
Automatically Proving Equivalence by
Type-Safe Reflection

Franck Slama and Edwin Brady

University of St Andrews, Scotland, UK
fs39@st-andrews.ac.uk, ecb10@st-andrews.ac.uk

Abstract. One difficulty with reasoning and programming with depen-
dent types is that proof obligations arise naturally once programs become
even moderately sized. For example, implementing an adder for binary
numbers indexed over their natural number equivalents naturally leads to
proof obligations for equalities of expressions over natural numbers. The
need for these equality proofs comes, in intensional type theories, from
the fact that the propositional equality enables us to prove as equal terms
that are not judgementally equal, which means that the typechecker can’t
always obtain equalities by reduction. As far as possible, we would like
to solve such proof obligations automatically. In this paper, we show one
way to automate these proofs by reflection in the dependently typed pro-
gramming language Idris. We show how defining reflected terms indexed
by the original Idris expression allows us to construct and manipulate
proofs. We build a hierarchy of tactics for proving equivalences in semi-
groups, monoids, commutative monoids, groups, commutative groups,
semi-rings and rings. We also show how each tactic reuses those from
simpler structures, thus avoiding duplication of code and proofs.

Keywords: proof automation, equivalence, equality, proof by reflection,
correct-by-construction software, type-driven development

1 Introduction

Proofs assistants like Coq [1] and programming languages like Agda [17] and
Idris [3] are based on Intensional Type Theories that contain two notions of
equality: propositional equality, that can be manipulated in the language, and
judgemental (or definitional) equality. Propositional equality corresponds to the
mathematical notion: this is a proposition that can be assumed, negated, proved
or disproved. Since in type theory, propositions are types [13], the proposition
that two elements x and y are equal corresponds to a type. If x and y are of
type a, then the type Ida(x, y) represents the proposition “x is equal to y”. If
this type is inhabited, then x is said to be provably equal to y. Thus, Id is a
type family (parameterised by the type a) indexed over two elements of a, giving
Id (a : Type) : a→ a→ Type. For convenience, we write (Ida x y) as (x =a y).

Judgemental equality, on the other hand, is a primitive concept of the type
theory. Whether or not two expressions are judgementally equal is a matter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/84310597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

of evaluating the definitions. For example, if f : N → N is defined by
f x := x + 2, then f 5 is definitionally equal to 7. Definitional equality entails
unfolding of functions and reductions, until no more reduction can be performed.
We denote the definitional equality by ≡.

Judgemental equality is included in propositional equality because what is
equal by definition is provably equal. This is accomplished by giving a constructor
for the type Id(a, a) and no constructor when “a is not b”. In these theories, Id
is therefore implemented with the following type with one constructor:

data Id : a → a → Type where

Refl : (x : a) → Id x x

The only way for (Ida x y) to be inhabited is therefore that x and y are
equal by definition. In this case, the constructor Refl helps to create a proof of
this equality: (Refl x) is precisely the proof which says that x =a x. Here, we
are using the notation of Idris, where unbound variables like a in the definition
of Id are implicitly quantified, as a concise programming notation.

The propositional equality does not only contain the judgemental equality,
however, because a principle of induction is associated with each inductive type.
If T is an inductive type with a constant constructor and a recursive constructor,
ie, T = 1 + T, defined in Idris as:

data T : Type where

T0 : T

T1 : T → T

then we have the following induction principle for T:
T ind : ∀P : T→ Type, (P T0)→ (∀t : T, P t→ P (T1 t))→ (∀t : T, P t).

For example, we can prove that n+0 = n for all n by induction on the Nat n,
even if n+0 6≡ n with the usual definition of +, recursive on its first argument. So,
the axiom of induction means the type Ida(x, y) contains not only the canonical
form Refl, but also those added by inductive principles. There are therefore
things which are provably equal, but not definitionally equal. Proving equalities
is therefore in these theories something which isn’t automatically decidable by
the type-checker in the general case.

1.1 Motivating example: Verified Binary Arithmetic

Proving that one term is equal to another is common in formal verification, and
proof obligations arise naturally in dependently typed programming when index-
ing types over values in order to capture some logical properties. To demonstrate
this, we revisit an example from previous work [2] which shows how proof obliga-
tions arise when a type is indexed by natural numbers. Our goal is to implement
a verified library of binary numbers. To ensure functional correctness, we define
the types Bit and Binary indexed over the value they represent (expressed as a
natural number):

data Bit : Nat → Type where

3

b0 : Bit Z

b1 : Bit (S Z)

data Binary : (width : Nat) → (value : Nat) → Type where

zero : Binary Z Z

(#) : Binary w v → Bit bit → Binary (S w) (bit + 2 * v)

We will write a function to add two binary numbers. To do so, we begin
with an auxiliary function, which adds three bits (the third is a carry bit), and
produces the two bits of the result, where the first is the more significant bit:

addBit : Bit x → Bit y → Bit c → (bX ** (bY **

(Bit bX, Bit bY, c + x + y = bY + 2 * bX)))

addBit b0 b0 b0 = (_ ** (_ ** (b0, b0, Refl)))

addBit b0 b0 b1 = (_ ** (_ ** (b0, b1, Refl)))

{- ... remaining cases follow the same pattern ... -}

The syntax (n ** t) denotes a dependent pair, where the type of the second
argument t can refer to the first argument n. So, we can read this type as:
“there exists a number bX, and a number bY, such that we have two bits Bit bX

and Bit bY and the sum of the input bits c, x and y equals bY + 2 * bX.”
For example, on the second line, which corresponds to the computation 02 +
02 + 12 = (01)2, the function produces this bits b0 and b1, and a proof that
0 + 0 + 1 = 1 + (2× 0).

We then define the function adc that adds two binary numbers and a carry
bit. This works for two binary numbers with the same number of bits, and
produces a result with one more bit. We would like to write:

adc : Binary w x → Binary w y → Bit c → Binary (S w) (c + x + y)

adc zero zero carry = zero # carry

adc (numx # bX) (numy # bY) carry

= let (vCarry0 ** (vLsb ** (carry0, lsb, _)))

= addBit bX bY carry in

adc numx numy carry0 # lsb

Unfortunately, this definition is rejected because the types do not match for
both patterns. For the second case, the expected index is:

((c + (bit2 + (v1 + (v1 + 0)))) + (bit + (v + (v + 0))))

while we’re trying to provide a term indexed over:
vLsb + (((vCarry0 + v1) + v) + (((vCarry0 + v1) + v) + 0)).
The definition of adc we have given would behave correctly, and it has

provably the expected type, but it does not have it immediately or judgemen-
tally : after full reductions the expected and provided types are still different. To
make the previous definition acceptable, we need to solve two proof obligations
adc lemma 1 and adc lemma 2 which demand proofs of equality between the two
types. For example, using a proof script:

adc_lemma_2 = proof {

intros;

4

rewrite sym (plusZeroRightNeutral x);

[...]

rewrite (plusAssociative c (plus bit0 (plus v v)) bit1);

rewrite plusCommutative bit1 (plus v v);

[...]

rewrite (plusAssociative (plus (plus x v) v1) (plus x v) v1);

trivial;

}

Such proofs consist of a potentially long sequence of rewriting steps, each us-
ing one of the properties: neutral element, commutativity, associativity. Without
some automation, this sequence of rewritings must be done by the programmer.
Not only is this time consuming, but a small change in the definition may lead
to a different proof obligation, thus invalidating the proof. A minor change in
the datatype, or the definition of addBit or adc will require us to do a new
proof, and thus, without support from the machine, these proofs could become
the everyday routine in any dependently-typed language. It is worth mentioning
that even without using dependent types, these proof obligations for equalities
happen very frequently during the formal certification of most applications.

Our handwritten proof adc lemma 2 uses only the existence of a neutral ele-
ment, and the associativity and commutativity of + on Nat. Thus, we’re rewriting
a term by using the properties of a commutative monoid. With the right choice
of combinators [4] such proofs could be made much simpler, but we would like
a generic prover for commutative monoids to find a proof automatically.

1.2 Our contributions

Provers for some algebraic structures have already been implemented for various
proof assistants, including Coq [12] and Agda1. In this paper, we describe an
implementation2 of an automatic prover for equalities in a hierarchy of algebraic
structures, including monoids, groups and rings (all potentially commutative),
for the Idris language, making the following contributions:

1. We present a type-safe reflection mechanism (section 2.3), where the reflected
terms are indexed over the concrete terms, providing a direct way to extract
proofs and guaranteeing that the reflected term is a sound representation.

2. The normalisation procedures are implemented by following a correct by
construction approach (section 2.4), instead of proving the correctness after-
wards with auxiliary lemmas.

3. We develop a hierarchy of tactics where each tactic reuses the rewriting
machinery of the structure from which it inherits. For example, simplifying
neutral elements is implemented only at the monoid level, and reused at other
levels. It is challenging to reuse the prover of a less expressive structure; for

1 http://wiki.portal.chalmers.se/agda\%5C?n=Libraries.UsingTheRingSolver
2 The implementation of our hierarchy of tactics can be found online at https://

github.com/FranckS/RingIdris/Provers

5

example, using the monoid prover to build the group prover is tricky because
we lose the ability to express negations (−x) and subtractions (x − y). We
present encodings (section 2.6) to overcome this problem.

The principal novelty is in using type-safe reflection. Working by reflection
for implementing tactics has been done several times, including the implemen-
tation of a ring solver for Coq, but without the type-safety and correctness-by-
construction. We compare our approach with other implementations in section 3.

2 A hierarchy of provers

We aim to build a prover not only for equalities on Nat, List, or any specific
type, but for generic datatypes and properties. Using the right abstraction, we
can generate proofs of equalities for many datatypes at once by implementing
a generic hierarchy of provers for semi-groups, monoids, commutative-monoids,
groups, commutative-groups, semi-rings and rings. The properties of an algebraic
structure are expressed in an interface (an interface in Idris is similar to a type
class in Haskell). This interface will extend the interface from which it inherits;
for example, Group extends Monoid. This leads to a hierarchy of interfaces, with
one tactic for each. At every level of the hierarchy, we will be able to work on
any type, as long as there is a corresponding implementation of the interface.

2.1 Proving equivalences instead of equalities

With some additional effort, we can produce a collection of tactics for proving
equivalences, rather than only equalities. The machinery is very similar and we
gain another degree of genericity, with the freedom of choosing the equivalence
relation (which can be the usual equality). The user can define their own notion
of equivalence, as long as they provide the proofs of the properties of the relevant
algebraic structure. Let’s call c the carrier type, i.e., the type on which we want
to prove equivalences. The equivalence relation on c has the following profile
(') : c→ c→ Type3, and must be reflexive, symmetric and transitive.

Our tactics need to be able to test this equivalence between elements of the
underlying set, that is a way of testing equivalence of constants. We therefore
define a notion of Set4, which requires the definition of the equivalence relation
and an equivalence test set eq. All the interfaces representing the algebraic
structures will later extend Set:

interface Set c where

(') : c → c → Type

refl : (x : c) → x ' x

3 This Type would be a Prop in systems, like Coq, that make a distinction between
the world of computations and the world of logical statements

4 This notion of set is a way to talk about the carrier type and an equivalence relation,
sometimes called Setoid

6

sym : {x, y : c} → (x ' y) → (y ' x)

trans : {x, y, z : c} → (x ' y) → (y ' z) → (x ' z)

set_eq : (x : c) → (y : c) → Maybe (x ' y)

To prove propositional equalities, the user instantiates (') with the built-in
(=) when implementing Set. Note that (') is only weakly decidable in the sense
that set eq only produces a proof when the two elements are equivalent, but
it doesn’t produce a proof of dis-equivalence when they are different, instead
producing the value Nothing. Our goal is only to generate proofs of equivalance,
not to produce counter-examples. There is no tactic associated with Set, since
we have no operations or properties associated to this structure. Equivalences
in a Set are “syntactic equivalences” and can be proven with refl5.

Working with equivalences instead of equalities brings one complication :
the proofs of correctness that we produce by hand cannot use Idris’ “rewrite”
mechanism, which enables rewriting of a subterm by another one, provided that
the two subterms are propositionally equal. This is a classical problem of working
within a setoid, which can be mitigated by programming language support for
rewriting terms in setoids. However, Idris is not equipped with any such support.
For this reason, we define the following lemma, using the methods of the Set

interface:
eq preserves eq : {c : Type} → {Set c} → (x : c) → (y : c) → (c1 : c) →

(c2 : c)→ (x ' c1)→ (y ' c2)→ (c1 ' c2)→ (x ' y).
This lemma says that the equivalence preserves the equivalence, which means

that in order to prove x ' y, we can prove a smaller problem c1 ' c2, provided
that x ' c1 and that y ' c2. We will use this lemma extensively.

2.2 Hierarchy of interfaces

We describe operations, constants and properties of each algebraic structure in
an interface. The first algebraic theory is Magma, which is a structure built on
top of Set that adds Plus operation, and no specific properties:

interface Set c => Magma c where

+ : c → c → c

This code means that a type c (for carrier) is a Magma if it is already a
Set (ie, it is equipped with the equivalence relation ' and the equivalence test
set eq), and if it has a + operation. In fact, there is an additional requirement
that will apply to all operations (in this case, the + operation), which is that
they need to be “compatible” with the equivalence relation, which is expressed
by the following axiom for +:
Plus preserves equiv : {c : Type} → {Magma c} → {c1 : c} → {c2 : c} → {c1′ :
c} → {c2′ : c} → (c1 ' c1′)→ (c2 ' c2′)→ ((c1 + c2) ' (c1′ + c2′))

5 refl is not to be confused with Refl, the constructor of =, but when (') is instan-
tiated with the equality =, refl is implemented by Refl. Therefore, refl of the
interface Set is a generalisation of Refl

7

We have this requirement because we support any equivalence relation. The
user is free to define the equivalence relation of their choice, but it should be
compatible with the operations that they are using. As with Set, there is no
tactic for Magma, because there is no property; all equivalences are again syntactic
equivalences, and can thus be proven by refl.

A semi-group is a magma (ie, it still has a Plus operation), but moreover it
has the property of associativity for this operation.

interface Magma c => SemiGroup c where

Plus_assoc : (c1 : c) → (c2 : c) → (c3 : c) →
((c1 + c2) + c3 ' c1 + (c2 + c3))

Examples of magma are Nat equipped with addition, and List with concatena-
tion. Next, a monoid is a semi-group with the property of neutral element for a
distinguished element called Zero.

interface SemiGroup c => Monoid c where

Zero : c

Plus_neutral_1 : (c1 : c) → (Zero + c1 ' c1)

Plus_neutral_2 : (c1 : c) → (c1 + Zero ' c1)

The hierarchy of interfaces continues with Group:

interface Monoid c => Group c where

Minus : c → c → c

Neg : c → c

Minus_simpl : (c1 : c) → (c2 : c) → Minus c1 c2 ' c1 + (Neg c2)

Plus_inverse : (c1 : c) → (c1 + (Neg c1) ' Zero,

(Neg c1) + c1 ' Zero)

The notion of group uses two new operations (Neg and Minus), but Minus

can be simplified with + and Neg. The important property of a group is that
every element c1 must admit Neg c1 as inverse element for +. For reasons of
space, we elide the remaining details of the hierarchy.

2.3 Type-safe reflection

When proving an equivalence x ' y, the universally-quantified variables are ab-
stracted and they become part of the context. Our tatics normalise both sides of
the “potential equivalence” x ' y, and compare the results by syntactic equiv-
alence. The difficulty is that the normalisation function needs to consider vari-
ables, constants and operators. For this reason, we work by reflection, which al-
lows us to work on syntax instead of values. We define one type of reflected terms
for each algebraic structure. The novelty is not the use of reflected terms, but the
use of a type-safe reflection mechanism where we index the reflected terms by
the concrete value that they represent. Each of these datatype is parametrised
over a type c, which is the type on which we want to prove equalities (the carrier
type). It is also indexed over an implementation of the corresponding interface
for c (we usually call it p, because it behaves as a proof telling that the structure

8

c has the desired properties), indexed over a context of abstracted variables (a
vector Γ of n elements of type c). Most importantly, it is indexed over a value
of type c, which is the concrete value being encoded.

A magma is equipped with one operation, addition. Thus, to reflect terms in
a magma we express constants, variables, and addition:

data ExprMa : Magma c → (Vect n c) → c → Type where

ConstMa : (p : Magma c) → (Γ:Vect n c) → (c1:c) → ExprMa p Γ c1

PlusMa : {p : Magma c} → {Γ:Vect n c} → {c1:c} → {c2:c}

→ ExprMa p Γ c1 → ExprMa p Γ c2 → ExprMa p Γ (c1+c2)

VarMa : (p:Magma c) → (Γ:Vect n c)

→ (i:Fin n) → ExprMa p Γ (index i Γ)

For an expression ex : ExprMa Γ x, we say that ex denotes the value x in the
context Γ . When an expression is a variable (VarMa Γ i), the denoted value
is the corresponding variable in the context, i.e., (index i Γ). The expression
(ConstMa Γ k) denotes the constant k in any context Γ . Finally, if ex is an
expression encoding the concrete value x, and ey is an expression encoding the
concrete value y, then the expression PlusMa ex ey denotes the concrete value
(x + y). Because the reflected terms embed their corresponding inputs, they
are guaranteed to be sound representations. This is a local approach to syntax
representation [11] in that the reflected representation will only represent terms
in a magma.

There are no additional operations in semi-groups or monoids, so the reflected
datatypes have the same shape as that for magma. However, the datatype for
reflected terms in groups introduces two new constructors for Neg and Minus:

data ExprG : Group c → (Vect n c) → c → Type where

ConstG : (p : Group c) → (Γ:Vect n c) → (c1:c) → ExprG p Γ c1

PlusG : {p : Group c} → {Γ:Vect n c} → {c1:c} → {c2:c}

→ ExprG p Γ c1 → ExprG p Γ c2 → ExprG p Γ (c1+c2)

MinusG : {p : Group c} → {Γ:Vect n c} → {c1:c} → {c2:c}

→ ExprG p Γ c1 → ExprG p Γ c2 → ExprG p Γ (Minus c1 c2)

NegG : {p : Group c} → {Γ:Vect n c} → {c1:c}

→ ExprG p Γ c1 → ExprG p Γ (Neg c1)

VarG : (p : Group c) → (Γ:Vect n c)

→ (i:Fin n) → ExprG p Γ (index i Γ)

The index of type c (the value encoded by an expression) is always expressed
by using the lookup function index and the available operations in the imple-
mentation p, which for a group are +, Minus and Neg.

2.4 A correct-by-construction approach

We take a correct-by-construction approach to implementing normalisation, which
means that no additional proof will be required after defining normalisation. The
normalisation function norm produces a new expression, and a proof that it has
the same interpretation as the original. This will be enforced by the fact that all

9

the datatypes for reflected terms (ExprMa, ExprG, ExprR, etc) are indexed over
the concrete value: a term of type Expr Γ x is the encoding of the concrete value
x in the context Γ . For each structure, the type of norm has the following form:
norm : Expr Γ x → (x′ ** (Expr Γ x′, x ' x′))
Every instance of norm produces a dependent pair: the new concrete value x′,
and a pair made of an Expr Γ x′ which is the new encoded term indexed over the
new concrete value we have just produced, and a proof that old and new con-
crete values x and x′ are equivalent. This proof of x ' y is the crucial component
which allows us to automatically produce proofs of equivalences.

We will explain how to implement the tactic for Group specifically, and the
other structures are implemented similarly. The equivalence we are trying to
prove is x ' y, where x and y are elements of the type c, which implements a
group. The reflected term for x is denoted ex, and has type ExprG p Γ x, which
means that ex is guaranteed to be the encoding of x. Similarly, y, is encoded
by ey, and its type is indexed by the value y. Evaluating norm on ex produces
the normal form ex′ of type ExprG p Γ x′ and a proof px of x ' x′. Similarly,
for ey, it produces the normal form ey′ of type ExprG p Γ y′ and a proof py of
y ' y′. It now suffices to compare the normal forms ex′ and ey′ using a syntactic
equivalence test ExprG eq, because once everything is in normal form, being
equivalent is just a matter of being syntactically equivalent.

exprG_eq : {c:Type} → {n:Nat} → (p:Group c) → (Γ:Vect n c)

→ {x’ : c} → {y’ : c}

→ (ex’ : ExprG p Γ x’) → (ey’ : ExprG p Γ y’)

→ Maybe(x’ ' y’)

This syntactical equivalence test checks if the two input terms ex′ and ey′ are
syntactically the same, and if they do, it directly builds a proof of equivalence
between their indices x′ ' y′, which is what we need, because we can use it with
the two equivalences x ' x′ and y ' y′ that we already have, in order to get the
desired proof of x ' y with eq preserves eq. We put all of this together in a
function buildProofGroup:

buildProofGroup : (p:Group c) → {Γ:Vect n c} → {x : c} → {y : c}

→ {x’:c} → {y’:c} → (ExprG p Γ x’) → (ExprG p Γ y’)

→ (x ' x’) → (y ' y’) → (Maybe (x ' y))

buildProofGroup p ex’ ey’ px py with (exprG_eq p ex’ ey’)

buildProofGroup p ex’ ey’ px py | Just ex’_equiv_ey’ =

Just(eq_preserves_eq x y x’ y’ px py ex’_equiv_ey’)

buildProofGroup p ex’ ey’ px py | Nothing = Nothing

The arguments of type ExprG p Γ x′ and ExprG p Γ y′ are the normalised
reflected left and right hand sides of the equivalence, which respectively represent
the value x′ and y′. This function also expects proofs of x ' x′ and of y ' y′,
which are built by the normalisation process.

Finally, the main function which tries to prove the equivalence x ' y has to
normalise the two reflected terms encoding the left and the right hand side, and
use the function buildProof to compose the two proofs:

10

groupDecideEq : (p:Group c) → {Γ:Vect n c} → {x : c} → {y : c}

→ (ExprG p Γ x) → (ExprG p Γ y) → Maybe (x ' y)

groupDecideEq p ex ey =

let (x’ ** (ex’, px)) = groupNormalise p ex in

let (y’ ** (ey’, py)) = groupNormalise p ey in

buildProofGroup p ex’ ey’ px py

It remains to define the function groupNormalise, which is an instance of
norm for groups:

groupNormalise : {c:Type} → {n:Nat} → (p:Group c) → {Γ:Vect n c}

→ {x:c} → (ExprG p Γ x) → (x’ ** (ExprG p Γ x’, x ' x’))

Each algebraic structure is equipped with a function for reducing reflected
terms to their normal form. The algebraic theories which concern us admit a
canonical representative6 for any element, a property which we use to decide
equalities. Without this property, it would be more complicated to decide equiva-
lence without brute-forcing a series of rewritings, that would have no termination
guarantee.

The normalisation function has more work to do for structures with many ax-
ioms (commutative-monoids, groups, commutative-groups, semi-rings and rings),
than for the simpler structures (semi-groups and monoids). In the next section,
we describe the normalisation process.

2.5 Normalisation functions

We describe the normal form for rings, which is our most sophisticated structure.
The input to the normalisation function is an expression with sums, products,
constants and variables belonging to an ordered set V of variables. In short,
the normalisation function takes in input a polynomial of multiple variables. As
output, it produces a normal form representing the same polynomial. Therefore,
we need a canonical representation of polynomials. There are several possibili-
ties, but we choose classical mathematical conventions: the polynomial will be
completely developed, i.e., the distributivity of ∗ over + will be applied until it
cannot be applied further. This is a simple but effective approach: the benefit
of simplicity is that we can directly produce a proof of equivalence between the
new and old concrete values during normalisation. Because the polynomial is
completely developed, at the toplevel, it is a sum:

P =

a∑
i=1

(

b∏
j=1

Monomialji) where Monomialji = Cj
i ∗

c∏
k=1

V arji,k

with Cj
i a constant, and V arji,k one of the variable that belong to V.

It may be surprising that the normal form is a sum of product of monomials,
and not directly a sum of monomials. This is because a monomial is a product of

6 It only holds for “pure” algebraic structures, ie, in the absence of additional axioms

11

a constant Cj
i (e.g. 5) and of a product of variables (e.g. x ∗ y ∗ z). For example,

5∗(x∗(y∗z)) is a monomial. Now let’s consider the term (5∗(x∗(y∗z)))∗(4∗(z∗z)).
This term is not a monomial, but we could be tempted to simplify it into the
monomial 20 ∗ (x ∗ (y ∗ (z ∗ (z ∗ z)))). However, that would assume that the
product is always commutative, which is not the case for every ring. Therefore,
after development, the polynomial is a sum of product of monomials, and not
directly a sum of monomials. The only rearrangement that can and needs to
be done towards the multiplication is to check if two constants are consecutive
in a product, and if so, to replace them by the constant that represents their
product.

However, because + is always commutative in a ring, the different products of
monomials themselves can be rearranged in different ways in this sum. This will
be done at the lower level for commutative groups if we can provide an ordering
on products of monomials. This ordering will be defined by using an ordering
on monomials, called isBefore mon, which looks at the order of variables for

comparing two monomials Monomialji and Monomialj
′

i′ .

Monomialji = Cj
i ∗(V ar

j
i,1∗

c∏
k=2

V arji,k) and Monomialj
′

i′ = Cj′

i′ ∗(V ar
j′

i′,1∗
c′∏

k=2

V arj
′

i′,k)

The order between these two monomials is decided by looking at the order

between the variables V arji,1 and V arj
′

i′,1. If both monomials start with the same
variable, we continue by inspecting the remaining variables. If one of the two
monomials has fewer variables, that one comes first.

We can now build the order on product of monomials, named isBefore.
Given two products of monomials Prodi and Prodi′ we need to decide which
one comes first. We will use the order isBefore mon on the first monomials of
these two products. If it says that Monomial1i comes before Monomial1i′ , then
we decide that Prodi comes before Prodi′ . Conversely, if Monomial1i′ comes
first, then Prodi′ comes first. However, if Monomial1i and Monomial1i′ have
exactly the same position in the order, then we continue by inspecting the re-
maining monomials recursively. As previously, if one of the two products has
fewer monomials than the other, then that one comes first.

Additionally, we use the following conventions when deciding on a normal
form:

– The top-level sum of the polynomial is in right-associative form:
prodMon1 + (prodMon2 + (prodMon3 + (... + prodMona)))

– All the products that we have (the products of monomials and the products
of variables), are written in right-associative form.

– We simplify as much as possible with constants. This includes simplifying
addition with zero and multiplication with the constants zero and one, doing
the computations between two nearby constants, etc. . .

– We simplify the sum of an expression e and its inverse −e to zero.

12

2.6 Reusing the provers

A novelty of our work is that instead of building a prover for a specific algebraic
structure, we have built a hierarchy of provers. Each prover reuses components of
the others so that the simplifications are not duplicated at different levels: nor-
malisation of each structure uses as much as possible the normalisation function
of the structure from which it inherits. For example, normalisation on monoids
reuses normalisation on semi-groups so that it does not have to deal with asso-
ciativity. In this case, the datatype reflecting terms in semi-groups has the same
expressive power as that for monoids, so a term in a monoid can be transformed
directly into a corresponding term of a semi-group. However, there is a difficulty
with groups and monoids: if normalisation for groups uses the normalisation for
monoids, we will have to encode negations somehow, which can’t be directly
expressed in a monoid. Therefore, we develop some specific encodings.

The idea is that we encode negations as variables, and let the monoid prover
consider them as ordinary variables. To achieve this, we use the following datatype
that helps us distinguish between a variable and the encoding of a negation:

data Variable : {c:Type} → {n:Nat} → (Vect n c) → c → Type where

RealVariable : (Γ:Vect n c) →
(i:Fin n) → Variable Γ (index i Γ)

EncodingNeg : (Γ:Vect n c) →
(i:Fin n) → Variable Γ (Neg (index i Γ))

We only need to encode negations of variables, as we can simplify the nega-
tion of a constant into a constant. Also, there cannot be a negation of something
different non-atomic (i.e. a term that is not a variable or a constant), because
normalisation of groups has systematically propagated Neg inside the parenthe-
ses, following simplification7 −(a+ b) = −b+−a.

All the constructors for variables now take a Variable as parameter, instead
of taking directly an element of (Fin n). That gives the following, for groups:

VarG : (p:Group c) → {Γ:Vect n c} → {val:c}

→ (Variable Γ val) → ExprG p Γ val

Thanks to this encoding, we can now transform an ExprG from the group
level to an ExprMo at the monoid level. A constant (ConstG p Γ c1) is trans-
formed into the corresponding constant (ConstMo Γ c1), a PlusG into the
corresponding PlusMo, a variable into the same variable, the negation of a con-
stant into the resulting constant, and finally the negation of a variable i into a
(VarMo (EncodingNeg Γ i)).

We use a similar technique for converting an expression from the ring level
to the commutative-group level, where we encode the product of monomials,
because the product is not defined at the commutative-group level. That enables
the function of normalisation for rings to benefit from the normalisation function
for commutative-groups.

7 Note that we have to be careful and not simplify it to (−a)+(−b) as it would assume
that + is commutative

13

2.7 Automatic reflection

We have built an automatic reflection mechanism which enables the machine to
build reflected terms. This is not essential to our approach, but it simplifies the
usage of the tactics by removing the need to write long encodings by hand. To
do so, we used Idris’ reflection mechanism, which enables pattern matching on
syntax, rather than on constructors. While we omit the full details due to space
constraints, reflecting values involves defining functions of the following form:

%reflection reflectGroup : (p : Group c) → (Γ : Vect n c) →
(x : c) → (Γ ′ ** ExprG p (Γ ++ Γ ′) x)

The %reflection annotation means that Idris treats this as a compile time
function on syntax. Given a value of type c, in some context Γ , it constructs
a reflected expression in an extended context Γ ++ Γ ′. The context contains
references to subexpressions which are not themselves representable by ExprG.

3 Related work

Coq’s ring solver [12], like ours, is implemented using proof-by-reflection tech-
niques, but without the guarantees obtained with our type-safe reflection mech-
anism, and without the correct-by-construction approach: first, they define the
normalisation of terms, then they prove correctness of the normalisation with
an external lemma: ∀ (e1 e2 : Expr), beqExpr (norm e1) (norm e2) = true →
reify e1 ' reify e2. This needs a reify function, which we do not need. Fur-
thermore, Coq’s prover deals with rings and semi-rings (commutative or not),
but not with any of the intermediate structures (semi-group, monoid, group, etc).
However, their implementation has better performances due to the use of sparse
normal form and more optimised algorithms. Our automatic reflection was writ-
ten with Idris reflection mechanism which allows pattern matching on syntax,
and their automatic reflection is programmed in Ltac [7], a proof dedicated and
untyped meta-language for the writing of automations. More recently, the Mtac
extension [18] provides a typed language for implementating proof automation.

As well as the ring solver, Coq also provides the Omega solver [6], which
solves a goal in Presburger arithmetic (i.e. a universally quantified formula made
of equations and inequations), and a field [9] decision procedure for real num-
bers, which plugs to Coq’s ring prover after simplification of the multiplicative
inverses. Agda’s reflection mechanism8 gives access to a representation of the
current goal (that is, the required type) at a particular point in a program. This
allows various proof automations to be done in Agda [14, 15].

Proofs by reflection has been intensively studied [5, 16], but without anything
similar to the type-safe reflection that we have presented here. If we leave the
ground of nice mathematical structures, one can decide to work with arbitrary

8 http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.

Reflection

14

rewriting rules, but in the general case there isn’t a complete decision proce-
dure for such systems, because there is usually no normal form. This is where
deduction modulo [10, 8] and proof search heuristics start.

4 Results, conclusions and future work

We have implemented a generic solution to the initial problem of index mismatch
(section 1.1) when using indexed types. This solution takes the form of a hierar-
chy of provers for equivalences in algebraic structures. These provers are generic
in several ways: they work for many algebraic structures (semi-group, monoid,
commutative monoid, group, commutative group, ring and semi-ring); for any
type that behaves as one of these structures; and, for any equivalence relation
on this type. The implementation is modular and each prover reuses the prover
of the structure from which it inherits. These provers can automatically prove
equivalences between terms, so the user need not prove obligations by hand,
like adc lemma 2. Thus, these provers enable the user to focus on the interest-
ing proofs that requires specific knowledge and creativity, instead of routine,
automatable, lemmas.

Our correct-by-construction method involved the design of a type-safe re-
flection mechanism where reflected terms are indexed over concrete inputs, and
from which we are able to extract proofs directly. Unlike Coq’s and Agda’s ring
provers, we do not have the duplication that arise when separating the computa-
tional content from the proof of correctness. Instead, construction of the proof is
done step by step, following the construction of the normalised terms. In addition
to avoiding redundancy, this simplifies the proof generation considerably. This
development shows that if dependent types effectively bring some new problems,
they are also very expressive tools for building correct-by-construction software
where the development is driven by the types.

This work can be extended to build new provers for less common algebraic
structures and for more specific structures. For example, regular expressions
form a “pre semi-ring” with some extra axioms. We will refactor the semi-ring
level with the creation of the intermediate structure of pre semi-ring, that will
not necessary have the property that 0 is an annihilator element for the product.
Then, we could build a specific prover for regular expressions, that would use
the normalisation function of the pre semi-ring level and that would only have
to deal with the specific properties of regular expressions : the neutral element
∅ for the concatenation of languages is also a neutral element for the product
of languages, the idempotence of the addition of languages, and the rules of
simplifications for the new Kleene star operation.

Acknowledgements We thank the anonymous reviewers and Jacques Carette
for their insightful comments on an earlier draft. We are also grateful for the
support of the Scottish Informatics and Computer Science Alliance (SICSA)
and EPSRC grant EP/N024222/1.

15

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

2. Brady, E.: Constructing Correct Circuits: Verification of Functional Aspects of
Hardware Specifications with Dependent Types. In: Trends in Functional Pro-
gramming (TFP’07) (2007)

3. Brady, E.: Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming 23, 552–593
(September 2013)

4. Carette, J., O’Connor, R.: Theory presentation combinators. In: International Con-
ference on Intelligent Computer Mathematics (CICM) 2012 (2012)

5. Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press (2013)

6. Crégut, P.: Une procédure de décision reflexive pour un fragment de l’arithmétique
de Presburger. In Journées Francophones des Langages Applicatifs. (2004)

7. Delahaye, D.: A proof dedicated meta-language. Electr. Notes Theor. Comput. Sci.
70(2), 96–109 (2002)

8. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon mod-
ulo: When achilles outruns the tortoise using deduction modulo. In: Logic for Pro-
gramming, Artificial Intelligence, and Reasoning - 19th International Conference,
LPAR-19. pp. 274–290 (2013)

9. Delahaye, D., Mayero, M.: Field, une procédure de décision pour les nombres
réels en Coq. In: Castéran, P. (ed.) Journées francophones des langages applicatifs
(JFLA’01). pp. 33–48. Collection Didactique, INRIA (2001)

10. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Rea-
soning 31(1), 33–72 (2003), http://dx.doi.org/10.1023/A:1027357912519

11. Farmer, W.M.: The formalization of syntax-based mathematical algorithms using
quotation and evaluation. In: International Conference on Intelligent Computer
Mathematics (CICM) 2013 (2013)

12. Gregoire, B., Mahboubi, A.: Proving Equalities in a Commutative Ring Done Right
in Coq. In: Theorem Proving in Higher Order Logics (TPHOLS 2005). pp. 98—-113
(2005)

13. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J., Hindley,
J. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism (1980)

14. Kokke, P., Swierstra, W.: Auto in Agda — programming proof search using reflec-
tion. In: Mathematics of Program Construction - 12th International Conference,
MPC 2015. pp. 276–301 (2015)

15. Lindblad, F., Benke, M.: A tool for automated theorem proving in agda. In: Pro-
ceedings of the 2004 International Conference on Types for Proofs and Programs.
pp. 154–169. TYPES’04, Springer-Verlag, Berlin, Heidelberg (2006)

16. Malecha, G., Chlipala, A., Braibant, T.: Compositional computational reflection.
In: Interactive Theorem Proving - 5th International Conference, ITP 2014. pp.
374–389 (2014)

17. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

18. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a
monad for typed tactic programming in coq. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP’13. pp. 87–100 (2013)

