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Abstract: Membrane scaling and mitigation techniques during air gap membrane distillation 

(AGMD) of seawater were investigated. The results showed a strong influence of AGMD operating 

temperature on not only the process water flux but also membrane scaling and subsequent cleaning 

efficiency. Elevating feed/coolant temperature from 35/25 to 60/50 ºC increased water flux, but 

also escalated membrane scaling of the AGMD process. Membrane scaling was more severe, and 

occurred at a lower water recovery (68%) when operating at 60/50 ºC compared to 35/25 ºC (78%) 

due to increased concentration polarisation effect. Operating temperature also affected the 

efficiency of the subsequent membrane cleaning. Membrane scaling that occurred at low 

temperature (i.e. 35/25 ºC) was more efficiently cleaned than at high temperature (i.e. 60/50 ºC). 

In addition, membrane cleaning using vinegar was much more efficient than fresh water. 

Nevertheless, vinegar cleaning could not completely restore the membrane surface to the original 

condition. Scaling material remaining on the membrane surface facilitated scaling in the next 

operation cycle. On the other hand, anti-scalant addition could effectively control scaling. 

Membrane scaling during AGMD of seawater at 70% water recovery and 60/50 ºC was effectively 

controlled by anti-scalant addition. 

Keywords: air gap membrane distillation (AGMD); membrane scaling; membrane cleaning; anti-

scalants; polarisation effects; small scale seawater desalination.  
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1. Introduction 

Seawater desalination is a practical approach to secure drinking water supply for coastal 

communities around the world [1]. Traditional technologies including reverse osmosis (RO) and 

thermal distillation (e.g. multi-stage flash and multi-effect distillation) are cost-effective for large-

scale seawater desalination. However, they are not suitable for small scale applications, particularly 

where a reliable power supply and technical support are not readily available. RO requires 

extensive pre-treatment, high-pressure pumps with high and reliable electricity input, and 

expensive stainless steel components. Conventional thermal distillation technologies are less 

energy efficient compared to RO. Their physical and energy footprints render them unsuitable for 

small-scale operations. Given the strategic need for water surety for small coastal communities, 

several alternative seawater desalination technologies have been explored in recent years. Amongst 

them, membrane distillation (MD) has emerged as a potential technology platform for small-scale, 

stand-alone, and off-grid seawater desalination [2-6]. 

MD is a thermally driven membrane separation process. Unlike RO, MD does not rely on a 

high hydraulic pressure for mass transfer. As a result, MD systems can be constructed from 

inexpensive plastic materials, resulting in considerable cost savings compared to RO that requires 

stainless steel materials. In addition, the water flux in MD is governed by the water vapour pressure 

difference between the feed and coolant stream, and is not subjected to osmosis [7, 8]. Thus, 

seawater desalination using MD can be operated at a higher feed salinity or process water recovery 

(i.e. the volume ratio of total fresh water produced to initial feed water) compared to RO [9, 10]. 

Moreover, MD does not require intensive pre-treatment and is less susceptible to organic and 

colloidal fouling in comparison to RO [11, 12]. Last but not least, given its operating temperature 

in the range from 40 to 80 ºC, MD can directly use waste heat and solar thermal as its main source 

of energy [13-15]. Given these attributes, MD can be a promising candidate for small-scale and 

off-grid seawater desalination application in remote coastal areas. 

MD can be operated in four basic configurations, including direct contact membrane distillation 

(DCMD), sweeping gas membrane distillation (SGMD), vacuum membrane distillation (VMD), 

and air gap membrane distillation (AGMD) [11]. Amongst these configurations, AGMD is 

arguably the most suitable for a small-scale, energy-efficient seawater desalination process [16-

19]. In AGMD, a condenser is inserted between the feed and coolant stream to form an air gap on 



4 

the permeate side of the membrane. The inserted condenser allows for the separation between the 

coolant and distillate stream, hence facilitating the internal recovery of the latent heat of vapour 

condensation without the need for an external heat exchanger. By contrast, heat recovery may be 

possible with other MD configurations (e.g. DCMD) but only with an external heat exchanger [20]. 

The air gap also functions as an isolation layer to reduce the heat conduction through the membrane 

from the feed [21]. As a result, AGMD exhibits higher thermal efficiency compared to the other 

configurations, particularly DCMD. The internal condenser also facilitates water vapour 

condensation inside the membrane module. Thus, AGMD is less complex than SGMD and VMD, 

both of which require an external condenser. It is noteworthy that a variation of AGMD which is 

often called permeate gap membrane distillation can also be particularly useful for small-scale 

seawater desalination application in remote areas [22, 23]. 

A key technical challenge to realising MD for small-scale seawater desalination is membrane 

scaling, which can occur at high water recovery rates. Operating MD at a high water recovery 

minimises energy loss through the sensible heat of the brine [24]. However, high water recovery 

operation also increases the risk of membrane scaling caused by the precipitation of sparingly 

soluble salts in seawater. Scale layers formed on the membrane can alter the hydrophobicity of the 

membrane surface, leading to the intrusion of seawater into membrane pores and, thus, deteriorated 

distillate quality. The scale layers also aggravate temperature and polarisation effects and reduce 

the active membrane surface for water evaporation, hence significantly reducing water flux [25-

28]. 

Several studies have focused on membrane scaling and mitigation techniques during DCMD 

processes [25, 29-31]. Hickenbottom and Cath [29] demonstrated that intermittently reversing the 

flow direction of water vapour during DCMD of seawater could effectively sustain water flux even 

above 75% water recovery. Nghiem and Cath [25] revealed that membrane scaling caused by 

CaSO4 during DCMD could be avoided by regularly flushing the membrane with Milli-Q water to 

reset the induction period. Gryta [30] examined membrane cleaning using a 2−5 wt.% HCl solution 

for CaCO3 scaling during a long-term DCMD process of surface water. Membrane cleaning using 

HCl could fully restore the initial water flux [30]. Recently, anti-scalant addition has proved to be 

potent in prolonging a DCMD process of seawater RO brine at supersaturation over an extended 

period of operation [31]. The anti-scalant added to the feed helped delay the precipitation of CaCO3 
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and CaSO4 when they were over-saturated, thus maintaining stability of the water flux and distillate 

quality of the DCMD process [31]. 

Membrane scaling and mitigation techniques during AGMD of seawater remain a major 

research gap. Given a lower operating water flux than DCMD, the scaling behaviour of AGMD 

can differ from that of DCMD [21, 32]. In addition, most of the aforementioned scaling mitigation 

techniques are innovative and effective for DCMD, but might not be usable or feasible for a small-

scale seawater AGMD process in remote areas. Flow reversal [29] is not compatible to AGMD 

operation. Similarly, resetting the induction period by regular membrane flushing [25] involves 

frequent process disruption, which is less preferable for continuously operating desalination 

systems. Effective membrane cleaning using mineral acids such as HCl and H2SO4 has been 

demonstrated [30, 33]. However, given their corrosive nature, mineral acids cannot be safely stored 

and used at household level, which is the key target of small-scale seawater AGMD systems. For 

small-scale seawater AGMD operation in remote areas, non-hazardous and domestically available 

cleaning agents such as vinegar, which mainly consists of acetic acid (i.e. 5-8 vol.%) and water, 

are more preferable. To date, no previous study has examined the efficacy of scaling removal 

during MD operation for seawater desalination by vinegar (i.e. acetic acid). 

This study aims to elucidate membrane scaling and mitigation techniques during a lab-scale 

seawater AGMD process operated under conditions practised for small-scale operation. The mass 

transfer coefficients of the lab-scale AGMD system at different operating temperatures were first 

experimentally determined. Given the mass transfer coefficients, the influence of feed salinity and 

particularly membrane scaling on water flux at low and high operating temperature was simulated 

and then validated by experimental results. In addition, scaling mitigation techniques using a 

commercially available anti-scalant and vinegar (which is readily available at all households) were 

also investigated. This study provides important insights for a future pilot study to evaluate AGMD 

applications for small-scale seawater desalination. 



6 

2. Materials and methods 

2.1. Materials 

2.1.1. AGMD test unit 

A lab-scale AGMD system (Fig. 1A) with a plate-and-frame membrane module was used (Fig. 

1B). The membrane module consisted of two acrylic semi-cells, an aluminium mesh and an 

aluminium condenser (0.5 mm thick), rubber gaskets, and spacers. Each semi-cell was engraved to 

create a flow channel with depth, width, and length of 0.3, 9.5, and 35.0 cm, respectively (Fig. 1B). 

Hydrophobic flat-sheet low-density polyethylene (LDPE) membrane (Aquastill, Sittard, The 

Netherland) with nominal pore size, thickness, and porosity of 0.3 µm, 76 µm, and 85%, 

respectively, was used in all experiments. The aluminium mesh provided support to the membrane 

and facilitated water vapour condensation on the permeate side, thus increasing water flux of the 

AGMD system [34]. Rubber gaskets were used to seal the flow channels and to form a 3 mm-thick 

air gap between the membrane and the condenser. Polypropylene spacers (i.e. with thickness, mesh 

size, voidage, and hydrodynamic angle of 2.0 mm, 4.0 mm, 0.78, and 60°, respectively) were used 

in the feed and coolant channel to increase flow turbulence. 

 

(A) 



7 

 

Fig. 1. (A) A schematic diagram of the AGMD unit, and (B) A sketch of the AGMD membrane 

module. 

The MD feed tank was equipped with a float valve and was heated using a heating element 

connected to a temperature control unit. Since this study focused on membrane scaling rather than 

energy efficiency, the AGMD process was simplified to exclude heat recovery from the brine and 

a chiller was used for cooling. The heated seawater was circulated through the feed channel and 

then returned to the MD feed tank using a variable-speed gear pump (Model 120/IEC71-B14, 

Micropump Inc., USA). The chiller (SC200-PC, Aqua Cooler, Australia) circulated chilled water 

through the coolant channel. A peristaltic pump (Masterflex, John Morris Scientific Pty Ltd., 

Australia) was used to bleed the concentrated seawater from the MD feed tank during the 

continuous operation mode (Section 2.3). Distillate was collected in a tank on a digital balance 

(PB32002-S, Mettler Toledo, Inc., USA) connected to a computer for the automatic measurement 

of the process water flux. 

2.1.2. Feed solutions, anti-scalant, and cleaning agents 

Milli-Q water and seawater were used as feed solutions. Seawater was sampled from 

Wollongong beach (New South Wales, Australia) and was filtered by 0.45 µm filter papers prior 

to all experiments. The pre-filtered seawater had total dissolved solids (TDS), electrical 

conductivity, and pH of 37,000 ± 2000 mg/L, 52.5 ± 1.0 mS/cm, and 8.3 ± 0.1, respectively. The 

total organic carbon (TOC) concentration of this pre-filtered seawater was less than 2 mg/L. 

(B) 
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A commercial anti-scalant, Osmotreat OSM35 (Osmoflo Pty Ltd, Adelaide, Australia), was 

used in the AGMD experiments with seawater at high water recoveries. According to the 

manufacture, Osmotreat OSM35 contains sodium salt of nitrilotri (methylene) phosphonic acid at 

30 − 60 wt.% concentration. This is a widely used anti-scalant ingredient that can inhibit a broad 

spectrum of scalants, including the sparingly soluble salts of calcium and magnesium. 

Fresh water (i.e. TDS = 65 ± 5 mg/L) and a vinegar (from a supermarket) solution with pH of 

2.5 ± 0.1 were used to clean the scaled membranes after the AGMD experiments with seawater 

without anti-scalant addition. Vinegar was chosen as a ‘domestic chemical’ because it is readily 

available at all households. 

2.2. Analytical methods 

The contact angle of the membrane surface was measured using a Rame-Hart Goniometer 

(Model 250, Rame-Hart, Netcong, New Jersey, USA) following the standard sessile drop method 

(i.e. with the droplet volume of 12 µL). Milli-Q water was used as the reference liquid. At least 5 

droplets were tested for each membrane sample. 

The morphology and composition of membrane surface were examined using a low vacuum 

scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) 

(JOEL JSM-6490LV, Japan). Membrane samples were air-dried and subsequently sputtered with 

a thin layer of gold prior to SEM-EDS analysis. 

The electrical conductivity (EC) of the feed and distillate was measured using Orion 4-Star 

Plus meters (Thermo Scientific, Waltham, Massachusetts, USA). 

2.3. Experimental protocols 

2.3.1. AGMD with Milli-Q water and seawater 

AGMD of Milli-Q water was conducted to determine the baseline mass transfer coefficient of 

the system prior to experiments using seawater. The process was operated at a constant water 

circulation rate of 0.5 L/min (i.e. equivalent to a cross flow velocity of 0.03 m/s given the cross 

sectional area of the flow channels of 2.8×10-4 m2) and temperature difference between the feed 

and the coolant stream (∆T = 10 ºC), but with various feed/coolant temperature (i.e. 35/25, 40/30, 
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45/35, 50/40, 55/45, and 60/50 ºC). Water flux was measured at each pair of feed/coolant 

temperatures following the attainment of stable operation for 1 hour. The operating conditions were 

chosen to simulate a small-scale AGMD process [16, 21, 32], in which feed and coolant 

temperatures vary while ∆T and water circulation rates are almost constant along membrane 

channels. 

AGMD of seawater was operated at two pairs of temperature conditions (e.g. 35/25 and 60/50 

ºC), with water circulation rates of 0.5 L/min. Milli-Q water (1 L) was initially added to the 

distillate tank to allow the immediate measurement of the distillate conductivity after starting the 

AGMD process. The seawater feed (4 L) was continuously concentrated until the process reached 

a water recovery of 80% (i.e. concentration factor of 5) or water flux decreased to zero. Water flux 

was monitored continuously along with the electrical conductivity of the feed and the distillate. At 

the end of the experiments, the membrane was removed for subsequent surface analyses. 

2.3.2. AGMD of seawater with anti-scalant 

AGMD process of seawater at a high water recovery was conducted with Osmotreat OSM35 

at a dose of 0.5 mg/L to demonstrate the effectiveness of anti-scalant for membrane scaling 

prevention. The feed solution (4 L) was first concentrated until the process reached 70% water 

recovery (i.e. the feed solution volume was reduced to 1.2 L), then a continuous operation mode 

was initiated. The detailed description of the continuous operation mode can be found elsewhere 

[24]. 

2.3.3. Membrane cleaning during AGMD of seawater 

AGMD of seawater without anti-scalant was first conducted under the same operating 

conditions as described in the section 2.3.1. At the end of the process, instead of removing the 

scaled membrane for surface analysis, membrane cleaning using either fresh water or vinegar was 

initiated. The cleaning solution (2 L) was circulated through the feed channel at 0.5 L/min for one 

hour at room temperature (25 ºC). After membrane cleaning with vinegar, the feed channel was 

rinsed with 2 L of fresh water for 5 minutes. The efficiency of membrane cleaning was evaluated 

based on the restorations of initial membrane hydrophobicity and water flux, and the distillate 

quality of the subsequent AGMD process with seawater using the cleaned membrane. SEM-EDS 

analysis of membrane surface was also used for the evaluation of cleaning efficiency. 
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2.4. Mass transfer of water in AGMD 

In AGMD, water vapour from the feed is transported through membrane pores and 

subsequently condenses to distillate on the condenser surface at the other end of the air gap. The 

water flux of the AGMD system can be expressed as [35-37]: 

PKJ m∆=          (1) 

where J is in L/m2.h, Km is the system mass transfer coefficient (L/m2.h.Pa), and ∆P is the water 

vapour pressure difference between the feed and coolant stream (Pa). The value of Km depends on 

system specifications (e.g. the properties of the membrane, the aluminium mesh and condenser, 

and the air gap thickness) and operating conditions (e.g. feed and coolant temperature and 

circulation rates, and the pressure of the air gap). Thus, Km is a system-specific parameter, and it 

can be determined experimentally. Km is a useful and convenient coefficient to assess mass transfer 

[38]. 

The water vapour pressure difference between the seawater feed and coolant stream can be 

calculated as [38]: 

( ) 0
coolant

0
feed

2
saltsaltwater PPx10x5.01xP −−−=∆      (2) 

where xwater and xsalt are the molar fraction of water and salt in the feed, P0
feed and P0

coolant (Pa) are 

the vapour pressure of pure water in the feed and the coolant stream, respectively. The vapour 

pressure of pure water can be calculated using the Antoine Equation [39]: 









−
−=

13.46T
44.38161964.23expP0       (3) 

where T is the absolute water temperature (K). The temperatures of the feed and coolant stream 

were the average values of the temperatures at the inlet and outlet of the feed and the coolant 

channel, respectively. 
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3. Results and discussions 

3.1. Baseline testing of the AGMD process with Milli-Q water feed 
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Fig. 2. Experimentally measured water flux during the AGMD process with Milli-Q water feed at 

various feed/coolant temperature, a constant ∆T of 10 ºC, and water circulation rates Ffeed.in = 

Fcoolant.in = 0.5 L/min. 

Operating the AGMD process at a high feed temperature while maintaining the same 

temperature difference between the feed and coolant stream (∆T) resulted in a marked increase in 

the process water flux (Fig. 2). Given the exponential relationship between water vapour pressure 

and temperature as expressed in Eq. (3), increasing the feed/coolant temperature from 35/25 to 

60/50 ºC raised the water vapour pressure difference between the feed and the coolant stream (∆P) 

from 1.28 to 3.68 kPa. As a result, water flux almost doubled when the feed/coolant temperature 

increased from 35/25 to 60/50 ºC. Varying feed/coolant temperature also exerted a small but 

discernible influence on the mass transfer coefficient (Km) of the AGMD process (Table 1). 

Increasing both feed and coolant temperatures while other operating parameters remained 

unchanged resulted in a reduction in Km. The observed decrease in Km was attributed to the 

temperature polarisation effect which was incorporated in the determination of Km. Operating the 
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process at increased water flux by elevating feed/coolant temperature escalated temperature 

polarisation effect as expressed by Eq. (4) [36]: 

 ( )Je βαθ −−−= 11         (4) 

where θ is the temperature polarisation coefficient (i.e. approaches to unity for the process without 

temperature polarisation effect), α and β are constants depending on heat transfer coefficients of 

the process. Temperature polarisation effect led to a decrease in the actual driving force of the 

AGMD process, thus reducing the value of Km obtained. 

Table 1. The mass transfer coefficient of the AGMD process with Milli-Q water feed at various 

feed/coolant temperature. 

Feed/coolant temperature (ºC) Mass transfer coefficient, Km × 103 (L/m2.h.Pa) 
35-25 1.84 
40-30 1.75 
45-35 1.66 
50-40 1.54 
55-45 1.42 
60-50 1.31 

The results reported here reveal an uneven distribution of water flux and hence distillate 

production along the membrane channels of a small-scale AGMD module. For a long membrane 

channel, a significant drop in feed temperature and an increase at the same magnitude in coolant 

temperature are expected over the AGMD membrane module [16, 21, 32]. Higher water flux and 

more distillate can be obtained at the high temperature end compared to the low temperature end 

of the membrane module. Thus, the high temperature end is more susceptible to membrane scaling, 

and this uneven distribution should be considered during membrane module design. 

3.2. AGMD of seawater 

The Km values reported in Table 1 were valid for the AGMD process with Milli-Q water feed 

in which concentration polarisation effect was negligible. These values could be used for a 

preliminary evaluation of the influence of increased feed salinity on water flux. As the seawater 

feed was concentrated and the recovery of distillate increased, a linear decrease in AGMD water 

flux was expected based on mathematical simulation (Fig. 3A). According to Eq. 2, increasing feed 

salinity leads to a reduction in the water vapour pressure of the feed, and thus a decrease in the 



13 

driving force (∆P) of AGMD. As a result, water flux decreased when seawater was concentrated. 

It is noteworthy that the impact of feed salinity on water flux in AGMD is much less significant 

compared to that observed in RO [40]. When the seawater feed was concentrated by 5-fold (i.e. 

80% water recovery), the calculated AGMD water flux decreased by 45% and 30% at feed/coolant 

temperature of 60/50 and 35/25 ºC, respectively (Fig. 3A). 
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Fig. 3. (A) Calculated and experimentally measured water flux and (B) Distillate electrical 

conductivity (EC) as functions of feed salinity during the concentrating AGMD process with 

seawater feed. Water circulation rates Ffeed.in = Fcoolant.in = 0.5 L/min. 



14 

The experimentally measured water flux of the AGMD process with seawater feed also 

decreased during the concentration of the feed as observed with the calculated flux. However, the 

measured flux deviated from the calculated values, especially at high feed salinity (Fig. 3A). This 

deviation can be attributed to concentration polarisation effect and membrane scaling caused by 

sparingly soluble salts in the seawater feed. The Km values used for water flux calculation were 

obtained during the AGMD process with Milli-Q water feed without concentration polarisation 

effect. For the AGMD process with seawater, concentration polarisation effect can be expressed 

by Eq. (5) [41]: 







=

k
Jexp

C
C

feed.b

feed.m          (5) 

where Cm.feed and Cb.feed are the salt concentration at the membrane surface and in the bulk solution 

in the feed channel, respectively, and k is the mass transfer coefficient of salt. Increase in feed 

viscosity associated with increased feed salinity  [31, 42] during the concentration of the seawater 

feed reduced k, thus exacerbating concentration polarisation effect. Increased water flux also 

exacerbated concentration polarisation effect. As a result, the experimentally measured water flux 

deviated more from the calculated values at higher feed salinity and feed temperature (Fig. 3A). 

The precipitation of sparingly soluble salts on the membrane surface when their concentrations 

exceeded saturation limits further reduced the measured water flux. The deposited salts on the 

membrane promoted temperature and concentration polarisation [26], and reduced partial water 

vapour pressure on the membrane surface [43, 44] and the membrane active surface for water 

evaporation [7, 25], thus decreasing water flux. Indeed, the measured water flux rapidly decreased 

from 2.5 L/m2.h to almost zero and from 1.5 to 0.9 L/m2.h as the feed salinity exceeded 115 and 

170 g/L (i.e. water recovery of 68% and 78%) at feed/coolant temperature of 60/50 and 35/25 ºC, 

respectively (Fig. 3A). 

The scale layers formed on the membrane surface also deteriorated the distillate purity. Prior 

to the onset of membrane scaling, the distillate conductivity gradually decreased owning to the 

dilution of the initially added Milli-Q water by the distillate permeating from the feed (Fig. 3B). 

The observed decline in the distillate conductivity revealed that the AGMD process could produce 

ultrapure distillate (i.e. with electrical conductivity significantly lower than that of Milli-Q water) 
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directly from seawater. Scales deposited on the membrane surface led to a rapid decline in the pure 

distillate flux, whereas salt leakage through the membrane defects was unchanged.  In addition, the 

scaling layer could alter the membrane surface hydrophobicity [28, 30, 45], resulting in some salt 

leakage and thus increasing the distillate conductivity. As a result, the reversal of the distillate 

conductivity coincided with the significant decline in the water flux (Fig. 3). 

Membrane surface analyses confirmed the occurrence of membrane scaling during the 

concentrating AGMD process with seawater (Fig. 4). SEM images showed thick layers of well-

shaped salt crystals formed on the membrane surface. The EDS elemental analyses revealed that 

the scale layers were composed of mostly CaSO4 and MgSO4. These results are consistent with 

previous studies by Duong et al. [24] and Zhang et al. [31]. Moreover, the scale layers rendered the 

membrane surface so hydrophilic that its water contact angle could not be determined by the 

standard sessile drop method. 

  

  
 

  
  

 

(A) 

(B) 



16 

Fig. 4. SEM images and EDS spectra of the scaled membranes after the concentrating AGMD 

operations with seawater feed at feed/coolant temperature of: (A) 35/25 ºC and (B) 60/50 ºC. 

Operating temperature exerted a strong influence on membrane scaling of AGMD with the 

seawater feed. Elevating feed/coolant temperature exacerbated concentration polarisation effect 

and depressed the solubility of CaSO4, thus aggravating membrane scaling. As a result, membrane 

scaling occurred at a lower feed salinity (i.e. lower water recovery) for feed/coolant temperature of 

60/50 ºC compared to 35/25 ºC (Fig. 3A&B). Operating temperature also affected the morphologies 

of the scale layers; larger and more needle-shaped crystals were formed on the membrane surface 

during the AGMD experiment at 60/50 ºC compared to 35/25 ºC (Fig. 4). These results are 

consistent with the scaling study by Nghiem et al. [25] in which increasing feed temperature also 

favoured the formation of large CaSO4 crystals during DCMD. The cause and effect relationships 

between elevating feed/coolant temperature and aggravated membrane scaling of the AGMD 

process are summarised in Table 2. 

Table 2. The cause and effect relationships between elevating temperature and aggravated 

membrane scaling during AGMD with seawater. 

Cause Effect 
Increasing feed/coolant temperature Increased water flux 
Increased water flux Exacerbated polarisation effects 
Exacerbated concentration polarisation Increased CaSO4 concentrations at the membrane 

surface 
Exacerbated temperature polarisation Decreased solubility of CaSO4 
Exacerbated polarisation effects Aggravated membrane scaling 
Aggravated membrane scaling Scaling occurred at lower water recovery 
Aggravated membrane scaling Lager and more needle-shaped scales 

3.3. AGMD of seawater with anti-scalant addition at a high water recovery 

Anti-scalant addition proved to be an effective method to prevent membrane scaling during 

AGMD of seawater. A stable AGMD process (i.e. with respect to water flux and distillate 

conductivity) with seawater feed dosed with 0.5 mg/L Osmotreat OSM35 at the water recovery of 

70% and feed/coolant temperature of 60/50 ºC was achieved for 24 hours without any observable 

membrane scaling. Water flux was stable at 2.5 L/m2.h following an initial gradual decrease 

because of increased feed salinity during the concentrating operation (Fig. 5). Distillate 



17 

conductivity exhibited a similar trend to water flux. SEM analysis (Fig. 6) also revealed no 

indications of membrane scaling−the SEM surface image of the membrane at the end of the 

continuous operation was identical to that of a virgin membrane. Anti-scalants have been 

investigated for membrane scaling prevention in DCMD processes [31, 46-48]. Zhang et al. [31] 

reported that an anti-scalant dose of 5.0 mg/L effectively prevented scale formation during a 

DCMD process of a seawater RO brine with electrical conductivity of 120 mS/cm (i.e. 

corresponding to a water recovery of 65% relative to the seawater in this study). It is noteworthy 

that the lower water flux and hence lower polarisation effects of the AGMD process compared to 

the DCMD process previously investigated by Zhang et al. [31] could also help alleviate membrane 

scaling at 70% water recovery obtained in this study. 
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Fig. 5. Water flux and distillate EC as functions of operating time during the AGMD process of 

seawater dosed with 0.5 mg/L Osmotreat OSM35. 
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Fig. 6. SEM images of (A) a virgin membrane and (B) the membrane after the AGMD process of 

seawater dosed with 0.5 g/L Osmotreat OSM35 at 60/50 ºC. 

The results reported here demonstrate the potential of seawater AGMD desalination for fresh 

water provision in small and remote areas. Given water flux of 2.5 L/m2.h even at process water 

recovery of 70%, a pilot-scale AGMD system with membrane surface area of 7.2 m2 [19, 21] can 

provide 144 L of distillate for eight hours during daytime. The heating requirement of the system 

can be sourced from solar thermal energy while cooling can be achieved using seawater as a heat 

sink [21]. Compared to thermal energy requirement, the electrical energy consumption of the 

AGMD system is negligible. A comprehensive techno-economic analysis is required to determine 

the cost and energy consumption of seawater desalination by AGMD. However, such analysis is 

beyond the scope of this current work. 

3.4. Efficiency of membrane cleaning during AGMD of seawater 

Vinegar demonstrated higher cleaning efficiency compared to fresh water under the same 

AGMD operating and cleaning conditions. Fresh water cleaning was not able to restore membrane 

surfaces to their original conditions. SEM analyses revealed many tiny, dispersed particles 

remaining on the membrane surface after fresh water cleaning (Fig. 7). The remaining particles 

altered the hydrophobicity of the membrane surface, thus rendering the membrane surface slightly 

hydrophilic (i.e. contact angles below 80º) (Fig. 8). In contrast, vinegar cleaning returned the 

membrane surface to an almost virgin condition as had been demonstrated for mineral acidic 

cleaning agents [30]. The SEM image of the vinegar cleaned membrane after AGMD of  seawater 

at 35/25 ºC was similar to that of the virgin membrane, and only traces of salts remained on the 

  
  

 

(B) (A) 
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membrane surface following vinegar cleaning of the membrane scaled at 60/50 ºC (Fig. 7). In a 

good agreement with SEM analyses, the surface of the scaled membranes after vinegar cleaning 

was still hydrophobic (i.e. contact angles above 90º) (Fig. 8). It is noteworthy that the differences 

in contact angles of the virgin and vinegar cleaned membranes (Fig. 8) may not be solely attributed 

to membrane scaling. Decline in membrane contact angle has been reported for an MD process of 

fresh water without any membrane scaling [49]. 

  

  

Fig. 7. SEM images of the scaled membranes at 35/25 and 60/50 ºC after cleaning with fresh water 

and vinegar. 

AGMD operating temperature affected not only membrane scaling (section 3.2), but also the 

efficiency of subsequent membrane cleaning. SEM images (Fig. 7) and contact angle 

measurements (Fig. 8) revealed that cleaning was less effective for the membrane scaled at 60/50 

ºC compared to that at 35/25 ºC. The variation in cleaning efficiency can be attributed to the 

difference in the conditions under which membrane scaling occurred. Membrane scaling at 60/50 
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Vinegar cleaning  
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ºC was more severe than that at 35/25 ºC due to the increased concentration polarisation effect [9, 

29] and saturation index of the scalants, particularly CaSO4 [50]. The influence of operating 

conditions on the morphology of scale layers has also been reported by Gryta [51]. Scale layers 

formed during DCMD with surface water feed were more compact when operating at higher water 

circulation rate [51]. 
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Fig. 8. Contact angles of the virgin membrane and the scaled membranes at 35/25 and 60/50 ºC 

after cleaning with fresh water and vinegar. Error bars represent the standard deviation of 5 

repeated measurements. 

Despite demonstrating a superior efficiency than fresh water, vinegar cleaning could not fully 

restore the performance of the AGMD process, particularly at high operating temperature. Fig. 9 

shows water flux and distillate conductivity during the AGMD operation with seawater feed at 

60/50 ºC before and after one vinegar cleaning cycle. The initial water flux of the AGMD process 

(i.e. with fresh seawater feed) was almost fully recovered after membrane cleaning with vinegar. 

However, membrane scaling occurred at a lower water recovery in the AGMD process following 

vinegar cleaning. The remnants of scale on the membrane surface (Fig. 7) acted as nuclei for scale 

decomposition [9, 31], and promoted the concentration and temperature polarisation effects [26], 

thus aggravating membrane scaling in the subsequent AGMD process. The results reported here 
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indicate that repeated membrane scaling and cleaning during AGMD of seawater inevitably result 

in decrease in process performance. Thus, anti-scalant addition is preferable to membrane cleaning, 

and membrane cleaning should only be used as the last resort for scaling mitigation in AGMD of 

seawater. 
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Fig. 9. Water flux, distillate EC, and feed EC as functions of water recovery during AGMD with 

seawater feed before and after one membrane cleaning cycle with vinegar. Operating parameters: 

feed/coolant temperature of 60/50 ºC, water circulation rates Ffeed.in = Fcoolant.in = 0.5 L/min. 

4. Conclusions 

Membrane scaling and mitigation techniques during AGMD of seawater were investigated. The 

results demonstrated a clear impact of feed/coolant temperature on both water flux and scaling 

behaviours of the AGMD process with seawater. At feed/coolant temperature of 60/50 ºC, the water 

flux was double compared to that at feed/coolant temperature of 35/25 ºC. Membrane scaling 

occurred at a lower water recovery and resulted in needle-shaped and larger crystals at 60/50 ºC 

compared to 35/25 ºC. Operating temperature also affected the effectiveness of the subsequent 

scaled membrane cleaning. Membrane cleaning was less effective for the membrane scaled at 
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higher feed/coolant temperature. Vinegar cleaning allowed for complete restoration of the initial 

water flux. Nonetheless, vinegar cleaning could not completely remove all scalants from the 

membrane surface. Anti-scalant addition was an effective scaling mitigation technique for seawater 

AGMD. Stable AGMD operation was achieved over 24 hours without any sights of membrane 

scaling when seawater was dosed with 0.5 g/L anti-scalant, the water recovery was constant at 

70%, and the feed/coolant temperature was 60/50 °C. 
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