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 ISHC Member 

Treatment of 2- and 3-thienyloxazolines with butyllithium and bis(trimethylsilyl) peroxide 

results in ring hydroxylation to give products which exist mainly as the 

oxazolidinylidenethiophenones. The 3-oxazolidinylidenethiophen-2-one is a rare example of a 

stable heterocyclic ortho-quinone methide analog which shows a varied pattern of reactivity, 

including both C- and O-alkylation, Michael addition via C-5 to an acetylenic ester, 

tetrachlorobenzannulation across positions 4 and 5, and formation of a hexacyclic fused-ring 

product with N-phenyltriazolinedione. Crystal structures of the products are dominated by inter- 

and intramolecular NH to CO hydrogen bonding. 

 

The existence of simple hydroxythiophenes primarily in non-aromatic thiophenone tautomeric 

forms is well known and was demonstrated for 2-hydroxythiophene when it was first prepared 

using IR and UV spectra as well as chemical properties.
1
 A short time later, the advent of NMR 

spectroscopy allowed quantification of the different tautomers for 2-hydroxythiophene and 

methylated derivatives.
2,3
 The main route to hydroxythiophenes in these early studies was 

oxidation of metallated thiophenes, either treatment of a Grignard reagent with oxygen gas,
1
 or 
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conversion of a thienyllithium into the corresponding boronic acid followed by reaction with 

H2O2.
2,3
 The 4,5-dihydrooxazole or 2-oxazoline is arguably the most important heterocyclic 

ortho-directing group,
4
 and particularly the readily available 4,4-dimethyl-2-oxazolin-2-yl group 

been used to direct ortho-lithiation and subsequent functionalization in a wide range of aromatic 

and heteroaromatic systems.
5
 Although the 2-thienyloxazoline 1 is well known

6–9
 and its 

lithiation and reaction with a range of electrophiles at positions 3 or 5 has been reported, these do 

not include reactions resulting in ring hydroxylation. The isomeric 3-thienyloxazoline 2 has only 

been mentioned in three papers,
10–12

 and its chemistry is limited to lithiation and reaction with 

three aromatic aldehydes.
 
In this paper we describe the lithiation and ring hydroxylation of both 

1 and 2 to give, in each case, a stable crystalline product which exists exclusively in a single 

oxazolidinylidenethiophenone tautomeric form as shown by NMR and X-ray diffraction. The 

latter product shows versatile chemical behavior resulting from the transposition of functional 

groups present, with appropriate reagents allowing reaction to be observed at any of the four 

thiophene carbon atoms.
 

 Based on literature precedent, lithiation of 2-thienyloxazoline 1 could result in 

functionalization either at position 3 or 5, and furthermore the chosen hydroxylating agent 

bis(trimethylsilyl) peroxide, which adds the readily hydrolyzed OTMS group to most aryllithium 

systems, instead results in exclusive addition of just TMS to 2-thienyllithium.
13
 In agreement 

with this pattern, treatment of 1 with butyllithium in THF followed by the peroxide gave mainly 

the 5-trimethylsilyl compound 3 but this was accompanied by a second minor product, separable 

by chromatography, which proved to be the thiophenone  tautomeric form 4 corresponding to the 

5-hydroxy-2-thienyloxazoline (Scheme 1). 
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SCHEME 1 

When the 3-thienyloxazoline 2 was subjected to the same reaction, the corresponding 2-

functionalized products 5 and 6 were formed but the ratio was now reversed with the more 

interesting thiophenone 6 isolated in moderate yield on a preparative scale. The existence of 

compounds 4 and 6 in solution as the thiophenone forms shown was clear from the 
13
C NMR 

data including signals for a ketone C=O (δ 196.0 for 4, 192.4 for 6) and highly polarized "push-

pull" thiophenone to oxazolidine C=C double bond (δ 161.6, 91.2 for 4, 164.1, 93.9 for 6). In 

addition, while compound 6 was well behaved in CDCl3, the isomer 4 was only soluble in 

CD3OD or CD3SOCD3 and gave very broad signals for the thiophenone part of the molecule in 

both 
1
H and 

13
C spectra. This indicated a dynamic process at work, perhaps related to hydrogen 

bonding, and since both compounds were crystalline, this was further probed by single crystal X-

ray diffraction (see Supporting Information). This confirmed that, in the solid state also, 4 and 6 

have the molecular structures shown in Scheme 1, and also gave clear evidence for hydrogen 

bonding as shown in Scheme 2, with 4 forming intermolecular NH to CO hydrogen bonded 

chains while 6 exists as pairs of molecules with both inter and intramolecular NH to CO 
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interactions. There are only very few previous X-ray structures of alkylidenethiophenones
14
 and, 

in the 3-alkylidenethiophen-2-one series of 6 for example, none of the three previous 

structures
15–17 

are of the aminoalkylidene type that would allow hydrogen bonding. 

 

SCHEME 2: Hydrogen bonding patterns in the crystal structures of 4 and 6 

Such hydrogen bonding interactions have been detected before by NMR methods in various 3-

aminoalkylidenethiophen-2-one systems,
18–20

 and theoretical studies to evaluate the relative 

energies of the various tautomeric forms have also been reported.
21–23

  

 Although there are various general routes to 3-alkylidenethiophen-2-ones,
24
 their 

chemistry has not been thoroughly investigated. This is surprising given that they are 

heterocyclic analogs of the o-quinone methides which have recently emerged as highly versatile 

and useful synthetic intermediates.
25–30

 The presence of an enamine function as in 6 raises the 

additional complication of different possible tautomeric forms and we were interested to examine 

whether, although 6 exists overwhelmingly as such both in solution and the solid state, it might 

react to give products formally derived from one or more of the alternative forms 6A, 6B and 6C 

(Scheme 3). 
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SCHEME 3 

Alkylation using methyl iodide in DMF in the presence of cesium carbonate gave two isomeric 

products in almost equal amount, which were separated chromatographically and characterized 

as 7 and 8. In contrast, reaction with dimethyl sulfate under comparable conditions gave 

exclusively the O-methyl product 8. Similar treatment of 6 with either benzyl mesylate or benzyl 

bromide gave only the O-benzyl product 9 in around 50% yield. Hard-soft principles are clearly 

directing the alkylation to give products corresponding to 6A and 6C. Although there are a few 

examples of 3-alkylidenethiophen-2-ones acting as dienes in the Diels Alder reaction,
24
 we are 

not aware of any examples where they act as the dienophile. Tetrachlorothiophene S,S-dioxide 

10, a readily available crystalline diene that reacts with a wide range of double bond types,
31
 was 

found to add readily to 6 with subsequent loss of SO2 to afford the tetrachlorobenzothiophenone 

11 in good yield (Scheme 4). 

 

Page 5 of 16

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



SCHEME 4 

The structure of this very high-melting solid was confirmed by X-ray diffraction (see Supporting 

Information), which also revealed a pattern of paired molecules with both inter- and 

intramolecular NH to CO hydrogen bonding, much as was observed with 6. 

 Yet another mode of reactivity was found with dimethyl acetylenedicarboxylate (DMAD) 

which reacted with 6 in methanol to afford the adduct 12 in moderate yield (Scheme 5). This 

apparently arises from attack of 6 as a vinylogous enamine to give the intermediate shown 

followed by proton transfer, and overall results in 5-functionalization corresponding to form 6B. 

A similar mode of reactivity resulting in Michael addition via C-5 was proposed to account for 

the unexpected dimerization of 3-aminoalkylidenethiophen-2-ones.
32 

 

SCHEME 5 

 Finally, compound 6 was found to react readily with N-phenyltriazolinedione 13 to give a 

colorless solid, shown by HRMS to have a formula corresponding to (2 × 6 + 2 × 13 – 2H) which 

was also supported by NMR. The structure and stereochemistry of 14 was only revealed by X-

ray diffraction of a crystal obtained by recrystallization from acetonitrile (see Supporting 

Information). In this case the crystal structure features chains of bifunctional molecules linked by 

the same type of strong inter- and intramolecular hydrogen bonding already seen for 6 and 11. 

Page 6 of 16

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



We believe this reaction involves initial interaction of 6 and 13  to form a sulfonium imide 

(Scheme 6) which then dimerizes to form an eight-membered ring. Transannular 

dehydrogenation of the dimer by a further molecule of 13 with loss of the two S–CH–N 

hydrogens gives the hexacyclic core of 14. Because of the symmetry involved there are six 

possible stereoisomers of 14 arising from the four stereogenic centres but simple MM2 

calculations show that the observed isomer is predicted to be by far the most thermodynamically 

stable. Further studies on the reactivity of this remarkable compound are now in progress. 

 

SCHEME 6 

 

Experimental Section 

 General Experimental Details: 
1
H and 

13
C NMR spectra were recorded in CDCl3 unless 

otherwise stated with internal TMS as reference. IR spectra were recorded using the ATR 

Page 7 of 16

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



technique. HRMS measurements were made either using ES or ASAP ionization both with TOF 

analyzer, or NSI with an ion trap analyzer. 

 Bis(trimethylsilyl)peroxide,
13
 benzyl methanesulfonate,

32
 4-phenyl-1,2,4-triazoline-3,5-

dione,
33
 and tetrachlorothiophene S,S-dioxide

31
 were prepared by published methods. Thiophene-

3-carboxylic acid was prepared by Ag2O oxidation of thiophene-3-carbaldehyde.
34
 4,4-Dimethyl-

2-(2-thienyl)-4,5-dihydrooxazole (1)
9
 and 4,4-dimethyl-2-(3-thienyl)-4,5-dihydrooxazole (2)

11
 

were prepared by literature methods. 

 (E)-5-(4,4-Dimethyloxazolidin-2-ylidene)thiophen-2(5H)-one (4): Under a nitrogen 

atmosphere, a 2.5 M solution of n-butyllithium in hexanes (2.9 mL, 7.25 mmol) was added 

dropwise to a solution of oxazoline 1 (1.18 g, 6.51 mmol) in dry THF (30 mL) stirred at –78°C. 

After stirring at –78 °C for 1 h, bis(trimethylsilyl) peroxide (1.36 g, 7.62 mmol) was added and 

the reaction mixture was allowed to warm to rt over 18 h. The resultant solution was poured into 

saturated aq. NH4Cl (50 mL) and extracted with Et2O (3 × 50 mL). The combined organic layers 

were dried and evaporated. Purification by column chromatography (SiO2, gradient elution, Et2O 

to 9:1 EtOAc:MeOH) gave first a 3:2 mixture of 4,4-dimethyl-2-(5-trimethylsilyl-2-thienyl)-

4,5-dihydrooxazole (3) and unreacted starting material (1.01 g) as an orange gum. Re-

chromatography of this (SiO2, Et2O/hexane 3:7) gave at Rf 0.60 pure 3 as pale yellow crystals, 

mp 65–68 °C (0.65 g, 39%); IR 1645 cm
–1
; 
1
H NMR (500 MHz) δ 7.61 (d, J = 3.5 Hz, 1H), 7.17 

(d, J = 3.5 Hz, 1H), 4.07 (s, 2H), 1.36 (s, 6H), 0.32 (s, 9H); 
13
C NMR (125 MHz) δ 157.4 (C), 

145.4 (C), 134.9 (C), 133.7 (CH), 130.6 (CH), 79.0 (CH2), 67.5 (C), 28.0 (CH3), –0.6 (CH3); 

HRMS (NSI
+
) m/z: [M+H

+
] Calcd for C12H20NOSSi 254.1029; Found 254.1030. 

This was followed by a second fraction which was recrystallized (PhMe) to give the title product 

(0.17 g, 13%) as brown crystals, mp 168–172 °C (dec.); IR 2978, 1622 cm
–1
; 

1
H NMR (500 
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MHz) δ (CD3OD) 7.77 (d, J = 5.0 Hz, 1H), 5.73 (br s, 1H), 4.42 (s, 2H), 1.44 (s, 6H); 
13
C NMR 

(125 MHz) δ (CD3OD) 196.0 (C), 161.6 (C), 144.2 (br s, CH), 112.2 (br s, CH), 91.2 (C), 82.2 

(CH2), 61.2 (C), 26.6 (CH3); HRMS (NSI
+
) m/z: [M+H

+
] Calcd for C9H12NO2S 198.0583; Found 

198.0580. Slow evaporation of a methanol solution gave crystals suitable for X-ray structure 

determination (CCDC No. 1481946) 

(E)-3-(4,4-Dimethyloxazolidin-2-ylidene)thiophen-2(3H)-one (6): (small scale reaction) Under 

a nitrogen atmosphere, a 2.5 M solution of n-butyllithium in hexanes (0.40 mL, 1.0 mmol) was 

added to a solution of oxazoline 2 (0.181 g, 1.0 mmol) in dry THF (10 cm
3
) stirred at –78 °C. 

After stirring at –78 °C for 1 h, bis(trimethylsilyl) peroxide (0.222 g, 1.24 mmol) was added and 

the reaction mixture was allowed to warm to rt over 18 h. The mixture was poured into saturated 

aq. NH4Cl (20 mL) and extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were 

dried and evaporated and the residue was purified by preparative TLC (SiO2, Et2O/hexane 4:1) to 

give at Rf 0.90: 

4,4-Dimethyl-2-(2-trimethylsilyl-3-thienyl)-4,5-dihydrooxazole (5) as a pale yellow oil (30.6 

mg, 12%); IR 1717, 1643 cm
–1
; 
1
H NMR (500 MHz) δ 7.63 (d, J = 5.0 Hz, 1H), 7.47 (d, J = 5.0 

Hz, 1H), 4.05 (s, 2H), 1.37 (s, 6H), 0.37 (s, 9H); 
13
C NMR (125 MHz) δ 159.4 (C), 144.0 (C), 

135.8 (C), 130.6 (CH), 129.5 (CH), 78.7 (CH2), 67.5 (C), 28.4 (CH3), 0.2 (CH3); m/z (ES
+
) 

254.10 (M+H
+
, 100%). HRMS (ES

+
) m/z: [M+H

+
] Calcd for C12H20NOSSi 254.1029; Found 

254.1021. 

and at Rf 0.35: 

the title compound 6 (28.2 mg, 14%) as orange crystals, mp 193–197 °C (dec.); IR 3248, 1622 

cm
–1
; 
1
H NMR (400 MHz) δ 6.57 (d, J = 6.8 Hz, 1H), 6.05 (d, J = 6.8 Hz, 1H), 4.31 (s, 2H), 1.49 

(s, 6H); 
13
C NMR (100 MHz) 192.4 (C), 164.1 (C), 118.2 (CH), 108.1 (CH), 93.9 (C), 80.1 

Page 9 of 16

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(CH2), 59.3 (C), 27.1 (CH3); m/z 614.14 (3M+Na
+
, 4%), 417.09 (2M+Na

+
, 41%), 220.04 

(M+Na
+
, 100%) and 198.06 (M+H

+
, 15%). HRMS (ES

+
) m/z: [M+Na

+
] Calcd for C9H11NNaO2S 

220.0403; Found 220.0395. 

(E)-3-(4,4-Dimethyloxazolidin-2-ylidene)thiophen-2(3H)-one (6): (larger scale reaction) A 2.5 

M solution of n-butyllithium in hexanes (11.0 mL, 27.5 mmol) was added dropwise to a solution 

of oxazoline 2 (4.53 g, 25.0 mmol) in dry THF (125 mL) stirred at –78 °C. After stirring at –78 

°C for 5 min, the reaction mixture was allowed to warm to rt over 1 h then bis(trimethylsilyl) 

peroxide (5.35 g, 30.0 mmol) was added. After stirring at rt for 18 h, the reaction mixture was 

poured into saturated aq NH4Cl (250 mL) and extracted with CH2Cl2 (3 × 100 mL). The 

combined organic layers were dried and evaporated. Recrystallization (EtOAc-hexane) gave the 

title compound (2.13 g, 43%) as orange crystals suitable for X-ray structure determination 

(CCDC No. 1481945) 

Reaction of 6 with MeI 

Methyl iodide (70 µL, 0.160 g, 1.12 mmol) was added to a stirred mixture of thiophenone 6 

(0.197 g, 1.0mmol) and cesium carbonate (0.98 g, 3.01 mmol) in DMF (10 mL). The reaction 

mixture was stirred at rt for 18 h before being poured into water (100 mL) and extracted with 

CH2Cl2 (50 mL) and Et2O (3 × 50 mL). The combined organic layers were washed with brine 

(×5) before being dried and evaporated. Filtration through a silica plug (Et2O) followed by 

purification using preparative TLC (SiO2, EtOAc/hexane 1:1) gave at Rf 0.50: 

3-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-3-methylthiophen-2(3H)-one (7) as a yellow oil (9.8 

mg, 5%); IR 1736, 1684 cm
–1
; 
1
H NMR (400 MHz) δ 6.70 (d, J = 7.6 Hz, 1H), 5.95 (d, J = 7.6 

Hz, 1H), 3.96 and 3.95 (AB pattern, J = 8.4 Hz, 2H), 1.57 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H); 
13
C 

NMR (125 MHz) δ 204.9 (C), 162.2 (C), 127.9 (CH), 123.5 (CH), 79.7 (CH2), 67.2 (C), 59.2 
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(C), 28.2 (CH3), 28.1 (CH3), 20.9 (CH3); HRMS (NSI
+
) m/z: [M+H

+
] Calcd for C10H14NO2S 

212.0740; Found 212.0740. 

and at Rf 0.40: 

2-(2-Methoxy-3-thienyl)-4,4-dimethyl-4,5-dihydrooxazole (8) (17.5 mg, 8%) as a light brown 

solid, mp 105–108 °C; IR 1649 cm
–1
; 
1
H NMR (400 MHz) δ 7.17 (d, J = 6.0 Hz, 1H), 6.53 (d, J 

= 6.0 Hz, 1H), 4.04 (s, 3H), 4.03 (s, 2H), 1.36 (s, 6H); 
13
C NMR (125 MHz) δ 167.9 (C), 158.0 

(C), 126.9 (CH), 110.0 (CH), 108.3 (C), 78.5 (CH2), 66.9 (C), 62.1 (CH3), 28.4 (CH3); HRMS 

(ASAP
+
) m/z: [M+H

+
] Calcd for C10H14NO2S 212.0740; Found 212.0739. 

Reaction of 6 with Me2SO4 

Dimethyl sulfate (0.10 cm
3
, 0.133 g, 1.06 mmol) was added to a stirred mixture of thiophenone 6 

(0.197 g, 1.00 mmol) and cesium carbonate (0.98 g, 3.01 mmol) in DMF (10 mL). The reaction 

mixture was stirred at rt for 18 h before being poured into water (100 mL) and extracted with 

CH2Cl2 (30 mL) and Et2O (3 × 30 mL). The combined organic layers were washed with brine 

(×5), before being dried and evaporated. Filtration through a silica plug (EtOAc) gave 8 (66 mg, 

31%) as a brown solid; spectroscopic data as above. 

2-(2-Benzyloxy-3-thienyl)-4,4-dimethyl-4,5-dihydrooxazole (9): (with PhCH2OMs) Benzyl 

methanesulfonate (0.77 g, 4.13 mmol) was added to a stirred mixture of thiophenone 6 (0.80 g, 

4.06 mmol) and cesium carbonate (4.02 g, 12.3 mmol) in DMF (40 mL). The reaction mixture 

was stirred at rt for 3 d before being poured into water (150 mL) and extracted with CH2Cl2 (50 

mL) and Et2O (3 × 50 mL). The combined organic layers were washed with brine (×5) before 

being dried and evaporated. The crude residue was purified by column chromatography (SiO2, 

Et2O/hexane, 3:2) to give the title compound (0.62 g, 53%) as an orange oil; IR (ATR) 1636 cm
–

1
; 
1
H NMR (500 MHz) δ 7.47–7.45 (m, 2H), 7.39–7.32 (m, 3H), 7.15 (d, J = 6.0 Hz, 1H), 6.55 
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(d, J = 6.0 Hz, 1H), 5.23 (s, 2H), 4.05 (s, 2H), 1.36 (s, 6H); 
13
C NMR (125 MHz) δ 166.1 (C), 

158.1 (C), 135.6 (C), 128.5 (2CH), 128.4 (CH), 127.8 (2CH), 126.4 (CH), 112.0 (CH), 111.2 

(C), 78.7 (CH2), 77.5 (CH2), 66.8 (C), 28.5 (CH3); HRMS (NSI
+
) m/z: [M+H

+
] Calcd for 

C16H18NO2S 288.1053; Found 288.1051. 

2-(2-Benzyloxy-3-thienyl)-4,4-dimethyl-4,5-dihydrooxazole (9): (with PhCH2Br) Benzyl 

bromide (120 µL, 0.173 g, 1.01 mmol) was added to a stirred mixture of thiophenone 6 (0.197 g, 

1.0 mmol) and cesium carbonate (0.98 g, 3.01 mmol) in DMF (10 mL). The reaction mixture 

was stirred at rt for 3 d before being worked up as above to give the title compound (0.142 g, 

49%) as an orange oil; spectroscopic data as above. 

 (E)-4,5,6,7-Tetrachloro-3-(4,4-dimethyloxazolidin-2-ylidene)-3a,7a-

dihydrobenzo[b]thiophen-2(3H)-one (11): Tetrachlorothiophene S,S-dioxide (10; 0.254 g, 1.00 

mmol) was added to a stirred solution of thiophenone 6 (0.198 g, 1.00 mmol) in CH2Cl2 (10 mL) 

and the reaction mixture was stirred at rt for 18 h. The precipitate was collected by filtration and 

washed with CH2Cl2 to give the title product (0.29 g, 75%) as a colourless solid, mp 307–310 °C 

(dec.); IR 3267, 1643 cm
–1
; 
1
H NMR (700 MHz) δ (CD3SOCD3) 9.04 (s, 1H), 5.13 (d, J = 8.4 

Hz, 1H), 4.49 (d, J = 8.4 Hz, 1H), 4.21 (s, 2H), 1.35 (s, 3H) and 1.31 (s, 3H); 
13
C NMR (175 

MHz) δ (CD3SOCD3) 185.8 (C), 162.3 (C), 135.8 (C), 127.7 (C), 124.7 (C), 121.9 (C), 80.8 (C), 

78.9 (CH2), 59.3 (C), 51.9 (CH), 46.2 (CH), 25.9 (CH3), 25.7 (CH3); HRMS (NSI
+
) m/z: 

[M+Na
+
] Calcd for C13H11

35
Cl4NO2SNa 407.9157; Found 407.9157. Recrystallization (EtOH-

MeCN) of a small sample gave crystals which were suitable for X-ray structure determination 

(CCDC No. 1481947). 

Dimethyl 2-((E)-4-(4,4-dimethyloxazolidin-2-ylidene)-5-oxo-4,5-dihydrothiophen-2-

yl)maleate (12): A mixture of dimethyl acetylenedicarboxylate (130 µL, 150 mg, 1.06 mmol) 
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and thiophenone 6 (198 mg, 1.01 mmol) in methanol (10 mL) was heated at reflux for 2 days. 

The reaction mixture was evaporated and the residue was purified by repeated column 

chromatography (gradient elution, 9:1 Et2O:hexane to EtOAc) to give the title product (144 mg, 

42%) as  yellow crystals, mp 145–147 °C (dec.); IR 3221, 1719, 1632 cm
–1
; 
1
H NMR (500 MHz) 

δ 9.42 (br s, 1H), 6.82 (s, 1H), 5.67 (s, 1H), 4.36 (s, 2H), 3.95 (s, 3H), 3.73 (s, 3H), 1.52 (s, 6H); 

13
C NMR (125 MHz) δ 189.8 (C), 167.5 (C), 166.0 (C), 164.2 (C), 144.1 (C), 125.6 (CH), 118.8 

(C), 110.5 (CH), 97.2 (C), 80.5 (CH2), 60.0 (C), 52.9 (CH3), 51.7 (CH3), 27.1 (CH3); HRMS 

(NSI
+
) m/z: [M+H

+
] Calcd for C15H18NO6S 340.0849; Found 340.0851. 

The acyclic trisubstituted double bond geometry was determined to be (E) by the EXSIDE-

HSQC technique which gave values of 
3
JCH = 14 Hz for MeO2C–CH=C(CO2Me)CS and 

3
JCH = 7 

Hz for MeO2C–CH=C(CO2Me)CS. 

(1E,3aS*,8aR*,9E,11aS*,16aR*)-1,9-Bis(4,4-dimethyloxazolidin-2-ylidene)-6,14-

diphenyltetrahydro-2H,5H,10H,13H-

thieno[2'',3'':4',5'][1,2,4]triazolo[1'',2'':1',2']pyrazolo[4',3':3,4]thieno[2',3':4,5]pyrazolo[1,2

-a][1,2,4]triazole-2,5,7,10,13,15(6H,14H)-hexaone (14): To a stirred solution of thiophenone 6 

(98.5 mg, 0.50 mmol) in dichloromethane (5 mL) was added 4-phenyl-1,2,4-triazoline-3,5-dione 

(13; 87.4 mg, 0.50 mmol). The reaction mixture was stirred at rt for 24 h then the precipitated 

solid was collected by filtration and washed with Et2O and CH2Cl2 to give the title product (76.0 

mg, 62%) as a colourless solid, mp 237–240 °C (dec.); IR 3298, 1713, 1634, cm
–1
; 
1
H NMR (500 

MHz) δ (CD3COCD3) 7.57–7.55 (m, 4H), 7.52–7.48 (m, 4H), 7.42–7.39 (m, 2H), 6.59 (s, 2H), 

4.51 (s, 4H), 1.57 (s, 12H); 
13
C NMR (125 MHz) δ (CD3COCD3) 187.9 (C), 164.4 (C), 153.4 

(C), 152.0 (C), 132.9 (C), 129.6 (4CH), 128.7 (2CH), 126.8 (4CH), 117.4 (C), 115.5 (CH), 92.0 

(C), 81.1 (CH2), 60.8 (C), 26.6 (CH3); HRMS (NSI
+
) m/z: [M+H

+
] Calcd for C34H31N8O8S2 
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743.1701; Found 743.1717. Recrystallization (MeCN) of a small sample gave colourless crystals 

from which the structure and stereochemistry was determined by X-ray crystallography (CCDC 

No. 1481948). 
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