yield assessment showed that the highest sugar yields (0.53 g/g of de-

starched corn bran) and lipid yields (216 mg/g of de-starched corn bran) were obtained at 5% solid 

loading and 1% acid loading at 30 min of pretreatment. This study demonstrated that corn bran 

can be a viable sugar supplier for bio-based chemical production in biorefineries. Also, the RSM 

model in this work can provide useful information to design the integrated bioconversion platform 

for lipid production using corn bran.  
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 Introduction 

Microbial lipids are preferable to alternate plant oils in the bio-diesel and an oleo-chemical 

industry, due to their fatty acid composition, environmental impact, year-round production, and no 

requirement of broad lands (Sitepu et al., 2014; Zhou et al., 2016). Oleaginous yeast efficiently 

accumulates lipids of at least 20 % (w/w of dry-cell mass), mainly as a form of triacylglycerides 

(TAG), using a broad array of agricultural wastes (Vieira et al., 2016; Matsakas et al., 2014; Lin 

et al., 2013; Kerkhoven et al., 2016) that can be utilized as host strains for microbial lipid 

production. Economics would be the most critical factor for successful microbial lipid production 

in a biorefinery (Jin et al., 2015; Lennen and Pfleger, 2012). Many endeavors to improve 

economically feasible production of microbial lipids have been attempted such as exploration of 

new sugar suppliers and development of bioconversion processes to reduce costs. Previous studies 

have successfully produced microbial lipids using renewable biomass — such as corn stover, 

wheat straw, and switchgrass — as substrates (Gong et al., 2014; Slininger et al., 2016; Yu et al., 

2011). 

Bran, the outer layer of cereals, is too often discarded during the milling process instead of 

being used as a food application, due to consumers’ sensory expectations and technological 

drawbacks in the food industry (Coda, Katina and Rizzello, 2015). Frequent corn by-products of 

dry milling are corn flour, corn bran, and hominy feed, and their economic disposal is the main 

concern of the food industry in fulfilling environmental regulations (ElMekawy et al., 2013). Corn 

bran is the most abundant, low-valued co-product of the industrial corn milling process in spite of 

high amounts of polysaccharide content with marginal amounts of lignin (Yadav et al., 2015). 

Corn bran is produced in yields of 60-70 g/kg, with a total production of 3 x 106 dry tons per year 

(Rose, Inglett and Liu, 2010). Corn bran contains a large percentage of hemicellulose and has an 



120 

 

arabinoxylan structure consisting of a β-1,4 linked D-xylopyranosyl backbone and α-L-

arabinofuranosyl residues as side units linked (1 → 2) or (1 → 3) to the main chain (Rose, Inglett 

and Liu, 2010; Yadav et al., 2015). Therefore, hemicellulose can be hydrolyzed into pentose 

(xylose and arabinose) and hexose (glucose, galactose, and mannose) (Peng et al., 2012), and is a 

promising substrate for microbial lipid production. Development of an effective pretreatment 

process is responsible for the recalcitrant of biomass structure toward hydrolysis of carbohydrate 

polymer (Guragain et al., 2014). Another bottleneck for integrated production of microbial lipids 

from renewable biomass is the generation of inhibitory compounds such as furfural and 

hydroxyfurfural (Keshav et al., 2016; Cavalaglio et al., 2016). Acetic acid is also an inevitable 

inhibitory compound during bioprocessing of hemicellulosic bio-polymers. Harsh conditions 

should be applied to expose the structure of lignocellulosic biomass via a pretreatment process. 

Therefore, generation of inhibitory compounds cannot be avoided in a biorefinery. To maximize 

utilization of corn bran hydrolysates, selection of an appropriate yeast strain, which has high 

tolerance to toxic compounds and enables use of diverse monomer sugars as a carbon source — 

including xylose and arabinose, would be critical.  

Trichosporon oleaginosus ATCC 20509, which have been recently classified as 

basidomycetous, are known to accumulate up to 70% (w/w of dry mass) lipids using a variety of 

carbon sources such as pectin-derived sugar acids, N-acetylglucosamine, and whey permeate 

(Görner et al., 2016). Also, many studies reported that T. oleaginosus consume carboxylic acids, 

which are known as inhibitory compounds during the fermentation process. T. oleaginosus 

efficiently produced 8 g/L of lipids using acetate-based nutrients, with a yield of 0.15 g/g and 

productivity of 0.64 g/L/h (Gong et al., 2015). Lian and coworkers reported that acetate and 



121 

 

formate were good energy sources for contribution to growth and lipid production of T. 

oleaginosus (Lian et al., 2012).  

This study developed the integrated process for microbial lipid production from de-starched corn 

bran. First, pretreatment conditions were optimized to obtain high sugar recovery and subsequent 

lipid yields. Fifteen runs of pretreatment conditions were applied for de-starched bran, and their 

sugar recoveries were investigated. Also, fifteen runs of corn bran hydrolysates were evaluated as 

nutrients for lipid production by T. oleaginosus. In addition, overall lipid yield from raw corn bran 

were calculated to investigate corn bran utilization as feedstocks for lipid production. Furthermore, 

the relationship between pretreatment conditions and lipid accumulation in T. oleaginosus was 

investigated using response surface methodology (RSM). Our study revealed that corn bran can 

be an alternative sugar supplier in bio-based chemical production, and optimization of pretreatment 

conditions would be a critical factor to improve viable production of microbial lipids.   

 Materials and methods 

 Microorganisms and fermentation 

Trichosporon oleaginosus ATCC20509 was purchased from the American Type Culture 

Collection (ATCC, Manassas, VA, USA), and grown in a yeast mold broth (YM broth, Difco, 

Detroit, MI, USA). Culture conditions were 25 °C at 200 rpm. Yeast cultures were preserved in a 

YM agar plate at 4 °C, and re-cultivated to a fresh plate once a month. 

 Preparation of de-starched corn bran 

Corn bran was obtained from LifeLine Foods, St. Joseph, Missouri, USA, and milled using a 

Fitz-Mill (Fitzpatrick Company, Elmhurst, IL, USA) fitted with a 2.36-mm screen. After milling, 

corn brans were dried at 40 °C for 72 h.  
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The overview of corn bran hydrolysate preparation is shown in Figure 7.1. Alpha-amylase 

(Liquozyme, Novozymes Inc. Franklinton, NC, USA) and glucoamylase (GC480, Genencor 

International Inc., Palo Alto, CA, USA) were provided from MGP Ingredients (Atchison, KS, 

USA) to remove starch via liquefaction and saccharification. Corn bran was mixed with distilled 

water at a rate of 15% (w/v) solid loading, and α-amylase was added with a concentration of 1 

μL/g starch. Liquefaction was conducted at 80 °C for 1h. Corn bran slurry was cooled to 65 °C 

and saccharification was performed by adding 5 μL/g starch of glucoamylase at 65 °C for 2h. De-

starched corn bran was washed with water to completely remove starch and dried at 40 °C until 

moisture content was below than 10 % (w/w).  Raw corn bran contented 9.6% cellulose, 25.8% 

hemicellulose, and 32.2% starch; de-starched corn bran was composed of 14.2% cellulose and 

38% hemicellulose (Probst and Vadlani, 2015).  

 Pretreatment and enzymatic hydrolysis of de-starched corn bran 

Table 7.1 shows 15 runs of experimental conditions to optimize pretreatment for de-starched 

bran. Different solid loading (5, 10, 15%), acid loading (0.5, 1, 1.5%), and pretreatment times (30, 

45, 60 min) were applied for each run. Corn bran was mixed with water in a 250 mL flask at a 

solid loading of 5, 10, or 15% (w/v). Sulfuric acid was added into each flask at a rate of 0.5, 1, or 

1.5 % (w/v) and pretreated at 121 °C for 30, 45, or 60 min. After pretreatment, flasks were cooled 

at room temperature for 2 h and pH was neutralized to 5.0 using 10 M sodium hydroxide. Cellic 

C-Tec2 and Cellic H-Tec2 (Novozyme Inc, Franklinton, NC) were added into each flask at a rate 

of 2.7 and 0.3 % (w/w of dry biomass), respectively. Enzymatic hydrolysis was conducted at 55 

°C and 140 rpm for 48 h. Corn bran hydrolysates were separated via centrifugation at 8500 rpm 

for 20 min (Sorvall Super T21, Thermo Fisher Scientific Inc., Waltham, MA, USA) and sterilized 

using filters with 0.22 μm pore size.  
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 Fermentation conditions 

A starter culture was prepared by inoculating a single colony from a plate and growing it in a 

YM broth at 25 °C and 200 rpm for 12 h. Two mL of seed culture were transferred into a 250 mL 

flask containing 20 mL of corn bran hydrolysates. Fermentation was performed at 25 °C, 200 rpm, 

for 120 h. After fermentation, cells were harvested via centrifugation at 8500 rpm for 20 min and 

washed two times with dH2O to completely remove residue of nutrient media. Cells were 

concentrated to ~ 109 cells/mL and preserved at -80 °C for 1 day prior to lipid extraction.  

Lipid extraction and fatty acid analysis 

Concentrated cells were thawed and 0.5mL of the product was transferred into a 2.5 mL 

microvial, followed by an addition of 0.5 mL of chloroform, 0.5 mL of methanol, and 1 mL of 0.5 

mm beads (BioSpec, Bartlesville, OK, USA). Bead beating was performed to lysate cells using a 

bead-beater homogenizer (Mini-Beadbeater-24, BiosSpec Products, Inc., Bartlesville, OK, USA). 

Six cycles of bead beating (45 sec intervals, 10 min cooling on ice) were conducted, and cell lysates 

were transferred into a Kimax tube. Additionally, chloroform, methanol, and water were added to 

make the final ratio 1:2:0.8. Cell mixtures were vortexed for 1 min and centrifuged at 4000 rpm 

for 15 min. The bottom layer was transferred to a clean Kimax tube and an additional 1 mL of 

chloroform was added to the previous cell mixtures. This procedure was repeated three times and 

combined all chloroform layers. One mL of potassium phosphate was added and centrifuged at 

4000 rpm for 10 min. Chloroform layers were dried under nitrogen gas — 1 mL at 40 °C until the 

remaining portion was 1 mL. The remaining chloroform layer containing lipids was transferred 

into a pre-weighed microvial and completely dried at 40 °C. Lipids in the microvial were weighed 

to calculate final lipid weight. One mL of chloroform was added to the microvial and preserved at 

-80 °C for further fatty acid analysis.  
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Transesterification was performed to convert fatty acids in the lipids to fatty acid methyl ester. 

Internal standard (C15) and lipid samples were transferred into Kimax tubes, and the chloroform 

layer was evaporated under nitrogen gas. Transesterification was conducted by adding 1 mL of 3 

M methanolic hydrochloric acid. Tubes were incubated at 78 °C for 30 min. After cooling, 2 mL 

of water, 1.6 mL of chloroform, and 0.4 mL of hexane were added and vortexed. The mixtures 

were centrifuged at 4000 rpm for 5 min to obtain separated layers. The lower layers were collected 

and the organic phase was evaporated, followed by an addition of 100 μL of hexane. Fatty acid 

composition was analyzed using a gas chromatograph (GC-2014, Shimadzu Scientific 

Instruments, Columbia, MD, USA) equipped with a flame ionization detector (FID) and a capillary 

column (Zebron ZB-Waxplus 30 m x 0.25 mm x 0.25 μm, Phenomenex, Torrance, CA, USA). 

Temperatures of injector and FID were set at 220 °C and 250 °C, respectively. The relative 

retention time of fatty acids was determined using an external standard (Supleco 37 Component 

FAME Mix). 

Analysis of sugars and inhibitory compounds  

Sugar and inhibitory compounds were identified and quantified using high-performance liquid 

chromatography (HPLC), equipped with a Rezex ROA organic acid column (300 x 7.8 mm, 

Phemomenex Inc., Torrance, CA, USA) and a refractive index detector (RID). Column and RID 

were set at 80 °C and 40 °C, respectively. Sulfuric acid amounts of 0.005 N were utilized as the 

mobile phase with a flow rate of 1 mL/min. 

Experimental design 

Response surface methodology was used to optimize pretreatment conditions (solid loading, 

pretreatment time and acid loading) of corn bran. The effect of pretreatment conditions on lipid 

content during fermentation was investigated to identify the optimum composition of corn bran 

hydrolysates for lipid accumulation by T. oleaginosus. The experimental design was generated by 
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the software Design Expert V. 8.0.7.1 (Stat-Ease Inc., Minneapolis, MN, USA). Box-Behnken 

design (Box and Behnken, 1960) was used to optimize the levels of independent input factors, 

which were solid loading, pretreatment time and acid loading (Table2), and lipid content (w/v) of 

T. oleaginosus was the response. A total of 13 runs comprising 3 replicates in central point was 

performed at the random order. Models and regression coefficients were validated with an 

Analysis of Variance (ANOVA), and significance for statistical results was established for P < 

0.05.  

Statistical methods  

Design Expert software (Version 8.0.7.1, Stat-Ease Inc., Minneapolis, MN, USA) was used to 

generate experimental designs for 15 runs of pretreatment conditions. A total of 15 runs was carried 

out in triplicate, in random order. SAS software (SAS v9.4, SAS institute, Cary, NC, USA) was 

used to perform PROC GLM for the least-significant-difference (LSD) test at a 95% confidence 

level (P<0.05).  

 Results and discussion 

 Effect of pretreatment conditions on production of fermentable sugars and inhibitors 

Previous study regarding lipid production from bran showed that higher lipid yields were 

obtained from de-starched-bran hydrolysates compared with whole bran hydrolysates since de-

starched bran caused production of lower amount of inhibitory compounds (Probst and Vadlani, 

2015). Therefore, starch fraction was removed via liquefaction and saccharification before 

pretreatment process (Fiure 7.1). A total of 15 runs of pretreatment conditions were generated 

using Box-Behnken design to optimize the pretreatment conditions of de-starched corn bran. 

Pretreatment conditions with different solid loading (5, 10, 15%), acid loading (0.5, 1, 1.5 %) and 

pretreatment times (30, 45, 60min), were applied to disrupt the structure of de-starched corn bran 
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(Table 7.3). The pretreated corn bran was converted to monosaccharides via enzymatic hydrolysis 

using cellulytic and hemicellulytic enzymes, and sugar recoveries were analyzed to investigate the 

effect of pretreatment conditions. Table 7.4 shows sugar yields of fifteen types of corn bran 

hydrolysates from de-starched corn bran. The major sugar species released from de-starched corn 

bran was xylose. Xylose yield were normally 15 to 20% higher than glucose yields, depending on 

pretreatment conditions. Compositional analysis results showed 2.7% higher content of 

hemicellulose than cellulose (Table 7.1). Therefore, it was conceivable to achieve higher yields of 

xylose than glucose. The highest sugar yields of 0.53 g/g were obtained from corn bran 

hydrolysates applied Run 9 condition. The lowest sugar yields of corn bran hydrolysates applied 

Run 6 condition might have been due to pretreatment conditions of 0.5% acid loading for 45 min 

being insufficient to disrupt corn bran structures at 15% solid loading. 

Table 7.5 shows inhibitor yields from de-starched corn bran. HMF, furfural, acetic acid, and 

formic acid, produced from corn bran. Acetic acid — a result from the hydrolysis of the acetyl 

group of hemicellulose — were the most abundant compounds (Guragain, Wang and Vadlani, 

2016; Chen et al., 2012). HMF and furfural were typical by-products derived from pentose sugars 

under acidic conditions (Chandel, Da Silva and Singh, 2013). They can be further dehydrated to 

furfurals and formic acid under severe pretreatment conditions due to their unstable structure 

(Jönsson and Martín, 2016). HMF, furfural, and formic acid were minor compounds compared 

with acetic acid. However, a synergic effect of those compounds during fermentation was reported 

by (Mussatto and Roberto, 2003; Chandel, Da Silva and Singh, 2013). Marginal inhibitor yields 

were observed in the corn bran hydrolysates applied Run 6 condition, and this result also showed 

the pretreatment condition of Run 6 did not efficiently disturb corn bran structures; therefore, not 

enough sugars and minimal inhibitors were obtained. Sugar and inhibitor concentrations of corn 
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bran hydrolysates are shown in Figure 7.2. Although the highest sugar yields were achieved from 

corn bran applied Run 9 condition, total sugar concentrations were not that significant because of 

lower levels of solid loading (5%). When a 5% solid loading was considered during pretreatment, 

23 to 27 g/L of total sugars were produced. Highest sugar concentrations (78 g/L) were obtained 

from corn bran applied Run 5 condition, and these were three times higher than the results of corn 

bran hydrolysates applied pretreatment conditions of Run 9, 10, 14, and 15. This might be due to 

the three times higher solid loading used in the pretreatment conditions for Run 9, 10, 14, and 15. 

Even if a 15% solid was utilized for Run 6, only 28 g/L of sugars were obtained. This showed that 

1% acid loading with 60 min of pretreatment time was effective, but 0.5 % acid loading with 45 

min of pretreatment time was not enough conditions for 15% solid loading. The correlation 

between pretreatment conditions and compound generation is shown in Figure 7.3. As higher sugar 

concentrations were achieved, concentration of inhibitory compounds also increased showing a 

significant relationship with solid loading. With higher solid loading, higher sugars and inhibitors 

were produced. There was not a significant correlation between acid loading or pretreatment 

duration, with the generation of sugars and inhibitors.     

 Effect of pretreatment conditions of corn bran on cell growth and lipid 

production by T. oleaginosus 

For integrated lipid production using corn bran hydrolysates, 10% (v/v) inoculum of T. 

oleaginosus was directly transferred into filter-sterilized corn bran hydrolysates without any 

additional supplement of nutrients. Fermentation was performed at 25 °C and 200 rpm for 5 days, 

and harvested to investigate lipid production of T. oleaginosus from 15 runs of corn bran 

hydrolysates. T. oleaginosus only grew in the Run 9, 14 and 16 corn bran hydrolysates which a 

5% solid loading was applied during pretreatment. It might be because of that corn bran 
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hydrolysates applied pretreatment conditions of Run 9, 14 and 15 contained lower concentrations 

of inhibitors compared with other runs of hydrolysates. Higher solid loading led to higher 

concentrations of sugars, but also caused higher levels of inhibitory compounds. Therefore, higher 

levels of solid loading during pretreatment adversely affected both sugar yields and cell growth.  

Fermentation performance of T. oleaginosus using corn bran hydrolysates was investigated 

and compared with lipid production using synthetic media (YM broth) (Table 7.6). T. oleaginosus 

accumulated higher levels of lipids using corn bran hydrolysates compared with synthetic media. 

Oleaginous yeasts are known to preferably store high level of lipids under severe stress conditions 

(Calvey et al., 2016). Therefore, it was assumed that corn bran hydrolysates, which provided stress 

conditions, induced high level of lipid accumulations in T. oleaginosus. Among the three runs of 

fermentations (Run 9, 14 and 15), the highest lipid contents and concentrations were achieved from 

Run 9, despite its lower levels of dry-cell weight. The lowest sugar utilization for cell growth was 

obtained from hydrolysates applied Run9 condition. Therefore, Ypx showed that T. oleaginosus 

most efficiently produced lipids using hydrolysates applied Run 9 condition. Compared with the 

previous study by Probst et al (Probst and Vadlani, 2015), which produced microbial lipids from 

de-starched corn bran hydrolysates using Lipomyces starkeyi, 1.6-fold higher lipid content and 5-

fold higher Yps were achieved from hydrolysates applied Run 9 conditions, even though lower 

level of dry-cell mass was produced; 28% (w/w) of lipid content and 70 mg/g lipid yields were 

obtained from de-starched corn bran hydrolysates. It revealed that optimization of pretreatment 

condition and selection of robust yeast culture led to significant enhancement of lipid yields from 

corn bran.   

Fatty acid species of lipids produced by T. oleaginosus are presented in Figure 7.4. Major fatty 

acid species of T. oleaginosus were palmitic acid and oleic acid, regardless of nutrient media, 
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which aligned with the results included in the previous studies (Thiru, Sankh and Rangaswamy, 

2011; Tchakouteu et al., 2015). No significant differences of fatty acid composition were observed 

among all corn bran hydrolysates. Most yeast thioesterases specifically catalyze saturated fatty 

acid, such as palmitic acid and stearic acid, and undergo further elongation and desaturation to 

produce unsaturated fatty acids (Probst et al., 2015). Therefore, this may be the reason why 

palmitic acid and oleic acid were the major fatty acids of most oleaginous yeast strains.  

 Overall product yield of microbial lipids from corn bran 

Overall yield of lipids from raw corn brans were calculated to evaluate the optimized 

pretreatment and fermentation processes (Figure 7.5). After liquefaction and saccharification of 

raw corn bran, a total of 40.9 g of de-starched corn bran was obtained. The de-starched corn bran 

was utilized to produce fermentable sugar solution via pretreatment and enzymatic hydrolysis. 

Sugar and lipid yields of Run 9, 14, and 15 were calculated because T. oleaginosus grew only in 

those hydrolysates. The value of Ypx showed that sugar utilization for lipid production by T. 

oleaginosus was same in the three types of corn bran hydrolysates during fermentation. Therefore, 

lipid yield from corn bran (Yps) depended on sugars yield from corn bran. The highest sugar yield 

was achieved using pretreatment condition of Run 9 (0.53 g/g of de-starched bran), and T. 

oleaginosus accumulated the highest lipid contents (46%) and concentrations (3.8 g/L). This result 

showed that 5% solid loading and 1% acid loading, at 121 °C for 30 min, would be appropriate 

pretreatment condition of de-starched corn bran for lipid production by T. oleaginosus. Also, this 

study demonstrated that pretreatment condition is the key factor in achieving high yield of lipids. 
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     Response surface methodology for improving lipid content of T. oleaginosus 

This study investigated the influence of pretreatment conditions on lipid accumulation 

performance by T. oleaginosus to provide useful information towards the integrated bioconversion 

process. Pretreatment conditions were used as input factors and the lipid contents of T. oleaginosus 

were response variables (Table 7.2). Response surface methodology using Box-Behnken design 

was used to optimize the pretreatment conditions of de-starched corn bran for obtaining high 

accumulation of lipids by T. oleaginosus. Box-Behnken design allows the efficient estimation of 

the first- and second- order coefficients of the mathematical models (Bezerra et al., 2008). A linear 

regression model was developed based on the experimental results and the estimated lipid content 

was Eq. (1).  

Equation (1): Lipid content (%) = (7.63 - 0.47 x A – 2.73 x B + 0.03 x C)2 

(A: solid loading, B: acid loading, C: pretreatment time) 

An analysis of variance indicated that the linear models for lipid content was significant as the 

P value was lower than 0.05.  The results indicated that solid loading was the highest significant 

factor determining lipid content whereas the effect of pretreatment time was insignificant because 

its P value was higher than 0.05.  The three-dimensional response surface plot for modeling the 

results was shown in Figure 7.6. Surface plot presented the effect of solid loading and acid loading 

on lipid accumulation of T. oleaginosus at the constant pretreatment time. Since pretreatment 

condition was not the significant factor, surface plot was not much changed at the different 

pretreatment time. The plots predicted that higher lipid content was achieved at the lower solid 

loading and lower acid loading during pretreatment. Also, the effect of solid loading was more 

significant rather than acid loading. The response surface model demonstrated that pretreatment 

conditions, specifically solid loading and acid loading, directly affected lipid accumulation by T. 
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oleaginosus during fermentation process. This model could be used for mathematical estimation 

of pretreatment conditions for lipid production. 

 Conclusion 

This study demonstrated that corn bran can be a valuable sugar supplier for microbial lipid 

production. During the fermentation process, T. oleaginosus accumulated higher lipid content 

compared with synthetic media. In addition, the pretreatment conditions were optimized to obtain 

high lipid accumulation during fermentation process. Higher sugar and lipid yields were obtained 

at lower levels of solid loading (5%). The highest sugar yield of 0.53 g/g and lipid yield of 216 

mg/g were achieved from de-starched corn bran. Also, the correlation between pretreatment 

conditions and fermentation process was identified using RSM. The RSM model showed that solid 

loading and acid loading were the significant factors for lipid accumulation by T. oleaginosus. The 

optimized pretreatment condition and selection of robust yeast culture substantially enhanced the 

lipid production from corn bran compared with previous study. This work showed corn bran can 

be used as alternative feedstocks for microbial lipid production in biorefineries. It is anticipated 

that this study can provide invaluable information for integrated bioconversion process for lipid 

production using corn bran.  
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Table 7-1 Composition of corn bran and de-starched corn bran (Probst and Vadlani, 2015) 

Component (%, w/w) Corn bran De-starched corn bran 

Cellulose 9.6 ± 0.2 14.2 

Hemicellulose 25.8 ± 1.3 38.0 

Starch 32.2 ± 3.3 - 

Acid detergent lignin 1.4 ± 0.1 2.1 
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Table 7-2 Factors and levels of variables in the central composite design 

Levels 
Solid loading  

(%, w/v) 

Acid loading 

 (%, w/v) 

Pretreatment time 

(min) 

Lower limit 5 0.5 30 

Upper limit 15 1.5 60 
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Table 7-3 Experimental runs to optimize pretreatment conditions of de-starched corn bran 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Run 
Solid loading 

(%, w/v) 

Acid loading 

(%, v/w) 

Pretreatment time 

(min) 

R1 10 1 45 

R2 15 1.5 45 

R3 10 1 45 

R4 10 1.5 60 

R5 15 1 60 

R6 15 0.5 45 

R7 10 1 45 

R8 10 0.5 30 

R9 5 1 30 

R10 5 1.5 45 

R11 10 0.5 60 

R12 10 1.5 30 

R13 15 1 30 

R14 5 1 60 

R15 5 0.5 45 
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Table 7-4 Sugar yields from de-starched corn bran 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The data represent average values of triplicate experiments ± sample standard deviation. Values with the same letters, in 

superscripts, within the same column, are not significantly different at the 95% confidence level. 
 

 

  

Experimental 

runs 

Glucose 

(g/100g bran) 

Xylose 

(g/100g bran) 

Arabinose 

(g/100g bran) 

R1 16.9 ± 0.2C,D,E 20.2 ± 0.5D,E 7.8 ± 0.3D,E 

R2 15.9 ± 0.2E 18.8 ± 0.5E,F 7.8 ± 0.3D,E 

R3 17.2 ± 0.2B,C,D,E 20.7 ± 0.4C,D 8.0 ± 0.3D,E 

R4 18.2 ± 0.1A,B,C 21.9 ± 0.2B,C,D 9.0 ± 0.3A,B,C 

R5 18.5 ± 0.7A,B,C 22.6 ± 0.9A,B 9.4 ± 0.4A 

R6 10.0 ± 0.1F 4.3 ± 0.1E,FG 3.5 ± 0.1F 

R7 17.1 ± 0.3C,D,E 20.4 ± 0.4C,D,E 7.9 ± 0.2D,E 

R8 17.9 ± 0.7A,B,C,D 18.2 ± 0.8F 8.5 ± 0.1B,C,D,E 

R9 19.4 ± 0.8A 24.2 ± 1.0A 9.4 ± 0.5A 

R10 17.0 ± 0.6C,D,E 20.2 ± 0.7D,E 8.1 ± 0.4C,D,E 

R11 17.6 ± 1.4C 20.3 ± 1.6D,E 8.5 ± 0.6B,C,D,E 

R12 16.7 ± 0.1C,D,E 23.1 ± 0.3A,B 9.2 ± 0.2A,B 

R13 16.6 ± 0.1D,E 20.0 ± 0.3D,E 8.4 ± 0.1B,C,D,E 

R14 18.7 ± 0.3A,B 22.3 ± 0.5B,C 8.7 ± 0.1A,B,C,D 

R15 17.1 ± 0.2B 20.2 ± 0.3D,E 7.6 ± 0.1E 
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Table 7-5 Inhibitor yields from de-starched corn bran 

 

HMF=hydroxymethylfurfural 

The data represent average values of triplicate experiments ± sample standard deviation. Values with the same letters, in 

superscripts, within the same column, are not significantly different at the 95% confidence level. 
  

Experimental 

runs 

HMF 

(g/100g bran) 

Furfural 

(g/100g bran) 

Acetic acid 

(g/100g bran) 

Formic acid 

(g/100g bran) 

R1 0.05 ± 0.0B 0.22 ± 0.0E 2.8 ± 0.0B 0.06 ± 0.0B,C,D 

R2 0.02 ± 0.0E 0.29 ± 0.0C 2.7 ± 0.0B 0.09 ± 0.0A,B 

R3 0.05 ± 0.0B 0.21 ± 0.0E 2.9 ± 0.0B 0.06 ± 0.0B,C,D 

R4 0.07 ± 0.0A 0.40 ± 0.0A 3.1 ± 0.0A 0.10 ± 0.0A 

R5 0.05 ± 0.0B 0.29 ± 0.0C 3.1 ± 0.1A 0.08 ± 0.0A,B,C 

R6 0.01 ± 0.0F 0.02 ± 0.0J 0.8 ± 0.0C 0.0 ± 0.0F 

R7 0.05 ± 0.0B 0.24 ± 0.0D 2.8 ± 0.0B 0.06 ± 0.0B,C,D 

R8 0.02 ± 0.0E 0.06 ± 0.0I 2.7 ± 0.1B 0.0 ± 0.0F 

R9 0.04 ± 0.0C 0.14 ± 0.0G 3.2 ± 0.1A 0.05 ± 0.0D,E 

R10 0.03 ± 0.0D 0.36 ± 0.0B 2.8 ± 0.1B 0.08 ± 0.0A,B,C 

R11 0.03 ± 0.0D 0.11 ± 0.0G,H 2.8 ± 0.2B 0.04 ± 0.0D,E 

R12 0.04 ± 0.0C 0.18 ± 0.0F 3.2 ± 0.0A 0.06 ± 0.0B,C,D 

R13 0.02 ± 0.0E 0.12 ± 0.0G,H 2.8 ± 0.0B 0.10 ± 0.0A 

R14 0.04 ± 0.0C 0.26 ± 0.0D 3.1 ± 0.1A 0.07 ± 0.0A,B,C 

R15 0.03 ± 0.0D 0.10 ± 0.0H 2.7 ± 0.0B 0.0 ± 0.0F 
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Table 7-6 Fermentation performance of T. oleaginosus  

Nutrients 
Lipid content 

(%) 

Lipid titers 

(g/L) 

DCW 

(g/L) 

Yps 

(g/g) 

Yxs 

(g/g) 

Ypx 

(g/g) 

YM 30 ± 0C 2.4 ± 0.0D 7.9 ± 0.2C 0.1 ± 0.0A 0.4 ± 0.0A 0.3 ± 0.0C 

Run 9 46 ± 3A 3.8 ± 0.2A 8.4 ± 0.3B,C 0.1 ± 0.0A 0.2 ± 0.0B 0.5 ± 0.0A 

Run 14 32 ± 2C 2.9 ± 0.2C 9.3 ± 0.5A 0.1 ± 0.0A 0.4 ± 0.0A 0.3 ± 0.0C 

Run 15 39 ± 3B 3.4 ± 0.2B 8.7 ± 0.4B 0.1 ± 0.0A 0.4 ± 0.0A 0.4 ± 0.0B 

 
DCW=dry-cell weight 

The data represent average values of triplicate experiments ± sample standard deviation. Values with the same letters, in 

superscripts, within the same column, are not significantly different at the level of (P<0.05). 
1Yps was calculated by dividing the amount of lipids by the amount of consumed glucose. 
2Yxs was calculated by dividing the amount of dry cell mass by the amount of consumed glucose.  
3Ypx was calculated by dividing the amount of lipids by the amount of dry cell mass.  
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Figure 7-1 Schematic of corn bran hydrolysates production 
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Figure 7-2 Released compounds from de-starched corn bran (A) sugar concentrations; (B) inhibitor 

concentrations. The data shows average value of triplicate experiments and error bars representing 

sample standard deviation. 
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Figure 7-3 Effect of pretreatment condition on generation of sugars and inhibitors (A) correlation 

between sugar generation and inhibitor generation; (B) effect of solid loading on sugar generation; 

(C) effect of solid loading on inhibitor generation. The data shows average value of triplicate 

experiments and error bars representing sample standard deviation. 
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Figure 7-4 Fatty acid profile of lipid produced from corn bran hydrolysates by T. oleaginosus. The 

data shows average value of triplicate experiments and error bars representing sample standard 

deviation. 
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Figure 7-5 Lipid yields from raw corn bran 
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Figure 7-6 Surface plot of predicted lipid contents in T. oleaginosus 
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Chapter 8 – Conclusions and Future Research 

Microbial lipids produced by oleaginous yeast are attractive feedstocks to synthesize a variety 

of fatty acid-based materials in an oleochemical industry. Economics would be the critical factor 

for viable production of lignocellulose-based microbial lipids. The goal of this research was to 

produce microbial lipids from renewable biomass, as well as to evaluate the overall bioconversion 

process for an integrated platform of microbial lipid production. The following conclusions were 

drawn from this doctoral research:  

1)  Acid pretreatment induced the generation of xylose-rich sugar streams from 

lignocellulosic biomass. Activated charcoal was effective to remove hydrophobic 

inhibitors such as furfural and HMF from the pretreatment stream of sorghum stalk 

hydrolysates. Resin mixtures in a 7:3 ratio of cationic and anionic exchangers 

completely removed most of the inhibitory compounds from sorghum stalk 

hydrolysates.  

2) Optimized conditions for T. oleaginosus fermentation provided high yield and 

productivity of lipid production, using lignocellulosic hydrolysates. 

3) Microbial lipids were successfully produced from lignocellulosic biomass by 

oleaginous yeast cultures such as T. oleaginosus, L. starkeyi, and C. albidus. Highest 

lipid yield from sorghum stalks were achieved by T. oleaginosus.  

4) Corn bran, which is a low-value by-product of the corn milling industry, was utilized 

as a substrate for microbial lipid production using T. oleaginosus. Optimization of the 

pretreatment condition was the key factor to achieve high yields of lipids from corn 

bran.  



145 

 

5) The bioconversion process from switchgrass to FFAs was demonstrated using 

engineered E. coli strains, and high yields of FFAs were achieved by E. coli ML103 

pXZ18Z.  

Based on the investigations from this doctoral research, the sustainable platform for 

lignocellulose-based microbial lipids was suggested (Figure 8.1). Lipid production using 

oleaginous yeast requires high amount of carbon sources. Therefore, efficient utilization of 

lignocellulosic feedstocks is essential to improve sustainability and feasibility of microbial lipid 

production. Chapter 3 showed that liquid fraction after pretreatment, normally discarded due to 

high amount of inhibitory compounds including phenolics and aliphatics, was rich in xylose 

solution and can be used as a carbon source for lipid production by purification with a novel 

pretreatment method developed in this study. Oleaginous yeast initiates lipid accumulation at the 

stationary phase. Therefore, the biphasic condition for growth and lipid accumulation were 

followed, and this was demonstrated in earlier work from our lab (Probst, 2014; Probst and 

Vadlani, 2017). Glucose-rich streams can be primarily utilized for yeast growth since oleaginous 

yeast prefer to use glucose for cell-biomass production. Purified xylose streams can be fed into the 

bio-reactor containing a high density of cell mass to induce more of lipid synthesis during the lipid 

accumulation stage.   

 Future Research 

Future work should be directed toward improving the sustainability of lignocellulose-based 

microbial lipids by increasing fermentation efficiency of oleaginous yeast, as well as integrating 

several processes into a one-step conversion to maximize feedstock utilization.  The following 

areas of research can be explored to improve sustainable production of microbial lipids:   
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1) Metabolic flux analysis (MFS) could be used to identify the limiting step and required 

cofactors for lipid synthesis in oleaginous yeast metabolism — to improve lipid production 

efficiency of T. oleaginosus during fermentation. MFS is an attractive tool to identify 

carbon distributions and the limiting step of product formation, by observing intermediates 

in the metabolic pathway. Vadlani and coworkers successfully identified carbon 

distribution of six Lactobacillus strains and this research provided useful information to 

reduce byproduct formation during lactic acid fermentation (Zhang et al., 2016). Limited 

studies have investigated metabolic flux of oleaginous yeast strains. Also, substantial 

variations are dependent on the oleaginous yeast strains. Therefore, MFA for a specific 

oleaginous yeast strain is required to identify the unique attributes in its metabolic pathway. 

2) Development of a novel down-stream process method for an environmentally friendly and 

economical lipid extraction could be researched for further sustainable microbial lipid 

production. The lipid-extraction method developed by Bligh and Dyer (1959), which 

requires use of hazardous chemicals, is widely utilized to efficiently separate and extract 

lipids from oleaginous yeast cells (Wales et al., 2016). Limited lipid accessibility, blocking 

effects from insoluble biomass residue and formation of stable emulsion are known as main 

challenges for lipid extraction efficiency (Dong et al., 2016). To improve sustainability of 

lignocellulose-based microbial lipids, it is necessary to develop environmentally friendly 

extraction methods.   

3) Strain development for high-valued lipid production will improve economic feasibility of 

microbial lipid production. To improve economic feasibility of microbial lipid production, 

cost reduction of feedstock development and process is essential. Another way to improve 

the feasibility of lignocellulose biorefinery is the development of a high value product, 
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which is not easy to synthesize using chemical reaction, via synthetic biology. The biggest 

advantage of using biological synthesis for chemical production is a substrate-specific and 

a regio-specific reaction. Enzymes in the microbial metabolism selectively catalyze 

substrates for the reaction and it prevent the generation of unnecessary intermediate 

byproducts and waste. Production of high-value fatty acids would be suitable for market 

demand, economics and sustainability in a biorefinery. 

4) Development of gene expression system for targeted oleaginous yeast strain  

Recently, lignocellulose-based lipid production using oleaginous yeast have been gaining 

great attention because of their robustness to toxic compounds, utilization of diverse carbon 

sources and a native ability to accumulate lipids. However, limited genetic information is 

available for most oleaginous strains except Yarrowia lipolytica, which is a model 

oleaginous species. Development of the gene expression system for oleaginous yeast 

strains is essential to commercialize the various industrial processes. Lately, various studies 

have been explored to develop expression and transformation systems for the common 

industrial oleaginous species; Trichosporon oleaginosus, Lipomyces starkeyi and 

Rhodotorulla glutinis. Gönors and coworkers developed expression and transformation 

systems for T. oleaginosus (Görner et al., 2016). The glyceraldehyde-3-phosphate 

dehydrogenase (GPD, EC1.2.1.12) and tryptophan synthase (TrpC -  derived from 

Aspergillus nidulans) were chosen as the promoter and terminator, respectively, and 

utilized for expression system (Figure 8.2). This expression cassette, the pRF-HU2, was 

successfully expressed in the heterologous gene ‘YFP’ to produce hydroxylated fatty acids 

in T. oleaginosus. Targeted heterologous or homologous genes can be expressed using the 

expression cassette “PRF-HU2(GPD)-targeted gene” in T. oleaginosus to manipulate the 
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metabolic pathway. Also, application of CRISPR/Cas9 mediated gene additing technology, 

which is an important new approach for generating RNA-guided nucleases with 

customizable specificities, for metabolic engineering purposes would allow for a 

substantial improvement of strain construction system (Jakočiūnas et al., 2015; Sander and 

Joung, 2014)   
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Figure 8-1. Diagram of the platform for microbial lipid production 
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Figure 8-2 Expression vector for T. oleaginosus  

hph: hygromycein B resistance gene; P1: GPD promoter derived from T. oleaginosus 390 bp; T1: 

TrypC terminator from Aspergillus nidulans (Görner et al., 2016) 
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