
1

A Cost-Effective Random Testing Method for
Programs with Non-Numeric Inputs

Arlinta C. Barus, Tsong Yueh Chen, Member, IEEE , Fei-Ching Kuo, Member, IEEE ,
Huai Liu, Member, IEEE , Robert Merkel, and Gregg Rothermel, Member, IEEE Computer Society

Abstract—Random testing (RT) has been widely used in the testing of various software and hardware systems. Adaptive random
testing (ART) is a family of random testing techniques that aim to enhance the failure-detection effectiveness of RT by spreading
random test cases evenly throughout the input domain. ART has been empirically shown to be effective on software with numeric
inputs. However, there are two aspects of ART that need to be addressed to render its adoption more widespread - applicability to
programs with non-numeric inputs, and the high computation overhead of many ART algorithms. We present a linear-order ART
algorithm for software with non-numeric inputs. The key requirement for using ART with non-numeric inputs is an appropriate
“distance” measure. We use the concepts of categories and choices from category-partition testing to formulate such a measure. We
investigate the failure-detection effectiveness of our technique by performing an empirical study on 14 object programs, using two
standard metrics - F-measure and P-measure. Our ART algorithm statistically significantly outperforms RT on 10 of the 14 programs
studied, and exhibits performance similar to RT on three of the four remaining programs. The selection overhead of our ART algorithm
is close to that of RT.

Index Terms—Random testing, adaptive random testing, category-partition method.

F

1 INTRODUCTION

RANDOM Testing (RT) [1] — that is, testing software by
randomly generating inputs — is a standard testing

approach. RT is also a mainstream approach for reliability
estimation; for example, RT can help calculate the failure rate,
which refers to the probability of an input causing failure of
the software under test. Arcuri et al. [5, pg. 258] observe that
RT is “one of the most used automated testing techniques
in practice”. RT has been widely applied to the testing of
various systems [4], [17]. Considerable research has also
been conducted to propose methodologies for generating
random test cases [15], [30].

Adaptive Random Testing (ART) [9] is a class of ran-
dom testing techniques designed to improve the failure-
detection effectiveness of RT by increasing the diversity
across a program’s input domain of the test cases executed.
The Fixed-Size Candidate Set ART technique (FSCS-ART),
was the first ART technique, and is also the most widely
studied. To generate an additional test case using FSCS-ART,
a number of candidate test cases are randomly generated.
The candidate that is the most “distant” from previously

This research was supported by the Air Force Office of Scientific Research
through award FA9550-10-1-0406 to University of Nebraska - Lincoln.

• A. C. Barus is with the Institut Teknologi Del, Kab Toba Samosir 22381,
Sumatera Utara, Indonesia. E-mail: arlinta@del.ac.id

• T. Y. Chen and F.-C. Kuo are with Swinburne University of Technology,
Hawthorn 3122 VIC, Australia. E-mail: {tychen, dkuo}@swin.edu.au

• H. Liu (corresponding author) is with Australia-India Research Centre for
Automation Software Engineering, RMIT University, Melbourne 3001
VIC, Australia. E-mail: huai.liu@rmit.edu.au

• R. Merkel is with Monash University, Clayton 3800 VIC, Australia. E-
mail: robert.merkel@monash.edu

• G. Rothermel is with the Department of Computer Science and Engi-
neering, University of Nebraska - Lincoln, Lincoln Nebraska 68588-0115,
USA. E-mail: grother@cse.unl.edu

executed test cases, according to a criterion known as the
max-min criterion, is selected as the next test case. The
Cartesian distance measure is used to determine the distance
between numeric inputs.

Various studies using programs with numeric inputs [9],
[21] have shown that ART requires substantially fewer test
cases than RT to reveal failures. However, as Ciupa et al. [11]
observe, test case selection overhead can result in FSCS-
ART having poorer overall cost-effectiveness than RT. The
reduction in test cases required to reveal failures was, in
their experiments, outweighed by selection overhead. Ar-
curi and Briand [3] argue that the high selection overhead of
FSCS-ART renders it unsuitable for practical use. They also
observe that the effectiveness of FSCS-ART on programs
with very low failure rates has not been studied – a fact
that, itself, can be attributed to high selection overhead. A
number of techniques, such as mirroring [8] and forget-
ting [6], were proposed to reduce the overhead of various
ART algorithms. More recently, Shahbazi et al. [25] proposed
a new ART approach, Random Border Centroidal Voronoi
Tessellations (RBCVT), which takes advantage of the proper-
ties of the Voronoi tessellation to achieve test case diversity.
The authors developed a novel algorithm (RBCVT-Fast) that
has an O (n) selection overhead (that is, the process of
generating n test cases takes O (n) time). However, RBCVT-
Fast, as presented, is only directly applicable to simple input
domains representable as a d-dimensional real space.

This paper presents an ART algorithm for software with
non-numeric, structured input formats, which retains FSCS-
ART’s failure-revealing effectiveness, and has an O (n) se-
lection overhead. We provide an approach that relies on
the concepts of categories and choices, originally proposed as
part of the category-partition testing technique [24], to form
the basis of a new “distance measure”. We evaluate the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Victoria University Eprints Repository

https://core.ac.uk/display/84311357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

effectiveness of this ART algorithm on 14 object programs
that have non-trivial input formats, using two standard
effectiveness metrics, the F-measure and P-measure, as well
as test case generation time.

The remainder of this article is organized as follows.
Section 2 provides essential background on ART, categories
and choices. Section 3 describes the theoretical framework
for applying ART to non-numeric software, and our linear-
order ART algorithm. Section 4 presents our empirical study,
including details on the study setup. Section 5 presents our
experiment results, including quantitative statistical analy-
sis of those results. Section 6 presents further interpretation
and discussion of the results. Section 7 discusses related
work. Some concluding thoughts, including recommenda-
tions for future study, are offered in Section 8.

2 PRELIMINARIES AND BACKGROUND

2.1 ART
Chen et al. [9] proposed ART as an enhancement to RT. Their
approach was based on the intuition of “even spread”. A
number of studies [2], [27] have found evidence that faults
tend to cause erroneous behavior to occur in contiguous
regions of the input domain. Thus, Chen et al. [9] argued
that two test cases whose inputs were “close” to each
other in the input domain were more likely to have similar
execution behaviors than two test cases that were more
“widely separated”. Hence, they reasoned that a method
that spreads test cases more evenly would identify failures
using fewer test cases.

To implement this idea, Chen et al. [9] introduced a
distance-based ART algorithm, also known as Fixed-Size
Candidate Set ART (FSCS-ART). In FSCS-ART, two sets of
test cases are considered: the executed set, E, which records
those test cases that have already been executed, and the
candidate set. To select a new test case, a set of k candi-
dates (c1, c2, . . . , ck) is first “generated randomly” as the
candidate set. From these, the best candidate co is selected
according to a criterion, and testing is conducted with co,
which is then added to E. Testing continues until a pre-
specified stopping criterion is met, such as the detection of
failures, the execution of the required number of test cases.

The original FSCS-ART used the max-min criterion. For
each candidate ci, the Cartesian distance to each member of
E is calculated, and the smallest distance for ci is recorded
as di. The candidate co with the largest di is selected (i.e.,
do ≥ di ∀i, 1 ≤ i ≤ k). An alternative selection criterion is
the max-sum criterion. In this case, for each candidate, the
sum of the distances to each member of E is calculated, and
the candidate for which this sum is the largest is chosen.

ART algorithms may consider the entire set of previ-
ously executed test cases when selecting the best candidate.
However, as Chan et al. [6] show, it is possible to greatly
reduce the selection overhead of ART techniques, while
retaining much or all of their failure-revealing effectiveness,
by evaluating only a subset of E when selecting the best
candidate. They call this technique forgetting.

2.2 Categories and choices
To test software with non-numeric input formats using
FSCS-ART, two things are required:

• A method for randomly sampling inputs from the
software’s input domain.

• A way of measuring the “distance” between ele-
ments of the software’s input domain.

The first requirement is common to all RT techniques, while
the second is unique to ART; hence, the latter is our focus.

To understand our new distance measure, we need to
know why the Cartesian distance is an effective distance
measure for ART on software with numeric inputs. Most
numerical software consists primarily of compositions of
continuous functions. Given two inputs close to each other,
as measured by the Cartesian distance, it is likely that
their execution patterns will be similar, and thus that their
failure behaviors will also be similar. It is this similarity in
execution patterns that we seek to measure in a broader
range of software.

To achieve this, we have developed an approach based
on the concepts of categories and choices from the category-
partition method [24]. In this method, the tester must identify
input parameters or environmental conditions that affect
the execution of the functional unit under test, which are
characterized as categories. Each category is then partitioned
into disjoint partitions, called choices, which cover values the
category may take. Each choice represents “a set of similar
values that can be assumed by the type of information in
the category”. For instance, consider a transaction process-
ing system handling a large range of monetary and non-
monetary quantities (for instance, it may deal with cash and
credit transactions, and the transfer of items from a stock in-
ventory); here, an appropriate category may be “unit type”,
with choices “cash”, “credit”’, and “inventory item”. Here,
a transaction involving a cash amount of $123.45 would
have a unit type of “cash”, while a transaction involving the
transfer of 10 widgets would have a unit type of “inventory
item”. In the category-partition method, constraints (stated
within the software specification) are used to identify which
combinations of categories and choices are valid, and which
are not. Then, all valid combinations of categories and
choices are generated as test frames. Each test frame is then
fleshed out into a concrete test case using representative
data for each choice in the frame. In our present work,
we simply use the concepts of categories and choices to
formulate a distance measure for ART. Our approach is
presented in detail in Section 3.1.

3 THEORETICAL FRAMEWORK

3.1 A distance measure for non-numeric inputs

The distance measure, originally developed by several of the
authors of this paper [20], [22], makes use of the concepts of
categories and choices from the category-partition method
described in Section 2.2.

In the category-partition method, categories and choices
are used to obtain test frames, from which concrete test cases
are generated. In our approach, we work in the opposite
manner: for a given concrete input, we identify its relevant
test frame. Categories and choices are still defined as de-
scribed above. However, rather than simply generating all
valid test frames from the defined categories and choices,
we take two program inputs, determine their categories and

3

choices, and use this information to calculate the distance
between them, with a greater distance representing more
dissimilar inputs. Technically speaking, given two program
inputs x and y, our distance measure is a count of the num-
ber of categories in which x and y have different choices.

More formally, let us denote the set of categories by
A = {A1, A2, . . . , Ag}, where g denotes the total number
of categories. For each Ai, its choices are denoted by Pi =
{pi1, pi2, . . . , pih}, where h denotes the number of choices for
Ai. Note that the choices for a single category are disjoint,
and that any input is a combination of input values chosen
such that the inputs correspond to choices from a non-empty
subset of A. For input x, let us denote the corresponding
non-empty subset by A(x) =

{
Ax

1 , A
x
2 , . . . , A

x
q

}
, where q

refers to the number of categories associated with x. Since
categories are distinct and their choices are disjoint, input x
in fact consists of values chosen from a non-empty subset
of choices, denoted as P(x) =

{
px1 , p

x
2 , . . . , p

x
q

}
, where pxi

(i = 1, 2, . . . , q) is the choice of the category Ax
i for x.

For any two inputs x and y, we define DP(x, y) as the
set that contains elements in either P(x) or P(y) but not
both. That is, DP(x, y) = (P(x)

⋃
P (y)) \ (P(x)

⋂
P(y)),

where “\” is the set difference operator. Now, we define
DA(x, y) =

{
Am|Ai if ∃pij ∈ DP(x, y)

}
. In other words,

DA(x, y) is the set of categories in which inputs x and y
have different choices. Then, the distance measure between
x and y is defined as |DA(x, y) | (the size of DA(x, y)); that
is, the number of categories that appear in either x or y but
not both, or in which the choices in x and y differ.

For example, consider again the transaction processing
system in Section 2.2 with the categories and choices shown
in Table 1. Assume that we have three inputs, x, y, and z,
the processed transactions and relevant categories/choices
of which are given in Table 2. We can calculate DP, DA, and
|DA| for each pair of these three inputs as shown in Table 3.
By our measure, x and y have a distance of 3, x and z have
a distance of 1, and y and z have a distance of 3.

TABLE 1
An Example of Categories and Choices

Category Choice

Unit type
Cheque
Credit
Inventory item

Customer type

Business
Personal
Government
Other

Status Accepted
Rejected

Obviously, categories and choices are not suitable for
all non-numeric programs or all types of inputs. However,
they have been popularly applied to many non-numeric
applications in various fields, so the proposed distance
measure should have wide applicability in the testing of
various programs with non-numeric inputs.

3.2 A linear-time ART algorithm
We now present an ART algorithm for structured inputs
using the category-choice distance measure to achieve a
linear test case selection time (i.e., selecting n test cases takes

TABLE 2
Three Example Inputs

Input Processed Transaction Category and Choice

x
A cleared cheque payment of
$123.45 from Anycorp, a business
customer.

Unit type:Cheque
Customer type:Business
Status:Accepted

y

A credit card payment of $543.21
from Mr. Fred Phisher, a personal
customer whose dubious identity
leads to the payment being rejected.

Unit type:Credit

Customer type:Personal
Status:Rejected

z

The dispatch of 12 widgets from
stock to Othercorp, a business
customer. The order is accepted.

Unit type:Inventory item
Customer type:Business
Status:Accepted

TABLE 3
Calculation of Distances Among x, y, and z

Between the pair of DP DA |DA|

(x, y)

Unit type:Cheque Unit type

3

Unit type:Credit
Customer type:Business Customer typeCustomer type:Personal
Status:Accepted StatusStatus:Rejected

(x, z)
Unit type:Cheque Unit type 1Unit type:Inventory Item

(y, z)

Unit type:Credit Unit type

3

Unit type:Inventory Item
Customer type:Personal Customer typeCustomer type:Business
Status:Rejected StatusStatus:accepted

O (n) time). Compared to FSCS-ART, our algorithm also
requires a candidate set, but uses the max-sum criterion in
an innovative way that calculates the sum of the distance
between each candidate and all previously executed test
cases. We call this algorithm “ARTsum”.

Before presenting ARTsum, let us briefly recall the
naive implementation of the max-sum criterion as follows.
Suppose that n test cases have been selected and exe-
cuted, denoted by E = {e1, e2, . . . , en}. Each test case
ej (j = 1, 2, . . . , n) is associated with a set of choices
P(ej) =

{
p
ej
1 , p

ej
2 , . . . , p

ej
q ,
}

. P(ej) can be rewritten as
a tuple R(ej) =

(
r
ej
1 , r

ej
2 , . . . , r

ej
g

)
, where g is the total

number of categories, reji = 0 means that ej is not associated
with category Ai, and r

ej
i = l (l ≥ 1) means that ej is

associated with the lth choice of Ai. Similarly, a candidate c
can also be associated with the tuple R(c) =

(
rc1, r

c
2, . . . , r

c
g

)
.

Define a function as follows:

D(i, j) =

{
0 if rci = r

ej
i ,

1 if rci 6= r
ej
i ,

(1)

where i = 1, 2, . . . , g and j = 1, 2, . . . , n. The distance
between c and ej can then be calculated as dist(c, ej) =∑g

i=1 D(i, j). Note that dist(c, ej) is effectively equal to
|DA(c, ej) |. Therefore, the sum of the distances from c to
all executed test cases can be calculated as:

sum dist(c,E) =

n∑
j=1

(
g∑

i=1

D(i, j)

)
. (2)

Clearly, if we calculate the sum of the distances ac-
cording to Equation 2, the selection of the next test case

4

requires O (n) time (note that g is a constant). Therefore, a
naive implementation of max-sum using Equation 2 has a
computation overhead of O

(
n2
)

for selecting n test cases.
Recall the three example test cases x, y, and z shown in

Table 2. Suppose that E = {x, y} and z is the candidate. We
have R(x) = (1, 1, 1), R(y) = (2, 2, 2), and R(z) = (3, 1, 1).
Then, we can calculate dist(x, z) = 1 + 0 + 0 = 1 and
dist(y, z) = 1 + 1 + 1 = 3 (as also given in Table 3). Hence,
we finally get sum dist(z,E) = 1 + 3 = 4.

Our linear-order ARTsum is based on Theorem 1.

Theorem 1. Define a tuple of integers S =(
s01, s

1
1, . . . , s

h1
1 , s02, s

1
2, . . . , s

h2
2 , . . . , s0g, s

1
g, . . . , s

hg
g

)
, where g

is the total number of categories, hi is the total number of choices
for the ith category Ai (i = 1, 2, . . . , g), s0i denotes the number
of previously executed test cases that are not associated with the
ith category Ai, s

li
i (li = 1, 2, . . . , hi) denotes the number of

previously executed test cases associated with the lith choice of
Ai. Let n denote the number of previously executed test cases,
that is, n = |E|. By definition,

∑hi

v=0 s
v
i = n ∀i, 1 ≤ i ≤ g. For

a candidate c associated with R(c) =
(
rc1, r

c
2, . . . , r

c
g

)
, the sum

distance between c and E is:

sum dist(c,E) =

g∑
i=1

(
n− sr

c
i

i

)
. (3)

Proof. For each rci (i = 1, 2, . . . , g), we can find a corre-
sponding value s

rci
i from S, where s

rci
i effectively means

the number of executed test cases that satisfy rci = r
ej
i .

Therefore,
(
n− sr

c
i

i

)
is equal to the number of executed

test cases that satisfy rci 6= r
ej
i . According to Equation 1,(

n− sr
c
i

i

)
=
∑n

j=1 D(i, j). Following Equation 2:

sum dist(c,E) =

n∑
j=1

(
g∑

i=1

D(i, j)

)
=

g∑
i=1

 n∑
j=1

D(i, j)

=

g∑
i=1

(
n− sr

c
i

i

)
.

Thus, Theorem 1 holds; that is, Equation 3 gives exactly
the same results as Equation 2.

Consider x, y, and z in Table 2 again. Given that E =
{x, y}, we can let S = (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1), where
s01 = 0 because both x and y contain a choice for the first
category, s11 = 1 because only x contains the first choice of
the first category, · · · , s23 = 1 because only y contains the
second choice of the third category. Since R(z) = (3, 1, 1),
we can use Equation 3 to calculate sum dist(z,E) = (n −
s31) + (n− s12) + (n− s13) = (2− 0) + (2− 1) + (2− 1) = 4.

Theorem 1 implies that if Equation 3 is used, the selec-
tion of a next test case requires a constant time. Now, we
present our Algorithm ARTsum, in which S is dynamically
updated during the testing process. Once the candidate co
with the largest sum distance is selected as the new test
case en (refer to Line 13 in the Algorithm), we update S

accordingly by incrementing each sr
en
i

i (i = 1, 2, . . . , g) by 1
(refer to Line 16). Note that both updating S after executing
a test case and the distance calculation for the candidate
using Equation 3 are independent of the number of test

cases; therefore selecting a single test case takes constant
time. Thus, selecting a set of n test cases takes O (n) time.

Algorithm ARTsum

1: Initialize S (as defined in Theorem 1) by setting each slii
as 0, where i = 1, 2, . . . , g (g denotes the total number of
categories)

2: Set n = 0 and E = {}
3: Define an integer k > 0 as the number of candidates to be

generated
4: while Termination condition is not satisfied do
5: Increment n by 1
6: if n = 1 then
7: Randomly generate a test case en
8: else
9: Randomly generate k candidates c1, c2, . . . , ck

10: for all cu (u = 1, 2, . . . , k) do
11: Calculate sum dist(cu,E) according to Equa-

tion 3
12: end for
13: Set en = co, where ∀u, sum dist(co,E) ≥

sum dist(cu,E)
14: end if
15: Add en into E

16: Update S by incrementing each s
r
en
i

i by 1, where i =
1, 2, . . . , g

17: end while

4 EMPIRICAL STUDY

4.1 Research questions
As proven in Section 3.2, ARTsum generates test cases in lin-
ear time. However, we also wish to evaluate the approach’s
failure-detection effectiveness, and empirically assess its
computational overhead. Thus, we conducted an empirical
study examining the following research questions:

RQ1 How effective is ARTsum at revealing failures?
RQ2 How does the actual selection overhead of the

ARTsum algorithm compare to its overhead cal-
culated via theoretical complexity analysis, and
to the overhead of alternative techniques?

4.2 Object programs
To address our research questions, we chose to study three
sets of object programs: seven programs from the Software-
artifact Infrastructure Repository (SIR) [13], six small Unix
utilities, and the regular expression processor component
of the larger utility program GNU grep. The fourteen
programs, all implemented in C, are summarized in Table 4.

These three sets of programs present complementary
strengths and weaknesses as experiment objects. The SIR
repository provides object programs, including a number of
pre-existing versions with seeded faults, as well as a pool
of test cases that can be further fuzzed to provide test cases
for RT and candidates for ART. However, these programs
are small and there are only a limited number of faulty
versions available for each program. The Unix utilities that
we use are also relatively small and simple, but they are
provided with sets of faults in the form of mutants. The
grep program (even when restricting attention to its regular
expression processor component) is a much larger system
for which mutation faults could be generated. We provide
further details on each of these sets of object programs.

5

TABLE 4
14 C Programs as Experimental Objects

Name Source Brief description LOC # Faults
printtokens SIR lexical analyzer 483 7
printtokens2 SIR lexical analyzer 402 10
replace SIR search and replace tool 516 31
schedule SIR scheduler 299 9
schedule2 SIR scheduler 297 9
tcas SIR collision alarm logic 138 41
totinfo SIR basic statistics 346 23
cal SunOS calendar display 163 11
comm SunOS file comparator 144 27
look SunOS file searcher 135 29
sort SunOS file sorter 842 48
spline SunOS curve interpolation 289 16
uniq SunOS file comparator 125 29
grep GNU regular expression processor 3,161 20
Total 7,340 310

4.2.1 Program set 1: SIR programs

We selected seven object programs (printtokens,
printtokens2, replace, schedule, schedule2, tcas,
and totinfo) from SIR [13] for several reasons:

• The programs are of manageable size and complexity
for an initial study.

• The input format of the programs is non-trivial, but
manageable.

• Faulty versions of the programs are available.
• All programs and related materials are available

from the SIR, facilitating replication of our studies.

Note that two of the SIR programs (tcas and totinfo)
accept numbers as inputs. However, the random test case
generation for them is not as straightforward as that for
typical programs with pure numeric inputs: We could not
simply generate random numbers according to a uniform
distribution. In our experiments, we generated more struc-
tured inputs based on the analysis of the input domain (by
identifying categories and choices).

For the SIR programs, we used the existing faulty ver-
sions present in the repository for comparison. While these
were seeded faults rather than actual ones, they were cre-
ated by multiple persons based on their own experiences
with faults. Table 4 lists the numbers of faults utilized for
each of the programs. replace and schedule2 both had
one faulty version which was not killed by any existing
test cases from the pool, so we excluded these two faulty
versions from our study.

4.2.2 Program set 2: Unix utilities

The second set of object programs is a set of Unix utilities,
cal, comm, look, sort, spline, and uniq, which were
distributed as part of SunOS 5.8 and are part of BSD 4.3. For
these Unix utilities, faults in the form of mutants had pre-
viously been generated by the automated C mutation tool,
Proteum [12], which applied a total of 71 mutation operators
to create mutants from these programs. Not all generated
mutants were used, as some failed on virtually every test
case, whereas others produced behavior equivalent to that
of the original program. In this study, we filtered the initial
set of mutants provided with the program as follows.

• Determine the failure rates of the mutants using RT
with a sample size of 100,000.

• Discard mutants that are not killed by any of the
100,000 random test cases.

• Discard mutants with failure rates greater than 0.1.
• Identify mutants that have exactly the same set of

failure-revealing inputs. For each such set of mu-
tants, randomly select one for use in the study.

4.2.3 Program set 3: GNU grep

Our final program is version 2.5.1a of the GNU grep [26]
program, which is described by its “man” page as follows:

The grep command searches one or more input
files for lines containing a match to a specified
pattern. By default, grep prints the matching lines.

We chose grep for our study for several reasons:

• As a GNU project, current and historical versions are
freely available including source code and a partial,
but still useful, change history.

• The grep program is in wide use, providing an
opportunity to demonstrate the real world relevance
of our techniques.

• The grep program, and its input format, are of
greater complexity than the programs in the other
test sets, but still manageable as a target for auto-
mated test case generation.

grep’s large size meant that constructing test infrastruc-
ture for the entire program would have been infeasible for
this study. Thus, we focused on grep’s regular expression
analyzer, which was still much larger than other programs
studied, consisting of 3,161 lines of code and 1,423 branches.

We also had to take a different approach to provid-
ing faulty versions of grep for our experiments. grep’s
software change log showed that most faults found and
fixed in grep were either platform-specific, or manifest so
rarely that they render experimental comparisons of failure-
detection effectiveness impractical.

However, one reported grep fault in the public version
history for the program was suitable for our use. The fault
relates to incorrect handling of range expressions (such as
[a-e], which matches the characters from the set {a, b, c,
d, e} if the default Unix locale is used) with non-default
locales, which may define their own character ordering. As
a consequence, with some locale settings [a-e] should match
the set {a, A, b, B, . . ., e}, for instance, but did not. To expose
the fault, we changed the locale setting to “en US.UTF-8”
for our experiments.

One real fault is insufficient to support a comprehensive
study, so we also used program mutation to generate ad-
ditional faulty versions of grep for our experiment. Due
to limitations in the ability to restrict Proteum to creating
mutants for a specific part of grep (the regular expression
analyzer), it was impractical to use it to generate sufficient
mutants for grep. Thus, we developed a custom tool that
applied two types of mutation operators – statement mutation
and operator mutation. One statement mutation operator
that we applied replaced continue statements with break
statements and vice versa – these statements are common in
the regular expression analyzer in grep. Another statement

6

mutation operator replaced labels on goto statements. The
operator mutation replaced a single arithmetic or logical
operator with another. Each mutant had only one mutation
operation applied to it. We generated a total of 19 mutants,
resulting in a total of 20 faulty versions of grep.

4.3 Variables and measures

4.3.1 Independent variable
The independent variable in our experiment is the test case
selection strategy. As choices for this variable, we include,
of course, an implementation of the ARTsum algorithm. As
baseline techniques for use in comparison, we selected two
additional techniques, RT and ARTmif .

RT (random testing with replacement) is a natural baseline
choice, because ARTsum is designed as an enhancement to
RT, and assessing whether ARTsum is more cost-effective
than RT is important. In general, an automated oracle is
assumed when RT is applied. In our experiments, the base
programs (for which seeded faults already existed or were
generated) were used to simulate the automated oracles.

ARTmif is an enhanced linear-order ART approach that
combines the max-min criterion with forgetting. FSCS-ART
can be implemented straightforwardly using the category-
choice distance metric and the max-min selection criterion.
However, selecting n test cases has an overhead of O

(
n2
)
,

which may lead to inferior cost-effectiveness, depending on
the failure rate and the execution time of the program under
test. A “forgetting” technique can be used to reduce the
overhead of the approach to O (n) if an ART algorithm con-
siders only a fixed-sized subset of the previously executed
test cases when selecting the best candidate. However, prior
studies [6] on forgetting always arbitrarily define the size of
the subset. In this study, we used a more precise heuristic
for conducting the forgetting process:

• During each round of test case selection, count how
many candidates have the same minimum nearest
neighbor distance do.

• When the following two conditions are both satis-
fied, forget all already executed test cases and then
perform max-min FSCS-ART from scratch.

– Over 90% of the candidates have the same do.
– do is less than or equal to the number of

categories divided by 10.

Given the finite number of categories, if candidates are
selected randomly, the probability that most candidates
have the same small nearest neighbor distance to previously
executed test cases asymptotically approaches one as the
number of previously executed test cases increases. In other
words, there is an upper bound on the size of the subset
of previously executed test cases that satisfy the above
conditions. Thus, ARTmif has a computational overhead of
O (n) for generating n test cases.

There exist some techniques, such as quasi-random test-
ing (QRT) [10] and RBCVT-Fast [25], that can achieve a
computation overhead as low as O (n). However, they can
be applied only to test software with an exclusively numeric
input domain, and therefore could not be compared to
ARTsum and ARTmif in our study.

4.3.2 Dependent variables
The choice of a metric to use in comparing the effectiveness
of testing techniques is non-trivial.

For RQ1, to best characterize the failure-detection effec-
tiveness of the methods, we use two standard metrics: the
F-measure and the P-measure [7]. The F-measure is defined
as the mean number of test cases required by a method to
reveal the first failure. We define F-count as the number of
test cases needed to detect a failure in a specific test run. The
F-measure is the expected F-count for a testing method:

F-measure = F-count. (4)

A smaller F-measure reflects better effectiveness.
The F-measure is particularly appropriate for measuring

the failure-detection effectiveness of adaptive testing meth-
ods, such as ART, in which the generation of new test cases
depends on the previously executed test cases. However,
evaluation of the F-measure requires an automated oracle
(because testing must be stopped after failure detection),
which may not always be available. Thus, we also used
the P-measure, which can characterize the testing process
without an automated oracle. Suppose that a particular
method is used to generate a test suite with n test cases
{t1, t2, . . . , tn}, the P-measure is defined as the probability
of at least one failure being detected by the test suite:

P-measure (n) = Prob (∃ti that reveals a failure) , (5)

where i = 1, 2, . . . , n. A larger P-measure reflects better
failure-detection effectiveness. Besides providing a com-
plementary evaluation to the F-measure, the P-measure is
also more appropriate than another standard metric, the
E-measure (the expected number of failures): as observed by
Shahbazi et al. [25], multiple failures may be associated with
the same software fault.

For RQ2, our dependent variable is simply the time
required for the testing techniques to generate test cases.

4.4 Generation of categories and choices for object
programs

The categories and choices used for the object programs
considered in this study were designed by the authors.
In large part, the selection of appropriate categories and
choices is at a tester’s discretion; we chose what we regarded
as simple approaches for emulating that process.

For the programs taken from the SIR, and the Unix
utilities, limited documentation was available, so we in-
ferred the behavior of each program by examining the test
inputs and outputs, as well as the source code. To avoid
a possible source of bias, while designing categories and
choices, we did not examine the faults. As noted previously,
our categories and choices for grep were designed to test its
regular expression analyzer. To obtain these, we consulted
the user documentation.

Precise details on the categories and choices used in our
study are provided in Tables A4 to A15 in the Appendices.

4.5 Generation of test cases for object programs

Each of the SIR programs had an existing pool of test
cases, but these pools were not large enough (having a

7

few thousand test cases per program) to ensure sufficient
randomness. Thus, rather than sampling test cases from the
existing pools, we used a number of techniques to dynami-
cally generate test cases on demand. Our approach has some
similarities to fuzz testing. We first analyzed the existing
test pools to obtain the probability distributions of certain
parameters. Then, according to the probability distributions,
the concrete values of these parameters could be randomly
chosen. The detailed procedure for test case generation for
each object program can be found in Appendix A.

For the Unix utilities, Wong et al. [29] developed a
random test case generator, which we used in our study.

For grep, we used a generator that was itself based
on the categories and choices devised for ART selection.
We systematically generated random candidate test cases,
which were collectively guaranteed to cover each category
and choice. Our test generator does not randomly sample
from the entire input domain of grep; rather, it samples a
small subset of the input space, as our purpose is to test the
regular expression analyzer of grep. We further filtered the
randomly generated pool to remove duplicate entries. The
final pool contained 171,634 elements. Readers can refer to
Appendix B for more technical details on the random test
case generation process for grep.

4.6 Experiment environment

All experiments were conducted on a cluster of 64-bit Intel
Clovertown systems running CentOS 5. The large number of
experimental trials required to collect data with sufficiently
narrow confidence intervals consumed a great deal of com-
puter time, making the use of the cluster essential to obtain
results in a reasonable time. The object programs were
written in standard C and did not require any modifications
to compile and run on the nodes in the cluster.

4.7 Experiment design and analysis strategy

4.7.1 Number of candidates
The parameter k — the size of the candidate set used by
FSCS-ART — is at the tester’s discretion. Previous work [9]
has shown — at least for numeric programs — that failure-
detection effectiveness improves as k increases up to about
10, and then does not improve much further. Thus, our
experiments were all conducted with k set to 10.

4.7.2 F-measure
For an experiment run, a test case was generated (using
RT or ART) and executed on both an unmodified version
of the object program under test and a version containing
the fault of interest. A failure was indicated by a difference
between the outputs of the faulty and original versions. For
each fault, 2000 runs were performed for the RT, ARTmif ,
and ARTsum strategies, and the F-measure was calculated
as the mean value of F-counts (refer to Equation 4) across all
the experiment runs. This large number of runs is desirable
due to the statistical properties of the F-count. Typically, the
population distribution of the F-count is geometric for RT
and near-geometric for most ART variants [7]; therefore, the
standard deviation is very high and obtaining acceptably
narrow confidence intervals requires large samples.

Being intended as an enhancement to RT, we calculated
the ratio of the F-measure for each ART technique compared
to the F-measure for RT for each fault. We refer to this as the
F-ratio. The F-measures for RT on different faults in the same
object program vary by orders of magnitude, and these F-
measures are not normally distributed. Therefore, to con-
cisely summarize the differences in performance between
the methods, we present the relative performance using RT
as the baseline – the F-ratio.

4.7.3 P-measure

Raw data to calculate P-measures was recorded in the
same experiments. For each fault in each object program,
2,000 runs of 1,000 test cases were conducted, and fail-
ures were recorded. P-measures were calculated accord-
ing to Equation 5 when the number of test cases n =
1, 2, . . . , 10, 20, . . . , 100, 200, . . . , 1000.

The P-measure does not, by itself, provide enough infor-
mation to assess a testing strategy if the resulting test suites
are of different sizes; thus, a further metric is required. In
this study, we used the aggregation of P-measures across
various test suite sizes, as measured by the total area under
the P-measure graph, namely the “P-measure area”, (ab-
breviated as “PMA”). Suppose that P-measures have been
calculated for Ns different test suite sizes {n1, n2, . . . , nNs},
where n1 < n2 < . . . < nNs . PMA is calculated as:

PMA =
P-measure(n1)

2
× n1+

Ns∑
i=2

P-measure(ni) + P-measure(ni−1)

2
× (ni − ni−1)

(6)
As we discuss in Section 5.1.2, a higher PMA was a re-

liable indicator that a particular parameterized test strategy
was more effective, regardless of test suite size.

4.8 Threats to validity

4.8.1 Internal validity

There are relatively few threats to the internal validity of this
study. Experimental conditions were identical in all respects,
except for the independent variable of the testing method,
for each experiment treatment. Where testing methods were
concerned, one possible issue involves our implementations
of methods, or of testing oracles. It is possible that these
implementations contain errors; however, the amount of
programming required to implement each specific testing
method was small, and the implementations were checked
by various authors. The oracle is computationally trivial,
involving a simple string comparison. Furthermore, the
implementations were all created by the same individuals,
helping ensure that differences in programming abilities
would not bias results. In terms of the execution time com-
parisons, given that the authors implemented both ARTsum
and ARTmif , it was possible that the implementation of
one was more optimized than the other, affecting their
relative computational overhead. The implementations were
reviewed for obvious inefficiencies and none were found.

8

4.8.2 External validity
The most obvious threat to external validity is that we
consider only 14 object programs. We cannot say whether
the studied methods will exhibit similar results on other
software systems without further study. The selection of
appropriate categories and choices is a subjective process
relying on the knowledge and experience of the testers
(which were the authors). Our study considered only one set
of categories and choices for each object program. We cannot
be sure that other testers, presented with the same software
under test, would choose a set of categories and choices
that would achieve similar results. The particular faults we
used, almost all of which were the result of fault seeding
by programmers or randomly applying mutation operators,
may not be representative of real faults and fault distribu-
tions encountered in industrial practice. A further threat to
external validity involves our considering the detection of
a single fault at a time. There is no reason why the same
intuition that explains why ART detects single faults more
quickly than RT should not also hold when multiple faults
are present; however, this needs to be assessed empirically.

4.8.3 Construct validity
As discussed in Section 4.3.2, none of the metrics used here
give a full picture of the fault-finding effectiveness of a test-
ing technique. They all measure failure-detection capability,
but do not directly measure the ability of a technique to
detect multiple faults in the software under test.

4.8.4 Conclusion validity
Given the large number of experiment runs conducted for
each fault, we believe that our tests had sufficient statistical
power to draw conclusions about the F-measures and P-
measures of each testing strategy at the individual fault
level. However, the use of weaker nonparametric tests for
statistical significance has limited our ability to show signif-
icant differences where they may exist.

5 DATA AND ANALYSIS

5.1 RQ1: Failure-detection effectiveness
5.1.1 F-measure
For each object program, we present a boxplot and a table
summarizing the results. The boxplot for each program
(Figure 1) graphically displays the range of F-ratios through
their quartiles for each of the two ART methods, for all
faulty versions of the program under test. Smaller F-ratios
indicate better performance for ART, and an F-ratio smaller
than 1 indicates that ART outperformed RT. The boxplot is
non-parametric, that is, there is no underlying assumption
of statistical distributions. The lower and upper sides of
the box denote the lower and upper quartiles respectively.
The line inside the box indicates the median F-ratio. The
whiskers represent the smallest and largest data within a
range ±1.58 × IQR, where IQR is the interquartile range.
Small circles represent outliers outside this range. Full re-
sults are given in Tables A16 to A29 in the Appendices.

Table 5 presents direct pairwise comparisons of the F-
measures of RT, ARTsum, and ARTmif for each object pro-
gram. Each cell in the table represents the number of faults

on which the technique listed above the cell outperformed
the technique listed to the left. For instance, in Table 5(a),
the entry in the top right-hand corner of the table shows
that ARTmif had a smaller F-measure than RT on all 11 of
the faults. Similarly, the entry in the bottom left-hand corner
shows that RT outperformed ARTsum on 0 of the 11 faults.

Because the number of faults for each object program
was small and their F-measures were not normally dis-
tributed, conventional parametric hypothesis testing (such
as T-tests or ANOVAs) is not suitable for analyzing our re-
sults [16]. Thus, to test whether the performance differences
were statistically significant, we conducted a Friedman test
for each method. The Friedman test [14] examines whether
the rankings of the methods across trials (faults, in this
case) are as would be expected if they were sampled from
the same population. To use an overall α (probability of
a non-significant difference being incorrectly classified as
significant) of 0.05 across the entire paper, we used the
Holm-Bonferroni method [19] to determine which programs
exhibited statistically significant differences. Note that in the
nonparametric statistical test, it is irrelevant whether we use
the F-ratio or the unadjusted F-measure, as the ranking is
unaffected. On all programs except schedule, the testing
methods exhibited failure-detection results that were statis-
tically significantly different. To determine which methods
performed significantly differently for each fault, post-hoc
comparisons using the Wilcoxon signed-rank test [28] with
corrections for multiplicity were used. A bold number in the
tables indicates that the differences between methods was
statistically significant. For instance, the fact that ARTmif
outperformed RT on 17 of the 20 grep faults is statistically
significant, whereas the fact that ARTsum outperformed
ARTmif on 11 of the 20 grep faults is not.

ARTsum significantly outperformed RT in terms of the
F-measure on 10 of the 14 object programs. For three of
the remaining four programs, replace, schedule, and
totinfo, there was no statistically significant difference in
the performance of ARTsum and RT. On only one program,
tcas, did RT significantly outperform ARTsum.

ARTmif displayed similar but not identical perfor-
mances. ARTmif outperformed RT on 10 of the 14 object
programs. There were no statistically significant differences
in performance on three programs, replace, schedule,
and schedule2. Again, only on tcas did RT outperform
ARTmif . The magnitude of the performance improvement
varied between programs. The differences in effectiveness
between ARTsum and ARTmif were small. There was a
slight preponderance of results indicating that ARTsum may
marginally outperform ARTmif , but these did not achieve
statistical significance.

5.1.2 P-measure
Figure 2 shows the P-measure for the three techniques for
selected faults to illustrate general trends in the results. Note
the use of logarithmic scales on the x-axis in Figure 2 to
enable the three techniques to be distinguished for small
test suite sizes.

The values of P-measures depend not only on the pro-
gram under test and the testing method, but also on the
size of the test suite. Thus, simply examining individual P-
measures on some specific test suite sizes may not provide a

9

ARTmif ARTsum

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) cal

ARTmif ARTsum

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) comm

●

●

●

●

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

(c) grep

●

●●
●●

●

●
●

●

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

2.
0

(d) look

ARTmif ARTsum

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) printtokens

●

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

(f) printtokens2

ARTmif ARTsum

0
1

2
3

4

(g) replace

ARTmif ARTsum

0
1

2
3

4
5

(h) schedule

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

(i) schedule2

●

●

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

2.
0

(j) sort

●

●

●

●

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

2.
0

(k) spline

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(l) tcas

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

(m) totinfo

●

●

ARTmif ARTsum

0.
0

0.
5

1.
0

1.
5

(n) uniq

Fig. 1. Boxplots of F-ratio distributions for ART techniques for each object program

10

TABLE 5
Number of Faults for Which the Technique on the Top Row Has a Lower (Better) F-measure Than the Technique on the Left

(a) cal

RT ARTmif ARTsum

RT N/A 11 11
ARTmif 0 N/A 8
ARTsum 0 3 N/A

(b) comm

RT ARTmif ARTsum

RT N/A 27 27
ARTmif 0 N/A 13
ARTsum 0 14 N/A

(c) grep

RT ARTmif ARTsum

RT N/A 17 20
ARTmif 3 N/A 11
ARTsum 0 9 N/A

(d) look

RT ARTmif ARTsum

RT N/A 22 21
ARTmif 7 N/A 13
ARTsum 8 16 N/A

(e) printtokens

RT ARTmif ARTsum

RT N/A 7 7
ARTmif 0 N/A 5
ARTsum 0 2 N/A

(f) printtokens2

RT ARTmif ARTsum

RT N/A 10 9
ARTmif 0 N/A 3
ARTsum 1 7 N/A

(g) replace

RT ARTmif ARTsum

RT N/A 18 14
ARTmif 13 N/A 6
ARTsum 17 25 N/A

(h) schedule

RT ARTmif ARTsum

RT N/A 4 4
ARTmif 5 N/A 8
ARTsum 5 1 N/A

(i) schedule2

RT ARTmif ARTsum

RT N/A 6 8
ARTmif 3 N/A 8
ARTsum 1 1 N/A

(j) sort

RT ARTmif ARTsum

RT N/A 41 47
ARTmif 7 N/A 31
ARTsum 1 17 N/A

(k) spline

RT ARTmif ARTsum

RT N/A 14 13
ARTmif 2 N/A 6
ARTsum 3 10 N/A

(l) tcas

RT ARTmif ARTsum

RT N/A 8 7
ARTmif 33 N/A 21
ARTsum 34 20 N/A

(m) totinfo

RT ARTmif ARTsum

RT N/A 18 17
ARTmif 5 N/A 3
ARTsum 6 20 N/A

(n) uniq

RT ARTmif ARTsum

RT N/A 28 24
ARTmif 1 N/A 12
ARTsum 5 17 N/A

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
-m

e
a
su

re

Test cases

RT
ARTmif

ARTsum

(a) grep fault #6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
-m

e
a
su

re

Test cases

RT
ARTmif

ARTsum

(b) sort fault #43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
-m

e
a
su

re

Test cases

RT
ARTmif

ARTsum

(c) totinfo fault #2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
-m

e
a
su

re

Test cases

RT
ARTmif

ARTsum

(d) uniq fault #20

Fig. 2. P-measure by technique for selected faults.

complete picture. To enable the statistical analysis of the P-
measure results, we used PMA (as defined in Section 4.7.3)
to aggregate results enabling us to compare the effectiveness
of testing methods. For a given fault, if PMA is larger for a
method α than for another method β, the performance of α
is superior to that of β. Figure 2 clearly shows that for the
selected faults, if one method has a higher P-measure and is
therefore more effective than another for a given test suite
size, then it will be equal to or superior than the other for
other test suite sizes. This pattern holds for all faults.

We calculated the PMA for all faults in all programs
and ranked the methods for each fault in each program,
and conducted Friedman tests (applying a Holm-Bonferroni
correction across all hypothesis tests, for both P-measures
and F-measures) to check the statistical significance of the
rankings. Our results showed that, in virtually all cases,

if one method demonstrated a superior (lower) F-measure
than another for a specific fault in a program, that method
would have a superior (higher) PMA, and that the differ-
ences that were statistically significant for the P-measures
and F-measures were identical. The rankings of F-measure
and P-measure are almost the same, with a slight difference
only for replace as given in Table 6. The complete PMA’s
rankings are given in Table A30 in the Appendices.

5.2 RQ2: Test suite generation time
Figure 3 shows the execution time required to generate test
suites of various sizes for three of the 14 object programs
using RT, ARTsum, and ARTmif . Consistent with our the-
oretical analysis, they all require time linear in the size of
the generated test suite. The constant factors for ARTsum,
however, are consistently lower than those for ARTmif .

11

 0

 2

 4

 6

 8

 10

 12

 14

 0 2000 4000 6000 8000 10000

ti
m

e
 (

s)

size of test suite

RT
ARTmif

ARTsum

(a) printtokens

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

ti
m

e
 (

s)

size of test suite

RT
ARTmif

ARTsum

(b) schedule

 0

 2

 4

 6

 8

 10

 12

 14

 0 2000 4000 6000 8000 10000

ti
m

e
 (

s)

size of test suite

RT
ARTmif

ARTsum

(c) grep

Fig. 3. Time required to generate test suites

TABLE 6
Number of Faults for Which the the Technique on the Top Row has a

Higher (Better) PMA Than the Technique on the Left for replace

RT ARTmif ARTsum

RT N/A 18 14
ARTmif 13 N/A 5
ARTsum 17 26 N/A

TABLE 7
Comparison of Time Required to Generate 10,000 Random Inputs

Using RT, ARTmif and ARTsum

Generation time (s) Relative generation time

RT ARTmif ARTsum
ARTmif

RT
ARTsum

RT
ARTsum
ARTmif

cal 0.032 0.15 0.065 4.7 2.0 2.3
comm 0.034 0.222 0.117 6.5 3.4 1.9
grep 0.011 23.122 0.064 2102.0 5.8 361.3
look 0.023 0.368 0.105 16.0 4.6 3.5
printtokens 0.421 13.365 3.046 31.7 7.2 4.4
replace 0.018 2.264 0.146 125.8 8.1 15.5
schedule 0.052 3.637 0.331 69.9 6.4 11.0
spline 0.022 0.622 0.116 28.3 5.3 5.4
sort 0.011 2.717 0.072 247.0 6.5 37.7
tcas 0.018 2.306 0.104 128.1 5.8 22.2
totinfo 0.045 1.464 0.3 32.5 6.7 4.9
uniq 0.025 0.839 0.1 33.6 4.0 8.4

Table 7 shows these constant factors by indicating the
time required to generate 10,000 test cases using RT for all
the input generators. Note that schedule and schedule2
share the same input generator, as do printtokens and
printtokens2, so only 12 input generators are listed. We
also compare the relative time taken using the three different
methods for each input generator. As can be seen, there is
wide variation in the relative time costs of input generation
depending on the program. The generation time using the
ARTsum algorithm are within a range of 2.0 to 8.1 times that
of RT, whereas ARTmif takes 4.7 to 2102.0 times longer than
RT and takes 1.9 to 361.3 times longer than ARTsum.

6 DISCUSSION

Overall, ARTsum and ARTmif were clearly each more effec-
tive than RT, as measured by both the F-measure and P-
measure, on a majority of the object programs considered.
ARTsum also had a much lower selection overhead than
ARTmif , and its overhead was close to that of RT.

We examined the cases in which ARTsum was not sig-
nificantly more effective in terms of fault-detection than RT.
This occurred on the object programs replace, schedule,
and totinfo, where differences between ARTsum and RT
were not statistically significant, and on tcas, where RT
was more effective than ART. Our investigation revealed
an interesting pattern related to the distribution of failure-
revealing inputs in test frames for the different faulty ver-
sions of replace. We first examined the failure rate within
failure-revealing “test frames” – that is, the subsets of the
test pool that shared the same categories and choices, and
contained at least one failure-causing input. We hypothe-
sized that for faults on which ART performed poorly, the
failure rate within the failure-revealing test frame would be
lower. There did not appear to be any such systematic effect,
so we then examined the distribution of the test frames
containing failure-causing input in terms of their average
“distance”. We found that the “distance” between frames
containing failures was higher for faults on which ART
outperformed RT, and lower when RT outperformed ART.
The faulty versions of schedule and tcas, on which ART
exhibited comparatively poor performance, have similar
distributions of failure-revealing inputs in test frames.

One potential explanation for this is that when a test
case is executed in a test frame that contains a failure, but
that test case does not reveal a failure, this reduces the
chances of selecting nearby test cases. Thus, a technique
will perform better if there are other failure-revealing test
cases located far away, rather than close by. This suggests
that our distance measure and selection criteria could still
be improved. One obvious approach for improvement is
that to maximize testing effectiveness, non-homogeneous
test frames should be avoided, and the best way to do this is
to have fine-grained test frames that correspond to distinct
program functionalities. Testers are best advised to use a
larger number of categories and choices to make as fine-
grained a difference measure as possible, and ensure that
they align with the functionality of the program under test.

Given that grep was our largest program, it is worth
considering effectiveness results on that program in some
detail. For grep, ARTmif was inferior to RT for three faults:
faults 4, 15, and 17 as listed in Table A18 in the Appendices.
We examined these cases in more detail, and found behavior
similar to that occurring in the cases of replace and
schedule. However, we also noted an additional factor:
the inferior effectiveness was related to the non-uniform
distribution of the test cases selected. Such biases have

12

been observed in previous studies of ART. In fact, biases
are almost inevitable; it is difficult to achieve an effective
spreading of inputs without inducing some bias towards
certain inputs. ARTmif preferentially selected inputs that
had a large number of choices. For each of the three faults
in grep on which ARTmif did not outperform RT, most
of the failure-causing inputs had a very small number of
choices. Hence, these failure-causing inputs were less likely
to be selected by ARTmif than by random chance. This is
related to the granularity problems of the distance measure
as discussed in Section 3.2, but is not strictly the same. The
same phenomena affect the results for individual mutants of
the same program. This combined with the relatively small
number of mutants per program, is probably responsible for
a few unusual looking boxplots in Figure 1.

We have shown that ARTsum significantly outperformed
RT on 10 of our 14 object programs. Our results showed that
ARTsum and ARTmif had comparable performance, and that
ARTsum slightly outperformed ARTmif particularly when
there were a small number of categories. However, this is
consistent with our view that the max-sum criterion handles
a coarse distance measure better than the max-min criterion.

We have clearly shown that while both ARTsum and ART-
mif are linear-time algorithms, in practice, ARTsum can incur
a much smaller selection overhead than ARTmif . Therefore,
given that ARTsum and ARTmif have comparable failure-
detection effectiveness, the lower overhead suggests that
ARTsum should be considerably more cost-effective overall.

Despite the satisfactory effectiveness demonstrated by
the “forgetting” strategies employed in ARTmif in this study
as well as prior studies, the settings of their parameters
seem to be arbitrary and are not rigorously justified. This
arbitrariness does not occur for ARTsum, which in our view
is a further reason to prefer it to ARTmif .

Selecting categories and choices for ART may impose an
additional burden on the tester, compared to RT. It is true
that the selection of appropriate categories and choices may
not always be straightforward, and may depend substan-
tially on the tester’s expertise and experience. If random
test cases could be easily generated, RT might be more cost-
effective than ART. Nevertheless, in many practical situa-
tions, especially when the software under test involves more
complicated inputs (such as those with non-numeric types),
it is not straightforward to randomly generate test cases. As
noted by Arcuri et al. [5, pg. 261], “[w]hen the input domain
consists of numeric inputs, it is easy to uniformly choose
random test cases from it. But it is not always clear how to
do that when more complex types of test cases are used.” To
apply RT to a non-numeric input domain, testers may need
to perform some analysis of the input domain. One useful
method for doing so is by identifying categories and choices,
just as has been done in this paper. If such an approach has
been taken, the additional effort by testers to apply ART
over RT would be small.

Another interesting issue is that while ARTsum can gen-
erate test cases in linear time, its test case generation time
is still several times longer than RT. This implies that RT
may be more cost-effective than ARTsum under particular
conditions, especially when test execution time is negligible.
However, the execution of test cases often takes a substantial
amount of time, particularly once the time taken for testing

infrastructure such as setup, teardown, and result reporting
is taken into account. In such a situation, the larger number
of test cases required by RT would result in longer overall
testing time than ARTsum. For example, one of our object
programs, grep, on average took 2.98 × 10−4 seconds to
execute a test case. On average, RT required 1.1 × 10−6

seconds, and ARTsum took 6.4 × 10−6 seconds, to generate
one test case. For grep, therefore, the cost of performing
testing is dominated by the cost of test case execution. The
ratio of total testing time taken by ART over RT was thus
very similar to the F-ratio. For example, on the first mutant
of grep, ARTsum took 1.33 × 10−2 seconds, whereas RT
took 3.10 × 10−2 seconds. There is no “golden method”
that always has higher-cost effectiveness than other testing
methods for all programs. Indeed, RT can be better than
ARTsum under some conditions, such as in cases involving
high failure rates and short program execution time. In this
paper, we intend to provide a testing method for programs
that have non-numeric inputs requiring systematic analysis,
and that have long execution times. For such situations, it is
very likely that ARTsum is more cost-effective than RT.

7 RELATED WORK

The extension of ART to non-numeric input domains has
been of interest for some time. Ciupa et al. [11] demon-
strated the application of ART to unit testing of object-
oriented software. There are significant differences between
their approach and ours. Ciupa et al.’s distance measure,
which was specifically designed for unit testing of object-
oriented software, is based on the structure of method
inputs, and permits no tester discretion. Our distance mea-
sure, in contrast, allows testers to use their knowledge of
the specification and/or the program structure to specify
appropriate categories and choices. It is not restricted to
object-oriented languages, and is applicable beyond unit
testing. Ciupa et al.’s implementation uses FSCS-ART as
the test case selection technique. This technique’s quadratic
selection overhead implies that overall, ART might not
actually be cost effective compared to random testing. Our
technique, in contrast, takes advantage of the properties
of our distance measure to achieve linear-time selection
overhead, addressing these cost-effectiveness issues.

There have been a number of attempts to reduce the
selection overhead of ART, even before Arcuri and Briand
[3] drew attention to the implications of this for the prac-
tical use of ART. For instance, Shahbazi et al. [25] devised
RBCVT-Fast, a linear-time ART algorithm for d-dimensional
real input domains. Our work is complementary to theirs in
that it can be applied to non-numeric input domains.

RT is of course not the only way to automatically gen-
erate test data; alternatives include model-based, symbolic
execution-based, and search-based testing methods. Com-
pared with RT/ART, these “more systematic” methods are
guaranteed to detect faults that violate specific properties
using, in many situations, fewer test cases. However, they
normally incur a very high cost in generating test cases;
for example, model checking based algorithms are often
exponential-time, which is not comparable to linear time
at all. In other words, the savings in the number of test
cases (and thus the savings in the test execution time)

13

may not be sufficient compensation for a much longer test
case generation time. In addition, no testing method is
guaranteed to detect all types of faults. The “systematic”
methods may be very effective in detecting certain types of
faults, but they may also be very ineffective in the detection
of other faults. Random strategies (such as RT and ART)
can be considered to be complementary to them: due to
the randomness, random strategies can detect some faults
difficult to detect using systematic methods [4], [5], [17]. As
mentioned in Section 6, there is no “golden method”. Any
testing method has its own advantages and disadvantages,
dependent on various factors, in particular, the program
execution time which can vary enormously. The ARTsum
method proposed in this paper can be considered as a
possible cost-effective enhancement to RT and a good com-
plementary testing method to other systematic ones, when
the software under test involves non-numeric and struc-
tured inputs. ART is complementary to other systematic
testing methods not only because ART and other methods
can work independently to detect different types of faults,
but also because they can be integrated to provide hybrid
techniques. For example, ART has been used to improve the
test cases’ diversity in model-based testing [18]. It would
be worthwhile to systematically compare ART with other
state-of-the-art testing techniques, but such an experimental
comparison is beyond the scope of this paper (in which we
focus on how to improve RT) and is one important direction
for the future work.

There are some obvious parallels between some aspects
of combinatorial testing [23] and our ART algorithm. But
there are some fundamental differences. Combinatorial test-
ing has coverage as its underlying notion, and aims to de-
tect faults that are related to interactions between different
parameters. The underlying concepts of ART, in contrast,
are randomness and diversity across the input domain.
ART does not involve any form of coverage of specific
combinations of parameters, and combinatorial testing does
not involve randomness and diversity across the input
domain. From an operational perspective, ART normally
generates test cases in an incremental way, while combi-
natorial testing fundamentally requires the generation of an
entire test suite that satisfies certain coverage criteria, such
as t-way combinations. In other words, the combinatorial
testing has a lower bound on how many test cases should be
generated, while ART can generate any number of test cases
until a termination condition is satisfied. The incremental
nature of ART is actually an advantage over combinatorial
testing, especially when there are many factors that must
be considered in testing. For example, a complex system
(such as grep) can involve n functionalities, each of which
may be associated with m options and then p sub-options.
Such a hierarchy in inputs can result in a very large input
space. In addition, there may be an “explosion” in the input
space: The lower bound in test suite size of combinatorial
testing will increase exponentially as the values of m, n and
p increase. Our work addresses this “explosion” problem
by a simple method: The distance measure we proposed
treats the input space in two flat layers – the input space
is partitioned into different categories and their associated
choices. The numbers of categories and choices do not
necessarily grow with the increase of m, n, and p, and there

are common categories and choices across different func-
tionalities, options, and sub-options. Even if the numbers of
categories and choices become larger with the growth of the
input domain, due to its incremental nature, ART does not
suffer from the input space “explosion” problem: ART im-
poses no rigid requirements on the test suite size no matter
how large the input space is. Such fundamental differences
make it extremely difficult, if not impossible, to compare
ART and combinatorial testing using the F-measure. The
measurement of P-measure had a similar problem: Both
RT and ART have high flexibility in test case generation,
making it possible to obtain P-measure values with various
test suite sizes; by contrast, combinatorial testing imposes
fixed test suite sizes.

8 CONCLUSION

ART was proposed to enhance the failure-detection effec-
tiveness of RT. In this work we have presented a linear-
order ART algorithm, ARTsum, that makes use of a novel
distance measure, and takes advantage of the properties of
this distance measure to achieve a linear-order test case gen-
eration. Our work is complementary to the recent RBCVT-
Fast algorithm [25], which is an innovative linear-order ART
algorithm for numeric inputs.

We conducted an empirical study using a total of 14
programs, comparing our ARTsum algorithm with RT and
a baseline ART technique using the max-min criterion and
the technique of “forgetting” to reduce selection overhead,
namely ARTmif . Each of the ART algorithms significantly
outperformed RT with respect to the F-measure for 10 of
the 14 object programs, was significantly outperformed by
RT for only one program, and had performance comparable
to that of RT for the remaining three programs. An almost
identical pattern was observed for the P-measure. Further-
more, the selection overhead of ARTsum was quite close to
that of RT, and far lower than that of ARTmif .

We have demonstrated a feasible and computationally
efficient scheme of linear order for applying ART to pro-
grams with non-numeric input types. We have shown that
ART can be used to efficiently perform debug testing on sev-
eral programs with non-numeric input domains. In doing
so, we address the cost-effectiveness issues raised by Arcuri
and Briand [3], permitting both practical use and further
investigation of the behavior of FSCS-ART for programs
with very low failure rates. In this study, the emphasis
was on the delivery of a novel linear-order ART algorithm
and the demonstration of its practicality, so the question of
effectiveness with very low failure rates was not studied.
Obviously, further work is now called for to examine this
question. There is much scope for more advanced distance
measures to take better account of more information about
the characteristics of the software under test, to better
predict similarity in failure behavior of inputs. Within the
general paradigm of categories and choices, there are many
potential refinements that could be attempted, such as
finer granularity of the distance measure, various weighting
schemes for categories and choices, etc. We believe that
finding appropriate distance measures for specific domains
will prompt much future research.

14

REFERENCES

[1] V. D. Agrawal. When to use random testing. IEEE Transactions on
Computers, 27(11):1054–1055, 1978.

[2] P. E. Ammann and J. C. Knight. Data diversity: An approach to
software fault tolerance. IEEE Transactions on Computers, 37(4):418–
425, 1988.

[3] A. Arcuri and L. Briand. Adaptive random testing: An illusion of
effectiveness? In Proceedings of the 20th International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 265–275, 2011.

[4] A. Arcuri, M. Z. Iqbal, and L. Briand. Black-box system testing of
real-time embedded systems using random and search-based test-
ing. In Proceedings of the 22nd IFIP WG 6.1 International Conference
on Testing Software and Systems, ICTSS ’10, pages 95–110, 2010.

[5] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical
results and practical implications. IEEE Transactions on Software
Engineering, 38(2):258–277, 2012.

[6] K.-P. Chan, T. Y. Chen, and D. Towey. Forgetting test cases. In
Proceedings of the 30th Annual International Computer Software and
Applications Conference, COMPSAC ’06, pages 485–494, 2006.

[7] T. Y. Chen, F.-C. Kuo, and R. Merkel. On the statistical properties
of testing effectiveness measures. Journal of Systems and Software,
79(5):591–601, 2006.

[8] T. Y. Chen, F.-C. Kuo, R. Merkel, and S. P. Ng. Mirror adaptive
random testing. Information & Software Technology, 46(15):1001–
1010, 2004.

[9] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing.
In Proceedings of the 9th Asian Computing Science Conference, pages
320–329, 2004.

[10] T. Y. Chen and R. Merkel. Quasi-random testing. IEEE Transactions
on Reliability, 56(3):562–568, 2007.

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: Adaptive
random testing for object-oriented software. In Proceedings of
the 30th International Conference on Software Engineering, ICSE ’08,
pages 71–80, 2008.

[12] M. E. Delamaro and J. C. Maldonado. Proteum – a tool for the
assessment of test adequacy for C programs. In Proceedings of the
Conference on Performability in Computing Systems, PCS ’96, pages
79–95, 1996.

[13] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering: An International
Journal, 10(4):405–435, 2005.

[14] M. Friedman. The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. Journal of the American
Statistical Association, 32(200):675–701, 1937.

[15] J. D. Golic. New methods for digital generation and postprocess-
ing of random data. IEEE Transactions on Computers, 55(10):1217–
1229, 2006.

[16] F. J. Gravetter and L. B. Wallnau. Statistics for the Behavioral Sciences.
West Publishing Company, 1996.

[17] A. Groce, G. J. Holzmann, and R. Joshi. Randomized differential
testing as a prelude to formal verification. In Proceedings of the 29th
International Conference on Software Engineering, ICSE ’07, pages
621–631, 2007.

[18] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-
based testing through test case diversity. ACM Transactions on
Software Engineering and Methodology, 22(1):6:1–6:42, 2012.

[19] S. Holm. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 6:65–70, 1979.

[20] F.-C. Kuo. On Adaptive Random Testing. PhD thesis, Faculty of
Information and Communication Technologies, Swinburne Uni-
versity of Technology, 2006.

[21] Y. Liu and H. Zhu. An experimental evaluation of the reliability
of adaptive random testing methods. In Proceedings of the 2nd
International Conference on Secure System Integration and Reliability
Improvement, SSIRI ’08, pages 24–31, 2008.

[22] R. Merkel. Analysis and Enhancements of Adaptive Random Testing.
PhD thesis, School of Information Technology, Swinburne Univer-
sity of Technology, 2005.

[23] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):11:1–11:29, 2011.

[24] T. J. Ostrand and M. J. Balcer. The category-partition method for
specifying and generating functional tests. Communications of the
ACM, 31(6):676–686, 1988.

[25] A. Shahbazi, A. F. Tappenden, and J. Miller. Centroidal voronoi
tessellations — a new approach to random testing. IEEE Transac-
tions on Software Engineering, 39(2):163–183, 2013.

[26] The GNU Project. Grep home page. http://www.gnu.org/
software/grep, 2006.

[27] L. J. White and E. I. Cohen. A domain strategy for computer pro-
gram testing. IEEE Transactions on Software Engineering, 6(3):247–
257, 1980.

[28] F. Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics Bulletin, 1(6):80–83, 1945.

[29] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect
of test set minimization on fault detection effectiveness. Software:
Practice and Experience, 28(4):347–369, 1998.

[30] B. Zhou, H. Okamura, and T. Dohi. Enhancing performance of
random testing through markov chain monte carlo methods. IEEE
Transactions on Computers, 62(1):186–192, 2013.

Arlinta Barus is a Lecturer at Del Institute of
Technology, Indonesia. She received her Bache-
lor degree in Informatics Engineering from Ban-
dung Institute of Technology, Indonesia, Master
degree in Information Communication and Tech-
nology from the University of Wollongong, and
PhD degree from Swinburne University of Tech-
nology. Her current research interest is mainly in
software testing.

Tsong Yueh Chen is a Professor at Swinburne
University of Technology. He received his PhD in
Computer Science from The University of Mel-
bourne, the MSc and DIC from Imperial College
of Science and Technology, and BSc and MPhil
from The University of Hong Kong. He taught at
The University of Hong Kong and The University
of Melbourne. His main research interest is on
software testing.

Fei-Ching Kuo is a Senior Lecturer at Swin-
burne University of Technology, Australia. She
received her Bachelor of Science Honors in
Computer Science and PhD in Software Engi-
neering, both from Swinburne University of Tech-
nology, Australia. She was a lecturer at Univer-
sity of Wollongong, Australia. Her current re-
search interests include software analysis, test-
ing and debugging.

Huai Liu is a Research Fellow at the Australia-
India Research Centre for Automation Software
Engineering, RMIT University, Australia. He re-
ceived the BEng and MEng both from Nankai
University, China, and the PhD degree in soft-
ware engineering from the Swinburne University
of Technology, Australia. His current research
interests include software testing, cloud comput-
ing, and end-user software engineering.

Robert Merkel is a Lecturer at Monash Univer-
sity, Melbourne, Australia. He received his PhD
degree from the Swinburne University of Tech-
nology. His research interests include software
testing and software reliability.

Gregg Rothermel is Professor and Jensen
Chair of Software Engineering at the University
of Nebraska-Lincoln. He received the Ph.D. in
Computer Science from Clemson University. His
research interests include software engineering
and program analysis, with emphases on the
application of program analysis techniques to
problems in software maintenance and testing,
end-user software engineering, and empirical
studies.

1

APPENDIX A
GENERATION OF TEST CASES FOR SIR PROGRAMS

Each of the SIR programs had an existing pool of test cases. However, these pools were not large enough (consisting of a few
thousand test cases per program) to ensure sufficient randomness for our experiments. Therefore, rather than sampling test
cases from the existing pools, we used a number of techniques to dynamically generate test cases on demand. Our broad
approach for this has some similarities to fuzz testing. We first analyzed the existing test pools to obtain the probability
distributions of certain parameters. Then, according to the probability distributions, the concrete values of these parameters
could be randomly chosen. We now describe the details of the technique used for each object program.

A.1 schedule and schedule2

These two programs have four input parameters: three integers representing the number of jobs on the 1st, 2nd, and 3rd
priorities, and an input file. To generate inputs we applied the following procedure:

1) Randomly choose the number of input parameters, with the following probabilities: 99% for 3, 0.8% for 2, 0.1% for
1, and 0.1% for 0.

2) Randomly choose whether the total number of jobs should be 0, with the following probabilities: 8% for yes, and
92% for no.

3) If “no” is chosen for 2, choose the value of each input parameter, with a 20% probability of selecting 0, and and
80% probability of selecting each of 1 through 10.

4) Randomly select an input file from the 2151 files in the existing test pool.

A.2 printtokens and printtokens2

These two programs take a single file as input. To generate inputs we applied the following procedure:

1) Decide on the validity of the input, with a 0.5% probability of generating “two input files”; 0.5% for “one non-
existing file”; 99% for “one existing file”.

2) If one existing file is chosen as input, randomly choose whether the input file is an original file in the test pool (50%
probability) or a file combining two original files in the test pool (50%).

3) If the input file is an original file in the test pool, randomly select one file from the test pool (the number of files in
the pool: 4071).

4) If the input file is composed of two original files, randomly select two different files from the test pool and
concatenate them.

A.3 replace

There are three input parameters for replace: strings representing the regular expression (RE) and the replacing string
(RS), respectively, and the input file (F). We used the following procedure to generate them:

1) Randomly choose the number of input parameters according to the following probabilities: 97% for 3 (RE, RS, and
F), 2.7% for 2 (RE and F), and 0.3% for 1 (F only).

2) For each parameter to be generated, randomly choose an existing input from the existing test pool and extract the
relevant input values.

A.4 tcas

There are twelve input parameters for tcas, each of which is an integer. We used the following procedure to generate
inputs:

1) Randomly choose whether the input is from the test pool (with probability 50%) or randomly combined based on
the parameters from inputs in the test pool (50%).

2) If the input is from the test pool, randomly select one test case from the test pool (the number of test cases in the
pool: 1608).

3) If the input is randomly combined based on the parameters in the test pool, for each input value, select a test case
in the pool, extract the input parameter from that pool item, and then combine the selected parameters into a new
input.

A.5 totinfo

The input for totinfo is one file. To generate the input file, we used the following procedure:

1) Randomly choose whether the input file is a file in the original test pool (with probability 50%) or a file combining
two original files in the test pool (50%).

2) If the file is to be from the original test pool, randomly select one.
3) If the input file is composed from two files from the test pool, randomly select two different files from the pool and

concatenate them.

2

TABLE A1
Independent and Dependent Categories for grep

Independent Category Dependent Category
NormalChar Bracket
WordSymbol Iteration
DigitSymbol Parentheses
SpaceSymbol Line
NamedSymbol Word
AnyChar Edge
Range Combine

TABLE A2
Examples of Test Cases Involving Independent Categories for grep

Category Possible Choice Test Case
NormalChar NormalAlNum A
WordSymbol YesWord \w
DigitSymbol NoDigit \D
SpaceSymbol NoSpace \S
NamedSymbol ALPHA [:ALPHA:]
AnyChar Dot .
Range NumRange [1-9]

APPENDIX B
GENERATION OF TEST CASES FOR GREP

For grep, we used a generator that was itself based on the categories and choices devised for ART selection.
We first divided the categories into two groups – the independent categories and the dependent categories. The

independent group includes all categories that contain elements that can form a regular expression usable as a test case
on their own (for instance, a single literal forms a legitimate grep regular expression). Dependent categories are those
that, without the presence of data that fall into other categories, cannot form an input. Categories 1 through 7 (described
fully in Table A6) were classified as independent categories and the rest were classified as dependent. The dependent and
independent categories are listed in Table A1.

We next systematically generated random candidate test cases, which were collectively guaranteed to cover each
category and choice. For independent categories, this is straightforward: for instance, the “NormalChar” category has
a choice “NormalAlNum”. To generate a test case that has this choice, a single character from the set containing all letters
and digits is generated randomly. For dependent categories, elements from the dependent categories must be combined
with an element from an independent category (based on the constraints from the specification), constructed as discussed
above, to make a complete, valid test case; for instance, the dependent category “Iteration” could be combined with a
“NormalAlNum” character to form a regular expression. Examples of values for each independent category are shown in
Table A2, and example combinations of categories including dependent categories are shown in Table A3.

Category “Combine” is a special case: it involves either concatenation or selection between alternatives. When this
category is selected, a choice (concatenation or selection) is determined. The procedure described in the paragraphs above
is then used to generate the two subsidiary elements that are finally combined in the test case. For example, two subsidiary
elements “a” and “b” combined based on concatenation are “ab”; and when combined based on alternation are “a|b”.

Note that our test generator does not randomly sample from the entire input domain of grep. Instead, only a small
subset of the input space is sampled from, as our purpose is to test the regular expression analyzer of grep. We further
filtered the randomly generated pool to remove duplicate entries. The final pool contained 171,634 elements.

TABLE A3
Examples of Test Cases Involving Dependent Categories for grep. (Dependent Categories and Their Associated Choices are Italicized)

Combination of Categories Possible Combination of Choices Example of Test Cases
Bracket; NormalChar NormalBracket; NormalAlNum [A]
Iteration; Range Star; UpcaseRange [A-Z]*
Parentheses; NormalChar; DigitSymbol NormParen; NormalAlNum; YesDigit (A\d)
Line; WordSymbol BegLine; YesWord ˆ\w
Word; DigitSymbol EndWord; NoDigit \D\>
Edge; Range YesEdgeBegEnd; NumRange \b[1-9]\b
Combine; Iteration; Parentheses; NormalChar; Range Concatenation; Plus; NormParen; NormalAlNum; NumRange (A[0-9])+

3

APPENDIX C
FULL CATEGORY-CHOICE DESCRIPTION

Tables A4 to A15 give the details on the categories and choices used for the object programs considered in our study. Note
that our categories and choices are mutually exclusive in terms of the inputs that our test case generator is able to actually
produce. If the entire input domain of grep was to be considered, several categories in our category-choice definition (for
instance, the category NormalChar) would then contain choices which are not mutually exclusive. If necessary, this issue
can be resolved by defining an additional choice in each such category, representing the intersection of the two existing
choices. For instance, for our category “NormalChar” in Table A6, a “both” choice could be defined. This choice applies to
the situation where both the two existing choices “NormalAlNum” and “NormalPunct”, would otherwise exist.

APPENDIX D
FULL EXPERIMENTAL RESULTS OF F-MEASURES

In Tables A16 to A29, we include the complete results of F-measures for RT, ARTmif , and ARTsum on all 14 object programs.
In the tables below, F-ratio refers to the ratio between the F-measures of ART and RT, and “sDev” denotes the sample
standard deviation for the F-measures.

APPENDIX E
RANKING OF P-MEASURE

Table A30 the complete comparison results of the PMA (P-measure area) for all faults of all 14 object programs. As can be
seen, they are similar to the rankings for the F-measure.

TABLE A4
Definition of categories and choices for cal

Category Choice

1 number of parameters
0
1
2

2 month < 1 or > 12
≥ 1 or ≤ 12

3 year
< 1 or > 9999
leap year
non-leap year

TABLE A5
Definition of categories and choices for comm

Category Choice

1 number of parameters
< 3
3
> 3

2 option 1 exist
not exist

3 option 2 exist
not exist

4 option 3 exist
not exist

5 bad option exist
not exist

6 file 1
not exist
contents sorted
contents unsorted

7 file 2
not exist
contents sorted
contents unsorted

8 common lines exist
not exist

4

TABLE A6
Definition of categories and choices for grep

Category Choice

1 NormalChar - presence of any literal character

NormalAlNum - presence of any alphabetic or numer-
ical literal (for instance “A”, “z”, or “5”)
NormalPunct - presence of any punctuation character
(such as “:”)

2 WordSymbol - presence of “word” or “non-word”
metacharacters

YesWord - “\w” present
NoWord - “\W” present

3 DigitSymbol - presence of “digit” or “non-digit”
metacharacters

YesDigit - “\d” present
NoDigit - “\D” present

4 SpaceSymbol - presence of any “whitespace” or
“non-space” metacharacters

YesSpace - “\s” present
NoSpace - “\S” present

5 NamedSymbol - presence of a symbol from a
character group

ALPHA - presence of [:ALPHA:]
UPPER - presence of [:UPPER:]
LOWER - presence of [:LOWER:]
DIGIT - presence of [:DIGIT:]
XDIGIT - presence of [:XDIGIT:]
SPACE - presence of [:SPACE:]
PUNCT - presence of [:PUNCT:]
ALNUM - presence of [:ALNUM:]
PRINT - presence of [:PRINT:]
GRAPH - presence of [:GRAPH:]
CNTRL - presence of [:CNTRL:]
BLANK - presence of [:BLANK:]

6 AnyChar - presence of the “.” metacharacter
(matches any character)

Dot - dot (“.”) present

7 Range - presence of a pattern representing a
character range

NumRange - number range present (for example “[1-
7]”)
UpcaseRange - uppercase letter range present (for
example “[C-G]”)
LowcaseRange - lowercase letter range present (such
as “[s-w]”)

8 Bracket - presence of patterns encompassed by []
or [ˆ]

NormalBracket - “[]” pattern present
CaretBracket - [ˆ] pattern present

9 Iteration - presence of patterns that contain
iterator symbols

Qmark - presence of the question mark metacharacter
(“?”), which matches 0 or 1 iteration
Star - presence of the star metacharacter (“*”), match-
ing zero or more iterations
Plus - presence of the plus metacharacter(“+”), match-
ing one or more iterations
Repminmax - presence of min-max repetition form:
for example, “{2, 3}” matches lines containing “aa”
or “aaa”

10 Parentheses - used to group patterns for
repetition, also “backreferencing”

NormParen - presence of a pattern surrounded by
parentheses
Backref - presence of a pattern with normal parenthe-
ses and a back reference

11 Line - presence of special characters relating to
line boundaries

BegLine - presence of (“ˆ”) (matches beginning of line)
EndLine - presence of (“$”) (matches end of line)
BegEndLine - presence of (“ˆ”...“$”) (matches begin-
ning and end of line)

12 Word - presence of sequences that match word
beginnings or ends

BegWord - presence of a (“\<”) metacharacter
(matches word beginning)
EndWord - presence of a (“\>”) metacharacter
(matches word end)
BegEndWord - presence of a (“\<” ... “\>”) pattern
(matches word end)

5

TABLE A6
Definition of categories and choices for grep (continued)

Category Choice

13 Edge - presence of sequences that match word
boundaries

YesEdgeBeg - presence of a “\b” metacharacter (se-
quence must lie on a word edge at the beginning - for
example “\babc” matches “abcde” but not “xabc”)
YesEdgeEnd - presence of the “\b” metacharacter
(sequence must lie on a word edge at the end - for
example “abc\b” matches “12abc” but not “abc12”)
YesEdgeBegEnd - presence of “\b” ... “\b” pattern -
sequence must lie on a word edge at the beginning
and the end (for example “\babc\b” matches “abc”
only)
NoEdgeBeg - presence of “\B” metacharacter - se-
quence must not lie on a word edge at the begin-
ning (for example, “\Babc” matches “xabce” but not
“abcde”).
NoEdgeEnd - presence of “\B” metacharacter - se-
quence must not lie on a word edge at the end (for
example, “abc\B” matches “xabce” but not “xabc”).
NoEdgeBegEnd - presence of “\B” ... ”\B” - sequence
must not lie on a word edge at the beginning and the
end (for example, “\Babc\B” matches “xabce” but not
“abcdeabc”).

14 Combine - combining multiple patterns

Concatenation - presence of a sequence of tokens
(which must all appear in sequence in the text to
match - for example, ”ab” matches ”abx” or ”cab” but
not ”aaa”, ”axb”, or ”bax”)
Alternative - presence of two tokens separated by the
“|” metacharacter (presence of either token will result
in a match - for instance ”a|b” matches ”ast” or byz”)

TABLE A7
Definition of categories and choices for look

Category Choice

1 number of parameters

0
1
2
3
> 3

2 input
default dictionary (input file name does not exist)
input file exists
invalid input file name

3 option d exist
not exist

4 option f exist
not exist

5 bad option exist
not exist

6 search string
exist and length < 250
exist and length ≥ 250
not exist

7 search string is found yes
no

6

TABLE A8
Definition of categories and choices for printtokens and printtokens2

Category Choice

1 NumOfInputs - number of parameters of the
input

Input=0 - an input has no parameters (an empty string
input)
Input=1 - an input has one parameter (input file name)

2 FileExist - presence of the file input Yes - the file exists
No - the file does not exist

3 HasEmptyString - presence of an empty string in
the file input

Yes - an empty string present
No - no empty string present

4 HasStringLength80 - presence of a string with
length equal to 80 in the file input

Yes - a string with length equal to 80 present
No - no string with length equal to 80 present

5 HasStringLengthLess80 - presence of a non-empty
string with length less than 80 in the file input

Yes - a non-empty string with length less than 80
present
No - no non-empty string with length less than or
equal to 80 present

6 HasStringLengthGreater80 - presence of a string
with length greater than 80 in the file input

Yes - a string with length greater than 80 present
No - no string with length greater than 80 present

7 HasStringWithoutDoubleQuotes - presence of a
string having no double quotes in the file input

Yes - a string having no double quotes present
No - there are no strings without double quotes

8 HasStringWithEvenDoubleQuotes - presence of a
string enclosed by a pair of double quotes in the
file input

Yes - a string enclosed by a pair of double quotes
present
No - no strings enclosed by a pair of double quotes
present

9
HasStringWithOddDoubleQuote - presence of a
string not enclosed by a pair of double quotes in
the file input

Yes - a string not enclosed by a pair of double quotes
present
No - no strings not enclosed with a pair of double
quotes are present

10 BlankInsideEnclosedDoubleQuote - presence a
blank string enclosed by a pair of double quotes
in file input

Yes - a blank string enclosed by a pair of double quotes
present
No - no blank string enclosed by a pair of double
quotes

11 Has# - presence of # in a string in the file input Yes - # present in any string in the file input
No - no # present in any string in the file input

12 HasCharAfter# - presence of any characters after #
in the file input

Yes - a string with a character after # present
No - no string with a character after # present

13 HasLambda - presence of keyword “lambda” in
the file input

Yes - keyword “lambda” present
No - keyword “lambda” not present

14 HasAnd - presence of keyword “and” in the file
input

Yes - keyword “and” present
No - keyword “and” not present

15 HasIf - presence of keyword “if” in the file input Yes - keyword “if” present
No - keyword “if” not present

16 HasOr - presence of keyword “or” in the file
input

Yes - keyword “or” present
No - keyword “or” not present

17 HasXor - presence of keyword “xor” in the file
input

Yes - keyword “xor” present
No - keyword “xor” not present

18
HasStandAloneAlphaNum - presence of
alphanumeric outside double quotes and not after
in the file input

Yes - an alphanumeric character outside double
quotes and before # is present
No - no alphanumeric character outside double quotes
and before a# is present

19 HasLParan - presence of left parenthesis in the file
input

Yes - left parenthesis present
No - left parenthesis not present

20 HasRParan - presence of right parenthesis in the
file input

Yes - right parenthesis present
No - right parenthesis not present

21 HasLBracket - presence of left bracket in the file
input

Yes - left bracket present
No - left bracket not present

7

TABLE A8
Definition of categories and choices for printtokens and printtokens2 (continued)

Category Choice

22 HasRBracket - presence of right bracket in the file
input

Yes - right bracket present
No - right bracket not present

23 HasQuote - presence of single quote in the file
input

Yes - single quote present
No - single quote not present

24 HasBackQuote - presence of back quote in the file
input

Yes- back quote bracket present
No - back quote not present

25 HasComma - presence of comma in the file input Yes - comma present
No - comma not present

26 HasGreaterEqual - presence of (>=) in the file
input

Yes - (>=) present
No - (>=) not present

27 HasSpace - presence of space in the file input Yes - space present
No - space not present

28 HasOtherChar - presence of any characters in the
file input not included in previous categories

Yes - other characters present
No - no such characters present

TABLE A9
Definition of categories and choices for replace

Category Choice

1 NumOfInputParameters - Number of parameters
of the input

Input=0 - an input has no parameters (an empty string
input)
Input=1 - an input has one parameter (Regular Ex-
pression parameter)
Input=2 - an input has two parameters (Regular Ex-
pression and Replacing String parameters)
Input=3 - an input has three parameters (Regular Ex-
pression, Replacing String, and input file name (con-
taining searched strings to be replaced) parameter)

2 RE ESC- presence of escape symbol (@) in the
regular expression parameter

HasESC - escape symbol present
NoESC - escape symbol not present

3 RE BOL - presence of Beginning of Line symbol
(%) as a metacharacter

HasMetacharBOL - Beginning of Line symbol present
as metacharacter
NoMetacharBOL - Beginning of Line symbol not
present as metacharacter

4 RE EOL - presence of End of Line symbol ($) as a
metacharacter

HasMetacharEOL - End of Line symbol present as
metacharacter
No MetacharEOL - End of Line symbol not present as
metacharacter

5 RE ? - presence of symbol ? as a metacharacter HasMetachar? - symbol ? present as metacharacter
NoMetachar? - symbol ? not present as metacharacter

6 RE * - presence of symbol * as a metacharacter HasMetachar* - symbol * present as metacharacter
NoMetachar* - symbol * not present as metacharacter

7 RE EnumCharSet - presence of enumeration type
of character set

HasEnumCharSet - enumeration type character set
present
NoEnumCharSet - enumeration type character set not
present

8 RE RangeCharSet - presence of range type of
character set

HasRangeCharSet - range type character set present
NoRangeCharSet - range type character set not
present

8

TABLE A9
Definition of categories and choices for replace (continued)

Category Choice

9 RE MixCharSet - presence of both enumeration
and range type of character set

HasMixCharSet - both enumeration and range type of
character set present
NoMixCharSet - enumeration and range type not both
present

10 RE MetacharNegate - presence of negate symbol
[ˆ] as metacharacter

HasMetacharNegate - negate symbol present as
metacharacter
NoMetacharNegate - Negate symbol not present as
metacharacter

11 RE MetacharDash - presence of dash symbol [-]
as metacharacter in the range enumeration set

HasMetacharDash - dash symbol [-] present as
metacharacter in the range enumeration set
NoMetacharDash - dash symbol [-] not present as
metacharacter in the range enumeration set

12 RE MetacharTab - presence of metacharacter tab
symbol (@t) in the regular expression

HasMetacharTab - tab symbol present as metacharac-
ter
NoMetacharTab - tab symbol not present as metachar-
acter

13 RE MetacharNewLine - presence of
metacharacter new-line symbol (@n)

HasMetacharNewLine - new-line symbol present as
metacharacter
NoMetacharNewLine - new-line not present as
metacharacter

14 RE Length - determine the length of the regular
expression

≤MAXSTR - the length of the non-empty regular ex-
pression is less or equal to a pre-determined constant
MAXSTR
>MAXSTR - the length of the non-empty regular
expression is greater than a pre-determined constant
MAXSTR
= 0 - the length of the regular expression is 0 (empty
string)

15 RS Esc - presence of escape symbol (@) in the
replacing string parameter

HasESC - escape symbol present
NoESC - escape symbol not present

16 RS & - presence of symbol & as a metacharacter
in the replacing string parameter

HasMetachar& - symbol & present as metacharacter
NoMetachar& - symbol & not present as metacharac-
ter

17 RS MetacharTab - presence of metacharacter tab
symbol (@t) in the replacing string parameter

HasMetacharTab - tab symbol present as metacharac-
ter
NoMetacharTab - tab symbol not present as metachar-
acter

18
RS MetacharNewLine - presence of metacharacter
new line symbol (@n) in the replacing string
parameter

HasMetacharNewLine - new line symbol present as
metacharacter
NoMetacharNewLine - new line symbol not present
as metacharacter

19 RS Length - Classifying the length of the
replacing string parameter

≤MAXSTR - the length of the non-empty replacing
string is less or equal to a pre-determined constant
MAXSTR
>MAXSTR - the length of the non-empty replac-
ing string is greater than a pre-determined constant
MAXSTR
= 0 - the length of the replacing string is 0 (empty
string)

20 F EndStr - presence of end string character in the
file referred by the third parameter of an input

HasEndStr - end string character present in the file
NoEndStr - end string character not present in the file

21 F NewLine - presence of new line character in the
file referred by the third parameter of an input

HasEndStr - new line character present in the file
NoEndStr - new line character not present in the file

9

TABLE A9
Definition of categories and choices for replace (continued)

Category Choice

22
F String≤MAXSTR - presence of a string shorter
than or equal in length to MAXSTR in the file
referred by the third input parameter

HasString≤MAXSTR - at least a string with length less
or equal to MAXSTR string present in the file
NoString≤MAXSTR - no string with length less or
equal to MAXSTR string present in the file

23
F String>MAXSTR - presence a string longer
than MAXSTR string in the file referred by the
third parameter of an input

HasString>MAXSTR - at least a string with length
greater than MAXSTR string present in the file
NoString>MAXSTR - no string with length equal
greater than MAXSTR string present in the file

24 F EmptyString - presence of empty string in the
file referred by the third parameter of an input

HasEmptyString - an empty string present in the file
NoEmptyString - no empty string present in the file

TABLE A10
Definition of categories and choices for schedule and schedule2

Category Choice

1 CorrectNumberOfInputParameters - number of
parameters of the input

Input=3 - an input has three parameters
Input6=3 - an input does not have three parameters

2 TotalNumberInitialJobsIn -AllPrioQueues - the
total number of initial processes

Tot=0 - the total is zero
Tot 6=0 - the total is not zero

3 InvalidInputInitialJobsInFirstPrioQueue -
presence of an invalid input in the first parameter

True - There is an invalid input in the first parameter
False - There is no invalid input in the first parameter

4 NumberOfInitialJobsInFirstPrioQueue - the
number of processes in the first parameter

Num=0 - the number of processes in the first parame-
ter is 0
Num>0 - the number of processes in the first param-
eter is > 0
Num<0 - the number of processes in the first param-
eter is < 0

5 InvalidInputInitialJobsInSecondPrioQueue -
presence of an invalid input in the second
parameter

True - There is an invalid input in the second parame-
ter
False - There is no invalid input in the second param-
eter

6 NumberOfInitialJobsInSecondPrioQueue - the
number of processes in the second parameter

Num=0 - the number of processes in the second pa-
rameter is 0
Num>0 - the number of processes in the second
parameter is > 0
Num<0 - the number of processes in the second
parameter is < 0

7 InvalidInputInitialJobsInThirdPrioQueue -
presence of an invalid input in the third
parameter

True - There is an invalid input in the third parameter
False - There is no invalid input in the third
parameter

8 NumberOfInitialJobsInThirdPrioQueue - the
number of processes in the third parameter

Num=0 - the number of processes in the third param-
eter is 0
Num>0 - the number of processes in the third param-
eter is > 0
Num<0 - the number of processes in the third param-
eter is < 0

9 FileExist - presence of the input file True - The file is present
False - The file is not present

10 NumberOfJobCommandsGivenInFile - the
number of commands listed in the input file

Num=0 - the number of job commands is 0
Num>0 - the number of job commands is > 0

10

TABLE A10
Definition of categories and choices for schedule and schedule2 (continued)

Category Choice

11 InvalidContent - presence of invalid contents in
the input file

True - There is at least an invalid content
False - There is no invalid content

12 ContainNewJob - presence of NEW JOB
command in the input file

True - The NEW JOB command is present in the input
file
False - The NEW JOB command is not present in the
input file

13 ContainUpgradePrio - presence of UPGRADE
PRIO command in the input file

True - The UPGRADE PRIO command is present in
the input file
False - The UPGRADE PRIO command is not present
in the input file

14 ContainBlock - presence of BLOCK command in
the input file

True - The BLOCK command is present in the input
file
False - The BLOCK command is not present in the
input file

15 ContainUnBlock - presence of UNBLOCK
command in the input file

True - The UNBLOCK command is present in the
input file
False - The UNBLOCK command is not present in the
input file

16 ContainQuantumExpire - presence of QUANTUM
EXPIRE command in the input file

True - The QUANTUM EXPIRE command is present
in the input file
False - The QUANTUM EXPIRE command is not
present in the input file

17 ContainFinish - presence of FINISH command in
the input file

True - The FINISH command is present in the input
file
False - The FINISH command is not present in the
input file

18 ContainFlush - presence of FLUSH command in
the input file

True - The FLUSH command is present in the input
file
False - The FLUSH command is not present in the
input file

19 ContainNewJobWithoutPrio - presence of NEW
JOB without priority parameter in the input file

True - The NEW JOB command without priority pa-
rameter is present in the input file
False - The NEW JOB command without priority
parameter is not present in the input file

20
ContainNewJobWithPrio > MAXPRIO - presence
of NEW JOB with priority parameter >
MAXPRIO in the input file

True - The NEW JOB command with priority parame-
ter > MAXPRIO is present in the input file
False - The NEW JOB command with priority param-
eter > MAXPRIO is not present in the input file

21
ContainNewJobWith0 < Prio ≤MAXPRIO -
presence of NEW JOB with priority parameter > 0
and ≤MAXPRIO in the input file

True - The NEW JOB command with priority parame-
ter > 0 and ≤MAXPRIO is present in the input file
False - The NEW JOB command with priority param-
eter > 0 and ≤ MAXPRIO is not present in the input
file

22 ContainNewJobWithPrio ≤ 0 - presence of NEW
JOB with priority parameter ≤ 0 in the input file

True - The NEW JOB command with priority parame-
ter ≤ 0 is present in the input file
False - The NEW JOB command with priority param-
eter ≤ 0 is not present in the input file

23
ContainUpgradePrioWithoutPrio - presence of
UPGRADE PRIO without priority parameter in
the input file

True - The UPGRADE PRIO command without prior-
ity parameter is present in the input file
False - The UPGRADE PRIO command without prior-
ity parameter is not present in the input file

24
ContainUpgradePrioWithPrio > MAXPRIO -
presence of UPGRADE PRIO with priority
parameter > MAXPRIO in the input file

True - The UPGRADE PRIO command with priority
parameter > MAXPRIO is present in the input file
False - The UPGRADE PRIO command with priority
parameter > MAXPRIO is not present in the input file

11

TABLE A10
Definition of categories and choices for schedule and schedule2 (continued)

Category Choice

25
ContainUpgradePrioWith0 < Prio ≤MAXPRIO -
presence of UPGRADE PRIO with priority
parameter > 0 and ≤MAXPRIO in the input file

True - The UPGRADE PRIO command with priority
parameter > 0 and ≤ MAXPRIO is present in the
input file
False - The UPGRADE PRIO command with priority
parameter > 0 and ≤ MAXPRIO is not present in the
input file

26
ContainUpgradePrioWithPrio ≤ 0 - presence of
UPGRADE PRIO with priority parameter ≤ 0 in
the input file

True - The UPGRADE PRIO command with priority
parameter ≤ 0 is present in the input file
False - The UPGRADE PRIO command with priority
parameter ≤ 0 is not present in the input file

27
ContainUpgradePrioWithoutRatio - presence of
UPGRADE PRIO without ratio parameter in the
input file

True - The UPGRADE PRIO command without ratio
parameter is present in the input file
False - The UPGRADE PRIO command without ratio
parameter is not present in the input file

28
ContainUpgradePrioWithRatio > 1 - presence of
UPGRADE PRIO with ratio parameter > 1 in the
input file

True - The UPGRADE PRIO command with ratio
parameter > 1 is present in the input file
False - The UPGRADE PRIO command with ratio
parameter > 1 is not present in the input file

29
ContainUpgradePrioWith0 < Ratio ≤ 1 - presence
of UPGRADE PRIO with ratio parameter > 0 and
≤ 1 in the input file

True - The UPGRADE PRIO command with ratio
parameter > 0 and ≤ 1 is present in the input file
False - The UPGRADE PRIO command with ratio
parameter > 0 and ≤ 1 is not present in the input
file

30
ContainUpgradePrioWithRatio≤0 - presence of
UPGRADE PRIO with ratio parameter ≤ 0 in the
input file

True - The UPGRADE PRIO command with ratio
parameter ≤ 0 is present in the input file
False - The UPGRADE PRIO command with ratio
parameter ≤ 0 is not present in the input file

31
ContainUnblockWithoutRatio - presence of
UNBLOCK without ratio parameter in the input
file

True - The UNBLOCK command without ratio param-
eter is present in the input file
False - The UNBLOCK command without ratio pa-
rameter is not present in the input file

32
ContainUnblockWithRatio>1 - presence of
UNBLOCK with ratio parameter > 1 in the input
file

True - The UNBLOCK command with ratio parameter
> 1 is present in the input file
False - The UNBLOCK command with ratio parame-
ter > 1 is not present in the input file

33
ContainUnblockWith0<Ratio≤1 - presence of
UNBLOCK with ratio parameter > 0 and ≤ 1 in
the input file

True - The UNBLOCK command with ratio parameter
> 0 and ≤ 1 is present in the input file
False - The UNBLOCK command with ratio parame-
ter > 0 and ≤ 1 is not present in the input file

34
ContainUnblockWithRatio≤0 - presence of
UNBLOCK with ratio parameter ≤ 0 in the input
file

True - The UNBLOCK command with ratio parameter
≤ 0 is present in the input file
False - The UNBLOCK command with ratio parame-
ter ≤ 0 is not present in the input file

12

TABLE A11
Definition of categories and choices for sort

Category Choice

1 number of parameters 0
≥ 1

2 valid input file exist
not exist

3 invalid input file exist
not exist

4 option b exist
not exist

5 option d exist
not exist

6 option f exist
not exist

7 option i exist
not exist

8 option c exist
not exist

9 option m exist
not exist

10 option n exist
not exist

11 option o exist
not exist

12 option t exist
not exist

13 option T exist
not exist

14 option r exist
not exist

15 option u exist
not exist

16 option . (DOT) exist
not exist

17 bad option exist
not exist

18 start position exist
not exist

19 end position exist
not exist

20 the number of keys < 10
≥ 10

21 line longer than 2048 exist
not exist

13

TABLE A12
Definition of categories and choices for spline

Category Choice

1 number of parameters 0
≥ 1

2 input
input from screen
input file exists
invalid input

3 option a exist
not exist

4 option k exist
not exist

5 option n exist
not exist

6 option p exist
not exist

7 option x exist
not exist

8 bad option exist
not exist

9 number of input data
< 3
≥ 3 and ≤ 1000
> 1000

10 input data are monotonic yes
no

TABLE A13
Definition of categories and choices for tcas

Category Choice

1 Correct Number of Input Parameters = 12
6= 12

2 Invalid Cur Vertical Sep INPUT TRUE
FALSE

3 Vertical Sep Degree
> MAXALTDIFF
≤MAXALTDIFF and ≥MINSEP
< MINSEP

4 Invalid High Confidence INPUT TRUE
FALSE

5 High Confidence TRUE
FALSE

6 Invalid Two of Three Reports Valid INPUT TRUE
FALSE

7 Is Report Valid TRUE
FALSE

8 Invalid Own&Other Tracked Alt INPUT TRUE
FALSE

14

TABLE A13
Definition of categories and choices for tcas (continued)

Category Choice

9 Above or Below Treat Own Tracked Alt < Other Tracked Alt
Own Tracked Alt > Other Tracked Alt

10 Invalid Own Tracked Alt Rate INPUT TRUE
FALSE

11 Tracked Alt ≤ OLEV
> OLEV

12 Invalid Alt Layer Value INPUT TRUE
FALSE

13 Adequate Separation Level

< 0
= 0
= 1
= 2
= 3
> 3

14 Invalid Up Separation INPUT TRUE
FALSE

15 Up Separation Threshold

< 400
≥ 400 and < 500
≥ 500 and < 640
≥ 640 and < 740
≥ 740

16 Invalid Down Separation INPUT TRUE
FALSE

17 Down Separation threshold

< 400
≥ 400 and < 500
≥ 500 and < 640
≥ 640 and < 740
≥ 740

18 Up Preference

Down Separation < Up Separation
Up Separation ≤ Down Separation < Up Separation
+ NOZCROSS
Down Separation ≥ Up Separation + NOZCROSS

19 Invalid Other RAC INPUT TRUE
FALSE

20 Clear Intention = NO INTENT
6= NO INTENT

21 Invalid Other Capability INPUT TRUE
FALSE

22 TCAS Equipped TRUE
FALSE

23 Invalid Climb Inhibit INPUT TRUE
FALSE

24 Climb Inhibit TRUE
FALSE

15

TABLE A14
Definition of categories and choices for totinfo

Category Choice

1 Correct number of input parameters = 0
≥ 1

2 File Contain BlankLine Yes
No

3 File Contain Comment Yes
No

4 File Contain Invalid r Input Yes
No

5 File Contain Invalid c Input Yes
No

6 File Contain r×c>MAXTBL Yes
No

7 File Contain r×c≤MAXTBL Yes
No

8 File Contain r Extremely Big Yes
No

9 File Contain r>1 Yes
No

10 File Contain r≤1 Yes
No

11 File Contain c Extremely Big Yes
No

12 File Contain c>1 Yes
No

13 File Contain c≤1 Yes
No

14 File Contain Table(s) without Input r Yes
No

15 File Contain Table(s) without Input c Yes
No

16 File Contain Table(s) Size Not Equal r×c Yes
No

17 File Contain Table(s) Size Equal r×c Yes
No

18 File Contain Table(s) with Invalid Cell(s) Yes
No

19 File Contain Table(s) with All Cells Valid Yes
No

20 File Contain Table(s) with Negative Cell(s) Yes
No

21 File Contain Table(s) with All Cells Zero Yes
No

16

TABLE A15
Definition of categories and choices for uniq

Category Choice

1 input
input from screen
input file exists
invalid input

2 option

u
d
c
not exist

3 input contents sorted yes
no

4 fields exist
not exist

5 letters exist
not exist

6 duplicate lines exist
not exist

7 blank lines exist
not exist

17

TABLE A16
F-measure data on cal

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 163.92 159.60 39.50 24.10% 38.60 21.23 12.95% 16.70
2 41.72 39.66 11.19 26.82% 9.27 10.51 25.19% 8.74
3 15.91 15.85 8.75 55.02% 7.69 9.26 58.18% 7.42
4 159.13 158.54 94.32 59.27% 91.36 95.73 60.16% 96.15
5 10.13 9.88 6.35 62.74% 4.71 6.89 68.09% 5.99
6 27.41 26.97 9.05 33.02% 8.07 6.95 25.37% 5.05
7 159.15 165.91 59.78 37.56% 59.69 35.38 22.23% 33.34
8 23.56 23.19 7.30 31.00% 5.59 5.78 24.54% 3.95
9 20.45 19.81 13.30 65.00% 13.01 9.94 48.62% 8.76
10 23.69 23.25 15.53 65.54% 15.13 11.25 47.48% 10.14
11 23.34 22.22 11.95 51.21% 10.80 11.19 47.95% 9.84

TABLE A17
F-measure data on comm

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 125.55 123.89 46.37 36.93% 43.80 47.94 38.19% 38.94
2 31.22 31.09 7.97 25.52% 7.19 6.40 20.51% 5.24
3 186.74 181.12 81.65 43.72% 77.98 81.65 43.72% 77.98
4 18.15 17.43 5.01 27.61% 4.01 4.49 24.72% 3.19
5 12.70 11.81 4.59 36.14% 3.51 4.73 37.27% 3.88
6 19.45 19.54 4.84 24.89% 3.56 4.48 23.03% 2.92
7 10.66 10.41 4.21 39.51% 3.11 4.50 42.17% 3.62
8 21.26 20.44 5.65 26.58% 4.83 5.08 23.91% 3.90
9 13.04 12.30 4.82 36.98% 3.76 5.03 38.53% 4.17
10 63.71 62.17 26.67 41.86% 26.22 26.73 41.96% 26.35
11 93.37 90.24 40.08 42.92% 38.09 40.08 42.93% 38.08
12 35.62 34.28 10.06 28.24% 9.07 8.35 23.44% 6.86
13 194.45 190.52 56.72 29.17% 55.56 40.03 20.59% 37.35
14 42.59 41.20 12.70 29.82% 12.32 10.19 23.93% 8.52
15 149.35 147.47 40.80 27.32% 39.90 32.25 21.59% 30.00
16 26.37 26.28 10.15 38.48% 9.05 14.01 53.13% 14.58
17 45.94 44.15 11.03 24.00% 9.47 10.80 23.51% 8.92
18 36.69 36.21 12.91 35.18% 11.73 15.04 40.98% 15.35
19 75.13 73.67 27.37 36.43% 26.01 45.67 60.79% 47.69
20 11.52 10.66 4.23 36.68% 3.05 4.22 36.63% 3.35
21 147.43 150.74 24.77 16.80% 23.01 17.51 11.88% 15.20
22 143.67 148.86 22.63 15.75% 22.13 16.89 11.75% 15.31
23 10.41 10.06 4.23 40.58% 3.10 4.55 43.71% 3.59
24 12.05 11.08 4.41 36.59% 3.30 4.64 38.51% 3.73
25 26.59 26.28 9.65 36.28% 9.31 10.09 37.94% 9.59
26 10.45 9.48 3.55 33.95% 2.39 3.55 33.95% 2.37
27 73.98 77.57 12.18 16.47% 10.90 9.54 12.89% 7.83

18

TABLE A18
F-measure data on grep

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 49.54 48.51 17.72 35.77% 15.05 21.03 42.46% 20.27
2 14.85 14.28 6.18 41.63% 4.58 6.17 41.54% 5.05
3 207.31 209.05 78.01 37.63% 75.23 85.38 41.19% 82.45
4 858.96 862.44 1844.73 214.76% 1163.69 235.39 27.40% 224.52
5 474.26 469.57 154.28 32.53% 147.54 200.21 42.22% 202.59
6 650.99 663.96 215.30 33.07% 211.32 290.47 44.62% 286.39
7 14.40 14.01 6.13 42.55% 4.55 6.00 41.65% 4.79
8 277.52 269.52 94.73 34.14% 87.00 121.81 43.89% 118.95
9 14.89 14.34 6.20 41.65% 4.60 6.19 41.57% 5.03
10 463.90 459.89 156.62 33.76% 148.51 206.06 44.42% 209.24
11 35.75 36.97 16.44 45.98% 14.35 15.56 43.54% 14.48
12 22.20 21.62 19.20 86.47% 20.34 9.58 43.16% 8.86
13 15.34 14.72 6.64 43.27% 5.19 6.47 42.18% 5.20
14 14.88 14.26 6.21 41.72% 4.59 6.19 41.59% 4.94
15 46.46 44.69 49.70 106.98% 52.52 25.39 54.65% 26.72
16 36.47 35.50 13.95 38.26% 12.35 16.03 43.96% 14.77
17 34.90 34.19 46.41 132.95% 52.68 15.85 45.40% 15.15
18 34.18 33.27 13.07 38.25% 10.88 14.24 41.66% 12.79
19 59.68 58.03 22.25 37.29% 20.07 25.58 42.85% 24.93
20 2.23 1.66 2.03 91.42% 1.35 1.93 86.86% 1.19

TABLE A19
F-measure data on look

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 10.01 9.87 5.49 54.83% 3.78 5.81 58.08% 3.89
2 12.93 12.29 6.05 46.78% 4.04 6.22 48.11% 4.13
3 13.78 13.03 6.23 45.18% 4.16 6.22 45.13% 4.08
4 47.37 47.22 79.45 167.70% 82.65 49.08 103.61% 48.09
5 11.24 10.68 5.83 51.83% 4.13 5.90 52.50% 3.89
6 15.89 15.68 8.98 56.53% 7.34 8.77 55.18% 6.98
7 12.00 11.46 5.90 49.16% 4.08 6.10 50.80% 4.16
8 10.81 10.06 5.23 48.40% 3.21 13.33 123.31% 9.53
9 11.94 11.62 5.89 49.30% 4.17 6.21 51.98% 4.16
10 10.67 10.38 5.66 52.99% 3.86 5.81 54.48% 3.91
11 12.78 12.17 6.02 47.11% 4.14 6.21 48.59% 4.15
12 14.87 14.81 8.87 59.65% 7.22 8.70 58.49% 6.96
13 38.47 38.21 22.66 58.90% 21.77 18.56 48.24% 15.04
14 17.70 17.02 8.21 46.40% 6.17 8.59 48.53% 6.56
15 45.94 46.58 84.34 183.59% 85.76 50.35 109.60% 49.23
16 14.91 14.15 6.20 41.60% 4.02 6.44 43.22% 4.13
17 13.71 13.76 8.56 62.41% 6.82 8.54 62.27% 6.89
18 63.03 66.53 116.55 184.92% 120.60 77.18 122.46% 76.29
19 48.07 46.98 23.62 49.14% 22.22 20.11 41.83% 16.16
20 37.71 38.62 70.71 187.53% 71.99 64.08 169.94% 66.09
21 46.63 48.60 87.96 188.65% 87.25 71.15 152.60% 74.05
22 192.94 193.43 320.25 165.98% 320.13 370.06 191.80% 383.64
23 21.63 21.02 9.67 44.68% 8.08 9.32 43.08% 7.15
24 10.72 9.84 7.67 71.54% 6.37 7.84 73.19% 6.29
25 194.06 203.12 380.96 196.31% 391.12 453.28 233.58% 487.30
26 10.01 9.75 5.58 55.78% 3.83 5.65 56.45% 3.81
27 11.41 10.87 5.74 50.32% 3.97 5.90 51.68% 3.95
28 26.59 26.47 20.52 77.18% 18.89 16.85 63.36% 13.97
29 17.41 16.64 7.46 42.86% 5.41 8.36 48.04% 6.45

19

TABLE A20
F-measure data on printtokens

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 456.11 450.18 220.03 48.24% 219.36 161.49 35.41% 162.05
2 55.20 53.64 27.70 50.17% 28.26 21.27 38.53% 20.47
3 73.28 75.70 39.95 54.52% 38.78 32.93 44.93% 30.08
4 91.41 91.87 56.83 62.17% 55.69 50.93 55.72% 48.90
5 7.16 6.55 4.11 57.42% 3.20 4.47 62.39% 3.08
6 14.95 14.91 6.04 40.42% 5.18 6.10 40.79% 4.36
7 97.35 98.07 47.11 48.39% 46.36 41.35 42.48% 40.10

TABLE A21
F-measure data on printtokens2

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 10.69 10.75 5.25 49.16% 4.42 5.45 50.97% 3.93
2 10.32 10.37 5.02 48.70% 4.18 5.28 51.23% 3.79
3 246.72 250.76 197.19 79.93% 195.32 290.36 117.69% 300.13
4 8.21 8.06 3.95 48.09% 2.99 4.26 51.84% 2.86
5 16.25 16.12 10.45 64.32% 9.98 10.19 62.74% 8.72
6 5.33 4.89 3.13 58.77% 2.19 3.46 64.99% 2.25
7 12.73 12.78 6.09 47.86% 5.06 6.21 48.75% 4.64
8 10.85 10.07 4.84 44.60% 3.82 5.11 47.12% 3.53
9 44.14 43.57 18.48 41.88% 18.27 15.29 34.64% 12.97
10 16.25 16.12 10.45 64.32% 9.98 10.19 62.74% 8.72

TABLE A22
F-measure data on replace

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 146.86 150.89 103.12 70.22% 100.26 118.25 80.52% 117.21
2 208.22 215.89 186.20 89.43% 188.82 198.78 95.47% 207.34
3 87.33 90.86 85.93 98.40% 82.80 86.56 99.12% 86.90
4 43.60 44.15 39.31 90.16% 37.30 67.78 155.47% 66.97
5 57.17 56.23 67.06 117.30% 68.81 90.43 158.17% 95.90
6 51.76 53.02 90.13 174.12% 92.45 200.28 386.92% 213.42
7 63.93 64.47 62.29 97.43% 64.12 80.75 126.32% 84.48
8 104.42 101.85 69.60 66.65% 65.65 90.73 86.89% 93.30
9 248.82 246.24 510.04 204.98% 523.93 1019.27 409.64% 1036.60
10 233.26 225.35 417.57 179.01% 434.28 770.69 330.39% 774.09
11 248.82 246.24 510.04 204.98% 523.93 1019.27 409.64% 1036.60
12 18.13 17.37 14.07 77.63% 13.40 12.60 69.50% 11.37
13 41.02 40.46 38.05 92.76% 35.72 60.05 146.39% 62.18
14 36.05 36.07 54.84 152.11% 55.31 93.87 260.36% 102.70
15 91.21 88.20 69.79 76.51% 58.78 58.21 63.82% 54.36
16 63.93 64.47 62.29 97.43% 64.12 80.75 126.32% 84.48
17 467.79 475.68 611.58 130.74% 630.08 611.47 130.71% 630.15
18 27.81 27.78 45.41 163.28% 46.80 95.95 345.03% 109.27
19 2604.75 2623.05 907.56 34.84% 964.92 789.75 30.32% 808.45
20 518.01 521.94 660.65 127.54% 655.59 660.63 127.53% 655.60
21 2142.99 2111.79 842.66 39.32% 832.82 758.64 35.40% 780.90
22 137.80 132.78 210.80 152.97% 207.70 376.50 273.22% 385.52
23 418.51 417.10 473.04 113.03% 492.49 748.57 178.87% 756.10
24 51.73 50.61 33.34 64.44% 33.15 40.59 78.47% 40.04
25 2385.25 2321.38 1650.46 69.19% 1692.29 2383.61 99.93% 2378.74
26 50.95 50.57 71.80 140.91% 72.93 129.01 253.19% 141.93
27 42.21 40.78 27.20 64.44% 25.72 32.81 77.72% 32.64
28 40.34 40.25 20.70 51.31% 18.14 28.83 71.47% 27.20
29 82.82 81.89 48.71 58.81% 46.45 56.21 67.87% 55.98
30 19.91 19.65 12.41 62.32% 11.11 15.37 77.23% 14.32
31 27.34 27.36 45.84 167.66% 48.02 93.63 342.43% 106.26

20

TABLE A23
F-measure data on schedule

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 396.32 395.60 56.22 14.19% 56.15 48.18 12.16% 44.96
2 12.96 12.57 47.21 364.26% 45.88 30.27 233.57% 33.62
3 16.00 15.54 57.00 356.36% 56.93 57.21 357.63% 63.52
4 9.65 9.14 48.60 503.38% 49.71 34.52 357.53% 40.07
5 77.75 78.83 51.28 65.95% 46.10 36.96 47.54% 32.51
6 396.32 395.60 56.22 14.19% 56.15 48.18 12.16% 44.96
7 101.78 102.47 161.14 158.32% 161.47 117.84 115.78% 117.16
8 104.75 109.12 523.72 499.96% 524.82 330.23 315.25% 345.64
9 121.24 123.53 24.23 19.98% 19.79 19.14 15.78% 15.02

TABLE A24
F-measure data on schedule2

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 88.34 87.11 65.41 74.04% 64.23 34.69 39.27% 30.92
2 104.68 104.80 105.78 101.04% 99.38 95.81 91.52% 96.66
3 111.45 111.98 48.48 43.50% 42.99 33.09 29.69% 27.84
4 33.92 46.02 836.20 2465.22% 833.37 518.08 1527.36% 507.73
5 163.30 160.99 45.67 27.97% 44.34 34.87 21.35% 29.12
6 447.98 449.46 88.28 19.71% 83.39 105.99 23.66% 97.82
7 104.68 104.80 105.78 101.04% 99.38 95.81 91.52% 96.66
8 66.64 64.42 22.18 33.29% 19.08 16.74 25.11% 12.39
9 68.50 66.75 23.22 33.90% 19.85 17.12 24.99% 12.81

21

TABLE A25
F-measure data on sort

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 97.46 94.12 96.58 99.10% 102.41 16.88 17.32% 13.39
2 22.60 22.20 9.79 43.33% 8.35 10.31 45.62% 8.84
3 81.83 78.85 96.32 117.71% 103.49 16.79 20.52% 13.23
4 168.96 165.34 75.46 44.66% 72.01 54.23 32.10% 50.21
5 10.17 9.20 12.84 126.22% 12.87 5.87 57.70% 4.34
6 26.37 25.64 29.98 113.72% 28.91 15.93 60.43% 14.02
7 37.70 37.35 14.96 39.69% 13.92 12.18 32.30% 10.66
8 37.89 37.38 14.87 39.25% 13.90 12.34 32.56% 10.78
9 241.25 243.33 80.23 33.26% 74.84 213.80 88.62% 210.13
10 334.95 336.92 187.04 55.84% 182.25 165.69 49.47% 155.96
11 111.14 106.75 105.65 95.06% 112.24 17.55 15.79% 14.12
12 89.35 87.68 71.16 79.64% 74.59 17.45 19.53% 14.11
13 333.80 331.32 185.86 55.68% 175.50 160.95 48.22% 148.52
14 334.08 346.59 218.64 65.44% 217.10 159.51 47.75% 149.17
15 506.63 500.51 436.00 86.06% 425.10 370.78 73.18% 346.82
16 244.03 252.56 114.22 46.80% 110.60 132.83 54.43% 124.16
17 241.42 235.40 69.80 28.91% 64.33 129.37 53.59% 124.64
18 240.46 249.31 105.96 44.06% 100.55 133.34 55.45% 123.25
19 326.57 332.04 121.44 37.19% 112.42 134.04 41.04% 124.01
20 244.52 251.90 80.99 33.12% 75.54 116.97 47.83% 111.03
21 256.44 257.36 210.46 82.07% 203.62 146.64 57.18% 141.64
22 243.53 247.01 103.97 42.69% 100.87 132.47 54.40% 124.76
23 160.44 162.71 66.34 41.35% 63.64 116.97 72.90% 112.75
24 343.90 357.48 239.16 69.54% 237.26 163.54 47.56% 153.34
25 337.09 341.08 114.12 33.86% 107.35 55.71 16.53% 50.78
26 36.15 35.99 14.96 41.40% 14.00 12.11 33.51% 10.58
27 10.80 10.25 12.10 112.07% 12.58 6.47 59.95% 5.04
28 329.97 327.03 81.87 24.81% 76.91 130.32 39.49% 125.85
29 136.26 137.70 132.42 97.18% 124.15 160.57 117.84% 151.76
30 241.74 241.56 244.28 101.05% 240.35 83.29 34.45% 74.62
31 249.34 260.05 96.44 38.68% 95.88 134.04 53.76% 124.63
32 248.46 249.51 211.00 84.92% 199.82 93.62 37.68% 84.40
33 163.92 170.49 63.59 38.80% 58.61 114.08 69.59% 111.74
34 138.65 139.79 56.67 40.87% 51.04 102.47 73.90% 99.48
35 164.54 169.61 76.51 46.50% 75.46 130.63 79.39% 126.69
36 246.50 241.94 162.66 65.99% 150.14 98.08 39.79% 87.15
37 249.23 244.80 186.58 74.86% 186.08 98.08 39.36% 87.10
38 247.45 254.25 116.82 47.21% 114.45 133.32 53.88% 124.17
39 242.51 233.71 203.43 83.88% 196.51 98.43 40.59% 88.52
40 58.78 58.97 31.48 53.55% 25.28 9.60 16.32% 7.01
41 51.64 52.02 31.09 60.20% 25.18 9.53 18.45% 7.01
42 140.61 141.81 152.92 108.76% 151.48 80.90 57.54% 73.83
43 144.77 141.68 220.07 152.01% 218.26 110.01 75.99% 105.74
44 12.79 12.37 7.62 59.58% 6.17 6.76 52.81% 5.32
45 245.06 245.41 207.33 84.60% 206.37 97.45 39.77% 87.17
46 247.95 247.58 107.50 43.35% 101.47 143.02 57.68% 140.97
47 340.13 353.07 271.26 79.75% 259.96 144.45 42.47% 133.73
48 250.36 251.62 156.78 62.62% 152.88 97.45 38.93% 87.11

22

TABLE A26
F-measure data on spline

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 17.36 16.76 7.01 40.40% 5.38 13.19 75.97% 13.09
2 27.63 27.40 8.31 30.09% 6.26 9.59 34.70% 7.82
3 13.17 13.00 6.87 52.16% 5.47 6.06 46.04% 4.68
4 78.61 79.37 15.97 20.32% 14.05 16.72 21.27% 14.56
5 28.53 27.84 9.04 31.68% 7.04 10.57 37.05% 9.73
6 10.94 10.90 5.22 47.76% 3.82 5.04 46.08% 3.70
7 26.53 25.69 13.08 49.30% 11.89 23.41 88.27% 23.76
8 44.07 42.29 71.19 161.52% 71.10 135.49 307.42% 131.06
9 47.49 45.20 31.51 66.34% 30.06 31.53 66.38% 30.06
10 43.50 42.56 19.91 45.77% 18.44 22.98 52.84% 21.85
11 12.92 12.44 5.96 46.14% 4.54 6.17 47.71% 4.98
12 77.60 76.57 24.22 31.21% 21.93 21.99 28.33% 19.27
13 45.37 45.15 30.92 68.16% 28.40 77.87 171.63% 92.80
14 86.13 87.35 47.13 54.73% 45.80 37.77 43.86% 36.82
15 32.97 33.73 19.22 58.30% 17.57 15.19 46.07% 13.46
16 15.26 14.54 29.52 193.51% 30.71 27.50 180.24% 25.74

TABLE A27
F-measure data on tcas

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 21.77 21.60 43.48 199.70% 42.69 45.57 209.31% 54.51
2 34.07 33.89 67.62 198.44% 65.06 62.65 183.87% 58.72
3 54.55 55.40 62.91 115.33% 56.39 66.60 122.10% 57.05
4 46.03 45.71 56.89 123.59% 53.05 71.91 156.22% 55.89
5 92.85 90.62 53.47 57.59% 48.35 44.81 48.26% 41.71
6 216.22 216.29 415.54 192.18% 398.35 395.97 183.13% 563.45
7 55.08 58.10 91.02 165.26% 92.91 115.59 209.87% 89.46
8 730.75 745.14 928.62 127.08% 893.77 844.43 115.56% 582.84
9 272.46 261.88 431.67 158.43% 442.12 405.95 149.00% 287.28
10 216.22 216.29 401.88 185.87% 384.49 400.08 185.03% 524.35
11 210.46 211.03 406.38 193.09% 391.19 446.85 212.32% 482.28
12 19.20 18.21 15.82 82.42% 14.54 14.85 77.34% 13.40
13 240.58 241.49 121.84 50.64% 119.35 82.42 34.26% 77.85
14 40.93 40.65 78.77 192.45% 78.00 87.61 214.05% 88.88
15 92.85 90.62 53.47 57.59% 48.35 44.81 48.26% 41.71
16 41.17 41.96 82.02 199.20% 83.77 64.31 156.19% 78.52
17 74.34 77.70 146.16 196.61% 146.40 170.29 229.07% 182.19
18 95.67 92.10 155.89 162.96% 150.03 192.89 201.63% 180.64
19 144.43 143.32 311.78 215.87% 317.91 226.89 157.09% 306.89
20 158.97 158.54 231.35 145.53% 220.31 226.73 142.63% 176.88
21 131.05 127.01 123.91 94.55% 115.70 149.10 113.77% 118.65
22 149.06 144.90 176.01 118.08% 164.11 217.89 146.18% 181.20
23 61.79 62.54 77.84 125.98% 75.40 67.85 109.81% 58.41
24 148.11 144.33 191.06 129.00% 188.96 232.44 156.93% 178.78
25 344.63 343.06 606.44 175.97% 606.43 623.85 181.02% 459.39
26 132.24 133.98 67.03 50.69% 61.19 46.16 34.91% 39.93
27 92.85 90.62 53.47 57.59% 48.35 44.81 48.26% 41.71
28 26.98 27.09 32.18 119.29% 29.60 31.30 116.03% 27.24
29 74.10 73.85 90.65 122.33% 86.79 106.62 143.88% 88.72
30 41.59 42.02 49.08 118.00% 45.48 49.50 119.02% 42.74
31 216.22 216.29 401.88 185.87% 384.49 380.11 175.80% 532.96
32 1049.66 1013.08 1717.96 163.67% 1747.59 1202.44 114.56% 984.95
33 18.26 18.08 35.36 193.69% 34.53 40.22 220.26% 42.17
34 18.67 17.78 13.36 71.54% 11.58 11.81 63.28% 10.35
35 26.98 27.09 32.18 119.29% 29.60 31.30 116.03% 27.24
36 17.94 17.37 26.03 145.10% 24.29 31.18 173.84% 28.80
37 15.56 15.13 26.01 167.10% 24.56 26.59 170.84% 27.19
38 25.92 25.38 43.70 168.60% 40.74 47.61 183.69% 43.97
39 344.63 343.06 606.44 175.97% 606.43 623.85 181.02% 462.46
40 17.94 17.37 26.03 145.10% 24.29 31.18 173.84% 28.80
41 46.03 45.71 57.64 125.23% 54.45 56.42 122.57% 43.80

23

TABLE A28
F-measure data on totinfo

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 5.19 4.75 3.03 58.26% 1.77 3.32 64.01% 1.87
2 119.13 115.90 44.50 37.36% 43.74 140.79 118.18% 159.43
3 276.96 286.66 666.26 240.56% 640.63 835.75 301.76% 619.45
4 23.51 22.46 18.55 78.88% 17.93 18.82 80.04% 17.68
5 7.82 7.54 18.79 240.31% 16.59 25.15 321.64% 28.33
6 16.09 15.45 14.88 92.52% 14.36 16.84 104.69% 17.47
7 6.62 6.11 5.41 81.80% 4.28 5.82 87.91% 4.92
8 4.07 3.55 3.34 81.93% 2.41 3.34 81.98% 2.39
9 7.24 7.00 16.22 224.09% 14.23 26.40 364.70% 28.88
10 105.46 104.56 48.89 46.36% 43.49 56.95 54.00% 52.91
11 4.07 3.55 3.34 81.93% 2.41 3.34 81.98% 2.39
12 23.39 22.91 21.85 93.41% 21.91 22.28 95.25% 23.30
13 6.35 5.89 5.21 82.03% 4.00 5.49 86.41% 4.61
14 373.69 390.93 961.06 257.18% 968.38 795.14 212.78% 657.78
15 4.07 3.55 3.34 81.93% 2.41 3.34 81.98% 2.39
16 4.81 4.22 3.94 81.92% 3.02 4.00 83.06% 3.09
17 17.29 16.44 15.32 88.66% 14.42 17.15 99.19% 16.60
18 6.97 6.62 3.80 54.47% 2.66 4.02 57.64% 2.50
19 8.62 8.30 8.70 100.91% 8.14 8.59 99.70% 8.25
20 9.83 9.61 5.16 52.45% 3.41 5.39 54.79% 3.60
21 6.72 6.33 3.14 46.69% 2.01 3.38 50.26% 1.68
22 33.65 34.01 32.27 95.90% 27.49 29.27 86.97% 24.51
23 11.01 10.23 8.34 75.80% 7.06 9.15 83.12% 8.50

TABLE A29
F-measure data on uniq

M- RT ARTmif ARTsum
ID F-measure sDev F-measure F-ratio sDev F-measure F-ratio sDev
1 11.46 10.98 6.52 56.93% 5.13 6.82 59.53% 5.53
2 15.87 15.70 10.96 69.06% 9.72 8.31 52.37% 6.49
3 13.03 12.87 13.69 105.06% 13.03 13.75 105.54% 13.19
4 16.42 15.48 12.90 78.55% 11.33 13.27 80.82% 12.24
5 32.93 32.70 29.91 90.83% 27.16 35.66 108.27% 32.80
6 40.24 40.79 27.70 68.85% 25.34 35.67 88.64% 37.20
7 13.64 13.18 12.88 94.42% 11.84 17.75 130.14% 18.17
8 26.34 25.38 22.96 87.16% 21.45 23.18 88.00% 23.56
9 25.02 23.83 20.22 80.80% 18.70 20.45 81.72% 21.31
10 35.34 36.14 28.66 81.11% 26.27 38.46 108.84% 35.79
11 16.91 16.20 13.24 78.29% 11.73 13.61 80.50% 12.33
12 11.47 10.95 10.65 92.84% 9.64 10.83 94.43% 9.90
13 38.47 39.86 35.20 91.49% 33.90 38.46 99.98% 35.37
14 43.10 44.56 26.81 62.21% 25.59 17.74 41.16% 14.74
15 71.86 71.97 12.68 17.65% 10.65 9.84 13.69% 7.23
16 11.81 11.10 10.75 91.06% 9.26 12.95 109.64% 12.53
17 39.45 40.38 24.70 62.61% 24.34 16.22 41.12% 14.03
18 17.27 17.27 10.78 62.40% 10.05 7.92 45.83% 6.53
19 13.02 12.42 7.40 56.83% 5.47 8.33 63.98% 6.94
20 419.13 419.45 134.04 31.98% 133.97 60.19 14.36% 55.20
21 30.01 29.38 20.39 67.93% 18.75 21.87 72.88% 21.89
22 21.79 21.41 13.50 61.96% 11.27 13.87 63.67% 12.31
23 23.68 22.83 17.43 73.61% 15.97 11.55 48.79% 9.86
24 60.49 59.48 41.08 67.92% 40.95 30.24 50.00% 30.32
25 22.29 21.33 16.23 72.82% 14.96 10.81 48.48% 8.96
26 10.70 10.45 5.27 49.22% 4.37 5.21 48.67% 4.13
27 11.99 11.31 6.61 55.10% 4.87 7.37 61.49% 6.00
28 25.79 25.60 18.81 72.94% 17.13 13.36 51.80% 12.13
29 23.65 22.76 16.30 68.93% 15.00 11.29 47.75% 9.40

24

TABLE A30
Number of Faults for Which the the Technique on the Top Row has a Higher (Better) PMA Than the Technique on the Left

(a) cal

RT ARTmif ARTsum

RT N/A 11 11
ARTmif 0 N/A 8
ARTsum 0 3 N/A

(b) comm

RT ARTmif ARTsum

RT N/A 27 27
ARTmif 0 N/A 13
ARTsum 0 14 N/A

(c) grep

RT ARTmif ARTsum

RT N/A 17 20
ARTmif 3 N/A 11
ARTsum 0 9 N/A

(d) look

RT ARTmif ARTsum

RT N/A 22 21
ARTmif 7 N/A 13
ARTsum 8 16 N/A

(e) printtokens

RT ARTmif ARTsum

RT N/A 7 7
ARTmif 0 N/A 5
ARTsum 0 2 N/A

(f) printtokens2

RT ARTmif ARTsum

RT N/A 10 9
ARTmif 0 N/A 3
ARTsum 1 7 N/A

(g) replace

RT ARTmif ARTsum

RT N/A 18 14
ARTmif 13 N/A 5
ARTsum 17 26 N/A

(h) schedule

RT ARTmif ARTsum

RT N/A 4 4
ARTmif 5 N/A 8
ARTsum 5 1 N/A

(i) schedule2

RT ARTmif ARTsum

RT N/A 6 8
ARTmif 3 N/A 8
ARTsum 1 1 N/A

(j) sort

RT ARTmif ARTsum

RT N/A 41 47
ARTmif 7 N/A 31
ARTsum 1 17 N/A

(k) spline

RT ARTmif ARTsum

RT N/A 14 13
ARTmif 2 N/A 6
ARTsum 3 10 N/A

(l) tcas

RT ARTmif ARTsum

RT N/A 8 7
ARTmif 33 N/A 21
ARTsum 34 20 N/A

(m) totinfo

RT ARTmif ARTsum

RT N/A 18 17
ARTmif 5 N/A 3
ARTsum 6 20 N/A

(n) uniq

RT ARTmif ARTsum

RT N/A 28 24
ARTmif 1 N/A 12
ARTsum 5 17 N/A

	Liu, H - n2006060727.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

