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Abstract

In this paper we consider a master integral in four arbitrary parameters.
The integrand involves the logarithmic function and the Gauss hypergeomet-
ric function, which in certain special cases the integral reduces to identities
involving zeta functions. A relationship will also be created between the
integral and Euler sums of arbitrary order and arbitrary argument. Many
interesting new specific examples will be highlighted.
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1. Introduction and Preliminaries

The evaluation of integrals involving integrands with logarithmic and hy-
pergeometric functions can be notoriously difficult to deal with and finding
closed form representations of these integrals can be a rare occurrence. Many
books and papers have been published on various methods for the evaluation
of integrals with hypergeometric or logarithmic functions, see for example
[1], [2], [3], [4], [8], [9], [10]. Integrals dealing with the Hurwitz zeta function
and Tornheim sums can be seen in [5], [6] and [7]. A class of logarithmic in-
tegrals have also recently been examined in [11]. In particular in this paper
we investigate the representation of integrals of the type

I (m, p, q, t) =

∫ 1

0
logm x Λ (p, q, t;x) dx

where

Λ (p, q, t;x) =
x−

1
t (1− xp)

(1− x)
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]

and 2F1

[
·, ·
·

∣∣∣∣∣ z
]
is the Gauss hypergeometric function. We prove that in

many cases of the parameters (m, p, q, t) the integral I (m, p, q, t), maybe
represented in closed form that include the polygamma and zeta special



2 Anthony Sofo

functions. Finally a generalization of the integral I (m, p, q, t) is given. Let
R and C denote, respectively the sets of real and complex numbers and let
N := {1, 2, 3, · · · } be the set of positive integers, with N0 := N ∪ {0} . Let
Γ (z) denote the familiar Euler’s gamma function then the digamma (or Psi)
function, for z ∈ R, is defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)
Γ(z)

and is connected to the harmonic number Hz, by ψ (z + 1) = Hz − γ, where
γ is the Euler-Mascheroni constant. The Lerch transcendent

Φ (z, t, a) =
∞∑

m=0

zm

(m+ a)t
(1.1)

is defined for |z| < 1 and � (a) > 0 and satisfies the recurrence

Φ (z, t, a) = z Φ (z, t, a+ 1) + a−t.

The Lerch transcendent generalizes the Hurwitz zeta function at z = 1,

Φ (1, t, a) = ζ (t, a) =

∞∑
m=0

1

(m+ a)t

and the Polylogarithm, or de Jonquière’s function, when a = 1,

Lit (z) :=
∞∑

m=1

zm

mt
, t ∈ C when |z| < 1; � (t) > 1.

Moreover ∫ 1

0

Lit (px)

x
dx =

⎧⎨
⎩

ζ (1 + t) , for p = 1

(2−r − 1) ζ (1 + t) , for p = −1
.

A generalized binomial coefficient
(
λ
μ

)
(λ, μ ∈ C) is defined, in terms of the

gamma function, by(
λ

μ

)
:=

Γ (λ+ 1)

Γ (μ+ 1)Γ (λ− μ+ 1)
, (λ, μ ∈ C),

which, in the special case when μ = n, n ∈ N0, yields(
λ

0

)
:= 1 and

(
λ

n

)
:=

λ (λ− 1) · · · (λ− n+ 1)

n!
=

(−1)n (−λ)n
n!

(n ∈ N),

where (λ)ν is the Pochhammer symbol defined, also in terms of the gamma
function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

⎧⎨
⎩

1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),
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it being understood conventionally that (0)0 := 1 and assumed that the Γ-

quotient exists. A generalized harmonic number H
(m)
n of order m is defined,

for positive integers n and m, as follows:

H(m)
n :=

n∑
r=1

1

rm
, (m,n ∈ N) and H

(m)
0 := 0 (m ∈ N)

and

ψ(n)(z) :=
dn

dzn
{ψ(z)} =

dn+1

dzn+1
{log Γ(z)} (n ∈ N0).

Furthermore we may write the generalized harmonic numbers, H
(j)
z−1, in

terms of polygamma functions

H
(j)
z−1 = ζ (j) +

(−1)j−1

(j − 1)!
ψ(j−1) (z) , z �= {−1,−2,−3, ...} , (1.2)

where ζ (j) , for j = 2, 3, 4, ... is the zeta function.
In Theorem 2, later in this paper, we shall utilize differentiation of a

parameter of the Gauss hypergeometric function. The following information
will be useful. It is known, see [8] that the Gauss hypergeometric function

2F1

[
a, b

c

∣∣∣∣∣ z
]
=
∑
n≥0

(a)n (b)n zn

(c)n n!

is defined for the circle of convergence of |z| < 1, provided that c �= 0,−1,−2, ...
The behaviour of the series on its circle of convergence is:

(i) Divergence when R (c− a− b) ≤ 1,
(ii) Absolute convergence when R (c− a− b) > 0,
(iii) Conditional convergence when −1 ≤ R (c− a− b) ≤ 0, the point

z = 1 is excluded.
The differential formula for the Gamma function is Γ′(z) = Γ(z)ψ(z),

where ψ(z) is the (Psi) digamma function. We also have the relation

ψ(z + j)− ψ(z) =

j−1∑
k=0

1

z + k
(1.3)

and therefore

d

dz

(
(z)j

)
= (z)j (ψ(z + j)− ψ(z)) = (z)j

j−1∑
k=0

1

z + k
. (1.4)

The μth derivative of (1.3) with respect to z yields

ψ(μ)(z + j)− ψ(μ)(z) =

j−1∑
k=0

(−1)μ μ!

(z + k)μ+1
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where ψ(μ+1)(z) = d
dz

(
ψ(μ)(z)

)
; μ = 0, 1, 2, 3, ....Then, the first two deriva-

tives

d

da
2F1

[
a, b

c

∣∣∣∣∣ z
]
=
∑
n≥0

(ψ(a+ n)− ψ(a)) (a)n (b)n zn

(c)n n!

and

d2

da2
2F1

[
a, b

c

∣∣∣∣∣ z
]
=
∑
n≥0

(
(ψ(a+ n)− ψ(a))2 + ψ′(a+ n)− ψ′(a)

)
(a)n (b)n z

n

(c)n n!
.

2. Closed form and Integral identities

We now prove the following theorems.

Theorem 1. Let m ∈ N, p ∈ N, q ∈ R\ {−1, 0} and t ∈ R\ {0}, then for
qkt− q − pt �= 0

I (m, p, q, t) =
(−1)m−1

(m− 1)!

∫ 1

0

x−
1
t (1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx

(2.1)

=

p∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
q

(
qt

qkt−q−pt

)m (
H kt−1

pt
−1 −H 1

q
−1

)

+ 1
qpm
∑m

j=2

(
pqt

qkt−q−pt

)m+1−j
(
H

(j)
kt−1
pt

−1
− ζ (j)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where 2F1

[
·, ·
·

∣∣∣∣∣ z
]
is the Gauss hypergeometric.

Proof. Consider the shifted Euler sum of the form, for t �= 0,

G (m, p, q, t) = q
∞∑

n=1

H
(m)

pn− 1
t

(qn+ 1) (qn+ 1− q)
. (2.2)

Utilizing the general integral representation of the harmonic number

H(m+1)
n =

(−1)m

m!

∫ 1

0

(1− xn) lnm x

1− x
dx, for m ∈ N

we have from (2.2)

G (m, p, q, t) =
q (−1)m−1

(m− 1)!

∫ 1

0

logm−1 x

1− x

∞∑
n=1

1− xpn−
1
t

(qn+ 1) (qn+ 1− q)
dx
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=
(−1)m−1

(m− 1)!

∫ 1

0

logm−1 x

1− x

(
1− x−

1
t + x−

1
t (1− xp) 2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
])

dx

= ζ (m)− ζ

(
m, 1− 1

t

)

+
(−1)m−1

(m− 1)!

∫ 1

0

x−
1
t (1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx.

Now let us consider the integral in question, namely

I (m, p, q, t) =
(−1)m−1

(m− 1)!

∫ 1

0

x−
1
t (1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx

and by a Taylor series expansion about x we have

I (m, p, q, t) =
(−1)m−1

(m− 1)!

∞∑
n=0

1(
q
[
n
p

]
+ 1
) ∫ 1

0
xn−

1
t logm−1 x dx

where [z] is the integer part of z. Hence we can write

I (m, p, q, t) =
∞∑

n=0

tm(
q
[
n
p

]
+ 1
)
(nt+ t− 1)m

=
∞∑

n=1

tm(
q
[
n−1
p

]
+ 1
)
(nt− 1)m

(2.3)

by a change of counter. To express (2.3) in closed form, we notice that

∞∑
n=1

tm(
q
[
n−1
p

]
+ 1
)
(nt− 1)m

=
∞∑

n=0

1

qn+ 1

p∑
k=1

1(
pn+ k − 1

t

)m

=

p∑
k=1

∞∑
n=0

1

(qn+ 1)
(
pn+ k − 1

t

)m (2.4)

=

p∑
k=1

∞∑
n=0

⎧⎨
⎩ β0

qn+ 1
+

m∑
j=1

αm−j(
pn+ k − 1

t

)j
⎫⎬
⎭ (2.5)

where

β0 = lim
n→−

(
1
q

)

{
1(

pn+ k − 1
t

)m
}

=

(
qt

kqt− q − pt

)m

, (2.6)



6 Anthony Sofo

and

αm−j =
1

(m− j)!
lim

n→−
(

1−kt
pt

)
dm−j

dnm−j

{
1

qn+ 1

}

= −1

q

(
pqt

kqt− q − pt

)m+1−j

for j = 1, 2, 3, ...,m. (2.7)

From (2.5), (2.6) and (2.7) we have

I (m, p, q, t) =

p∑
k=1

∞∑
n=0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
qt

kqt−q−pt

)m(
1

qn+1 − p

q(pn+k− 1
t )

)

−1
q

∑m
j=2

(
pqt

kqt−q−pt

)m+1−j
1

(pn+k− 1
t )

j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

I (m, p, q, t) =

p∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
q

(
qt

kqt−q−pt

)m(
H−

(
pt+1−kt

pt

) −H 1
q
−1

)

−1
q

∑m
j=2

(
pqt

kqt−q−pt

)m+1−j
(−1)j

(j−1)!pj
ψ(j−1)

(
k
p − 1

pt

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

From the relationship of the polygamma function with the generalized har-
monic numbers (1.2), we have

I (m, p, q, t) =

p∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
q

(
qt

qkt−q−pt

)m (
H kt−1

pt
−1 −H 1

q
−1

)

+ 1
qpm
∑m

j=2

(
pqt

qkt−q−pt

)m+1−j
(
H

(j)
kt−1
pt

−1
− ζ (j)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and the theorem is proved. �

Example 1. Some examples follow:

I (m, p, q, t) = I

(
3, p,−4,−2

3

)
, for p ∈ N

= −2

∫ 1

0

x
3
2 (1− xp) log2 x

1− x
2F1

[
1,−1

4

3
4

∣∣∣∣∣xp
]
dx

= −2

∫ 1

0

x
3
2 (1− xp) log2 x

1− x

(
1 +

x
p
4

2

(
tan−1

(
x

p
4

)
− tanh−1

(
x

p
4

)))
dx

=
2

p2

p∑
k=1

1

(p+ 4k + 6)3

⎛
⎜⎜⎝

−128p2 + 32p2γ − 16p2π + 96p2 ln 2 + 32p2ψ
(
2k+3
2p

)

−8p (p+ 4k + 6)ψ′
(
2k+3
2p

)
+ (p+ 4k + 6)2 ψ′′

(
2k+3
2p

)
⎞
⎟⎟⎠ .
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For

p = 1, I

(
3, 1,−4,−2

3

)
=

127232

35937
+

64

1331
ln 2− 32π

1331
− 48

121
ζ (2)− 28

11
ζ (3) ,

and for

p = 2, I

(
3, 2,−4,−2

3

)
=

1379

216
− 7

36
G− π

27
− 25

48
ζ (2)− π3

48
− 49

12
ζ (3) ,

where G = .91596... is Catalan’s constant. Next

I (m, p, q, t) = I (3, 4, 2, 2)

=
1

2

∫ 1

0

(
1− x4

)
log2 x

(1− x) x
5
2

log

(
1 + x2

1− x2

)
dx

=
16

27

(
14

√
2− 13

)
π +

16

3

(
2
√
2− 5

)
ζ (2) +

1

3

(
3
√
2− 2

)
π3.

I (m, p, q, t) = I (4, 2,−2, 2)

= −1

3

∫ 1

0

(1 + x) log3 x

x
1
2

2F1

[
1,−1

2

1
2

∣∣∣∣∣x2
]
dx

= −22592

50625
− 3136

3375
G− 4352π

50625
− 1216

1125
ζ (2)− 16π3

225

−11296 log (2)

50625
− 1

72
ψ(3)

(
1

4

)
− 1

120
ψ(3)

(
3

4

)
− 952

225
ζ (3) .

I (m, p, q, t) = I (m, 2, 3, 2) , for m ∈ N

=
(−1)m−1

(m− 1)!

∫ 1

0
x−

1
2 (1 + x) logm−1 x 2F1

[
1, 13
4
3

∣∣∣∣∣x2
]
dx

=
1

2

(
(−6)m +

(
6

5

)m)
ln 3−

(
(−6)m +

(
6

5

)m)
ln 2

+
π

18

((
3 +

√
3
)(6

5

)m

−
(
3−

√
3
)
(−6)m

)

+
1

2m

m∑
j=2

⎛
⎜⎜⎝

(−12)m+1−j H
(j)

− 3
4

+
(
12
5

)m+1−j
H

(j)

− 1
4

−
(
(−12)m+1−j +

(
12
5

)m+1−j
)
ζ (j)

⎞
⎟⎟⎠ .



8 Anthony Sofo

A number of interesting special cases follow as corollaries.

Corollary 1. Let {m, p} ∈ N, q ∈ R\ {−1, 0}, then for qk − p �= 0, and as
t → ∞ we have,

lim
t→∞ I (m, p, q, t) = I (m, p, q) = qG (m, p, q)

=
(−1)m−1

(m− 1)!

∫ 1

0

(1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx

= H(m)
p +

1

q

p∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
q

qk−p

)m (
H k

p
−H 1

q

)

+ 1
pm
∑m

j=2

(
pq

qk−p

)m+1−j
(
H

(j)
k
p

− ζ (j)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.8)

Proof. The proof follows, by noting that

qG (m, p, q) = q
∞∑

n=1

H
(m)
pn

(qn+ 1) (qn+ 1− q)

=
(−1)m−1

(m− 1)!

∫ 1

0

(1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx

=

∞∑
n=1

1

nm
(
q
[
n−1
p

]
+ 1
)

=
∞∑

n=0

1

qn+ 1

p∑
k=1

1

(pn+ k)m

= H(m)
p +

p∑
k=1

∞∑
n=1

1

(qn+ 1) (pn+ k)m
. (2.9)

Expanding (2.9) leads to (2.8). �

For t = −1, we have the following:

Corollary 2. Let m ∈ N, , p ∈ N, q ∈ R\ {−1, 0} and t = −1, then for
qk + q − p �= 0, we have,

I (m, p, q,−1) = 1 +
(−1)m−1

(m− 1)!

∫ 1

0

x (1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx
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= H
(m)
p+1 +

1

q

p∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
q

qk+q−p

)m (
H 1+k

p
−H 1

q

)

+ 1
pm
∑m

j=2

(
pq

qk+q−p

)m+1−j
(
H

(j)
1+k
p

− ζ (j)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.10)

Proof. The proof follows by noting that

qG (m, p, q,−1) = q
∞∑

n=1

H
(m)
pn+1

(qn+ 1) (qn+ 1− q)

= 1 +
(−1)m−1

(m− 1)!

∫ 1

0

x (1− xp) logm−1 x

1− x
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]
dx

=

∞∑
n=1

1

(n+ 1)m
(
q
[
n−1
p

]
+ 1
)

=
∞∑

n=0

1

qn+ 1

p∑
k=1

1

(pn+ k + 1)m

= H
(m)
p+1 +

p∑
k=1

∞∑
n=1

1

(qn+ 1) (pn+ k + 1)m
. (2.11)

Expanding (2.11) leads to (2.10). �

Finally for t = 1, we have:

Corollary 3. Let {m, p} ∈ N, q ∈ R\ {−1, 0} and t = 1, then for qk−q−p �=
0, we have,

qG (m, p, q, 1) = q
∞∑

n=1

H
(m)
pn−1

(qn+ 1) (qn+ 1− q)

= H
(m)
p−1 +

1

q

p∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
q

qk−q−p

)m (
H k−1

p
−H 1

q

)

+ 1
pm
∑m

j=2

(
pq

qk−q−p

)m+1−j
(
H

(j)
k−1
p

− ζ (j)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

=
∞∑

n=1

1

nm
(
q
[
n
p

]
+ 1
) = H

(m)
p−1 +

∞∑
n=1

1

qn+ 1

p∑
k=1

1

(pn+ k − 1)m
.
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Proof. Follows the same pattern as the previous corollary. It is also of some
interest to note that

q
∞∑

n=1

H
(m)
pn−1

(qn+ 1) (qn+ 1− q)
= q

∞∑
n=1

H
(m)
pn − 1

(pn)m

(qn+ 1) (qn+ 1− q)

= q

∞∑
n=1

H
(m)
pn

(qn+ 1) (qn+ 1− q)
− q

pm

∞∑
n=1

1

nm (qn+ 1) (qn+ 1− q)

= qG (m, p, q)− q

pm
W (m, p, q) ,

here qG (m, p, q) is given by (2.8) and W (m, p, q) has a closed form expres-
sion, which is of interest in its own right. Omitting the calculations we give
the result, for q �= 1,

W (m, p, q) =
∞∑

n=1

1

nm (qn+ 1) (qn+ 1− q)

= (−1)m qm−1 + qm−2

(
(−1)m − 1

(q − 1)m

)
H 1

q
−1 +

m∑
j=2

Ajζ (j)

where

Aj =
qm−j−1

(
(−1)m+1−j (q − 1)m+1−j − 1

)
(q − 1)m+1−j

, for j = 2, 3, ...,m.

�
The following generalization of Theorem 1 and its corollaries, taking into

account the differentiation of the Gauss hypergeometric function with re-
spect to the parameter r, can be stated.

Theorem 2. Let the conditions of Theorem 1 apply and let μ ∈ N, then:

J (m, p, q, t, μ) =
(−1)m−1

(m− 1)!

∫ 1

0

xp−
1
t (1− xp) logm−1 x

(1− x) qμ+1
(2.13)

×
μ∑

r=0

(−1)r

qr

(
μ
r

)
Φ

(
xp, 1 + r, 1 +

1

q

)
dx

=
∞∑

n=1

tm
[
n−1
p

]μ
(nt− 1)m

(
q
[
n−1
p

]
+ 1
)μ+1 (2.14)

=

p∑
k=1

∞∑
n=1

nμ(
pn+ k − 1

t

)m
(qn+ 1)μ+1 . (2.15)
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Proof. From (2.1) we have that

J (m, p, q, t, μ) =
(−1)m−1

(m− 1)!

∫ 1

0

x−
1
t (1− xp) logm−1 x

1− x

dμ

dqμ
2F1

[
1, 1q

1 + 1
q

∣∣∣∣∣xp
]

.

Now utilizing (1.4) in the derivative of the Gauss hypergeometric function,
and upon simplification, (2.13) follows. Also from (2.4) we obtain (2.14)
and (2.15).

∞∑
n=1

tm

(nt− 1)m
dμ

dqμ

⎛
⎝ 1

q
[
n−1
p

]
+ 1

⎞
⎠ =

∞∑
n=1

(−1)μ μ! tm
[
n−1
p

]μ
(nt− 1)m

(
q
[
n−1
p

]
+ 1
)μ+1 .

It is possible to represent (2.14) in closed form by partial fraction decompo-
sition, similar to Theorem 1, but this will not be pursued here. �

To highlight Theorem 2 we give some examples and then list a corollary
of Theorem 2

Example 2.

J (2, 2, 2, 2, 2) =
1

8

∫ 1

0
x

3
2 (1 + x) log x

2∑
r=0

(−1)r+1

2r

(
2
r

)
Φ

(
x2, 1 + r,

3

2

)
dx

=
∞∑

n=1

[
n−1
2

]2(
n− 1

2

)2 (
2
[
n−1
2

]
+ 1
)3

= 10G+ 4π − 13 ln 2− 9ζ (2) +
7

4
ζ (3) .

J (2, 2, 4, 3, 2) =
1

1025

∫ 1

0
x

5
3 (1 + x) log x

⎛
⎝ −16Φ

(
x2, 1, 54

)
+8Φ

(
x2, 2, 54

)− Φ
(
x2, 3, 55

)
⎞
⎠ dx

=

∞∑
n=1

[
n−1
2

]2(
n− 1

3

)2 (
4
[
n−1
2

]
+ 1
)3

= −2322

343
− 6219

686
G+

15

9604

(
7215− 2389

√
3
)
π +

324315

4802
ln 2

−324675

9604
ln 3− 18657

2744
ζ (2) +

225

6272
π3 − 3

4
ψ′(

4

3
)

− 75

5488
ψ′(

11

6
) +

225

224
ζ (3) .
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Corollary 4. Let the conditions of theorem 2 hold, then as t → ∞,

lim
t→∞ J (m, p, q, t, μ) = J (m, p, q, μ) =

(−1)m−1

(m− 1)!

∫ 1

0

xp (1− xp) logm−1 x

(1− x) qμ+1

×
μ∑

r=0

(−1)r

qr

(
μ
r

)
Φ

(
xp, 1 + r, 1 +

1

q

)
dx

=
∞∑

n=1

[
n−1
p

]μ
nm
(
q
[
n−1
p

]
+ 1
)μ+1 .

Proof. The proof follows the same pattern as that employed in theorem
2. �

Example 3.

J (2, 2, 4, 2) =
1

1024

∫ 1

0
x2 (1 + x) log x

4∑
r=0

(−1)r

2r

(
4
r

)
Φ

(
x2, 1 + r,

5

4

)
dx

=
5

9
ln 2− 29

54
G+

7

27
π − 259

432
ζ (2) +

5

1152
π3 +

35

288
ζ (3)

,

=
∞∑

n=1

(
64n4 − 128n3 + 52n2 + 10n+ 1

)
H

(2)
2n

(4n+ 1)3 (4n− 3)3
.

A number of other related results on the summation of harmonic number
sums can be seen in the papers, [12], [13], [14].

J (3, 3,−3, 2) =
ln 3

9216
− 755

373248
− 65

√
3

82944
π − 125

2036
ζ (2) +

89
√
3

629856
π3

− 391

559872
ψ′(

2

3
) +

199

34992
ζ (3)

= − 1

54

∫ 1

0

x3
(
1− x3

)
1− x

log2 x
2∑

r=0

1

3r

(
2
r

)
Φ

(
x3, 1 + r,

2

3

)
dx.

Conclusion 1. We have established an explicit analytical representation of a
general integral in which the integrand contains the product of the logarithmic
and the Gauss hypergeometric function. The motivation for this integrand
is its connection with Euler sums of arbitrary order and arbitrary argument
and the possibility of the evaluation of a larger class of integrals. It will



Alternating Harmonic Number Sums 13

be possible to examine integrals with generalized hypergeometric functions of
the form

(−1)m−1

(m− 1)!

∫ 1

0

xa (1− xp) logm−1 x

1− x
r+1Fr

[
2r − 1, ...., 1, 1q

2r − 2, ...., 2, 1 + 1
q

∣∣∣∣∣xp
]
dx.

In particular, for r = 2, we can examine

(−1)m−1

(m− 1)!

∫ 1

0

xa (1− xp) logm−1 x

1− x
3F2

[
3, 1, 1q

2, 1 + 1
q

∣∣∣∣∣xp
]
dx

=

∞∑
n=0

[
n
p

]
+ 2

2
(
q
[
n
p

]
+ 1
)
(n+ 1 + a)m

.

Some of the specific examples listed above can be evaluated, and have been
checked with the software ”Mathematica” [15], but in general not the integral
in Theorem 1 or Theorem 2.

References

[1] Amdeberhan, T; Moll, V. A formula for a quartic integral: a survey of old proofs and
some new ones. Ramanujan J. 18 (2009), no. 1, 91–102.

[2] Blagouchine, I. V. Rediscovery of Malmsten’s integrals, their evaluation by contour
integration methods and some related results. Ramanujan J. 35 (2014), no. 1, 21–110.

[3] Boros, G., Moll, V.: Irresistible Integrals: Symbolics, Analysis and Experiments in
the Evaluation of Integrals. Cambridge University Press, Cambridge (2004).

[4] http://www-elsa.physik.uni-bonn.de/˜dieckman/IntegralsDefinite/DefInt.html.
[5] Espinosa, O., Moll, V.: On some definite integrals involving the Hurwitz zeta function,

part 1. Ramanujan J. 6 (2002), 159-188.
[6] Espinosa, O., Moll, V.: On some definite integrals involving the Hurwitz zeta function,

part 2. Ramanujan J. 6 (2002), 449-468.
[7] Espinosa, O., Moll, V.: The evaluation of Tornheim double sums, part 1. J. Number

Theory 116 (2006), 200-229.
[8] Gradshteyn, I. S, Ryzhik I. M. In: Jeffrey A, Zwillinger D, editors. Table of integrals,

series, and products. 8th ed. Elsevier/Academic Press Amsterdam, 2015.
[9] Lin, S-D, Chao, Y-S, Srivastava, H. M. Some families of hypergeometric polynomials

and associated integral representations. J. Math. Anal. Appl. 294 (2004), 399-411.
[10] Moll, V. Special integrals of Gradshteyn and Ryzhik—the proofs. Vol. I. Monographs

and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
[11] Ripon, S. Generalization of a class of logarithmic integrals. Integral Transforms Spec.

Funct. 26 (2015), 229-245.
[12] Sofo, A. Generalized hypergeometric function identities at argument ±1. Integral

Transforms Spec. Funct. 25 (2014), 909-921.
[13] Sofo, A., Srivastava, H. M. Identities for the harmonic numbers and binomial coeffi-

cients, Ramanujan J. 25 (2011), 93–113.
[14] Sofo, A . Quadratic alternating harmonic number sums. J. Number Theory. 154

(2015), 144-159.
[15] Wolfram Research, Inc., Mathematica, Version 10, Champaign, IL, 2015.


