- 1 Effects of fermentation conditions on the potential anti-
- 2 hypertensive peptides released from yogurt fermented by
- 3 Lactobacillus helveticus and Flavourzyme®
- 5 Min Shi, Fatah Ahtesh, Michael Mathai, Andrew J McAinch, Xiao Q Su*
- 7 Centre for Chronic Disease, College of Health and Biomedicine, Victoria University,
- 8 P.O. Box 14428, Melbourne, VIC 8001, Australia
- 10 *Corresponding author
- 12 Postal address:

6

9

11

20

22

- 13 College of Health and Biomedicine
- 14 Victoria University
- 15 P.O. Box 14428
- 16 Melbourne, Australia 8001
- 17 Tel: +61-3-9919 2318
- 18 Fax: +61-3-9919 2465
- 19 Email: xiao.su@vu.edu.au
- 21 Running title: anti-hypertensive peptides from yogurt

1 Summary

This study investigated the effects of fermentation conditions on the production of angiotensin-2 3 converting enzyme inhibitory (ACE-I) peptide in yogurt by Lactobacillus helveticus 881315 (L. helveticus) in the presence or absence of Flavourzyme[®], which is derived from a mold 4 Aspergillus oryzae and used for protein hydrolysis in various industrial. Optimal conditions for 5 peptides with the highest ACE-I activity were 4% (v/w) inoculum size for 8 h without 6 Flavourzyme® supplementation, and 1% inoculum size for 12 h when combined with 7 Flavourzyme[®]. The yogurt fermented by *L. helveticus* resulted in IC₅₀ values (concentration of 8 inhibitor required to inhibit 50% of ACE activity under the assayed conditions) of 1.47 ± 0.04 9 and 16.91 ± 0.25 mg/mL with and without Flavourzyme[®], respectively. Seven fractions of 10 ACE-I peptide from the yogurt incorporated with L. helveticus and Flavourzyme® were 11 separated using the preparative high-performance liquid chromatography. Fraction (F3) 12 showed the highest ACE-I activity with an IC₅₀ of $35.75 \pm 5.48 \,\mu\text{g/mL}$. This study indicates 13 14 that yogurt may be a valuable source of ACE-I peptides, which may explain the outcomes observed in the experimental and clinical studies and foresee the application of fermented milk 15 proteins into functional foods or dietary supplements. 16

Keywords

17

19

20

21

Yogurt, Peptides, Angiotensin-converting enzyme, Flavourzyme[®], *Lactobacillus helveticus*

1 Introduction

2 Yogurt is generally made from milk by mixed cultures, including two types of homofermentative bacteria, Streptococcus thermophilus (S. thermophilus) and Lactobacillus 3 4 delbrueckii subsp. bulgaricus (L. bulgaricus) (Radke-Mitchell & Sandine, 1986; De Brabandere & De Baerdemaeker, 1999). Lactobacillus helveticus (L. helveticus), is a lactic acid 5 6 bacterium (LAB) and is used for the production of fermented milk beverages and some types of hard cheeses (Griffiths & Tellez, 2013). In previous studies, fermented milk with L. 7 8 helveticus exhibited anti-hypertensive effect in both animal and clinical studies due to its angiotensin-converting enzyme inhibitory (ACE-I) activity (Chen et al., 2014; Jauhiainen et 9 10 al., 2005; Aihara et al., 2005; Griffiths & Tellez, 2013). Angiotensin-converting enzyme 11 (ACE), as a part of the renin-angiotensin system, has an important role in the regulation of blood pressure by converting angiotensin-I into a potent vasoconstrictor, angiotensin-II. 12 13 Angiotensin-II induces the release of aldosterone and therefore increases the sodium retention and blood pressure (Muro Urista et al., 2011). Thus, inhibition of ACE can lower the blood 14 pressure, and has potential health benefits to hypertensive patients (Tuomilehto et al., 2004; 15 16 Aihara et al., 2005). The renin-angiotensin system has therefore become a key target for antihypertensive drugs (Miura et al., 2011), however, conventional drugs targeting this system 17 cause various adverse effects, such as headache, dizziness and cough (Soleimani et al., 2015; 18 Coulter D, 1987). 19 20 Anti-hypertensive peptides isolated from fermented dairy products such as fermented milk 21 drink and cheese could represent a healthier and natural alternative for the ACE-I drugs as a non-pharmacological therapy to reduce the risk of hypertension (Hannu & Anne, 2006; 22 Minervini et al., 2003; Pan & Guo, 2010; Donkor et al., 2007b). Previous studies showed that 23 two tripeptides [Val-Pro-Pro (VPP), Ile-Pro-Pro (IPP)] released from fermented milk by 24

- several types of *L. helveticus* strains exhibited anti-hypertensive peptide effects due to high
- 2 ACE-I activity in both human (Tuomilehto et al., 2004; Ishida et al., 2011; Cicero et al., 2013)
- and rats (Chen et al., 2014; Jauhiainen et al., 2010). However, little information is available on
- 4 whether yogurt is a better source of ACE-I peptides when it is further fermented by L.
- 5 *helveticus* strains.
- During yogurt fermentation, bacteria growth and product synthesis depend on medium compositions and culture conditions such as temperature, pH, inoculum size and fermentation
- 8 duration and so on (Agyei et al., 2012). Inoculum size was an important factor for the growth
- 9 rate of the bacterial culture. When the inoculum size is too low, it would take longer for bacteria
- to reach the logarithmic growth phase (Min et al., 2013). In contrast, a greater inoculum size
- could result in a quick consumption of nutrients required by bacterial strains, thus fermentation
- could be interrupted (Min et al., 2013). The optimisation of various fermentation parameters
- for maximising active peptide production by LAB is therefore a major research endeavour.
- 14 Supplementation of some enzymes with strong proteolytic activity is alternative method to
- improve functional peptide production during yogurt fermentation (Donkor et al., 2007a;
- 16 Shabboo & Ahmad, 2011). Among of these enzymes, Flavourzyme[®] is an important
- 17 contributor to hydrolyse milk protein for the production of ACE-I peptides (Tsai et al., 2008).
- 18 Flavourzyme[®] contains enzymes that are generally recognized as safe for use in the food
- industry (Boschin et al., 2014). It is derived from a mold Aspergillus oryzae and used for
- 20 protein hydrolysis in various industrial and research applications due to its high endoprotease
- 21 and exopeptidase activities (Merz et al., 2015).. Ahtesh et al. (2016 a, b) reported that
- Flavourzyme[®] can be used to increase the hydrolysis of the milk protein into further small
- 23 molecular weight ACE-I peptides in 12% of reconstituted skim milk (RSM). However, the
- role of Flavourzyme[®] in the production of bioactive peptides from yogurt is not well

- 1 reported. Therefore, the aim of this study was to determine the optimal fermentation
- 2 conditions for the production of ACE-I peptides from yogurt fermented by Lactobacillus
- 3 strains. Furthermore, we investigated whether the inclusion of Flavourzyme[®] is able to
- 4 increase the release of ACE-I peptides in yogurt media.

5 Material and Methods

6 Culture medium and reagents

- 7 Glycerol de Man, Rogosa, Sharpe (MRS) broth was purchased from Oxoid, Ltd., West
- 8 Heidelberg, Victoria, Australia. Reconstituted skim milk (RSM) powder (52% lactose, 37%
- 9 protein, 8.6% ash, and 1.2% fat) was obtained from Woolworths Ltd, Australia. M17 broth was
- purchased from Oxoid, Ltd, Hampshire, England. Flavourzyme[®] (EC 3.4.11.1, an amino
- peptidase with an activity of 500 Leucine Amino-peptidase per gram), hippuryl-L-histidyl-L-
- 12 leucine (HHL), ACE enzyme (from rabbit lung, 0.1 UN) and hippuric acid (HA) were
- purchased from Sigma-Aldrich Pty. Ltd., NSW Australia.

14 Bacteria storage and propagation

- 15 Lactobacillus helveticus ASCC 881315 (L. helveticus), Streptococcus thermophiles ASCC
- 16 1275 (S. thermophiles) and Lactobacillus delbrueckii subsq. bulgaricus 1466 (L. bulgaricus)
- were obtained from Dairy Innovation Australia Ltd, Werribee, Victoria, Australia. The L.
- 18 helveticus strain was stored in MRS broth, while S. thermophiles and L. bulgaricus strains were
- 19 kept in RSM at -80 °C. For activation of these strains, 100 µL of L. helveticus and L. bulgaricus
- 20 strains were transferred separately into 9.9 mL of 40% MRS broth, whereas S. thermophiles
- was activated via transfer of 100 µL to 9.9 ml of 3.7% M17 broth, containing 0.5% lactose. All

- 1 media were autoclaved at 121 °C for 15 minutes before use. Following activation, all strains
- 2 were incubated at 37 °C for 24 h

3 Yogurt preparation

- 4 Yogurt was prepared by dissolving skim milk powder (12%, w/w) in distilled water. RSM was
- 5 heated to 90 °C for 30 min, then inoculated with 1% activated *S. thermophiles* and *L. bulgaricus*
- 6 cultures (1: 1 of ratio) and fermented at 42 °C for 6 hours to produce yogurt. Then the
- 7 fermentation process was stopped by cooling at 4 °C overnight.

8 Release of bioactive peptides from yogurt

- 9 L. helveticus 881315 strain was incorporated into yogurt with or without Flavourzyme®
- 10 (0.14%). Specifically, the yogurt was re-incubated at 37 °C with stirring (200 rpm) for the
- purpose of a better homogenization between yogurt and Flavourzyme® during 16 h. After
- incubation for 4, 8, 12 and 16 h, with different inoculum sizes of *L. helveticus* (1%, 2%, 3%)
- and 4% v/w), samples were taken for analysis. The fermentation process was terminated by
- heating the yogurt at 90 °C for 20 min to stop enzyme activity. Subsequently, 25 mL of yogurt
- sample was centrifuged at $4000 \times g$ at 4 °C for 30 min to separate proteins. The supernatant
- 16 containing soluble peptides was freeze-dried (Freeze-drier, John Morris Scientific Pty Ltd,
- Australia) for 72 h. The freeze-dried peptides powder was stored at -20 °C for analysis.

Determination of ACE-Inhibitory activity

- 19 20 mg of the freeze-dried peptide powder from normal yogurt with starter culture or yogurt
- 20 incorporated with *L. helveticus* without Flavourzyme[®] was dissolved in 1 mL of Tris buffer
- 21 (50 mM, pH 8.3) containing 300 mM sodium chloride, respectively. However for the peptides
- from yogurt incorporated with *L. helveticus* and Flavourzyme[®], 2.5 mg/mL of powder was

- dissolved in the same Tris buffer, as these peptides showed 100% ACE-I activity, when the
- 2 concentration was 20 mg/mL; therefore, lower concentration (2.5 mg/mL) was used to assess
- 3 the production of ACE-I peptides under different fermentation conditions.
- To determine the peptide fractions from yogurt in the presence of Flavourzyme[®], freeze-dried
- 5 powder (2.5 mg) was dissolved in Tris buffer (50 mM, pH 8.3) containing 300 mM sodium
- 6 chloride to prepare the sample solutions of 62.5, 125, 250, and 500 μg/mL concentrations to
- 7 calculate IC_{50} value of different fractions. The IC_{50} value was defined as the concentration of
- 8 inhibitor required to inhibit 50% of ACE activity under the assayed conditions.
- 9 Evaluation of ACE-I activity was assayed using a reversed-phase HPLC system (RP-HPLC,
- 10 from Varian Analytical Instruments, Santa Clara, CA, USA) previously described by Donkor
- et al 2007a. It is based on the hydrolysis HHL by ACE to hippuric acid (HA) and histidyl-
- leucine (HL) as products. The HA released from HHL is directly related to the ACE activity.
- ACE enzyme and HHL was prepared in Tris buffer. Briefly, the assay consisted of 300 µL of
- 3.0 mM HHL, 300 μL of 3.0 mU ACE enzyme, and 300 μL of peptide solution. The mixture
- was placed in a glass tube and then incubated at 37 °C in a water bath for 0.5 h, mixed for 1
- min, then returned to the water bath for another 0.5 h. The reaction was stopped by heating the
- mixture in an 85 °C water bath for 10 min in order to inactivate enzymes. The reaction mixture
- was stored at -20 °C before further analysis of released hippuric acid by RP- HPLC.
- 19 HA standard curve was prepared in five different concentrations (5, 10, 15, 20 and 25 μg/mL).
- The isocratic mobile phase composition was optimized to 12.5% acetonitrile (Merck) in MilliQ
- 21 water (v/v) containing 0.1% trifluoroacetic acid (TFA), which was filtered (0.45 μm) prior to
- running through the column. The temperature of the column was kept at room temperature (~22
- °C). An aliquot (10 μL) of the mixture was injected onto a VyDAC® C18 300 Å (250 mm x
- 24 4.6 mm, 5 μm) column (Grace Vydac, Hesperia CA, USA) using a Varian HPLC equipped

- with an auto sampler. The flow rate was set at 0.6 mL/min. The quantitative estimation of HA
- 2 present was determined using a calibration curve of standard HA using a UV detector set at
- 3 228 nm.

4 The percent of ACE inhibition was calculated as follows:

5 ACE inhibition (%) =
$$\frac{C \text{ (control)} - C \text{ (sample)}}{C \text{ (control)}} \times 100$$

- 6 Where: C (control) was the concentration of HA without the tested samples (active peptides),
- 7 which contained 300 μL of HHL, 300 μL of ACE enzyme and 300 μL of Tris buffer, and C
- 8 (sample) was the concentration of HA with the tested samples, which contained 300 µL of
- 9 HHL, $300 \mu L$ of ACE enzyme and $300 \mu L$ of peptide solution.

Peptide profile of water-soluble extract

The RP-HPLC assay was developed for the profile of water-soluble peptides extracted from 11 yogurt as control, and yogurt containing L. helveticus strain with or without Flavourzyme[®], 12 13 respectively (Nielsen et al., 2009). The freeze-dried peptide powder (20 mg) was dissolved in 1 mL of 0.1% TFA in distilled water. All the supernatants thus obtained were filtered through 14 a 0.45 µm membrane filter and stored at -20 °C until assayed. Water soluble peptides were 15 profiled by a RP- HPLC (SHIMADZU Corporation, Japan) using C-18 monomeric column (5 16 μm, 300 Å, 250 mm x 4.6 mm; Grace Vydac, Hesperia CA, USA). The injection volume was 17 10 μL. Solvent A was a mixture of water with 0.1% TFA (v/v) and solvent B contained 18 acetonitrile with 0.1% TFA (v/v). Active peptides were eluted with a linear gradient of solvents 19 B in A at concentrations from 0 to 100% over 30 min at a flow rate of 0.75 mL/min. The elution 20 profile was monitored at 215 nm by UV-Vis detector at room temperature (~22 °C). 21

Peptide fractions

- 1 Bioactive peptide fractions from yogurt with L. helveticus and Flavourzyme® were collected
- 2 using a column (Prep Nova-Pack HR C18, 60 Å, 250 mm x 10 mm, 10 μm, Phenomenex, Pty
- 3 Ltd, Australia) by preparative RP-HPLC. Solvent A was a mixture of water and TFA (1000:1,
- 4 v/v), and solvent B contained acetonitrile and TFA (1000:1, v/v). The injection volume was 1
- 5 mL with 20 mg/mL of yogurt peptides. The peptides were eluted with a linear gradient of
- 6 solvent B in A ranged from 0% to 40% over 90 min, at a flow rate 4 mL/min. Detection was
- 7 carried out at 215 nm by UV-Vis detector. According to the retention time of peaks, 7 fractions
- 8 were collected at 10 min for fraction F2, F3, F4 and F7, 12 min for F1, and 14 min for F5 and
- 9 F6, respectively. All fractions were frozen dried under vacuum. IC₅₀ of ACE activity was
- 10 determined for each fraction.

Statistical analysis

11

22

23

- All results are expressed as mean \pm standard deviation for each measurement (n = 3), including
- yogurt fermentation, the pH, determination of ACE-I activity and calculation of the IC₅₀ value.
- 14 The yogurt fermentation was carried out in two separate procedures. The first was focused on
- the four fermentation times (4, 8, 12 and 16 h) with 1% inoculum sizes of *L. helveticus*. The
- second was performed with different inoculum sizes of L. helveticus (1%, 2%, 3% and 4%
- 17 v/w), after the optimal fermentation time was determined. One-way ANOVA was performed
- using software SPSS version 22 (IBM Chicago, IL, USA) to analyse the significant differences
- in the treatments, which were fermentation time, inoculum sizes and presence or absence of
- 20 Flavourzyme®. Fisher's (least significant difference; LSD) test was used to differentiate
- significant differences among the treatments. P < 0.05 was considered as significant.

Results and Discussion

Effects of L. helveticus strains and Flavourzyme® on the pH of yogurt

The pH of yogurt containing L. helveticus strain with or without Flavourzyme® with different 1 2 fermentation time and inoculation volume is shown in Figure 1. The pH of yogurt fermented by S. thermophiles and L. bulgaricus was 4.71 \pm 0.04. The pH was decreased to 4.45 \pm 0.04 3 when L. helveticus strains were incorporated alone into the yogurt at 37 °C for 16 h (P < 0.05; 4 Figure 1A). The pH was further decreased to 4.06 ± 0.03 when Flavourzyme[®] and L. helveticus 5 6 strains were added in the yogurt for 16 h of fermentation (P < 0.01; Figure 1A). The decrease of the pH could be due to the production of lactic acid by lactic acid bacteria strains (Donkor 7 et al., 2007a). The pH of yogurt in the presence of Flavourzyme[®] was significantly lower than 8 that without Flavourzyme[®] for the same fermentation time (P < 0.01; Figure 1A). The presence 9 of Flavourzyme[®] could result in higher proteolysis and the release of more peptides, which was 10 11 further supported by the experimental data on the fermentation time and peptides of ACE-I due to further hydrolysis of milk protein by Flavourzyme® to small size molecular weight of 12 peptides (Fatah et al., 2016a; Fatah et al., 2016b). Previous research has demonstrated the same 13 trends using these L. helveticus strains in the 12 h fermentation of skim milk and the pH of the 14 fermented product was 3.4 when Flavourzyme[®] was added compared with 5.0 without addition 15 of Flavourzyme[®] (Fatah et al., 2016b). In the same study, it was also reported that the growth 16 of all strains of L. helveticus, when mixed with Flavourzyme®, was increased significantly at 8 17 h and declined after 8 h of fermentation at pH 3.4. This was possibly due to the low pH and 18 19 heat treatment reducing available nutrients for growth (Fatah et al., 2016b; Dissanayake et al., 20 2013). The reason for the higher pH (4.15) in the present study may be attributed to the type of media. In this study, yogurt was used as a media while RSM was used in the study by Ahtesh 21 et al (2016b). 22 In the fermentation of yogurt, the pH decreases steadily in correspondence with the milk 23 acidification (two homofermentative bacteria transform fermented (milk) sugar into lactic acid) 24 that underlies the fermentation process (De Brabandere & De Baerdemaeker, 1999). Many 25

- 1 factors including starter culture, heat treatment, fermentation time, inoculum size and
- 2 incubation temperature, affect the pH in yogurt fermentation. In this study, the decrease in pH
- 3 was observed in yogurt combined with different inoculum size of L. helveticus (P < 0.01;
- 4 Figure 1B). After fermentation, the pH of yogurt decreased to 3.91 ± 0.04 without
- 5 Flavourzyme[®], and 4.00 ± 0.03 with Flavourzyme[®] (P < 0.05; Figure 1B). The pH was lower
- 6 with 1% inoculum of *L. helveticus* with Flavourzyme[®] than those without Flavourzyme[®] in the
- same inoculum size of L. helveticus (P < 0.01; Figure 1B). Then there were no significant
- 8 changes with the increase of inoculum size of *L. helveticus* in the presence of Flavourzyme[®].
- 9 However, the pH declined with the increase of inoculum size of *L. helveticus* in absence of
- 10 Flavourzyme[®].

Effect of fermentation time on ACE-I activity with or without

12 Flavourzyme[®]

- A time course of peptide production showed that ACE-I activity of peptides was significant
- difference between the groups with and without Flavourzyme® at the same fermentation time
- 15 (P < 0.01; Figure 2A). The results demonstrate that ACE-I activity increased gradually with
- the fermentation time, when Flavourzyme[®] was supplemented during yogurt fermentation.
- 17 Specifically, ACE-I activity in the absence of Flavourzyme[®] group increased significantly from
- 18 $13.0 \pm 1.8 \%$ to $50.8 \pm 3.3\%$ (20 mg/mL) during 8 h fermentation, then mildly decreased at 12
- 19 h fermentation (46.0 \pm 0.9%, P = 0.12; Figure 2A), but increased again with by 16 h
- fermentation back to similar levels seen at 8 h fermentation (51.4 \pm 0.2%, P = 0.81; Figure
- 21 2A). These may be associated with the hydrolysis of ACE-I peptides, and the hydrolysed
- peptides can then be transported across the cell membrane of bacteria by several transporters
- 23 (Law & Haandrikman, 1997). Similar results were reported by Pan & Gao (2010) who showed

- that the optimal fermentation time to produce ACE-I activity from fermented sour milk was 8
- 2 h (Pan & Guo, 2010).
- 3 A similar trend in ACE-I activity dependence to fermentation time was noted in the presence
- 4 of Flavourzyme[®], compared with the absence of Flavourzyme[®] (Figure 2A). The results
- 5 showed that in the presence of Flavourzyme[®], ACE-I activity increased gradually and reached
- the highest level in 12 h fermentation (86.5 \pm 0.5% at concentration of 2.5 mg/mL) (P < 0.05;
- Figure 2A). It then decreased after an additional 4 h fermentation (P < 0.05; Figure 2A). These
- 8 results suggest that 12 h incubation was the optimal fermentation time to produce anti-
- 9 hypertensive peptides from yogurt, in combination with Flavourzyme[®]. These studies indicate
- 10 that Flavourzyme[®] allows reaching high concentrations in ACE-I peptides in a short
- fermentation time, contrarily to formulation without Flavourzyme[®]. This was also confirmed
- by the change of pH levels in the presence or absence of Flavourzyme[®] $(4.06 \pm 0.03 \text{ and } 4.42)$
- \pm 0.02, respectively, Figure 1). In agreement with this result, a previous study showed that
- ACE-I reached the highest level (approximate 70%) at 12 h fermentation of RSM by L.
- 15 helveticus strain 881315 without Flavourzyme® addition; however, more than 70% ACE-I
- activity was obtained after only 4 h fermentation by the same strain with the supplementation
- of Flavourzyme® (Fatah *et al.*, 2016b).

Effect of inoculum size on ACE-I activity with or without Flavourzyme®

- 19 Figure 2B shows the effects of inoculum size of *L*. helveticus strains on ACE-I activity with or
- 20 without Flavourzyme[®] in yogurt. Generally, the results showed a significant difference
- between the groups with and without Flavourzyme[®] in the same level of inoculum size (P <
- 22 0.01; Figure 2B). ACE-I activity increased gradually with increased inoculum size without
- Flavourzyme[®]. L. helveticus strains (4%) in the yogurt exhibited the highest ACE-I activity,
- with $59.2 \pm 0.9\%$ at 20 mg/mL of the hydrolysate, for optimal fermentation time of 12 h (P <

- 1 0.05; Figure 2B). It has been shown that 4% of inoculum size produced ACE-I activity in sour
- 2 milk fermented by L. helveticus LB10, possibly due to the high cell-envelope proteinase
- activity (Pan & Guo, 2010), which may have also occurred in the present study.
- 4 It was found that, with the same inoculum size, ACE-I can be improved significantly when
- 5 combined with Flavourzyme[®] (P < 0.01; Figure 2B). The highest ACE-I (86.5% at
- 6 concentration of 2.5 mg/mL) was obtained with 1% of L. helveticus plus Flavourzyme®
- following a 12 h fermentation (P < 0.01; Figure 2B). Then, ACE-I activity showed slight
- 8 decrease with increasing inoculum size. ACE-I activity of peptides reduced to 82% with 4% of
- 9 L. helveticus combined with Flavourzyme[®], however this is still higher than those in the
- absence of Flavourzyme[®] (59.17 \pm 0.88%).

11 ACE-inhibition activity

- 12 There were significant differences in ACE-I activity between yogurt with starter culture and
- yogurt with addition of *L. helveticus* and/or Flavourzyme[®]. Peptides from yogurt showed the
- lowest activity of ACE-I, which was only 33.1 \pm 2.7% at the concentration of 20 mg/mL (P <
- 15 0.01; Figure 3). In contrast, ACE-I activity was increased to 59.2 \pm 0.9%, when L. helveticus
- strain was added to the yogurt at 37 °C for 12 h (P < 0.01; Figure 3). Furthermore, a 100%
- inhibition was observed when both *L. helveticus* strain and Flavourzyme® were added to the
- 18 yogurt ® (Figure 3).
- The IC_{50} value is an important indicator to assess the ACE-I potential. It can be used to classify
- 20 individual bioactive peptides from different fermentation products based on their ACE-I
- 21 capacity *in vitro*. In this study, the IC₅₀ value of yogurt only fermented by starter cultures (30.45
- \pm 2.32 mg/mL) showed the lowest effect on ACE-I (P < 0.01; Figure 3). The hydrolysate
- extracted yogurt incorporated with *L. helveticus* strains demonstrated lower IC₅₀ (16.91 \pm 0.25

1 mg/mL), compared with yogurt without these strains (P < 0.01; Figure 3), which supported that 2 L. helveticus has a potential to hydrolyse protein from yogurt and produce anti-hypertensive peptides. In yogurt supplemented with Flavourzyme[®], significantly more ACE-I peptides were 3 4 released with an IC₅₀ of 1.47 ± 0.04 mg/mL, which was 20-fold higher than yogurt without L. helveticus strains, and 12-fold higher than yogurt without Flavourzyme[®] (P < 0.01; Figure 3). 5 6 In general, the effect of peptides on ACE-I depends on several factors, such as the type of bacteria strains, media used, fermentation conditions and enzymes used. Tsai et al. (2008) 7 reported that, in milk fermented by lactic bacteria with Flavourzyme[®], more active peptides 8 9 were produced to exhibit higher ACE-I activity, with an IC₅₀ value of 0.226 mg/mL in Flavourzyme-facilitated fermentation in contrast to an IC₅₀ value of 0.515 mg/mL in the 10 fermentation without Flavourzyme®. The different media and fermentation condition could 11 12 possibly contribute to the higher IC₅₀ values found in study of Tsai et al. (2008), which used 13 the mixture of 4.5% (w/v) skimmed milk powder, 5.5% (w/v) whole milk powder and 7% (w/v) sucrose as a medium that was fermented by 0.1% (w/v) of lactic acid bacteria powder. By 14 15 contrast, 12% skimmed milk powder was used as a medium and it was fermented with 1% of activated lactic acid bacteria in the current study. 16

Peptide profile of water-soluble extracts

17

18

19

20

21

22

23

24

The degree of hydrolysis at the higher ACE-I activity was determined by analysis of peptides from different yogurts using RP-HPLC. The peptide profiles (20 mg/mL of the concentration) showed similar characteristics between yogurt with starter culture and yogurt incorporated with *L. helveticus* with or without Flavourzyme® (Figure 4). In particular, four major peaks appeared in the first eight minutes when the substantial hydrolysis took place. It was then followed by several minor peaks. Although the number of the proteolytic peptides in yogurt fermented by *S. thermophiles* and *L. bulgaricus* was almost the same as those in yogurt added with *L.*

1 helveticus based on the peptide profiles (Figure 4A, 4B), ACE-I activity in yogurt without L. helveticus was lower than that in yogurt with L. helveticus (Figure 3). Many anti-hypertensive 2 3 milk peptides have been isolated and identified (Hannu & Anne, 2006). However, only specific 4 peptides, especially those containing proline in the amino acid sequence at the C-terminal, such as VPP, IPP and LPP, have high ACE-I activity from fermented dairy products (Butikofer et 5 6 al., 2008). In fermented milk, high amounts of VPP and IPP were obtained in most cases after fermentation with L. helveticus due to their higher proteolytic activity and their special 7 capability to degrade the milk protein into these tripeptides, and also accumulate these 8 9 tripeptides in the dairy products (Hu et al., 2011). Yogurt supplemented with L. helveticus and Flavourzyme® showed different peptide peaks 10 (Figure 4C). More peaks were detected with the retention times between 3 and 18 min due to 11 the increase in milk protein hydrolyses by Flavourzyme[®], which led to the release of peptides 12 13 with small molecular weight. These results were consistent with the recent study by Ahtesh et al. (2016b) using the same strains in the fermentation of 12% of RSM (Fatah et al., 2016b. Tsai 14 et al. (2008) indicated that Flavourzyme® has a potency to increase the content of soluble 15 16 protein (10-fold) and peptides (5-fold) in milk whey fermented by lactic acid bacteria (Tsai et al., 2008). 17

ACE-I activity of fractions

18

19

20

21

22

23

24

In order to pinpoint the peptides bearing a potential ACE-I activity, peptides from yogurt supplemented with Flavourzyme[®] were separated using preparative RP-HPLC, and seven fractions (F1- F7) were collected according to the elution time. Their ACE-I activity was then determined (Figure 5). The results implied that fractions F3- F6 were primarily responsible for ACE-I activities of peptides. Among them, fraction F3 exhibited the highest activity, corresponding to an IC₅₀ value of $35.75 \pm 5.48 \,\mu\text{g/mL}$, which was almost 42-fold higher than

that found in the total hydrolysate ($1470 \pm 40 \,\mu\text{g/mL}$) (P < 0.01; Figure 5). Fraction F7 showed

2 the lowest inhibitory effect on ACE, with an IC₅₀ value of 2211.22 \pm 213.41 $\mu g/mL$. These

3 findings implied that some small peptides separated and collected from yogurt showed

functional accumulation or synergism on ACE-I activities.

5 Six fractions were separated and collected based on the molecular weight of peptides extracted

6 from fermented skim milk with L. bulgaricus LB340 in the study by Qian et al (2011), which

revealed that fraction F2 showed the highest ACE-I activity (66.4%) at concentration of 100

mg/mL, with an IC₅₀ value of 67.71 \pm 7.62 mg/mL, which was lower compared with those in

this study (Qian et al., 2011). The differences observed in ACE-I effect of peptides may be

attributed to the variation in proteolytic activity of bacteria stains (*L. bulgaricus* LB340 versus

L. helveticus 881315) and cultures (skim milk versus yogurt), and therefore the variety of

peptides present in the hydrolysates. The synthetic bioactive peptides, based on purification,

characterization and identification of their amino acid sequence could be potentially used to

develop functional foods that are beneficial to human health. Further work is required to

identify the amino acid sequence of the ACE-I peptides extracted from yogurt.

16

4

7

8

9

10

11

12

13

14

15

17

18

20

21

22

23

Conclusion

19 The bioactive peptides released from the aqueous extracts of yogurt have ACE-I activity. The

optimal fermentation conditions for producing ACE-I peptides were 1% inoculum size of L.

helveticus strain 881315 for 12 h combined with Flavourzyme[®]. The IC₅₀ value was 1.47 \pm

0.04 mg/mL, which was higher than yogurt or yogurt supplemented with L. helveticus strain

without Flavourzyme[®]. The observation of peptide profiles also confirmed different quantities

- of peptides in different yogurts, and yogurt with or without Flavourzyme[®]. Among seven
- 2 fractions of peptides, fraction F3 displayed the highest ACE-I effect. Therefore, yogurts
- 3 provide a good source for the generation of bioactive peptides with ACE-I activity in fermented
- 4 dairy products. Although further in vivo study is required to confirm the ACE-I activity of
- 5 yogurt peptides and their potential anti-hypertensive properties, the outcomes of this study hold
- a promising potential as a complementary therapy for hypertension. It is necessary to identify
- 7 the specific peptides in the yogurt for future development of potential functional foods.

9

13

14

15

16

17

18

19 20

21

22

23

24

25

26 27

28

29

32

33 34

35

36

37

38

39

40

Reference

- Agyei, D., Potumarthi, R. & Danquah, M. K. (2012). Optimisation of batch culture conditions for cellenvelope-associated proteinase production from Lactobacillus delbrueckii subsp. lactis ATCC(R) 7830. *Appl Biochem Biotechnol*, **168**, 1035-1050.
 - Aihara, K., Kajimoto, O., Hirata, H., Takahashi, R. & Nakamura, Y. (2005). Effect of powdered fermented milk with *Lactobacillus helveticus* on subjects with high-normal blood pressure or mild hypertension. *Journal of the American College of Nutrition*, **24**, 257-265.
 - Boschin, G., Scigliuolo, G. M., Resta, D. & Arnoldi, A. (2014). Optimization of the Enzymatic Hydrolysis of Lupin (*Lupinus*) Proteins for Producing ACE-Inhibitory Peptides. *Journal of Agricultural and Food Chemistry*, **62**, 1846-1851.
 - Butikofer, U., Meyer, J., Sieber, R., Walther, B. & Wechsler, D. (2008). Occurrence of the angiotensin-converting enzyme inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin. *Journal of Dairy Science*, **91**, 29-38.
 - Chen, Y., Liu, W., Xue, J., Yang, J., Chen, X., Shao, Y., Kwok, L. Y., Bilige, M., Mang, L. & Zhang, H. (2014). Angiotensin-converting enzyme inhibitory activity of *Lactobacillus helveticus* strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. *Journal of Dairy Science*, **97**, 6680-6692.
 - Cicero, A. F., Aubin, F., Azais-Braesco, V. & Borghi, C. (2013). Do the lactotripeptides isoleucine-proline-proline and valine-proline reduce systolic blood pressure in European subjects? A meta-analysis of randomized controlled trials. *American Journal of Hypertension*, **26**, 442-449.
- Coulter D, E. R. (1987). Cough associated with captopril and enalapril. *British Medical Journal*, **294**, 1521-1523.
 - De Brabandere, A. G. & De Baerdemaeker, J. G. (1999). Effects of process conditions on the pH development during yogurt fermentation. *Journal of food engineering*, **41**, 221-227.
 - Dissanayake, M., Ramchandran, L., Piyadasa, C. & Vasiljevic, T. (2013). Influence of heat and pH on structure and conformation of whey proteins. *International Dairy Journal*, **28**, 56-61.
 - Donkor, O. N., Henriksson, A., Singh, T. K., Vasiljevic, T. & Shah, N. P. (2007a). ACE-inhibitory activity of probiotic yoghurt. *International Dairy Journal*, **17** 1321-1331.
 - Donkor, O. N., Henriksson, A., Vasiljevic, T. & Shah, P. N. (2007b). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. *Lait*, **87**, 21-38.
- Fatah, B., Lily, S., Michael, L., Vasso, A. & Vijay, K. (2016a). Proteolytic and angiotensin-converting enzyme-inhibitory activities of selected probiotic bacteria. *International Journal of Food Science and Technology*, 1-10.

- Fatah, B., Lily, S., Nagendra, S. & Vijay, K. (2016b). Effect of Flavourzyme® on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by *Lactobacillus helveticus*. *Journal of Food Science*, **81**, M135-143.
 - Griffiths, M. W. & Tellez, A. M. (2013). *Lactobacillus helveticus*: the proteolytic system. *Frontiers in Microbiology,* **4,** 30.

- Hannu, K. & Anne, P. (2006). Bioactive peptides: Production and functionality. *International Dairy Journal*, **16**, 945-960.
 - Hu, Y., Stromeck, A., Loponen, J., Lopes-Lutz, D., Schieber, A. & Ganzle, M. G. (2011). LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs. *Journal of Agricultural and Food Chemistry*, **59**, 11983-11989.
- Ishida, Y., Shibata, Y., Fukuhara, I., Yano, Y., Takehara, I. & Kaneko, K. (2011). Effect of an excess intake of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro in subjects with normal blood pressure, high-normal blood pressure, or mild hypertension. *Bioscience Biotechnology and Biochemistry*, **75**, 427-433.
 - Jauhiainen, T., Pilvi, T., Cheng, Z. J., Kautiainen, H., Muller, D. N., Vapaatalo, H., Korpela, R. & Mervaala, E. (2010). Milk Products Containing Bioactive Tripeptides Have an Antihypertensive Effect in Double Transgenic Rats (dTGR) Harbouring Human Renin and Human Angiotensinogen Genes. *Journal of Nutrition and Metabolism*, **2010**.
- Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyronpalo, S., Rasmussen, M. & Korpela, R. (2005).

 Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in
 24-h ambulatory blood pressure measurement. *American Journal of Hypertension*, **18**, 16001605.
- Law, J. & Haandrikman, A. (1997). Proteolytic enzymes of lactic acid bacteria. *International Dairy Journal*, **7**, 1-11.
- Merz, M., Eisele, T., Berends, P., Appel, D., Rabe, S., Blank, I., Stressler, T. & Fischer, L. (2015).

 Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step
 Purification and Partial Characterization of Eight Enzymes. *Journal of Agricultural and Food Chemistry*, **63**, 5682-5693.
- Min, S., Yingnan, Y., Di, G., Yuepeng, W. & Zhenya, Z. (2013). Evaluation of Solid-State Fermentation by *Ganoderma lucidum* Using Soybean Curd Residue. *Food and Bioprocess Technology*, **6**, 1856-1867.
- Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V. & Gobbetti, M. (2003). Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from *Lactobacillus helveticus* PR4 proteinase-hydrolyzed caseins of milk from six species. *Applied and Environmental Microbiology*, **69**, 5297-5305.
- Miura, S., Karnik, S. S. & Saku, K. (2011). Review: angiotensin II type 1 receptor blockers: class effects versus molecular effects. *Journal of the Renin-Angiotensin-Aldosterone System*, **12**, 1-7.
- Muro Urista, C., Alvarez Fernandez, R., Riera Rodriguez, F., Arana Cuenca, A. & Tellez Jurado, A. (2011). Review: Production and functionality of active peptides from milk. *Food Science and Technology International*, **17**, 293-317.
- Nielsen, M. S., Martinussen, T., Flambard, B., Sørensen, K. I. & Otte, J. (2009). Peptide profiles and angiotensin-l-converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. *International Dairy Journal*, **19**, 155-165.
- Pan, D. & Guo, Y. (2010). Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate. *International Dairy Journal*, **20**, 472-479.
- Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M. & Zhang, S. (2011). Antioxidant,
 antihypertensive, and immunomodulatory activities of peptide fractions from fermented
 skim milk with *Lactobacillus delbrueckii* ssp. *bulgaricus* LB340. *J Dairy Res*, **78**, 72-79.

Radke-Mitchell, L. C. & Sandine, W. (1986). Influence of temperature on associative growth of Streptococcus thermophilus and Lactobacillus bulgaricus. Journal of Dairy Science, 69, 2558-2568. Shabboo, A. & Ahmad, S. B. (2011). Changes in yogurt fermentation characteristics, and antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. LWT - Food Science and Technology, 44, 1458-1464. Soleimani, A. R., Akbari, H., Soleimani, S., Mousavi, S. S. B. & Tamadon, M. R. (2015). Effect of sour tea (Lipicom) pill versus captopril on the treatment of hypertension. Journal of Renal Injury *Prevention,* **4,** 73-79. Tsai, J. S., Chen, T. J., Pan, B. S., Gong, S. D. & Chung, M. Y. (2008). Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry, 106, 552-558. Tuomilehto, J., Lindstrom, J., Hyyrynen, J., Korpela, R., Karhunen, M. L., Mikkola, L., Jauhiainen, T., Seppo, L. & Nissinen, A. (2004). Effect of ingesting sour milk fermented using Lactobacillus helveticus bacteria producing tripeptides on blood pressure in subjects with mild hypertension. Journal of Human Hypertension, 18, 795-802.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17