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BOUNDING THE CEBYSEV FUNCTIONAL FOR A
DIFFERENTIABLE FUNCTION WHOSE DERIVATIVE IS / OR
A-CONVEX IN ABSOLUTE VALUE AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR

Some bounds for the Cebysev functional of a differentiable function
whose derivative is & or A-convex in absolute value and applications for
functions of selfadjoint operators in Hilbert spaces via the spectral repre-
sentation theorem are given.

1. Introduction

For two Lebesgue integrable functions f,g : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider
the Cebysev functional defined by
b
/ g(r)dr.
a

ctre)= 5 [ rwswar— 1 [ rwa

In 1934, G. Griiss [55] showed that

IC(fr8)l < 7 (M=m)(N—n), (D
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provided m, M, n,N are real numbers with the property that
—o<m< f<M<oo, —o<n<g<N<oo ae.on [a,b]. (2)

The constant % is best possible in (1) in the sense that it cannot be replaced
by a smaller one.

Another lesser known inequality for C (f,g) was derived in [14] under the
assumption that f’, ¢’ exist and are continuous on [a,b], and is given by

Clr8) < 7). ] (b-a?, ®
where | f']]., := sup;eqp [f (1)] < oo.

The constant 1‘—2 cannot be improved in general in (3).

Cebysev’s inequality (3) also holds if f,g : [a,b] — R are assumed to be
absolutely continuous and f, ¢’ € L. [a,b].

In 1970, A.M. Ostrowski [69] proved, amongst others, the following result
that is in a sense a combination of the Cebysev and Griiss results:

IC(f.8) < (b a)(M—m)||g'|... 4)

o} \

provided f is Lebesgue integrable on [a,b] and satisfying (2) while g : [a,b] — R
is absolutely continuous and g’ € L. [a,b] . Here the constant 1 is also sharp.

In 1973, A. Lupas [61] (see also [66, p. 210]) obtained the following result
as well:

< 171, g, (b —a). ©

provided f, g are absolutely continuous and f’,g" € L, [a,D].
Here the constant % is the best possible as well.
In [11], P. Cerone and S.S. Dragomir proved the following inequalities:

IC(f,8)l (6)

inf||¢— O B ’
Inflle =M 5=a Ju' | () = 5= Ju £ (s) ds|

IN

b

inf llg =7l 5t (0 |£ )= 55 00 f ()s|ar)”

where p > 1, 1/p+1/g=1.

\

For y = 0, we get from the first inequality in (6)

1 b 1 b
crol< s, [ro-35, [roala o
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for which the constant 1 cannot be replaced by a smaller Constant
If m < g <M forae. x € [a,b], then ||g — "5 || | < § (M —m) and by the
first inequality in (6) we can deduce the following result obtalned by Cheng and

Sun [15]
b
1Cl/a f(s)ds|dt

The constant % is best in (8) as shown by Cerone and Dragomir in [12].
The following result holds [33].

Theorem 1.1. Let f : [a,b] — C be of bounded variation on [a,b] and g : [a,b] —
C a Lebesgue integrable function on [a,b]. Then

1

CUrg)l <5 (M—m)-

®)

b—al,

g(t)— 1 /abg(s)ds dt )

where \/ (f) denotes the total variation of f on the interval |a,b] .

The constant % is best possible in (9).

We denote the variance of the function f : [a,b] — C by D(f) and defined
as

D(f)=[C(r.]" = [ i \dt—‘/f dr] . (10)

where f denotes the complex conjugate function of f.
We have [33]:

Corollary 1.2. [f the function f : [a,b] — C is of bounded variation on [a,b],
then

\S) \

b

< V) (1D
a

The constant % is best possible in (11).

Now we can state the following result when both functions are of bounded
variation [33]:

Corollary 1.3. If f, g : [a,b] — C are of bounded variation on [a,b], then

b b

cral< VNV (). (12

a a

The constant Alf is best possible in (12).
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Remark 1.4. We can consider the following quantity associated with a complex
valued function f : [a,b] — C,

211/2
B(= et =1 [ Poa- (1 [ dt)
Utilising the above results we can state that
b 1 b
f<. \/ Clro-5= [ f@asla a3
1, AN ’

If we consider

G(f)=IC(f. £

b b b 1/2
~ |5 [rovola- L [ roa gt ol

then we also have

b .
<Ny [ o= [irlasla oy
1.b b b b 2
< VD) < 2V OV () 54[\/ ]
and
b b 1 b
G ()< 3V /Hf(t)—b_a/af(S)ds a3
b b b b 2
5\/ )D \/ AVA(Z) <[\/f)] -

Motivated by the results presented above, we establish in this paper some
new bounds for the magnitude of C(f,g) in the case when one of the com-
plex valued function, say f, is differentiable and the derivative is s-convex or
A-convex in absolute value while the other is Lebesgue integrable on [a, b]. Ap-
plications for functions of selfadjoint operators in Hilbert spaces via the spectral
representation theorem are also given.

Before we are able to state our new results, we need the following prelimi-
nary facts about ~-convex and A-convex functions.
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2. h-Convex and A-Convex Functions
2.1. h-Convex Functions

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 2.1 ([54]). We say that f : I — R is a Godunova-Levin function or
that f belongs to the class Q (1) if f is non-negative and for all x,y € I and
t € (0,1) we have

Flix+ (10 < 170+ F (). (16)

Some further properties of this class of functions can be found in [43], [44],
[46], [63], [73] and [74]. Among others, its has been noted that non-negative
monotone and non-negative convex functions belong to this class of functions.

Definition 2.2 ([46]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all x,y € I and ¢ € [0, 1] we have

flx+(1=1)y) < f(x)+f()- (17)

Obviously Q () contains P () and for applications it is important to note
that also P (/) contain all nonnegative monotone, convex and quasi convex func-
tions, i. e. nonnegative functions satisfying

flx+(1=1)y) <max{f(x),f(y)} (18)

forall x,y € Iandr € [0,1].
For some results on P-functions see [46] and [71] while for quasi convex
functions, the reader can consult [45].

Definition 2.3 ([7]). Let s be a real number, s € (0, 1]. A function f : [0,00) —
[0,0) is said to be s-convex (in the second sense) or Breckner s-convex if

flx+(1=0)y) < f@x)+(1-1)"f ()
for all x,y € [0,00) and 7 € [0, 1].

For some properties of this class of functions see [1], [2], [7], [8], [41], [42],
[57], [59] and [76].

In order to unify the above concepts for functions of real variable, VaroSanec
introduced the concept of #-convex functions as follows.

Assume that / and J are intervals in R, (0,1) C J and functions 4 and f are
real non-negative functions defined in J and /, respectively.
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Definition 2.4 ([80]). Let i :J — [0,00) with & not identical to 0. We say that
f:1—[0,00) is an h-convex function if for all x,y € I we have

flx+(1=1)y) <h(t) f () +h(1=2)f() (19)
forallr € (0,1).

For some results concerning this class of functions see [80], [6], [61], [77],
[75] and [79].

This concept can be extended for functions defined on convex subsets of lin-
ear spaces in the same way as above replacing the interval I be the corresponding
convex subset C of the linear space X.

We can introduce now another class of functions.

Definition 2.5. We say that the function f: C C X — [0, o) is of s-Godunova-
Levin type, with s € [0, 1], if

o

Fles+(1-03) € 2 0+ 275

fO), (20)

forallz € (0,1) and x,y € C.

We observe that for s = 0 we obtain the class of P-functions while for s = 1
we obtain the class of Godunova-Levin. If we denote by Q;(C) the class of
s-Godunova-Levin functions defined on C, then we obviously have

P(C)=00(C) €0, (C) S0, (C) C01(C)=0(C)

fOI'OSSl SSQ S 1.

For different inequalities related to these classes of functions, see [1]-[4],
[6], [9]-[52], [58]-[60] and [71]-[79].

A function & : J — R is said to be supermultiplicative if

h(ts) > h(t)h(s) foranyt,s € J. (1)

If the inequality (21) is reversed, then 4 is said to be submultiplicative. If the
equality holds in (21) then £ is said to be a multiplicative function on J.

In [80] it has been noted that if /2 : [0,00) — [0,00) with & () = (x+c¢)” ",
then for ¢ = 0 the function /4 is multiplicative. If ¢ > 1, then for p € (0,1) the
function £ is supermultiplicative and for p > 1 the function is submultiplicative.

We observe that, if &, g are nonnegative and supermultiplicative, the same
is their product. In particular, if 4 is supermultiplicative then its product with a
power function ¢, (t) = ¢” is also supermultiplicative.

The following generalization of the Hermite-Hadamard inequality for A-
convex functions defined on convex subsets of linear spaces holds [36].
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Theorem 2.6. Assume that the function f : C C X — [0,0) is an h-convex func-
tion with h € L[0,1]. Let y,x € C with y # x and assume that the mapping
[0,1] 5+ f[(1 —1)x+1ty] is Lebesgue integrable on [0, 1]. Then

X 1
Zhl(é)f< +y> /f (I =t)x+ayldr <| (x)+f(y)]/0 h(t)dr. (22)

Remark 2.7. If f: I — [0,00) is an h-convex function on an interval I of real
numbers with & € L[0,1] and f € L[a,b] with a,b € I,a < b, then from (22) we
get the Hermite-Hadamard type inequality obtained by Sarikaya et al. in [75]

zhl(é <a+b> /f Jdu < [f a)+f(b)]/01h(t)dt. (23)

If we write (22) for h(t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions.

If we write (22) for the case of P-type functions f : C — [0,00), i.e., h(t) =
1,7 € ]0,1], then we get the inequality

() < [r0-nxenla<s0ero. e

that has been obtained for functions of real variable in [46].
If f is Breckner s-convex on C, for s € (0,1), then by taking A (¢) = in
(22) we get

28~ 1f<x+y> /f (1—1)x+1y]dt < W (25)

that was obtained for functions of a real variable in [41].
If f:C — [0,) is of s-Godunova-Levin type, with s € [0, 1), then

2Hlf("”) [ s —nxrnjar <TI0 o)

We notice that for s = 1 the first inequality in (26) still holds, i.e.

f(”y) /f (1—1)x+1y]dt. 27)

The case for functions of real variables was obtained for the first time in [46].
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2.2. A-Convex Functions

We start with the following definition (see [37]):

Definition 2.8. Let A : [0,00) — [0,00) be a function with the property that
A(t) > 0 for all r > 0. A mapping f : C — R defined on convex subset C of
a linear space X is called A-convex on C if

ox By _ A(@)f(x)+2 () ()
f<a+ﬁ)55 2 (a+B) .

forall o, > 0 with ¢+ > 0and x,y € C.

We observe that if f: C — R is A-convex on C, then f is h-convex on C
with (1) = 315, 1 € 10,1].

If f:C — [0,00) is h-convex function with 4 supermultiplicative on [0, o),
then f is A-convex with A = h.

Indeed, if o, 8 > 0 with v+ 8 > 0 and x,y € C then

(58 %5 rra{ B

_ (@) [ () +h(B)F()
- h(oe+B) '

The following proposition contain some properties of A-convex functions
[37].

Proposition 2.9. Let f: C — R be a A-convex function on C.
(i) If A (0) > 0, then we have f (x) > 0 for all x € C;
(ii) If there exists xo € C so that f (xg) > 0, then

Ala+B)<A(a)+A(B)

forall a,B >0, i.e. the mapping A is subadditive on (0,0).
(iii) If there exists xo,yo € C with f (xo) > 0 and f (yo) <0, then

Ala+pB)=A(a)+A(B)
forall a,B >0, i.e. the mapping A is additive on (0,00).

We have the following result providing many examples of subadditive func-
tions A : [0,00) — [0,0).
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Theorem 2.10 ([37]). Let h(z) = Y,_oanz" a power series with nonnegative
coefficients a, > 0 for all n € N and convergent on the open disk D (0,R) with
R >0 o0rR=oo.[fr € (0,R) then the function A, : [0,00) — [0,00) given by

h(r)
Ar(t):=In | ——F—— 2

0= g () 2
is nonnegative, increasing and subadditive on [0, ).

Remark 2.11. Now, if we take /1(z) = 1=, z€ D(0,1), then

A () =In [l‘rf’fpr(")] (30)

is nonnegative, increasing and subadditive on [0, ) for any r € (0,1).
If we take i (z) = exp(z), z € C then

A () = r[1 —exp ()] (31)
is nonnegative, increasing and subadditive on [0, o) for any r > 0.

Corollary 2.12 ([37]). Let h(z) = Y, ganZ" a power series with nonnegative
coefficients a, > 0 for all n € N and convergent on the open disk D (0,R) with
R>0o0rR=oand r € (0,R). For a mapping f : C — R defined on convex
subset C of a linear space X, the following statements are equivalent:

(i) The function f is A.-convex with A, : [0,00) — [0,00)

[0 ],
=)
(ii) We have the inequality
h(r) f(“&iﬁ)) h(r) fx) h(r) )
h(rexp(—a—ﬁ))} = [h(rexp(—a))} [h(rexp(—ﬁ))]

(32)
forany o, B > 0 with oo+ > 0 and x,y € C.
(iii) We have the inequality

[h (rexp (— )} [h(re?()i;g;)]f(y) <O (EE) a3
[ (rexp(—a— )

forany o, B >0 with oo+ > 0 and x,y € C.
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Remark 2.13. We observe that, in the case when
A (t)=r[l—exp(—1)],1>0
then the function f is A,-convex on convex subset C of a linear space X iff
Pty e Calf @ 1 —ep(BIFD) gy
a+p l—exp(—a—p)
forany o, f > 0 witha+f >0and x,y € C.
We observe that this definition is independent of r > 0.
The inequality (34) is equivalent with
(Bt < onBllow(@ - Wit ep @l () 110) ¢
a+pB )~ exp(a+p)—1
forany o, >0 witha+f >0and x,y € C.

We also can introduce the following mapping &, : [0,1] — R
1
ey (0) 1= 5 [F (v (1=0)3) + £ (1= 1) x+13)]

forx,y e C,x#y.
The following result holds [37]:

Theorem 2.14. Let f : C — [0,00) be a A-convex function on C. Assume that
x,y € Cwithx # y.
(i) We have the equality

key(1—1t) =kyy(t) forallt €(0,1];

(ii) The mapping ky  is A-convex on [0,1];
(iii) One has the inequalities

FPUEIEINCEE 6
and
;fz(zgf <x;y ) < ey (1) (37)

forallt €[0,1] and a > 0.

(iv) Let y,x € C with y # x and assume that the mappings [0,1] > t —
fl(1=t)x+1y] and A are Lebesgue integrable on [0, 1], then we have the
Hermite-Hadamard type inequalities

x 1 X !
gﬁ&(j});ﬁﬂu4n+mmsfqzﬂwéxmm<%>

forany o > 0.
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Corollary 2.15. If f : I — [0,0) is an A-convex function on an interval I of real
numbers with A € L[0,1] and f € L]a,b] with a,b € I,a < b, then

a b a :
G N Sy S

for any o > 0.

3. New Results for (vjeby§ev Functional

We have the following result:

Theorem 3.1. Let f : I — C be a differentiable function on I, the interior of the
interval I, [a,b] C I and g : [a,b] — C is an integrable function on [a,b).
(i) If |f'| is A-convex integrable on [a,b] and A is integrable on [0,1], then

/ / 1 b
o)< PO B2 ar [Mew -1 [easlar. o)

(ii) If | f'| is h-convex integrable on [a,b] and h is integrable on (0, 1), then

C(f.9)l < ’f,(a)_;'f/(b)'/olh(t)dt/ab g(t)—bla/abg(s)ds dr. (41)

Proof. We use Sonin’s identity

1

c0) =5 [G0-w e [easar @

for u = M to get

ctr.0) =5 [0~ T O e -

b
b—a/ g(s)ds} dr. (43)

Since f is differentiable, then we have

7O~ LOEIO e a4 0 - 1)

5| [roa- [ roa

= ;/absgn(t—s)f’(s)ds

for any ¢ € [a,b].
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Therefore we have the representation:
C ! ([ "(s)d 44
= — r—
(f.8) 2(b—a)/a (/a sgn(t—s) " (s) S) (44)

< (205 [[e0as)ar

Taking the modulus we have

\(n_wﬂjﬁ%wwﬂws

X /g s|dt

2(17]—cz)/a </a ‘sgnt—s)f’(s)‘ds)

1 b

g() =5 | e(s)ds|dr

—1/b(/b\f’(s)\ds>’g ——/g )ds|d
ba/‘f ‘ds/’ ——— [ g(s)ds|dt.

(i) Since | f'| is A-convex integrable on [a,b], then by Corollary 2.15 we have

bia/ab}f/(s)‘dSSDN |+‘f, ‘/

and by (45) we get (40).
(ii) Follows by (23) and the details are omitted. O

(45)

<

With the notations from the introduction we have:

Corollary 3.2. Let f : I — C be a differentiable function on I and [a,b] C I. If
|f'| is A-convex integrable on [a,b] and A is integrable on [0,1], then

p2(f).E2 (f) < 1@ ”V'/A (46)

x/a b_a/a F(s)ds|di
and

¢ (1) < L Faar [ ol 5, [ 1rolas

A similar result holds for h-convex functions.

f)—-

dt. (47)
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Remark 3.3. Let f : I — C be a differentiable function on i, [a,b] C I and
g : la,b] — C is an integrable function on [a,b].
If |f’| is convex on [a,b], then

/@1 v s

b
IC(f.8)] < t)—bia/a g(s)ds

If |f’| is of P-type on [a,b], then

IC(f,9)| < ‘f/(a)‘yf/(b) t)—bia/bg(s)ds dt.  (49)
If |f'| is Breckner s-convex on [a,b], for s € (0,1), then
IC(f,8)l < f (@ ‘ST{/ /bg(s) ds|dt.  (50)
If | f'|is of s-Godunova-Levin type, with s € [0,1), then
< SO Pl Pl o

Remark 3.4. We notice, from the proof of Theorem 3.1, if |f’| satisfies the
second Hemite-Hadamard inequality with a certain term R (|f' (a)|,|f (D)|),
ie.

L[l wldu<R (7 @] @),

then we have the inequality

IC(f.8)| <R(|f (a)

dt. (52)

(b D/ab‘g(t)—bia/abg(s)ds

The case of p-norm of the deviation

1 b
’f—b_a/a f(s)ds

is as follows:

Theorem 3.5. Let f : I — C be a differentiable function on I, [a,b] C I and
g : [a,b] — C is an integrable function on [a,b]. Assume that p,q > 1 with %—4—

——1
q
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(i) If | f'|* is A-convex integrable on |a,b] and A is integrable on [0,1], then

q )| 1/q
.ol <o-a PO EOL 5 6 a] 3

ot Lo froaf]”

(ii) If | f'|? is h-convex integrable on [a,b] and h is integrable on (0, 1) , then
(a1 £ (p)E 1 1/q
.ol < o-a [FOEOE i a 54)

1 b 1 b p 1/17
r)— ds| dt .

oo [ Je0= 51 [ ewras] o
Proof. Making use of Holder’s integral inequality, we have
1 b

C <—
C0) < 35=a |

1 b

g =5 [ s(s)ds

< 2([)1_61) (/ah /absgn(t—s)f’(s)ds th>]/q

g(t)—bia/ahg(s)ds pdt>1/p.

Observe that, by Jensen’s integral inequality for g > 1, we have

J2 sgn(t—s) f' (s)ds flsgn( $) f(s)|9ds
b—a b—a

IS (s)|%as
N b—a '’

/b sgn(t—s) f'(s)ds (55)

dt

X

which shows that
b q
/ sgn(t—s)f (s)ds| <
a

for any 7 € [a,b].
Therefore,

-y [ |7 s)["as
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and by (55) we get

o<t ([1roras)” ([ a) "

(i) Since |f|? is A-convex integrable on [a,b], then by Corollary 2.15 we

205 [ s)as

have
b |f'(a I" + If’ )|
q
SIS [ae
and by (55) we get (53).
(ii) Follows by (23) and the details are omitted. O

The case p = g = 2 is of interest.

Corollary 3.6. Let f : I — C be a differentiable function on I, [a,b] C I and
g la,b] — C is an integrable function on [a,b].
If |f'|* is A-convex integrable on |a,b] and A is integrable on [0, 1], then

|c<f,g>|g<b—a>[’f ’*'f ’/z

D(g) . (56)

If |f')* is h-convex integrable on [a,b] and h is integrable on (0,1), then a
similar inequality is valid.

where

D(g) = [C(,8)]"* = [ /\g )i~ ]la/abga)dr

The following particular cases are of interest as well:

Corollary 3.7. Let f : I — C be a differentiable function on I, [a,b] C fandg:
[a,b] — Cis an integrable function on [a,b] . Assume that p,q > 1 and % + % =1.
If|f'|" is A-convex integrable on [a,b] and A is integrable on [0,1], then

/ / 1/
Dz<f>,E2<f>s<b—a>['f '”'f O 2 dr}q 57)

1 b p 1/17
X[b—a/a b_g/gf(s)ds dt} ,

ft)—
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and

( ' 1/

« {bl_a/ (z)\—ﬁ/a |f(s)]dspdtr/p.

In particular, if | f' \2 is A-convex integrable on [a,b] and A is integrable on
[0,1], then

DZ<f>,E2<f>s<b—a>[’f WL [ ED
and
G2(f)§(b—a)!f WLOE awa] b @
The first inequality in (59) is equivalent to:
D(f)ﬂb—a)[’f ’+|f i T [ ] (61)

Remark 3.8. Let f : I — C be a differentiable function on 1, [a,b] C [ and g :
[a,b] — Cis an integrable function on [a, b] . Assume that p,g > 1 and % +é =1.

If | f'|? is convex on [a, b], then

)1 - [T O] ©
<o [ o055 [ewa af "
If | £'|“ is of P-type on [a,b], then
Ct91< - [LA 0N (63)

p ql/p
dt} .

205 [ s()as
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If | f'|? is Breckner s-convex on [a,b], for s € (0,1), then

"(a)]? AL
C(f.9)| < (b—a) ['f ( ;l(; !{) (0)| ]

1 b 1 b
X [b—a/a b—a/a g(s)ds

If | /|%is of s-Godunova-Levin type, with s € [0, 1), then

(64)

g(t) —

b4 1/p
dt] .

/ / 1/
|f" (@) +|f (b)q] ! 65)

yc(f,g)lé(b—“)[ 2(1-9)
x [bia/ab

4. Application for Riemann-Stieltjes Integral

g(t)—bia/abg(s)dspdt]l/p.

The following representation is of interest in itself. The result was firstly ob-
tained in [27] (see also [29]). For the sake a completeness we give here a short
proof as well.

Lemma 4.1. Ifv: [a,b] — C is continuous (of bounded variation) on [a,b] and
h: [a,b] — C is of bounded variation (continuous) on |a,b], then we have the
identity

VO (t =) dh () +v(a)J, (b=1)dh() / "V@ydh)  (66)

—/h £)dv(t — Z(“) bh(t)dt.

Proof. Integrating by parts in the Riemann-Stieltjes integral we have

v(b) J? t—a)dh®)++(a) Ju (b=1)dh(r) _ / Vdn) 67

:/ab {v(b) (t—a)+v(a)(b—r) v(t)} dn (1)
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and the identity is proven. O

We can provide now the following application for Riemann-Stieltjes inte-
gral:

Proposition 4.2. If v : I — C is twice differentiable on the interior of the in-
terval I denoted I and [a,b) C I. If V"| is A-convex integrable on [a,b] and A
is integrable on [0,1], then for h : [a,b] — C integrable on |a,b], we have the
inequalities

v(b)fa”(t—a)dh(f; V(“)fb(b_t)dh(t)—/bV(t)dh(t)

1 b
b—a/a h(s)ds|dt

(68)

< (>|;(|V” (b— a//m |

Proof. From (66) we have

h(t)—

v(b) [2(t—a)dh(t) +v(a) [ (b—1)dh(t) [

—~

:/bh(t)v’(t)dt—v(b)_(a) bh(t)dt: b—a)C(V,h).

Since |[V’| is A-convex integrable on [a,b], then by applying Theorem 3.1for
f =1V and g = h we deduce the desired result (68). O

Remark 4.3. If v: I — C is twice differentiable on /, [a,b] C [and g : [a,b] — C
is an integrable function on [a,b].
If || is convex on [a,b], then

MO O L) [ B0 " gy

70
b—a (70)
1 b
b—a/a h(s)ds|dt

h(t) -

v (a)| + v (b) b
< ! (b-a) [
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If V"] is of P-type on [a,b], then

b b
O L= a)dh0) 4@ o) dh 0 —/abv(t)dh(t) )
V' (a o b b
DOy P lay- [ higas]a
If [v"| is Breckner s-convex on [a,b], for s € (0,1), then
v(b) J2 (t—a)dh(e)+v(a) 2 (b—1)dh(r) / "V@ydn@| )
V' (a o b b
< ’ (Z)JS‘:‘D(Z?)’ (b_a)/a h(t)_bia/a h(s)ds|dt.
If || is of s-Godunova-Levin type, with s € [0,1), then
b b
MO L= dh O+ @ o= dhe) / "V@ydn@|  a3)
V' (a o b b
< | (2)(|1+_‘S) (b)] (b_a)/a h(t) — bia/a h(s)ds|dt.

Similar results may be stated if | | is A-convex integrable on [a,b] and A

is integrable on [0, 1]. However the details are not provided here.

5. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on a
complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows

I, for —o<s <A,

@y () :=
0, for A < s < oo,

Then for every A € R the operator

Ej =3 (A) (74)

is a projection which reduces A.

The properties of these projections are collected in the following fundamen-
tal result concerning the spectral representation of bounded selfadjoint operators
in Hilbert spaces, see for instance [56, p. 256]:
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Theorem 5.1 (Spectral Representation Theorem). Let A be a bounded self-
adjoint operator on the Hilbert space H and let m = min{A|A € Sp(A) } =:
minSp (A) and M = max{A|A € Sp(A)} =: maxSp(A). Then there exists a
family of projections {E} }, cp, called the spectral family of A, with the follow-
ing properties

a) E; <Ej fordA <A
b) En_o=0,Ey=I1and E; .y =E; forall A € R;

c) We have the representation

M
A= / AdE;,. (75)
0

.
More generally, for every continuous complex-valued function ¢ defined on

R and for every € > 0 there exists a & > 0 such that

PA) =) o () [En—Ex ]| <€ (76)
k=1

whenever
M<m=M<..<A 1<A=M,

M—XM—1 <O for1 <k<n, 7

A€ Mi—1, M) for 1 <k <n
this means that "y
o) = [ p()dE;. 78)
where the integral is of Riemann-Stieltjes type.

Corollary 5.2. With the assumptions of Theorem 5.1 for A,E; and ¢ we have
the representations

M
(p(A)x:/ 0 (A)dE;x forallxe H (79)
0
and
M
(@ (A)x,y) :/_0(p(7t)d<E;Lx,y> forall x,y € H. (80)
In particular,
M
(p(A)x,x) = ¢©(A)d(Eyx,x) forallx € H. (81)

m—0
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Moreover, we have the equality

M
lo@al>= [~ lp@)PdIES? foraixeH. ()

The next result shows that it is legitimate to talk about “the” spectral family
of the bounded selfadjoint operator A since it is uniquely determined by the
requirements a), b) and ¢) in Theorem 5.1, see for instance [56, p. 258]:

Theorem 5.3. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = minSp (A) and M = max Sp (A) . If {F) }, cg is a family of projec-
tions satisfying the requirements a), b) and c) in Theorem 5.1, then F;, = E; for
all A € R where E), is defined by (74).

By the above two theorems, the spectral family {E} }; g uniquely deter-
mines and in turn is uniquely determined by the bounded selfadjoint operator
A.

We have:

Theorem 5.4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min{A|A € Sp(A) } =: minSp(A) and M = max{A|A € Sp(A) }
=:maxSp (A). Consider also the spectral family {E, }, . of A.

If f : 1 — C is twice differentiable on I and [m,M] C I, |f"| is A-convex
integrable on [m,M] and A is integrable on [0,1], then we have the inequalities

M—m

" (m 11 1
< 1f"( )2|)L+(’1§ (M)!(M_m)/o A()de
X / AiO’<Efx,y>—Ml_m / 1: (Esx,y)ds

7" )|+ 1" (31) !
< P e [ A

dt

forany x,y € H.

Proof. Letx,y € H and consider h: R — C, h(t) := (Ex,y).
If we use the first inequality in (68) for the interval [m — &, M| with small
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€ >0, we have

(84)

‘f(M)f,fl/l_g(t—m—&—s)d(Etx )+ f(m— £)fm e (M —1)d(Ex,y)
M—m+¢€

[ rwatey)

< M m=) |+ 1" (M)]
= 21 (1)

1 M
“5wre ),
M—m+€ m—¢g

Taking the limit over € — 0+ and using the Spectral representation theorem, we

have
([t |
= = (m)Zl)LJF(‘J;N (o) (M—m)Z/O] A(t)dt

M

1
- Ex,y)d
Exy) =y | (B ds

(M—m+8)2/017t(t)dt
M
/ (Esx,y)ds

_ dt.
M—m+8 m—¢g

(Eix,y) —

dt

Mm

for any x,y € H.
By the Schwarz inequality in H we have that

M
E d
Al()(zx,y) Yy <sxy> s

A Esxds],y>
<Hy“/ ‘Etx—/ Eoxds||d

forany x,y € H.
On utilizing the Cauchy-Buniakovski-Schwarz integral inequality we may
state that

1 M
dt (86)

dt

1 M
Ex— 7/ E.xds

dt 7
M—ml 87

5 1/2
dt>

Ex—— Exd
ity - sxds

forany x € H.



BOUNDING THE CEBYSEV FUNCTIONAL 195

Observe that the following equalities of interest hold and they can be easily
proved by direct calculations

M 2
/ Ex—— Exds|| dt (88)
M—m M—m Jm—o
) Lo ’
- / E,x||2dr — Eqxds
M —m Jm—0 M —m Jm-0
and
1 M 5 1 M 2
L / Ex|2di — || —— / Eoxds (89)
M —m Jm—0 M_ m Jm—0
! " E, ! Y Esxds,E, ! dt
e - — =X
M_m m—0 o M_m m—0 st S’ o 2
forany x € H.
By (87), (88) and (89) we get
M M
/ Eix— 7/ Exds|| dt (90)
m—0 M—m Jm—o
M 1 M 1 1/2
< (M—m)1/2 <L_O<EIX—MA_OESXdS,E1X—2X>dt>
forany x € H.
On making use of the Schwarz inequality in H we also have
M 1
/ <Etx— 7/ Exds,E;xx — x> dt (C2))
m—0 2
M 1 M 1
< / Ex—— Esxds|| ||Exx — —x||dt
m—0 —mJm-0

1 M 1 M
= - Ex—— Exds||dt
gl [ o= g [ |,

where we used the fact that E; are projectors, and in this case we have
2

Ex— Ex

= |Ex|]” = (Epx,x)

for any ¢ € [m,M] for any x € H.
From (90) and (91) we get

M
[ "
m—0

12 1 M 1 M
< (M —m) <2 ||| 0‘ Exx— 7—m/ 0ES)Cds

1 1
5 Il = 5 bl

1 M
Etx— Mi Es.xds

(92)

1/2
dt> ,
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which is clearly equivalent with the following inequality of interest in itself

M
Lo

forany x € H.
From (86) we then get

=

forany x,y € H. 0

1

Ex—— Esxds dt < - ||xH (M —m) (93)

dr < 3 HXH [l

1 M
E;Xy _Mf/f (Exy>ds

Remark 5.5. If | /| is convex on [m, M| , then we have the inequalities

‘< R = O <f<A>x,y>\ ©04)

M (m)lzlf” Ml

M —m)

M 1 M
X / ‘(E,x,y> - (Egx,y)ds|dt
-0

M—m Jm—o
< \f"(m)IZIf”(MN(

2
M —m)” x| [[¥]l,

for any x,y € H.

Example 5.6. a) Let A be a bounded selfadjoint operator on the Hilbert space H
andletm =min{A |1 € Sp(A) } and M = max{A|A € Sp(A) } =:maxSp(A).
Consider also the spectral family {E} }; .r of A. Then by Theorem 5.4 we have
for f(t) =1tP, p > 3 that

(ot ) | o

mP=2 4 MP2
4

<p(p-1) (M —m)

M
X/
—0

<p(p-1)

1 M
Ex,y)— —— Ex,y)d
(Exy) = | (Exy)ds
mP=2 4+ MP~2

8

dt

(M —m)? |2/ [l

for any x,y € H.
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b) With the assumptions of a) and if m > 0, then by Theorem 5.4 we have

for f(t) = Int, that

1 Mlg —A)+1InM (A —ml
'<[“m( n—A) T IM(A—m H)]x,y>—<lnAx,y>) (96)
M—-—m
2 2 M M
m-+M
< — (M- E - E ds|dt
> 4m2M2 ( m)/mfo < txvy> M—m m70< Sx’y> s
2 2
m +M 2
< B (= m)? ] ]

for any x,y € H.

Similar results may be stated if | f’|? is A-convex integrable on [a,b] and A

is integrable on [0, 1]. However the details are not provided here.

[1]

(2]

REFERENCES

M. Alomari - M. Darus, The Hadamard'’s inequality for s-convex function, Int. J.
Math. Anal. (Ruse) 2 (13-16) (2008), 639-646.

M. Alomari - M. Darus, Hadamard-type inequalities for s-convex functions, Int.
Math. Forum 3 (37-40) (2008), 1965-1975.

G. A. Anastassiou, Univariate Ostrowski inequalities, revisited, Monatsh. Math.
135 (3) (2002), 175-189.

N.S. Barnett - P. Cerone - S. S. Dragomir - M. R. Pinheiro - A. Sofo, Ostrowski
type inequalities for functions whose modulus of the derivatives are convex and
applications, Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001),
19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll.
5(2002), No. 2, Art. 1.

E.F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.

M. Bombardelli - S. VaroSanec, Properties of h-convex functions related to the
Hermite-Hadamard-Fejér inequalities. Comp. Math. Appl. 58 (9) (2009), 1869—
1877.

W.W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter kon-
vexer Funktionen in topologischen linearen Rdumen, (German) Publ. Inst. Math.
(Beograd) (N.S.) 23 (37) (1978), 13-20.

W. W. Breckner - G. Orban, Continuity properties of rationally s-convex mappings
with values in an ordered topological linear space. Universitatea "Babeg-Bolyai”,
Facultatea de Matematica, Cluj-Napoca, 1978.

P. Cerone - S. S. Dragomir, Midpoint-type rules from an inequalities point of view,
Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied
Mathematics, CRC Press, New York. 135-200.



198

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

SILVESTRU SEVER DRAGOMIR

P. Cerone - S.S. Dragomir, New bounds for the three-point rule involving the
Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related
Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.

P. Cerone - S.S. Dragomir, New bounds for the Cebysev functional, Appl. Math.
Lett. 18 (2005), 603-611.

P. Cerone - S. S. Dragomir, A refinement of the Griiss inequality and applications,
Tamkang J. Math. 38 (1) (2007), 37—49. Preprint available at RGMIA Res. Rep.
Coll., 5 (2) (2002), Art. 14.

P. Cerone - S. S. Dragomir - J. Roumeliotis, Some Ostrowski type inequalities for
n-time differentiable mappings and applications, Demonstratio Mathematica, 32
(2) (1999), 697—712.

P.L. Chebychev, Sur les expressions approximatives des intégrals definis par les
outres prises entre les méme limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.

X.-L. Cheng - J. Sun, Note on the perturbed trapezoid inequality, J. Inequal. Pure
Appl. Math. 3 (2) (2002), Art. 29.

G. Cristescu, Hadamard type inequalities for convolution of h-convex functions,
Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3—11.

S.S. Dragomir, Ostrowski’s inequality for monotonous mappings and applica-

tions, J. KSIAM 3 (1) (1999), 127-135.

S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and
applications, Comp. Math. Appl. 38 (1999), 33-37.

S.S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral, Ko-
rean J. Appl. Math. 7 (2000), 477-485.

S.S. Dragomir, On the Ostrowski’s inequality for mappings of bounded variation
and applications, Math. Ineq. & Appl. 4 (1) (2001), 33-40.

S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral |, f f)
du(t) where f is of Holder type and u is of bounded variation and applications,
J. KSIAM 5 (1) (2001), 35-45.

S.S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. In-
equal. Pure & Appl. Math. 3 (5) (2002), Art. 68.

S.S. Dragomir, An inequality improving the first Hermite-Hadamard inequality
for convex functions defined on linear spaces and applications for semi-inner
products, J. Inequal. Pure Appl. Math. 3 (2) (2002), Art. 31.
S.S. Dragomir, An inequality improving the second Hermite-Hadamard inequal-
ity for convex functions defined on linear spaces and applications for semi-inner
products, J. Inequal. Pure Appl. Math. 3 (3) (2002), Art. 35.

S.S. Dragomir, A survey on Cauchy-Buniakowski-Schwarz’s type discrete in-
equality, J. Ineq. Pure & Appl. Math. 4 (3) (2003), Art. 63.

S.S. Dragomir, An Ostrowski like inequality for convex functions and applica-
tions, Revista Math. Complutense, 16 (2) (2003), 373-382.



[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BOUNDING THE CEBYSEV FUNCTIONAL 199

S.S. Dragomir, Inequalities of Griiss type for the Stieltjes integral and applica-
tions, Kragujevac J. Math. 26 (2004), 89-112.

S.S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math.
Soc. 74 (2006), 471-478.

S.S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and ap-
plications, Appl. Math. Lett. 20 (2007), 123-130.

S.S. Dragomir, Cebysev’s type inequalities for functions of selfadjoint operators
in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 9.

S.S. Dragomir, Griiss’ type inequalities for functions of selfadjoint operators in
Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 11.

S.S. Dragomir, Inequalities for the Cebysev functional of two functions of selfad-
Jjoint operators in Hilbert spaces, Prerpint RGMIA Res. Rep. Coll. 11(e) (2008).

S.S. Dragomir, New Griiss’ type inequalities for iunctions of bounded variation
and applications, Appl. Math. Lett. 25 (10) (2012), 1475-1479.

S.S. Dragomir, Operator Inequalities of the Jensen, Cebysev and Griiss Type,
Springer Briefs in Mathematics, Springer, New York, 2012.

S.S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, Sprin-
ger Briefs in Mathematics. Springer, New York, 2012.

S.S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on
linear spaces, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 75.

S.S. Dragomir, Inequalities of Hermite-Hadamard type for A-convex functions on
linear spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 13.

S.S. Dragomir, Discrete inequalities of Jensen type for A-convex functions on
linear spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 15.

S.S. Dragomir, Integral inequalities of Jensen type for A-convex functions,
Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 18.

S.S. Dragomir - P. Cerone - J. Roumeliotis - S. Wang, A weighted version of
Ostrowski inequality for mappings of Holder type and applications in numerical
analysis, Bull. Math. Soc. Sci. Math. Romanie 42 (90) (4) (1999), 301-314.

S.S. Dragomir - S. Fitzpatrick, The Hadamard inequalities for s-convex functions
in the second sense, Demonstratio Math. 32 (4) (1999), 687-696.

S.S. Dragomir - S. Fitzpatrick, The Jensen inequality for s-Breckner convex func-
tions in linear spaces, Demonstratio Math. 33 (1) (2000), 43-49.

S.S. Dragomir - B. Mond, On Hadamard’s inequality for a class of functions of
Godunova and Levin, Indian J. Math. 39 (1) (1997), 1-9.

S.S. Dragomir - C. E. M. Pearce, On Jensen’s inequality for a class of functions
of Godunova and Levin, Period. Math. Hungar. 33 (2) (1996), 93-100.

S.S. Dragomir - C.E.M. Pearce, Quasi-convex functions and Hadamard’s in-
equality, Bull. Austral. Math. Soc. 57 (1998), 377-385.



200

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

SILVESTRU SEVER DRAGOMIR

S.S. Dragomir - J. Peari¢ - L. Persson, Some inequalities of Hadamard type,
Soochow J. Math. 21 (3) (1995), 335-341.

S.S. Dragomir - J. Pecari¢ - L. Persson, Properties of some functionals related to
Jensen’s inequality, Acta Math. Hungarica 70 (1996), 129-143.

S.S. Dragomir - Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applica-
tions in Numerical Integration, Kluwer Academic Publisher, 2002.

S.S. Dragomir - S. Wang, A new inequality of Ostrowski’s type in Li-norm and
applications to some special means and to some numerical quadrature rules,

Tamkang J. of Math. 28 (1997), 239-244.

S. S. Dragomir - S. Wang, Applications of Ostrowski’s inequality to the estimation
of error bounds for some special means and some numerical quadrature rules,

Appl. Math. Lett. 11 (1998), 105-109.

S.S. Dragomir - S. Wang, A new inequality of Ostrowski’s type in L,-norm and
applications to some special means and to some numerical quadrature rules, In-
dian J. of Math., 40 (3) (1998), 245-304.

A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J.
Math. Ineq. 4 (3) (2010), 365-369.

T. Furuta - J. Mi¢i¢ Hot - J. Pecari€ - Y. Seo, Mond-Pecari¢ Method in Operator
Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space,
Element, Zagreb, 2005.

E. K. Godunova - V.1. Levin, Inequalities for functions of a broad class that con-
tains convex, monotone and some other forms of functions, (Russian) Numerical
mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos.
Ped. Inst., Moscow, 1985

G. Griiss, Uber das maximum des absoluten Betrages von 3 [ ab F(x)g(x)dx—

C ja)z [P f(x)dx- [" g (x)dx, Math. Z. 39 (1934), 215-226.

G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley &
Sons, Inc. New York, 1969.

H. Hudzik - L. Maligranda, Some remarks on s-convex functions, Aequationes
Math. 48 (1) (1994), 100-111.

E. Kikianty - S. S. Dragomir, Hermite-Hadamard’s inequality and the p-HH-norm
on the Cartesian product of two copies of a normed space, Math. Inequal. Appl.
13 (1) (2010), 1-32.

U. S. Kirmaci - M. Klari¢i¢ Bakula - M. E Ozdemir - J. Pecari¢, Hadamard-type
inequalities for s-convex functions, Appl. Math. Comput. 193 (1) (2007), 26-35.

M. A. Latif, On some inequalities for h-convex functions, Int. J. Math. Anal.
(Ruse) 4 (29-32) (2010), 1473-1482.

A. Lupas, The best constant in an integral inequality, Mathematica (Cluj) 15 (38)
(2) (1973), 219-222.




[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

BOUNDING THE CEBYSEV FUNCTIONAL 201

D. S. Mitrinovi¢ - 1. B. Lackovié, Hermite and convexity, Aequationes Math. 28
(1985), 229-232.

D.S. Mitrinovi¢ - J. E. Pecari¢, Note on a class of functions of Godunova and
Levin, C. R. Math. Rep. Acad. Sci. Canada 12 (1) (1990), 33-36.

A. Matkovi¢ - J. E. Pecari€ - 1. Perié, A variant of Jensen’s inequality of Mercer’s
type for operators with applications, Linear Algebra Appl. 418 (2-3) (2006), 551—
564.

D. S. Mitrinovi€ - J. E. Pecari€ - A. M. Fink, Inequalities Involving Functions and
their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.

D.S. Mitrinovi¢ - J. E. Pecari¢ - A.M. Fink, Classical and New Inequalities in
Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

B. Mond - J. E. Pecarié, Convex inequalities in Hilbert spaces, Houston J. Math.,
19 (1993), 405-420.

B. Mond - J. E. Pecarié, Classical inequalities for matrix functions, Utilitas Math.
46 (1994), 155-166.

A.M. Ostrowski, On an integral inequality, Aequationes Math. 4 (1970), 358-
373.

J.E. Pecari¢ - J. Miéi¢ - Y. Seo, Inequalities between operator means based on
the Mond-Pecari¢ method, Houston J. Math. 30 (1) (2004), 191-207.

C.E.M. Pearce - A. M. Rubinov, P-functions, quasi-convex functions, and Hada-
mard-type inequalities, J. Math. Anal. Appl. 240 (1) (1999), 92—-104.

J. E. Pecari¢ - S. S. Dragomir, On an inequality of Godunova-Levin and some
refinements of Jensen integral inequality, Itinerant Seminar on Functional Equa-
tions, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-
6, Univ. "Babes-Bolyai”, Cluj-Napoca, 1989.

J. Pecari¢ - S. S. Dragomir, A generalization of Hadamard'’s inequality for isotonic
linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103—-107.

M. Radulescu - S. Radulescu - P. Alexandrescu, On the Godunova-Levin-Schur
class of functions, Math. Inequal. Appl. 12 (4) (2009), 853—-862.

M.Z. Sarikaya - A. Saglam - H. Yildirim, On some Hadamard-type inequalities
for h-convex functions, J. Math. Inequal. 2 (3) (2008), 335-341.

E. Set - M. E. Ozdemir - M. Z. Sarikaya, New inequalities of Ostrowski’s type for
s-convex functions in the second sense with applications, Facta Univ. Ser. Math.
Inform. 27 (1) (2012), 67-82.

M. Z. Sarikaya - E. Set - M. E. Ozdemir, On some new inequalities of Hadamard
type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.) 79 (2)
(2010), 265-272.

M. S. Slater, A companion inequality to Jensen’s inequality, J. Approx. Theory 32
(1984), 160-166.



202 SILVESTRU SEVER DRAGOMIR

[79] M. Tung, Ostrowski-type inequalities via h-convex functions with applications to
special means, J. Inequal. Appl. 2013 (2013):326, 10 pp.

[80] S. VaroSanec, On h-convexity, J. Math. Anal. Appl. 326 (1) (2007), 303-311.

SILVESTRU SEVER DRAGOMIR
Mathematics, College of Engineering & Science

Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
School of Computational & Applied Mathematics,

University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa

e-mail: sever .dragomir@vu.edu.au



