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ABSTRACT 1 

We demonstrated forward osmosis (FO) membrane integrity loss during gypsum scaling 2 

with the presence of membrane spacer. The gypsum scalant had preferential accumulation 3 

adjacent to membrane spacer where the needle-shape gypsum potentially compromised 4 

polyamide thin-film composite FO membrane integrity. However, the loss of FO membrane 5 

integrity cannot be sensitively detected by in situ measurements of membrane water and salt 6 

(NaCl) permeability coefficients. We, for the first time, employed membrane integrity challenge 7 

tests to reveal the impaired FO membrane integrity by fluorescent Rhodamine WT tracer and 8 

amine-modified latex nanoparticles, respectively. Challenge tests using Rhodamine WT tracer 9 

showed that membrane log removal value decreased to 3.5 after three scaling-cleaning cycles, 10 

which corresponded to a pinhole size of 0.06 µm2 on the FO membrane surface. This result was 11 

further corroborated by challenge tests using latex nanoparticle where the particle size 12 

distribution in the permeate became wider and the average particle size increased over the three 13 

scaling-cleaning cycles. Both challenge tests were sensitive enough to identify impaired FO 14 

membrane integrity. Results reported here have significant implications for achieving better 15 

membrane spacer and module design, as well as demanding periodical monitoring of FO 16 

membrane integrity in water reuse.  17 

 18 
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1. Introduction 21 

 Membrane technologies respond to the global challenge for adequate and safe water [1, 22 

2]. Forward osmosis (FO), an emerging osmosis-driven membrane process, has the potential to 23 

advance seawater desalination and wastewater reuse [3]. Because of the low fouling propensity 24 

and high fouling reversibility with simple membrane flushing, FO has potential applications in 25 

treatment of a variety of high fouling potential source waters [4-7], including desalination of 26 

high salinity brines from shale gas produced water [8-11], municipal wastewater reclamation 27 

[12-16], and valuable resource recovery [17-19].  28 

These challenging waste streams with complex foulants stress membrane mechanical 29 

properties and subsequent membrane performance. For instance, recent studies reported minor 30 

changes in FO membrane properties and performance after exposure to oil and gas wastewaters 31 

[20]. More importantly, damage to FO membrane active layer was visualized after gypsum 32 

scaling with the presence of membrane spacers [21]. These prior findings warrant a close 33 

examination of FO membrane integrity during processing of wastewaters with high fouling 34 

propensity.  35 

Varying techniques were proposed to examine reverse osmosis (RO) membrane integrity, 36 

such as fluorescent spectroscopy [22-24],  Rutherford backscattering spectrometry [25, 26], and 37 

flow cytometry [27]. For instance, fluorescence signatures, such as peak C as λEx/Em= 38 

3000/400 nm, were proposed to monitor RO membrane integrity due to relatively low noise and 39 

variability of these fluorescent organic molecules [22]. For biological particles, such as virus, 40 

flow cytometry demonstrated good sensitivity and reproducibility for quantifying virus reduction 41 

rate along the treatment processes, which provide direct evidence for RO membrane integrity 42 

monitoring [27]. 43 

These techniques aim to ensure that RO membrane achieves high log removal value 44 

(LRV) for virus removal so as to address public health protection concerns, as well as regulatory 45 

requirements. However, to date, there is no existing study that examines membrane integrity of 46 

FO process, particularly in treatment of high fouling wastewaters. Such fundamental 47 

understanding can lead to the development of monitoring techniques for FO membrane integrity, 48 

which will significantly increase the efficiency and robustness of FO process. 49 
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 In this study, we demonstrate that FO membrane integrity was compromised during 50 

gypsum scaling. Membrane gypsum scaling was visualized by a real-time observation system. 51 

Membrane integrity of three scaling-cleaning cycles was examined using challenge tests 52 

comprising sensitive fluorescent Rhodamine WT tracer and amine-modified latex nanoparticles.  53 

 54 

2. Materials and methods 55 

2.1 Real-time FO observation system 56 

A transparent, acrylic FO membrane cell coupled with microscopic observation enabled 57 

real-time observation of gypsum scaling (Figure S1, Supplementary Data). Specifically, a 58 

membrane coupon with an effective area of 20.2 cm2 was placed in a transparent FO membrane 59 

cell. A crossflow rate of 1 L/min (corresponding to crossflow velocity of 9 cm/s) was maintained 60 

for both the feed and draw solutions using micro gear pumps. The FO water flux was determined 61 

by measuring the weight changes of the feed solution at specific time intervals with a precision 62 

balance connected to a computer and a data logging system. 63 

Real-time membrane surface images of 2048 × 1536 pixels resolution were recorded using 64 

a high resolution digital camera and an optical microscope (20× magnification). To minimize the 65 

interference from air bubbles, the feed and draw solutions were degassed prior to circulation in 66 

the FO setup. Through the combination of optical magnification along with a unique 67 

combination of bright and low angle dark field illumination, provided by ultra-bright fiber optic 68 

illuminator, digital image capture and analysis, occurrence and subtle changes of gypsum crystal 69 

could be effectively monitored.  70 

2.2 Membrane and spacer 71 
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A polyamide thin-film composite (TFC) forward osmosis (FO) membrane was employed 72 

in this study. The TFC membrane was made of a thin selective polyamide active layer on top of a 73 

porous polysulfone support layer [28].  74 

Spacers are essential to an FO membrane module to maintain flow channel and provide 75 

hydrodynamic conditions. Diamond-patterned, polypropylene spacers (65 mil (1.651 mm) spacer, 76 

GE Osmonics), which were also the current standard RO membrane spacer, were placed in both 77 

the feed and draw channels during the experiments.  78 

2.3 Experimental protocol for gypsum scaling and cleaning 79 

A total of three gypsum scaling-cleaning cycles were conducted. The protocol for gypsum 80 

scaling experiments comprised the following steps. First, a new membrane coupon, with the 81 

active layer facing the feed solution, was placed in the membrane cell before each experiment 82 

and stabilized to obtain a constant flux. The membrane in the FO mode (i.e., membrane active 83 

layer faces feed solution) was stabilized with deionized water feed and 2 M NaCl draw. Next, the 84 

gypsum scaling experiment was performed for about 24 h to obtain approximately 1400 mL 85 

cumulative permeate volume at the conclusion of each experiment. The gypsum scaling solution 86 

was comprised of 35 mM CaCl2, 20mM Na2SO4, and 19 mM NaCl, with a gypsum 87 

(CaSO4·2H2O) saturation index (SI) of 1.3. Other experimental conditions were: crossflow 88 

velocity of 9 cm/s, ambient pH (pH 6.8), and temperature of 25.0 ± 0.1°C. Water flux was 89 

continuously monitored throughout the fouling experiments by a data logger. A baseline 90 

experiment (i.e., feed without CaCl2 and Na2SO4) was also carried out to correct the flux decline 91 

due to the continuous concentration of the feed solution and dilution of the draw solution, as 92 

described in our previous publication [7]. The real-time monitoring system captured images of 93 

the FO membrane surface every 30 minutes during the scaling experiment to identify the 94 

occurrence and development of gypsum crystals on FO membrane surface during scaling 95 

experiment.  96 

Membrane cleaning was performed immediately after the FO scaling experiments. 97 

Deionized water flushing was carried out in both feed and draw flow channels at 18 cm/s for 98 

30 min. The membrane water flux after cleaning was measured using deionized water feed and 2 99 

M NaCl draw.  100 
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Key membrane transport parameters (water permeability coefficients, A and salt (NaCl) 101 

permeability coefficient, B) of pristine membrane and membrane after each cycle were 102 

determined according to a method previously described [29]. Briefly, the determination of key 103 

membrane transport parameters comprises a single FO experiment divided into four stages, each 104 

using a different concentration of draw solution. The experimental water and reverse salt fluxes 105 

measured in each stage are fitted to the corresponding FO transport equations by performing a 106 

least-squares non-linear regression, using A, B, and S as regression parameters. Four different 107 

NaCl draw concentrations (approximately 0.2, 0.4, 0.7, and 1.2 M NaCl) were employed. These 108 

parameters were adjusted to fit the experimental data of water and reverse salt fluxes to the 109 

corresponding governing equations. This method allowed an in situ measurement of membrane 110 

characteristics without taking the FO membrane out of the membrane cell and transferring into a 111 

pressurized RO filtration setup, which could potentially impair membrane integrity. 112 

2.4 FO membrane integrity examination  113 

Apart from measuring key membrane transport parameters, FO membrane integrity at the 114 

conclusion of each gypsum scaling-cleaning cycle was examined by challenge tests using two 115 

tracers: fluorescent Rhodamine WT (Tuner Designs, CA, USA) and amine-modified polystyrene 116 

latex nanoparticle (Sigma-Aldrich, MO, USA), respectively. Details regarding these two tracers 117 

were provided in the Supplementary Data (Table S1). Specifically, the challenge tests were 118 

conducted in single-pass mode where neither feed nor draw solution were returned to their 119 

reservoirs. A pulse of either fluorescent Rhodamine WT solution of 50 mg/L or amine-modified 120 

polystyrene latex nanoparticle solution of 20 mg/L was injected into the FO feeding tube for 60 121 

seconds at a crossflow rate of 1 L/min (corresponding to crossflow velocity of 9 cm/s). At the 122 

same time, the draw solution at a crossflow rate of 1 L/min (corresponding to crossflow velocity 123 

of 9 cm/s) was sampled every 10 seconds for a total of 540 seconds to generate either a time-124 

concentration profile of fluorescent Rhodamine WT or the nanoparticle size distribution in the 125 

draw solution. A detailed description of challenge tests is provided in the supplementary 126 

materials and methods, Supplementary Data. Concentration of fluorescent Rhodamine WT was 127 

quantified by a fluorometer (AquaFluor, Tuner Design, CA, USA) at excitation wavelength of 128 

530 nm and emission wavelength of 555 nm. Nanoparticle size distribution was determined by 129 

dynamic light scattering (Zetasizer Nano ZSP, Malvern Instruments, Worcestershire, UK). 130 
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The log removal value (LRV) of fluorescent Rhodamine WT was calibrated as a function 131 

of pinhole size in order to quantify the degree of FO membrane integrity loss. The FO membrane 132 

integrity loss was artificially induced by lightly tapping the membrane samples using a tip of a 133 

hypodermic needle (GL Sciences, Tokyo, Japan). Pinholes of various sizes (0.02-0.08 μm2) were 134 

created on the FO membrane sample that was subjected to the aforementioned fluorescent 135 

Rhodamine WT challenge test. The LRV value was calculated by: 136 











=

feed

draw

C
DFCLRV log                                                                         (1) 137 

where Cdraw was the Rhodamine WT trace concentration in the draw; DF was the dilution factor 138 

of Rhodamine WT trace by considering the draw solution volume; Cfeed was the Rhodamine WT 139 

trace concentration in the feed. It was assumed that the feed Rhodamine WT trace concentration 140 

remained constant during the short period of challenge test. 141 

 142 

3. Results and Discussion 143 

3.1 Gypsum scalant accumulates adjacent to spacer filament   144 

Membrane spacer significantly affected membrane performance and gypsum scaling 145 

pattern. Membrane spacer not only alleviated gypsum scaling (Figure 1A), but also induced 146 

preferential accumulation of gypsum scalant adjacent to spacer filament (Figure 1B). Specifically, 147 

membrane spacer abated water flux decline by 22% during gypsum scaling in comparison with 148 

FO filtration without membrane spacer. The enhanced membrane performance was attributed to 149 

the mitigation of concentration polarization at membrane interface by membrane spacer [30-32].  150 

[Figure 1] 151 

More importantly, real-time microscopic observation demonstrated that gypsum scaling 152 

was initiated next to spacer filament, and progressively resulted in severe accumulation of 153 

gypsum scalant in the confined region close to spacer filament (Figure 1B, and Video S1, 154 

Supplementary Data). In comparison with the gypsum scaling without membrane spacer (Figure 155 

S4, Supplementary Data), our real-time microscopic imaging showed that gypsum scalant 156 

preferentially accumulated adjacent to the membrane spacers. Such gypsum scaling pattern was 157 

mainly driven by the hydrodynamic dead zones created near the filaments, thereby favoring the 158 
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crystallization and growth of gypsum scalant. Our results also agreed well with prior studies of 159 

particulate scaling in FO process, using latex particle [33] and microalgae [34], which 160 

preferentially accumulated at regions next to the fabric filaments in the filtration. These 161 

observations were consistent with previous knowledge of RO scaling [35-37], that crystal 162 

formation and precipitate deposition occurred preferentially at the spacer induced hydrodynamic 163 

dead zones. 164 

 SEM micrographs of the gypsum-scaled membrane further verified the preferential 165 

accumulation of gypsum scalant adjacent to membrane spacers (Figure 2). More importantly, 166 

these images also revealed the indentation and possible pinholes on the membrane active layer 167 

after removing membrane spacers (Figures 2B and D). As a result, it raised concerns regarding 168 

FO membrane integrity when needle-shaped gypsum crystal morphology was revealed in the 169 

confined region adjacent to spacer filament (Figure 2). As a result, it was hypothesized that such 170 

gypsum scaling pattern could potentially compromise FO membrane integrity, and further 171 

evidence to support this hypothesis is provided in the following sections.  172 

[Figure 2] 173 

3.2 Membrane transport parameters measurements cannot identify membrane integrity loss 174 

Key membrane transport parameters – water permeability coefficient, A, and salt (NaCl) 175 

permeability coefficient, B – were measured in situ at the conclusion of each scaling-cleaning 176 

cycle using a single FO experimental method [29]. This method minimized potential mechanical 177 

damage of the FO membrane by undertaking the characterization in situ, rather than transforming 178 

into and testing by a pressurized RO membrane cell.  179 

Statistically, negligible differences in membrane A and B values were observed (Figure 3) 180 

between pristine membrane and membranes after three scaling-cleaning cycles (student t-test, P 181 

value>0.05). Largely unchanged membrane water and salt (NaCl) permeabilities also agreed 182 

with the high water flux recovery (>97%) after membrane physical flushing (Figure S3, 183 

Supporting Information), which benefited from the high fouling reversibility of FO process [6, 184 

38, 39]. However, limited variations in water and salt (NaCl) permeability coefficients were not 185 

sufficiently sensitive to reflect the potential loss of membrane integrity. As a result, we employed 186 

membrane integrity challenge tests comprising two tracers – fluorescent Rhodamine WT and 187 



9 

amine-modified polystyrene latex nanoparticles – to more closely examine membrane integrity 188 

during gypsum scaling. 189 

[Figure 3] 190 

3.3 Fluorescent dye tracer and latex nanoparticle challenge tests reveal membrane integrity loss.  191 

Membrane integrity challenge tests were performed by introducing a pulse of tracer that 192 

enabled sensitive detection of breach of membrane integrity. Two tracers were used to examine 193 

the loss of membrane integrity. First, fluorescent Rhodamine WT, which has been previously 194 

used to monitor RO membrane integrity [40], can be detected at low concentration of 0.04 µg L-1 195 

using the current analytical method. The intact FO membrane achieved LRV up to 5.1 using 196 

fluorescent Rhodamine WT (Figure 4). Second, the amine-modified latex nanoparticles with 197 

average particle size of 50 nm, which is equivalent to the size of virus, did not show severe 198 

aggregation during of the challenge test (Figure S3, Supplementary Data), which making it an 199 

excellent surrogate for FO membrane integrity for virus removal [25]. 200 

3.3.1 Fluorescent Rhodamine WT challenge test 201 

Concentration-time profile of Rhodamine WT demonstrated a progressive increase of 202 

Rhodamine WT concentration in the draw solution, which indicated a breach of membrane 203 

integrity (Figure 4A). For instance, at the conclusion of the second scaling-cleaning cycle (Cycle 204 

II), Rhodamine WT peak could be clearly identified with concentration of 6 µg L-1, 205 

corresponding to an LRV of 4 [41]. More importantly, this 4 LRV credit of the FO membrane 206 

was compromised after three gypsum scaling-cleaning cycles.  207 

In order to provide insights into the degree of membrane integrity loss, we also correlated 208 

the membrane LRV as a function of pinhole size to quantify the degree of membrane integrity 209 

loss during the gypsum scaling (Figure 4B). The SEM images, showing the localization of 210 

defects formation near the spacer filaments (Figure 2), cannot accurately reflect membrane 211 

integrity loss during the gypsum scaling. Using the calibrated pinhole size-LRV curve (Figure 212 

4B), we demonstrated that membrane integrity loss was equivalent to a membrane with pinhole 213 

size of 0.065 µm2 (Figure 4B) when gypsum scalant accumulated adjacent to spacer filament at 214 

the conclusion of three scaling-cleaning cycles. 215 

[Figure 4] 216 
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3.3.2 Latex Nanoparticle challenge test 217 

Latex nanoparticle challenge tests offered further insights into the aforementioned FO 218 

membrane integrity loss that was equivalent to a pinhole size of 0.065 µm2 in fluorescent 219 

Rhodamine WT challenge test. Dynamic light scattering measurements showed that the particle 220 

size distribution in the draw solution became wider and shifted towards the larger particle size 221 

range (Figure 5). Specifically, negligible presence of latex particle in the draw solution was 222 

observed after first scaling-cleaning cycle, which was evident by the sharp particle size 223 

distribution and relative small average particle size of 15 nm (Figure 5B). This result was 224 

consistent with the fluorescent Rhodamine WT challenge test where the FO membrane LRV was 225 

around 5 with insignificant permeation of Rhodamine WT to the draw solution (Figure 4). 226 

However, a significant, progressive increase in the particle size distribution occurred after the 227 

second and third scaling-cleaning cycles, with the average particle size rising to 30 and 50 nm. 228 

More alarming, particle size distribution in the draw solution exhibited a similar pattern as the 229 

feed latex particle after three cleaning-scaling cycles (Figure 5D), indicating the FO membrane 230 

integrity was compromised to virus sized particles. This observation agreed well with the results 231 

obtained from the fluorescent Rhodamine WT challenge test, both of which suggested that the 232 

FO membrane integrity was impaired during gypsum scaling. 233 

[Figure 5] 234 

3.4 Implications 235 

Results reported here have significant implications for both FO membrane module 236 

development as well as the deployment of FO membrane in water reuse. In this study, we 237 

presented experimental evidence showing FO membrane integrity was compromised during 238 

gypsum scaling driven by the preferential accumulation of gypsum scalant adjacent to membrane 239 

spacer. Further optimization of FO membrane spacer or novel design of FO module should be 240 

considered to minimize the adverse impact on membrane performance. The detection of 241 

membrane integrity loss also requires periodic monitoring of FO process in water reuse where 242 

the risk of pathogen transport, such as virus, is a concern for impaired FO membrane. In addition, 243 

different type or size of tracers should be considered to maximize the relevance of the challenge 244 

tests to pathogen rejection when the potential membrane pinhole became larger.  245 

3.5 Conclusion 246 
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 Results reported here highlighted the FO membrane integrity loss using fluorescent 247 

Rhodamin WT tracer and latex nanoparticle, during gypsum scaling with the presence of 248 

membrane spacer. Such FO membrane integrity loss was driven by the preferential accumulation 249 

of gypsum scalant adjacent to membrane spacer where the needle-shape gypsum potentially 250 

compromised FO membrane integrity. More importantly, the routine measurements of FO 251 

membrane water and salt (NaCl) permeabilities cannot identify the membrane integrity breach, 252 

which warranted the employment of membrane integrity challenge tests by Rhodamine WT 253 

tracer and amine-modified latex nanoparticles, respectively. As a result, challenge tests using 254 

Rhodamine WT tracer showed that membrane log removal value decreased to 3.5 after three 255 

scaling-cleaning cycles, which corresponded to a pinhole size of 0.06 µm2 on the FO membrane 256 

surface. This result was further corroborated by challenge tests using latex nanoparticle where 257 

the particle size distribution in the permeate became wider and the average particle size increased 258 

over the three scaling-cleaning cycles. Both challenge tests were sensitive enough to identify 259 

impaired FO membrane integrity. Results reported here have significant implications for 260 

achieving better membrane spacer and module design, as well as demanding periodical 261 

monitoring of FO membrane integrity in water reuse. 262 
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 383 

Figure 1: Gypsum scaling during forward osmosis filtration: (A) water flux decline as a function 384 

of cumulative permeate volume with and without membrane spacer; and (B) real-time 385 

microscopic observation at specific cumulative permeate volumes for experiments with spacer. 386 

Experimental conditions were: the scaling solution contains 35 mM CaCl2, 20mM Na2SO4, and 387 

19 mM NaCl, with a gypsum saturation index of 1.3. A 2 M NaCl draw solution was used in FO. 388 

Diamond-patterned, polypropylene spacers (65 mil (1.651 mm)) were used in feed and draw 389 

solution sides, crossflow velocity of 9 cm/s, ambient pH (pH 6.8), and temperature of 25.0 ± 390 

0.1°C. Representative real-time images were taken at specific cumulative permeate volumes. 391 

Note that the flux for the fouled membrane is corrected by the initial flux in the fouling 392 

experiments. 393 



16 

 394 

Figure 2: SEM micrographs of (A) FO membrane and (C) spacer at the conclusion of gypsum 395 

scaling experiments. The potential impaired membrane was revealed in (B) and (D) where a 396 

clear indent of spacer was observed.  397 
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Figure 3: Water and salt (NaCl) permeabilities of pristine membrane and membrane at the 399 

conclusion of each scaling-cleaning cycle. These two key membrane transport parameters were 400 

measured in situ using a four-step method in a single FO experiment. The NaCl draw solution 401 

concentration in each step was 0.2, 0.4, 0.7, and 1.2 M. Asterisk and hash symbols above the bar 402 

indicates measurement differences were statistically insignificant (student t-test, p value>0.05).  403 
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  404 
Figure 4: Membrane integrity challenge test using fluorescent Rhodamine WT tracer. (A) 405 

Rhodamine WT concentration in the draw solution as a function of time (B) correlation Log 406 

Removal Value (LRV) with membrane pinhole size. Black triangular symbols represent 407 

membrane LRV obtained from artificial membrane pinhole; the green square symbols were LRV 408 

of membrane at the conclusion of each scaling-cleaning cycle; the blue dotted line was drawn to 409 

guide the eye. Experimental conditions were: the FO membrane cell was operated in one-pass 410 

mode where fluorescent Rhodamine WT solution of 50 mg/L was injected into the FO feeding 411 

tube for 60 seconds at a crossflow rate of 1 L/min. At the same time, the draw solution at the 412 

crossflow rate of 1 L/min was sampled every 10 seconds for a total of 540 seconds. 413 
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Figure 5: Membrane integrity challenge test using amine-modified latex nanoparticles. Particle 415 

size distribution of draw solution using (A) pristine membrane, and (B)-(D) membrane at the 416 

conclusion of each scaling-cleaning cycle. The particle size distribution was determined by 417 

dynamic light scattering. Experimental conditions were: the FO membrane cell was operated in 418 

single-pass mode where amine-modified latex nanoparticle solution of 20 mg/L was injected into 419 

the FO feeding tube for 60 seconds at a crossflow rate of 1 L/min. At the same time, the draw 420 

solution at a crossflow rate of 1 L/min was sampled for a total of 540 seconds. 421 
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