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Abstract. In the present work, a novel explicit solution is proposed for obtaining twisting deformation and 
optimal shape control of smart laminated cantilever composite plates/beams using inclined piezoelectric actuators. 
The linear piezoelectricity and plate theories were adapted for the analysis. A novel double integral multivariable 
Fourier transformation method and discretised higher order partial differential unit step function equations were 
employed. For the first time, an exact solution is developed to analyse electro-mechanical twisting moments in 
smart composite structures. Since there are no published benchmark results for verification, a series of simple, 
accurate and robust finite element (FE) analysis models and realistic electro-mechanical coupled FE procedures 
are developed for the effective prediction of the structural behaviour of the smart laminated piezo-composite 
structures under arbitrary loads. In addition to the novelty of the explicit solution, more comprehensive FE 
simulations of smart structures and step-by-step guidelines are discussed. The effect of various parameters 
including electro-mechanical twisting coupling, layup thickness, actuators size, placement, and inclination angle, 
electrical voltage, stacking sequence, and geometrical dimension was taken into account. The comparison of 
results showed an excellent agreement. Unlike the earlier studies, the proposed method does not require the 
characteristic and trial deflection function to be predetermined.  
 
Key Words: Twisting control; Electro-mechanical twisting coupling; Explicit solution; Finite element method 
(FEM); Inclined piezoelectric actuators; Smart laminated cantilever composite plates/beams. 
 
1.Introduction 
 
     Laminated and asymmetric composite structures are being used considerably in aerospace, 
automotive, civil, mechanical and structural engineering applications due to their high stiffness 
and strength to weight ratio, low density, and temperature resistance[1][2][3].  Laminated plates 
and beams are usually applied to achieve the desired stiffness and lightness for parts of load-
bearing engineering structures[4][5]. For instance, laminated cantilever composite plates are 
adopted widely in various engineering applications such as airplane wings, corrugated plates, 
reinforced concrete slabs, decks of contemporary steel bridges, boom arms of industrial cranes, 
and flight control surfaces[6][7][8]. Piezoelectric materials have recently drawn much attention 
due to their low power consumption, high material linearity, and quick response when induced 
by external forces[9][10][11]. Piezoelectric materials can be integrated with laminated 
composite structures to provide smart-intelligent composite systems. Numerous smart 
engineering structures incorporated with smart devices such as piezoelectric sensors and 
actuators have proved to be superior to their conventional counterparts. Static analysis of 
advanced composite structures under axial, transverse, twisting, and torsional loads in addition 
to the torsional actuation due to piezoelectric materials has potential application in mechanical 
systems, helicopter rotor blades, and/or blades for turbomachinery[12]. Some other 
applications of piezoelectric materials in smart and adaptive engineering structures are 
acoustical noise reduction, damage identification, structural health monitoring, vibration 
suppression, deflection control in missile fines, and airfoil shape changes[13][14][15]. One of 
the great advantages of piezoelectric materials is their ability to respond to changing 
environment and control structural deformation, which has led to the new generation of 
aerospace structures like morphing airplanes[11]. Among piezoelectric materials, bounded 
piezo-ceramic actuators are commonly used for shape control of online monitoring systems. 
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Piezoelectric actuators can also be embedded in laminated composite structures to induce 
structural stiffness system to the advantage [16][17][18].  
 
     Failure and deformation analysis of load-bearing structures made of isotropic/composite 
structures with/without piezoelectric materials have been studied broadly by several 
researchers using analytical methods, FEM and experimental work[19][20][21]. Milazzo [22] 
developed a FE model for the large deflection analysis of multi-layered smart plates. Sartorato 
et al [23] worked on a FE formulation for smart composite shells. This smart shell FE 
formulation was used as a benchmark for his work on dynamic analysis of laminated curved 
isotropic and orthotropic structures integrated with piezoelectric layers. The presented FE 
model was then verified with experimental and numerical findings available in open literature. 
Milazzo [22] developed a family of two dimensional (2D) refined equivalent single layer 
models for vibration analysis of multilayered and functionally graded smart magneto-electro-
elastic plates. The single layer FE model presented in his work was validated against available 
benchmark three dimensional (3D) solutions. Zhang et al [24] developed a linear electro-
mechanically coupled FE model for thin-walled smart composite laminates bounded with 
macro-fibre composite (MFC) actuators. Their proposed method was compared with numerical 
and experimental results. In a similar study, Zhang and Schmidt [25] formulated a FE model 
based on the large rotation shell theory for static and dynamic analysis of thin-walled smart 
piezoelectric composite laminates. Plattenburg et al [26] studied analytically, numerically, and 
experimentally vibration excitation of a thin plate with free boundary conditions and with 
multiple bounded piezoelectric actuator patches. Numerically and experimental studies were 
undertaken by Lin and Nien [27] on static and dynamic shape deformations of laminated plates 
integrated with piezoelectric actuators and subjected to unknown loads. Their study 
demonstrated the effectiveness of piezoelectric actuators on the shape and deflection control of 
composite laminates. Other experimental and numerical studies concerning the deflection and 
shape control of smart laminated cantilever and simply-supported composite plates and beams, 
as well as unattached laminates, can be found in Refs [27][28][29][30]. The FE simulation of 
composite structures with/without piezoelectric actuators have been studied by several 
researches using FE commercial software. Gohari et al[31][32]studied the mechanical 
deformation of laminated composite domes under internal pressure using finite element 
simulation and compared it with theoretical results based on classical shell theory. There are 
also numerous studies regarding the FE simulation of laminated thin/thick composite 
cylindrical shells under arbitrarily static[33][34][35]and dynamic[36][37]loads. There are 
several studies regarding the FE simulation of composite plates induced by piezoelectric 
actuators[38][39].      
 
     There are few research works presenting the effect of flexural-torsion loads on composite 
structures with or without piezoelectric elements. Considering torsional-bending coupling 
mode of beams, a very limited published benchmark results are available. Sakawa and Luo[40], 
adapted a shear deformable theory for modelling of a mass-coupled beam considering the 
internal beam damping in which a motor shaft was used to create actuation torque. The effect 
of warping torsion on natural frequency of a composite beam, when considering the transverse 
shear deformation for various beam aspect ratios, was investigated in multiple 
studies[41][42][43]. In addition, the vibration analysis of a beam adopting Timoshenko’s beam 
theory and  excluding the effect of warping torque was studied by Banerjee and Williams [44].  
 
     There are a few researchers who studied the torsion-bending behaviour of smart structures 
analytically, numerically, and experimentally. Park et al.[45] developed new models for 
prediction of the torsion-bending and couple extension in a beam using piezoelectric patches 



with arbitrary orientation with respect to the beam axis. The model was based on a Newtonian 
shear lag formulation, neglecting the through-thickness strain variation in the actuator patches. 
However, the strain variation through-thickness of the beam was assumed to be linear. A new 
model to predict the effect of coupled extension and torsion-bending in a beam incorporated 
with piezoelectric actuators was then developed by Park and Chopra[46]. Their experimental 
results showed accuracy when the piezoelectric actuators had the inclination angles up to 45 
degrees with respect to the beam axis. In another similar study by Chen and Chopra[47], the 
static bending and torsion response of a fraud-scale helicopter rotor blade was investigated. 
Takawa et al.[48] used the piezoelectric actuators with 90-degree inclination angle with respect 
to the beam principle axis to control the torsional vibration mode of the beam. Thirupathi et 
al.[49] investigated the effect of piezoelectric actuators on the  blades for turbomachinery 
application using FEM. The quadrilateral shell FE model with eight nodes and curved edges 
was adapted for the numerical analysis of piezoelectric actuated blades. Subsequently, the 
results were verified using experimental findings and a good agreement between numerical and 
experimental results was observed. In their experimental work, the piezoelectric actuated 
blades were modelled as piezo-ceramic cantilevered bimorph beam.                 
 
     It can be observed from available literature that most of the studies on smart piezo-
composite laminates were based on experimental and/or numerical approach. In addition, there 
are no explicit solutions for the twisting analysis of smart cantilever composite structures 
induced by electrical twisting moment. There are also very limited number of studies on the 
torsion and deflection of beams in which the effect of different parameters, such as electro-
mechanical twisting coupling, layup thickness, piezoelectric actuators size, placement, and 
inclination angle, electrical potential intensity, stacking sequence, and geometrical dimension, 
were not taken into account. Furthermore, some theories adapted for the analysis of smart 
structures displacement fields result in significant computational time required due to a large 
number of degrees of freedom [50]. Smart cantilever composite plates and beams are important 
structural elements, but their exact analytical evaluation is one of the most difficult problems 
in the theory of elasticity. Multi-scale and approximation solutions, typically adapted for 
analytical evaluation of smart composite laminates, are complex and require characteristic and 
trial deflection functions to be predetermined.  
 
     In the present work, a new explicit solution is proposed for obtaining twisting-bending 
deformation and optimal shape control of smart laminated cantilever composite plates and 
beams using inclined piezoelectric actuators. The linear piezoelectricity and plates theories are 
adapted for the analysis. The results are then compared with the numerical results by using 
finite element method (FEM). A series of simple, accurate and robust FE analysis models and 
realistic electro-mechanical coupled FE procedures are developed for the accurate and reliable 
prediction of the structural behaviour of smart laminated cantilever piezo composite structures 
under arbitrary electro-mechanical loads. The ABAQUS FE package is adopted for this 
purpose. MATLAB was also employed to obtain structural twisting-bending deformations of 
smart cantilever piezo composite plates/beams for the explicit evaluation of the results. 
Calculation of required optimal voltages to suppress the twisting-bending deformation was 
based on classical trial and error techniques. 
      
2.Mathematical modelling 
 
     Consider a cantilever laminated composite plate composed of N orthotropic layers and with 
a total layup thickness of H. Each layer can be incorporated with arbitrarily positioned inclined 
piezoelectric actuators (see Fig.1). Considering the material linearity for small displacements, 



the Kirchhoff hypothesis leads to the general form of displacement fields as shown in Eqs.1a-
c[51]. For composite laminates and piezoelectric layers/patches, some initial assumptions for 
mathematical modelling are made as follows[51][52]: 
 

• Fibers distribution throughout the matrix is uniform; 
• There is a perfect bonding between fibers and matrix, avoiding fibers dislocations and 

disarrangements through the matrix and no slip occurs between the lamina interfaces; 
• The matrix is perfectly fabricated with no voids and impurity; 
• The lamina is not initially pre-stressed, thus, there are no residual stresses in presence 

of matrix and fibers; and 
• The matrix and fibers behave linearly within elastic domain.  

 
     For the smart part of the laminates, the linear piezoelectricity theory is adapted with 
assumptions made as follows[52]: 
 

• The strain-electric filed varies linearly;  
• The piezoelectric confidents are constant within the linear zone; thus, they cannot be 

electrically turned with a bias field;   
• The electric field is assumed to be constant across each lamina; and 
• The piezoelectric actuators are polarized through thickness; therefore, the electrical 

discharge through thickness zΦ is considered in this study ( oyx =Φ=Φ ). 
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     u0, ν 0, and w0 are the mid-plane displacements along x, y, and z directions, respectively on 
the xy-plane[53]. z is the vertical distance from the mid-plane to the kth layer which is located 
between z = hk and z= hk+1 through laminate thickness, as shown in Fig.2. After obtaining the 
mid-plane displacements, the displacements of any arbitrary point, x, y, and z in 3D space can 
be determined. The linear strain-displacement relation is stated in Eqs.2a-c[54]. It is assumed 
that all strain components change linearly in the entire laminate independent from changes in 
material properties through layup thickness.  
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     ε xx
o, ε yy

o, andγ xy
o are the laminate’s mid-plane strains, ε xx

f,ε yy
f, andγ xy

f are the flexural 
(bending) strains and wo is the transverse deflection of a composite laminate’s mid-plane. The 
bending strains are typically caused by laminate’s stacking sequence asymmetric or external 
electro-mechanical bending and twisting loads. Since the flexural shape control of the lateral 
displacements is considered in this study, the effect of laminate’s mid-plane strains can be 
neglected and the effect of flexural strains are taken into account. Considering the plane stress 
assumption and neglecting the through-thickness stresses, the simplified 2D electro-
mechanical plate equations are derived from the 3D equations of theory of elasticity and three 
charged equilibrium equations of piezoelectric medium, as stated in Eq.3a[55]. The electrical 
field potential relationships for an orthotropic static piezoelectric lamina is stated in Eg.3b[56].   
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     ijσ , ijε , ijklC , ijke , and iΦ are the stresses, the strains, the elastic stiffness, the piezoelectric 
coefficients, and the components of the electric fields, respectively in the orthotropic material 
orientation. pi and ijζ are the electric displacement and the piezoelectric dielectric constants, 
respectively. The Kirchhoff assumption adapted for plate theory stipulates that 03123 == γγ . 
In addition, only a through-thickness electric field is considered. Therefore, Eqs.3a-b are 
reduced to Eq.4a. Global stresses (Eq.4b) in the kth ply along xyz direction can be calculated by 
transforming 2D stresses in the material direction through transformation matrix [T] 
(Eq.4c)[57].  
 

k

k
k

kk

e
e

ee
Q

QQ
QQ

3

33

32

31

12

22

11

3231

66

2212

1211

3

12

22

11

0
0

00
0
0

Φ



















−


































=



















ζ
γ
ε
ε

ρ
τ
σ
σ

                                                                   (4a) 

                        
[ ] [ ] [ ]Local

k
Global
k T σσ 1−=                                                                                                           (4b) 

 



[ ]
( )
















−−
−=

22

22

22

2
2

sccscs
cscs

cssc
T                                                                                                     (4c) 

 
     c is cos( β ) and s is sin( β ).β is the winding angle between fibres and x axis. Qij and eij are 
the reduced elastic stiffness and the piezoelectric modules, respectively, as given in Eqs.5e-f, 
respectively. 
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     E1, E2, v12, and G12 are in-plane local elasticity modules of an orthotropic layer in the local 
material coordinate system. dij is the piezoelectric dielectric constant. The in-plane stress-strain 
relationship for the kth smart orthotropic piezo-composite plate is shown in Eq.6a [38]. For the 
beam type laminates, the plane stress assumption is adapted and the width along y direction is 
assumed to be stress free. Therefore, Eq.6a is reduced to Eq.6b and only the transformed 
piezoelectric coefficient along x axis is considered[12].        
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     Q ij

k and k
ije are the transformed reduced stiffness matrix and transformed piezoelectric 

modules in the kth orthotropic layer, respectively. In Eqs.6a-b, σij
k and εij

k are the in-plane stress, 
strain, and electrical field components of the kth orthotropic layer in xyz coordinate system, 
respectively. The elements of transformed reduced stiffness matrix are described in Eqs.7a-f, 
respectively[52]. 
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     The transformed piezoelectric modules are described in Eqs.8a-c, respectively [52]. 
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     d ij

k are the transformed piezoelectric dielectric constants in the kth orthotropic layer. Γ and
Γ′ stand for cos(θ ) and sin(θ ), respectively.θ is the inclination angle between the piezoelectric 
actuators and x axis, as shown in Figs.1-2. The relationship between stress resultants and 
flexural-twisting moments for the mid-plane in a composite laminate is described in Eq.9 [58]. 
First, Eq.2a is substituted into Eq.6a. Subsequently, by substituting Eq.6a into Eq.9, Eq.10 is 
derived.  
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     [Mxx]P, [Myy]P, and [Mxy]P are bending and twisting moments induced by electrical loads, 
respectively[59]. It is assumed that the electric positional fields vary linearly through laminate 
thickness. Therefore, the linear interpolation functions can be used to simplify the electrical 
gradients, as shown in Eq.11 (Note: zΦ=Φ3 ). 
 

)(),,()(),,(),,( 21 zzyxzzyxzyx kk
b

kk
az ωω Φ+Φ=Φ                                                               (11) 

 
     ωi

k, i={1,2} shown in Eq.12 represents the linear interpolation function of the kth orthotropic 
layer in a smart piezo-composite laminate. 
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     Pn, ta, and tp in Eq.12 are the number of inclined piezoelectric actuators, and actuator 
thickness, and host structure (composite laminate) thickness, respectively (See Fig.1). 
Governing partial differential equation relating the transverse bending and twisting moments 



to mid-plane displacements and electro-mechanical loads in a smart laminated piezo composite 
plate is stated in Eq.13[38]. In this study, thin symmetrical cross-ply laminates are considered. 
Thus, the effects of bending-stretching coupling matrix ([Bij]=0) and bending-twisting elements 
of flexural stiffness matrix (D16=D26=0) in Eq.6 are neglected. However, due to inclination 
angle between the inclined piezoelectric actuators and composite laminate with respect to x 
axis, the effect of electrical twisting moment should not be neglected.  
 
     In the next step, the linear interpolation of the electrical functions stated in Eq.11 is 
substituted into Eq.10. Finally, by applying the initial conditions to Eq.10, it can be simplified 
to Eq.14. By substituting Eq.14 into Eq.13, Eqs.15a-d is derived. 
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     i=j={1,2,6}, D11 and D22 are flexural stiffness about x and y axis, respectively, D12 and D66 
stand for effective torsional rigidity. Pm(x,y) and Pe(x,y) are mechanical and electrical loads 
applied to the smart piezo composite laminate, respectively. [M]total is the combination of 
electrical and mechanical moments. The schematic of coordinate system and geometry of the 
smart laminated cantilever piezo composite plate with incorporated piezoelectric actuators and 
actuators size and placements is illustrated in Fig.2. Activated inclined piezoelectric actuators 
are capable of inducing bending and twisting moments which can be expressed in terms of 2D 
unit step functions[38][60]. In this study, mechanical load and electrical moments are 
expressed in the form of multivariable unit step functions according to Eqs.16a-b, respectively. 
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     i=j={1,2,6}and Uk
L(x,y) presents the unit step function expressed for effective areas at which 

the electrical bending and twisting moments are applied at the Lth location and in the kth ply. 
Mn and Pn are the number of effective areas at which the mechanical and electrical loads are 
applied, respectively (see Fig.2). The general electro-mechanical load resultants applied to a 
plate element are expressed in Eqs.17a-g.  
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     Mxx, Myy, Mxy, Qxx, Qyy, Vxx, and Vyy are bending moment resultants, torsional moment 
resultants, shear force resultants, and the total shear force resultants per unit length, 
respectively [58]. The boundary conditions for a cantilever plate are prescribed as stated in 
Eqs.18a-j. 
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     The double finite integral transformation of the mid-plane vertical displacement of function 
wo(x,y) is shown in Eq.19. 
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     Eq.19 is then inversed to represent the exact mid-plane vertical displacement of function 
wo(x,y) as stated in Eq.20. 
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     In Eq.20, a and b stand for the plate’s length and width, respectively (see Fig.1). The double 
integral transformation of higher-order partial derivatives of the multivariable function wo(x,y) 
over Eq.15a results in Eqs.21a-f: 
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     Considering the integral by parts principle and applying the boundary conditions in 
Eqs.18a,b,i,j to I1, I2, and I3, the double integral transformations of higher-order partial 
derivatives of the function wo(x,y) over Eqs.21b-e result in Eqs.22a-e, respectively. 
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Let om PyxP =),( be defined as uniform distributed pressure or patch loading magnitude, hence:  
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and if n={1,2,3,…}, m={1,3,5,…}, then, 
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     The second derivatives of partial differential 2D unit step function equations of electrical 
bending and twisting moments (Eq.21f) acting on a smart laminated cantilever piezo composite 
plate with respect to x and y are expanded in Eqs.23a-f, respectively.  
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     Hence, the effect of twisting-bending moments acting on a smart laminated cantilever piezo 
composite plate is stated in Eqs24a-f. According to Eq.24f, it is assumed that the electrical 
intensity field (Ez) varies linearly through piezoelectric actuators thickness.  
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     The values x1M, x2M, x1P, x2P, y1M, y2M, y1P, and y2P are the placements of effective mechanical 
and electrical loads along x and y axis, respectively. Va

k stands for the applied electrical voltage 
through the kth layer’s thickness and ta

k presents the thickness of the piezoelectric actuators in 
the kth layer. Ex=Ey=0 is based on the fact that for the shell/plate type piezoelectric materials, 
only the transverse electric field component Ez is dominant when the electrical voltage Va is 
only applied to the actuators through thickness [61][62]. In the next step, parameters I1, I2,…, 
I5  are substituted into Eq.21a, resulting in Eq.25. Simplifying and rearranging both sides of 
Eqs.25 leads to Eqs.26a-d. x1P, x2P, y1P, and y2P can be obtained using Eqs.24g-j, respectively.  
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     Ox and Oy are the x and y coordinates of the inclined piezoelectric actuators, respectively 
(see Fig.2).  
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     Cmn

1, Cmn
2, and Cmn

3 can be defined as effective mechanical and electrical bending and 
electrical twisting coefficients in the smart laminated cantilever piezo composite plate, 
respectively. The boundary conditions in Eqs.18f,g,h are expanded as shown in Eqs.27a-c and 
then substituted into Eq.26a. Rearranging Eq.26a results in Eq.28. For simplicity purposes, 
unknown variables m∆ , mΩ , Π n, and nΨ are defined as shown in Eqs.29a-d, respectively. 
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     Substituting Eqs.29a-d into Eq.28 and then rearranging Eq.28 yields Eq.30, which satisfies 
the boundary conditions in Eq.18. Eq.30 represents the double finite integral transformation of 
the mid-plane vertical displacement of function wo(x,y) in the smart laminated cantilever piezo 
composite plate incorporated with arbitrarily positioned inclined piezoelectric actuators and 
under electro-mechanical loads, which can be expressed in terms of function wmn. In the next 
attempt, the remaining boundary conditions in Eqs.18c,d,e are substituted in the first and 
second partial derivatives of the double Fourier series wo(x,y) in Eqs.31a-d[60]. Simplifying 
and rearranging Eqs.31a-d results in Eqs.32a-d. 
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     The double finite integral transformation CIn and SIm are performed over Eqs.32a-b and 
Eqs.32c-d, respectively. The CIn and SIm are stated in Eqs.33a-b, respectively. Performing 
integration over the specified domains results in Eqs.34a-d, respectively.  
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     Finally, Eq.30 is substituted into Eqs.34a-d to obtain the four finite systems of linear 
simultaneous multivariable equations, as stated in Eqs.35a-d, respectively. The sufficient finite 
terms of m and n in each set of multivariable equations are considered in order to accurately 
compute the constant values of unknown variables m∆ , mΩ , Π n, and nΨ .  
 

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑∑ ∑
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

=Ψ+Π+Ω+∆
,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0

5432

,...5,3,1 ,...2,1,0

1

m n m n m n m n
mnnmnnmnmmnm

m n
mn SSSSS    (35a) 

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑∑ ∑
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

=Ψ+Π+Ω+∆
,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0

10987

,...5,3,1 ,...2,1,0

6

m n m n m n m n
mnnmnnmnmmnm

m n
mn SSSSS      (35b) 

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑∑ ∑
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

=Ψ+Π+Ω+∆
,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0

15141312

,...5,3,1 ,...2,1,0

11

m n m n m n m n
mnnmnnmnmmnm

m n
mn SSSSS      (35c) 

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑∑ ∑
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

=Ψ+Π+Ω+∆
,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0 ,...5,3,1 ,...2,1,0

20191817

,...5,3,1 ,...2,1,0

16

m n m n m n m n
mnnmnnmnmmnm

m n
mn SSSSS      (35d)       

 
     Computation of Si

mn, i={1,2,..,20} as shown in Appendix.1 leads to obtaining the unknown 
constants in Eqs.35a-d as four finite systems of linear simultaneous multivariable equations, 
which are later substituted into Eq.30 to calculate the double finite integral transformation of 
the mid-plane vertical displacement of function wo(x,y). Once the wmn is found, it is substituted 
into Eq.20 to calculate the exact mid-plane twisting-bending displacements of the function 
wo(x,y) in the smart laminated cantilever piezo composite plates induced by electro-mechanical 
loads.  
 
3. Numerical simulation: finite element method (FEM)  
 
     The electro-mechanical coupled FE simulation of smart cantilever piezo composite plates 
and beams induced by electro-mechanical twisting-bending loads was implemented using FE 
software package ABAQUS/CEA 6.13-1. The smart piezo composite structure consists of the 
host structure (fibre-reinforced composite laminate) and the piezoelectric actuator patches. 
First, each part is sketched, the dimensions and material properties are assigned, and material 
coordinate systems are defined to composite laminate and piezoelectric actuators separately 
(see Fig.3a). Since the piezoelectric actuators are polarized through thickness, only the 
piezoelectric coefficients d31 and d32 for plate/piezo and d31 for beam/piezo systems are 
considered, respectively. The host structure consists of multiple cross-ply fibre-reinforced 
composite plies in which each ply is defined through partitioning. The host structure and the 
piezoelectric actuators are considered passive and active parts, respectively, which will be later 
assembled together in the assembly module, and subsequently the boundary conditions, 
piezoelectric actuators groundings, and electro-mechanical loads are applied (see Fig.3b). For 
a cantilever plate/beam, the displacements and angel of rotations are equal to zero at the fixed 
end as seen in Fig.3b. In ABAQYS software, U1, U2, and U3 are defined as the displacements 
and UR1, UR2, and UR3 as the rotational angels along x,y, and z directions, respectively. The 
inclination angle between the piezoelectric actuator patches and host structure is created during 
the assembly. To intensify the effect of electrical twisting-bending moments and greater 
actuation result, the piezoelectric actuators were symmetrically bounded with respect to the 
mid-plane under the same amount of constant electrical voltage but different polarization 
direction. In general, for an upward displacement, the upper and lower actuator patches require 
a negative and positive voltage, respectively and vice versa[63]. After assembling and defining 
the boundary conditions and loads, the Structured Hex Element Shape was set as the finite 



element mesh control in the smart piezo composite structure. An 8-node quadrilateral in-plane 
general-purpose continuum shell, reduced integration with hourglass control, finite membrane 
strains (SC8R) was defined as the element type in the host structure while a 20-node quadratic 
piezoelectric brick, reduced integration (C3D20RE) was used to define the piezoelectric 
actuator patches element type (see Fig.3c). Finally, after submitting the model through the job 
module for the full analysis, in order to obtain the displacements in the arbitrarily selected 
element nodes, a path is defined along a specific direction in the smart piezo composite 
laminate’s mid-plane (see Fig.3d). The displacement values (U3) in each path is compared with 
the proposed explicit results for verification purpose. It must be noted that the U3 in the 
visualization module 3D contour plot stands for the vertical displacement of the mid-plane. 
 
     In order to prevent the low accuracy in computational results of twisting-bending type 
problems known as Locking phenomenon, the solid element in FEM linear approximations 
should be prevented whereas it shows the twisting-bending behaviour much stiffer in 
comparison with explicit analytical solution. Locking is higher if the solid element looks like 
shell (thickness is smaller than two other sizes). However, it can be resolved by selecting an 
appropriate FE with quadratic shape functions such as continuum shell element (SC8R). Since 
the Locking phenomena may still be found for FE quadratic shape functions, taking many 
elements for the thickness, therefore, leads to higher accuracy of the results, despite increasing 
the computational time as a disadvantage. Considering the element type in the piezoelectric 
actuator patches, a 20-node quadratic piezoelectric brick, reduced integration (C3D20RE) has 
more accuracy over an 8-node linear piezoelectric brick (C3D8E).   
 
4. Results and discussions 
 
     In this section, various examples are intended to demonstrate and evaluate the accuracy of 
the proposed method for twisting-bending deformation analysis and shape control task of smart 
laminated cantilever piezo composite plates and beams induced electro-mechanically. The 
results are verified with the ones obtained from numerical simulations. In the first example, the 
effect of electrical twisting-bending coupling is taken into account. In the last example, a 
serious of bounded piezoelectric patches with various inclination angles are intended to control 
the twisting-bending deformation of a smart laminated cantilever fibre-reinforced composite 
beam induced by asymmetrical concentrated load at the free end corner. Generally, the effect 
of various parameters including electro-mechanical twisting coupling, layup thickness, 
piezoelectric actuators size, placement, and inclination angle, electrical potential intensity, 
stacking sequence, and geometrical dimension are considered using the proposed exact solution 
and FEM. Material properties of piezoelectric actuators and fibre-reinforced composite 
laminates used in the following examples are summarised in Table.1[61][63][64].  
 
4.1. Example.1: Effect of single inclined actuators pair on twisting deformation of the smart 
cantilever laminated piezo composite plates  
 
     As shown in Fig.4a, a smart elastic cantilever composite plate (a=0.2 [m], b=0.04 [m]) with 
thickness tp=1 [mm] and made of unidirectional T300/976 GFRP is incorporated with KYNAR 
piezoelectric actuator patches (ta=0.2 [mm], La=0.1 [m], wa=0.05 [m]). The host structure is a 
fourth-layered cross-ply laminate with stacking sequence of [0/90]s. Each composite ply is 
assumed to have the same thickness. Inclined piezoelectric actuators pair, as shown in Fig.4a, 
are bounded to the plate and then polarized with opposite directions (upper patch:300 [V] and 
lower patch: -300 [V]). The inclination angle created in the piezoelectric actuators with respect 
to x axis causes the plate to twist due to existence of electrical twisting moment [Mxy

P]. The 



mechanical twisting-bending deformation created in the smart cantilever composite plate as a 
result of electro-mechanical coupling is analysed against various inclination angles, 
{0,30,45,60,90} degrees, through new proposed explicit solution and FEM (see Figs.5-9). 
Good agreement between the results is observed. It can be noticed from the results obtained 
from both approaches that when the inclination angle is equal to 0 (see Fig.5) and 90 (see Fig.9) 
degrees, no twisting deformation occurs in the plate while the effect of longitudinal and 
transverse piezoelectric coefficients is switched when inclination angle is 90 degrees (d31→d32 
and d32→d31). Moreover, according to Figs.6-8, as the inclination angle increases, the electrical 
twisting moment effectiveness reduces. Thus, 30 degrees results in the most twisting 
deformation while 60 degrees the lowest.        
        
4.2. Example.2: Effect of double inclined actuators pairs on twisting deformation of the smart 
cantilever laminated piezo composite plates 
 
     A combination of the multiple bounded inclined actuator groups (ta=0.2 [mm], La=0.05 [m], 
wa=0.025 [m]) positioned at ➀ and ➁ in the smart elastic cantilever composite plate (tp=1 [mm], 
a=0.2 [m], b=0.04 [m]) is considered in this example (see Fig.4b). The amount of applied 
electrical voltage, piezoelectric actuators polarization direction, actuator and composite plate 
material properties, and plate stacking sequence are the same as the ones used in Example.1. It 
can be easily seen that the combination of actuator groups can result in significantly higher 
twisting deformation in the composite plate. Thus, for twisting-bending shape control purposes, 
more energy can be saved to achieve the same results by applying lower electrical voltage than 
is it achieved when using single actuators pair. Again, the mechanical twisting-bending 
deformation created in the smart cantilever composite plate with multiple bounded actuators 
pairs is analysed against various inclination angles, {0,30,45,60,90} degrees, through new 
proposed explicit solution and FEM (see Figs.10-14). Good agreement between the results is 
observed. The effect of inclination angle variation on shape deformation in composite plates 
under either multiple or single actuator pairs seems to be constant. However, since a higher 
electrical voltage and electrical filed intensity are required for shape deformation task, therefor, 
the use of multiple actuator patches would be more beneficial and optimal compared with a 
single actuator patch.  
 
4.3. Example.3: Effect of stacking sequence selection on shape deformation of smart laminated 
cantilever piezo composite plates 
 
     In this example, the effect of various stacking sequence on shape deformation of smart 
cantilever piezo composite laminate is investigated. The relationship between the stacking 
sequence and the composite laminates stiffness can result in shape deformation varying 
considerably. Thus, it is important to choose the suitable layup to control the structural shape 
deformation of composite laminates to our advantage. A combination of the double bounded 
inclined actuator groups positioned at ➀ and ➁ is considered in this example (see Fig.4c). The 
piezoelectric actuators polarization direction, actuator and composite plate properties, 
thickness and dimensions are the same as the ones used in Example.2. In order to observe the 
sole effect of stacking sequence on electro-mechanical twisting-bending coupling, same 
amount of electrical voltage is applied to each sample regardless of the stacking sequence 
configuration. However, 400 [V] and 300 [V] are applied to the bounded actuators pairs 
positioned at ➀ and ➁, respectively. Upper and lower actuator patches are subjected to positive 
and negative voltage, respectively. Samples stacking sequence configurations are selected as 
[Piezo/0/0]s, [Piezo/90/90]s, [Piezo/0/90]s, [Piezo/90/0]s. The inclination angle is also kept 
constant for all actuators in each sample at 45 degrees. The results are then obtained using the 



proposed explicit solution and the numerical simulation. Figs.15a-b represents the vertical 
displacements of mid-plane points along wo(x,b) and wo(a,y) along x and y directions, 
respectively, in a smart laminated cantilever piezo composite plate with various stacking 
sequence configurations. According to the results, the configuration [Piezo/0/90]s and 
[Piezo/90/90]s has the highest and lowest twisting-bending stiffness when subjected to 
electrical voltage, respectively. However, no major difference in results between the 
configurations [Piezo/0/90]s and [Piezo/0/0]s are observed. The results from both approaches 
show a good agreement. Subsequently, the wo(x,y) for each configuration are obtained. The 3D 
shape deformations obtained using the explicit solution (see Fig.16) and the numerical 
simulation (see Fig.17) show the same twisting-bending deformation trend.    
 
4.4. Example.4: Effect of electrical voltage intensity on shape deformation of smart laminated 
cantilever piezo composite plates 
 
     In this example, the effect of electrical voltage intensity on a laminated cantilever piezo 
composite square plate (a=b=0.2 [m]) is investigated numerically and analytically. The 
piezoelectric actuators and composite plate properties, thickness and stacking sequence are 
same as the ones used in Example.1, while opposite polarization direction is selected to polarize 
bounded piezoelectric actuator patches groups (La=0.1 [m], wa=0.02 [m]; upper and lower 
actuator patches are subjected to negative and positive voltage, respectively). To observe the 
sole effect of electrical voltage on twisting-bending deformation of the cantilevered composite 
plates, a series of various electrical voltages, {100,250,350,500} [V], are applied to the bounded 
piezoelectric patches and the results are presented in Figs.18-20, respectively. According to 
results, any increase in the amount of electrical voltage results in higher twisting-bending 
deformation in the composite plates. The results from both approaches shows a good 
agreement. In addition, it is noticed that the twisting curvature increases as the electrical 
voltage is raised.   
 
4.5. Example.5: Effect of single inclined actuators pair on twisting deformation of the smart 
cantilever laminated piezo composite beams 
 
     As shown in Fig.21a, a smart fourth-layered cross-ply cantilever composite beam (tp=1 
[mm], a=0.2 [m], b=0.03 [m]), made of unidirectional T300/976 GFRP, and with the stacking 
sequence of [0/90]s, is incorporated with the bounded PZTG1195 piezoelectric actuator patches 
(ta=1 [mm], La=0.05 [m], wa=0.03 [m]). Inclined piezoelectric actuators pair are polarized with 
opposite directions (upper patch: -300 [V] and lower patch: 300 [V]). The mechanical twisting-
bending deformation created in the smart cantilever composite beam as a result of electro-
mechanical coupling is analysed against various inclination angles, {0,30,45,60,90} degrees, 
through new proposed explicit solution and FEM (see Figs.22-24). Good agreement between 
the results is observed. As discussed in the results and discussion section, for beam type 
laminates, it is assumed that the width along y direction is stress free while considering the 
plane stress assumption. Thus, only the longitudinal piezoelectric coefficient d31 is taken into 
consideration. According to the results obtained from both approaches, any changes in 
inclination angle can results in the twisting-bending deformation varying considerably. In 
addition, as predicated by the explicit solution, no twisting deformation occurred for inclination 
angles 0 and 90 degrees.   
 
 
 



4.6. Example 6: twisting-bending control of the smart piezo composite beams under 
asymmetrical point load 
 
     In the final example, the effectiveness of the piezoelectric actuators for the shape control of 
laminated composite structures under combination of twisting and bending deformations is 
investigated. As seen in Fig.21b, a combination of the multiple bounded PZTG1195 actuator 
groups (ta=0.2 [mm], La= wa=0.05 [m]), positioned at ➀ and ➁, is considered. The host structure 
is a laminated cantilever composite beam (tp=1 [mm], a=0.2 [m], b=0.05 [m]) made of 
unidirectional T300/976 GFRP. The composite beam is subjected to a point load F=-1 [N] as 
seen in Fig.21b. Since the concentrated load is unsymmetrically applied to the composite beam, 
it results in in-plane twitting deformation while deflecting downward. In order to fully suspend 
the twisting-bending effect, actuator ➀ is positioned without any indication angle and actuator 
➁, in contrast, with a negative inclination angle of -30 degrees with respect to the x axis. The 
actuator patches ➀ and ➁ are used in a two-level attempt to suspend the twisting and bending 
deformations, respectively. Upper and lower actuator patches positioned at ➀ and ➁ receive 
same amount of electrical voltage but negative and positive values, respectively. First, for 
controlling the twisting deformation, actuator patches ➁ are subjected to an initial electrical 
voltage of 100 [V]. As seen in Fig.25, the twisting deformation is slightly suspended and the 
beam starts restoring its original shape. Finally, by increasing the amount of electrical voltage 
applied to actuator patches ➁ up to the optimal level, the twisting deformation is fully 
suspended at 170 [V]. During these steps, no electrical voltage is applied to the actuator patches 
➀. Subsequently, in order to suspend the beam deflection, the actuator patches ➀ are initially 
subjected to the electrical voltage of 100 [V] and it is increased until the optimal voltage of 200 
[V]. During the final steps, the electrical voltage applied to the actuator patches ➁ is kept 
constant at 170 [V].  It is observed that the beam deflection is significantly reduced as the 
electrical voltage increases. Therefore, by applying the optimal voltages of 200 [V] and 170 
[V] to the actuator patches ➀ and ➁, respectively, the twisting-bending deformations could be 
fully supressed according to the results illustrated in Fig.25.                  
 
Conclusion: 
 
     In this study, a new explicit analytical solution is presented for obtaining twisting-bending 
deformation and optimal shape control of smart laminated cantilever composite plates and 
beams using inclined piezoelectric actuators. For the first time, a mathematical relationship 
between the electrical and mechanical twisting moments are developed. The reliability of the 
proposed method is compared with the FE simulation results. The relationship between electro-
mechanical twisting-bending deformation and various electro-mechanical parameters are taken 
into account. Generally, based on the results in the current research, the following remarks are 
concluded:   
 

1. A good agreement observed between the proposed exact analytical solution and 
numerical simulation demonstrates the reliability of the model proposed in this paper. 

 
2. Inclined piezoelectric actuators are capable of inducing twisting deformation in 

laminated composite structures through applying electrical voltage to piezoelectric 
actuators. The intensity of twisting shape deformation varies by changing the 
inclination angle. Therefore, through optimal inclination angle and applied electrical 
voltage, the shape control task of laminated composite structures under asymmetrical 
loads can be reliably implemented.  



 
3. Piezoelectric actuator’s size and placement have direct effect on twisting-bending shape 

deformation of laminated composite structures. Typically, considering the constant 
electrical voltage, inclination angle, and composite laminate’s stiffness, larger ones 
have more power to induce twisting-bending deformation. In addition, the ones placed 
closed to the composite plates/beams fixed end show a better shape deformation while 
this effectiveness decreases as they are placed closer to the free end.       
 

4. Six samples with various inclination angles ({0,30,45,60,90} degrees) were selected in 
this study. According to the numerical and analytical results, for the inclination angles 

90,0≠θ degrees, the twisting deformation reduces when the inclination angle 
increases. As predicted by the both approaches, when 90,0=θ degrees, no twisting 
deformation occurs since the transformed piezoelectric twisting coefficient is equal to 
zero. Moreover, when the inclination angle is equal to 90 degrees, the effect of 
longitudinal and transverse piezoelectric coefficients is switched (d31→d32 and 
d32→d31). 
 

5. By increasing the applied electrical voltage and/or the number of inclined piezoelectric 
patches, the maximum twisting deformation in composite laminates can be achieved. 
Meanwhile, higher electrical voltage for shape deformation control purposes is difficult 
to control and may result in the piezoelectric actuators being destroyed[60]. Thus, the 
finding in the current research could be significant for shape control of laminated 
composite structures. For example, by selecting the optimal number of inclined 
piezoelectric patches and/or adjusting the applied electrical voltage, optimal results can 
be achieved. 

 
6. Composite laminates stiffness can significantly affect the electro-mechanical twisting-

bending coupling. The stiffness matrix can be induced by selecting various stacking 
sequence configurations. Among those with symmetrical cross-ply configuration, 
[Piezo/0/90]s and [Piezo/90/90]s have the highest and lowest twisting-bending stiffness 
when subjected to electrical voltage, respectively. However, no major differences in 
results between the configurations [Piezo/0/90]s and [Piezo/0/0]s are observed.  
 

7. The shape control task in smart laminated cantilever composite plates and beams can 
be reliably implemented using the proposed explicit exact analytical solution. The 
proposed method is well suited for laminated composite structures subjected to more 
complex and asymmetrical loading systems whereas the characteristic and trial 
deflection functions are not required to be predetermined for shape control 
performance. According to the results, through a two-step task, twisting-bending 
deformation in the laminated composite structures can be suspended. For instance, 
piezoelectric actuators with no inclination angles could be exploited to control pure 
bending deformation while inclined ones can be used to suspend the pure twisting 
deformation.  

 
Appendix.1: 
 
     The coefficients Si

mn, i={1,2,..,20}, in the four finite systems of the linear simultaneous 
multivariable Eqs.35a-d, can be computed as follows: 
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Tables: 
 
Table.1. Material properties. 

Material 
properties 

KYNAR 
[57] 

PZT 
G1195N  

[54] 

T300/976 
GFRP  
[56] 

E1 [GPa] 2 63 150 

E2 [GPa] 2 63 9 

v12 0.29 0.3 0.3 

G12 [GPa] 0.77 24.2 7.1 

G13 [GPa] 0.77 24.2 2.5 

d31 ][ V
nm  0.023 0.254 0 

d32 ][ V
nm  0.0046 0.254 0 

zρ ][ m
nF  0.1062 15 0 

 

 
Figures: 
 

 
Fig.1. Schematics of smart laminated cantilever piezo composite plate integrated with arbitrarily positioned 
inclined piezoelectric actuators.   



Fig.2. Schematic of placement, geometry, and inclination angles of inclined piezoelectric actuators and smart 
composite laminate layup cross-section. 
 
 

 
 
Fig.3. The schematic of FE simulation of smart cantilever piezo composite plates and beams induced by electro-
mechanical twisting loads using Commercial Finite Element software ABAQUS/CEA 6.13-1: a) sketching and 
defining the dimensions and material properties to composite laminate and piezoelectric actuators, b) applying the 
electro-mechanical boundary conditions, piezoelectric actuators groundings, inclination angle and electrical 
surface charges, c) Applying the FE meshing to the smart cantilever piezo composite and defining the element 
type of host structure and piezoelectric actuators, d) defining a path/paths along a specific direction in the smart 
cantilever piezo composite laminate’s mid-plane. 
 
 
 
 
 
 
 
 



 
Fig.4. Schematic of the smart laminated cantilever composite plates with a) single bounded actuator pair, b) double 
bounded actuator pairs, c) double bounded actuator pairs and various stacking sequence configuration, d) single 
bounded actuator pair and under various electrical voltage.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.5. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with single piezoelectric actuator pair when o0=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) wo(x,y): 
Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Fig.6. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined single piezoelectric actuator pair when o30=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.7. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined single piezoelectric actuator pair when o45=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.8. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined single piezoelectric actuator pair when o60=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.9. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined single piezoelectric actuator pair when o90=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.10. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with double piezoelectric actuator pairs when o0=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) wo(x,y): 
Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.11. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined double piezoelectric actuator pairs when o30=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.12. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined double piezoelectric actuator pairs when o45=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.13. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined double piezoelectric actuator pairs when o60=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.14. Explicit and numerical analysis of shape deformation in the smart cantilever composite plate integrated 
with inclined double piezoelectric actuator pairs when o90=θ : a) wo(x,b), b) wo(a,y), c) wo(x,y): Explicit, d) 
wo(x,y): Numerical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.15. Explicit and numerical analysis of stacking sequence configuration effect on shape deformation in the 
smart cantilever composite plate integrated with inclined double piezoelectric actuator pairs: a) wo(x,b), b) wo(a,y). 
 
 
 
 

 
Fig.16. Explicit analysis of stacking sequence configuration effect on shape deformation in the smart cantilever 
composite plate integrated with inclined double piezoelectric actuator pairs: a) [Piezo,0,0]s, b) [Piezo,90,90]s, c) 
[Piezo,90,0]s, d) [Piezo,0,90]s. 
 
 
 



 
Fig.17. Numerical analysis of stacking sequence configuration effect on shape deformation in the smart cantilever 
composite plate integrated with inclined double piezoelectric actuator pairs: a) [Piezo,0,0]s, b) [Piezo,90,90]s, c) 
[Piezo,90,0]s, d) [Piezo,0,90]s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig.18. Explicit and numerical analysis of electrical voltage effect on shape deformation in the smart cantilever 
composite plate integrated with inclined double piezoelectric actuator pairs: a) wo(x,b), b) wo(a,y). 
 
 
 
 

 
Fig.19. Explicit analysis of electrical voltage effect on shape deformation in the smart cantilever composite plate 
integrated with inclined double piezoelectric actuator pairs: a) 100 [V], b) 250 [V], c) 350 [V], d) 500 [V].  
 
 
 
 
 
 



 
Fig.20. Numerical analysis of electrical voltage effect on shape deformation in the smart cantilever composite 
plate integrated with inclined double piezoelectric actuator pairs: a) 100 [V], b) 250 [V], c) 350 [V], d) 500 [V].  
 
 
 
 

 
Fig.21. a) The smart laminated cantilever composite beam integrated with inclined single bounded piezoelectric 
actuator pair, b) shape control task of the smart composite laminate subjected to asymmetrical concentrated load 
using double inclined bounded piezoelectric actuator pairs.    
 
 
 
 

 
Fig.22. Explicit and numerical analysis of various inclination angle effect on shape deformation in the smart 
cantilever composite plate integrated with inclined double piezoelectric actuator pairs: a) wo(x,b), b) wo(a,y). 
 
 
 
 



 
Fig.23. Explicit analysis of various inclination angle effect on shape deformation in the smart cantilever composite 
plate integrated with inclined double piezoelectric actuator pairs: a) o0=θ , b) o30=θ , c) o45=θ , d)

o60=θ , e) o90=θ .  
 
 
 
 
 
 
 



 
Fig.24. Numerical analysis of various inclination angle effect on shape deformation in the smart cantilever 
composite plate integrated with inclined double piezoelectric actuator pairs: a) o0=θ , b) o30=θ , c) o45=θ
, d) o60=θ , e) o90=θ . 
 

 
Fig.25. Explicit analysis of shape control task of the smart composite laminate subjected to asymmetrical 
concentrated load using double inclined bounded piezoelectric actuator pairs: a) wo(x,0), b) wo(a,y), c) wo(x,y): 
Pure twisting suspension using piezoelectric actuator ➁ ( 030−=θ ), d) wo(x,y): Pure bending suspension using 

piezoelectric actuator ➀ ( 00=θ ).   


