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Abstract— A quadrotors is a type of Unmanned Aerial Vehicles 

(UAV) systems that attract the researchers in the control field 

since it’s a highly nonlinear, underactuated system.  In this 

paper, a non-linear dynamic model based on quaternions is 

developed.  Differential flatness is an approach that enables the 

optimization to occur within the output space and therefore 

simplifies the problem of the trajectory tracking.  The aim of this 

work is to create a Differential flatness-quaternion approach that 

enables the quadrotors to follow a desired path.   The trajectory 

tracking is assured by a double loop control structure based on 

the LQR controller.      

Keywords—quadrotors; trajectory tracking; LQR; differential 

flatness; quaternions. 

II.  INTRODUCTION  

Nowadays quadrotors have a growing interest from 

researchers comparing to the other types of Unmanned Aerial 

Vehicles (UAV) due to their several applications in both 

military and civil fields.  

     Many works have been published on control issues but the 

most recent converge over the modeling with quaternions 

instead of  Euler angles to overcome the discontinuities, many 

control laws have been applied such as PID controllers, linear 

quadratic LQR algorithm, feedback linearization, and 

backstepping [1–5]. Some of the above cited works are limited 

in the attitude stability where other papers such as [6,8,10] 

treated the trajectory generation and tracking using the 

differential flatness approach.  

      In this work we introduce a new concept of the trajectory 

tracking problem by using a differential flatness–quaternion 

based approach. In order to follow the desired bath and assure 

the attitude stability a double loop control structure with the 

LQR control law is used. 

    This article is organized as follow: Section II gives a brief 

background over quaternion algebra and the dynamic 

modeling of quadrotors using quaternions, a linear model is 

than derived to be later used. Section III introduces the 

Differential flatness method and its application to the 

quadrotors model. Section IV develops the LQR control law. 

Section V shows and discusses the simulation results. Finally 

in Section VI the conclusion as well as the future 

recommendations is given.        

    

III.       QUATERNION MODELING 

A. Quaternions Background 

A quaternion, which belong to the quaternion space ℍ, is a 

hyper complex number of rank 4, which can be represented in 

many ways, but the one presented here is as a sum of a scalar 

component along an imaginary vector:[11] 

 

𝑞 ∈  ℍ; �̅�  ∈  ℝ3; 𝑞0  ∈  ℝ 

𝑞 =  𝑞0 + �̅� =  𝑞0 + [

𝑞1

𝑞2

𝑞3

]                                                          (1) 

 

Where 𝑞 is a given quaternion, �̅� is the complex vectorial part 

and 𝑞0 is the scalar part of 𝑞. 

The main operation in quaternion algebra is the quaternion 

product, which is defined as: [11] 

 

𝑟 ∈  ℍ; �̅�  ∈  ℝ3; 𝑟0  ∈  ℝ 
𝑞 ⊗ 𝑟 = (𝑞0𝑟0 − �̅�. �̅�) + (𝑟0�̅� + 𝑞0�̅�  + �̅�  × �̅�)                    (2) 

 

The quaternion conjugate 𝑞∗ is defined as:  𝑞∗ = 𝑞0 − �̅� . 
The quaternion norm, ‖𝑞‖ ∈ ℝ , is defined as: 

 

‖𝑞‖ =  √𝑞 ⊗ 𝑞∗ =  √𝑞0
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2                       (3) 

 

The quaternion inverse is obtained from 𝑞−1 =  
𝑞∗

‖𝑞‖
  this work, 

only unit quaternions are used for the attitude representation, 

thus, 𝑞−1 = 𝑞∗. [11] 

The three-dimensional rotation of any vector is given as a 

quaternion multiplication on the left by the unit quaternion q 

and on the right by its conjugate 𝑞∗. This mathematical 

operation can be rewritten as a multiplication of the matrix 𝑅𝑞 

and the abovementioned vector. Because we are rotating a 

vector, only the vector part from the rotation matrix is 

extracted, as can be seen in Eq. (4), where 𝑞13× stands for a 

skew-symmetric matrix. The rotation matrix 𝑅𝑞 is orthogonal; 

therefore the expression 𝑅𝑞
−1 = 𝑅𝑞

𝑇   is true. [3] 
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𝑅𝑞 = (𝑞0𝐼 + 𝑞13×)2 + �̅��̅�𝑇 

      =  (𝑞0
2 − �̅�𝑇�̅�) 𝐼 + 2𝑞0𝑞13× +  2�̅��̅�𝑇  

=  [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞3𝑞0) 2(𝑞1𝑞3 + 𝑞2𝑞0)

2(𝑞1𝑞2 + 𝑞3𝑞0) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞1𝑞0)

2(𝑞1𝑞3 − 𝑞2𝑞0) 2(𝑞2𝑞3 + 𝑞1𝑞0) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

]        (4)      

 

The rotation can also be represented using a rotation vector as 

denoted in Eq. (5), where u is the rotation axis (unit vector) 

and α is the angle of rotation. Using this notation can have 

many benefits when creating an error or specifying a reference 

as it has a direct physical connection. [3] 

𝑞 =  cos
𝛼

2
+  𝑢 sin

𝛼

2
                                                                    (5) 

The derivative of a quaternion is given by the quaternion 

multiplication of the quaternion 𝑞 and the angular velocity of 

the system 𝜔, which in this case is the quadrotor. [3] 

�̇� =  
1

2
𝑞 ⊗ 𝜔                                                                                  (6) 

Finally, for representing quaternion rotations in a more 

intuitive manner, the conversion from Euler angles to 

quaternion and from quaternion to Euler angle can be 

performed by utilizing the following two equations 

respectively. This property is very useful in case that the aim 

is to represent an orientation in angles, while retaining the 

overall dynamics of the system in a quaternion form. [4] 

𝑞 =  

[
 
 
 
 
 
 
 cos

𝜑

2
cos

𝜃

2
cos

𝜓

2
+ sin

𝜑

2
sin

𝜃

2
sin

𝜓

2

sin
𝜑

2
cos

𝜃

2
cos

𝜓

2
− cos

𝜑

2
sin

𝜃

2
sin

𝜓

2

cos
𝜑

2
sin

𝜃

2
cos

𝜓

2
+ sin

𝜑

2
cos

𝜃

2
sin

𝜓

2

cos
𝜑

2
cos

𝜃

2
sin

𝜓

2
− sin

𝜑

2
sin

𝜃

2
cos

𝜓

2]
 
 
 
 
 
 
 

 

 

[

𝜑
𝜃
𝜓

] =  [

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞1 − 𝑞2𝑞3), 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2) 

asin (2(𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞3 + 𝑞1𝑞2), 𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2)

]           (7) 

 

B. Dynamic System Model 

The quadrotor is an under-actuated system with 4 control 

inputs and 6 degrees of freedom. 

The approach used more than any other to create a 

mathematical model of a wide variety of systems is to use the 

Newton–Euler formulation. It is based on the balance of forces 

and torques. An alternative energy-based approach is using 

Euler–Lagrange equations. 

In this article the Newton–Euler equations will be derived, 

while assuming that the quadrotor is a rigid body and the 

centre of gravity coincides with the body-fixed frame origin. 

The dynamic model of a quadrotor using Newton-Euler 

equations with quaternions is described as follows: [11] 

 

�̇� =  
𝑑

𝑑𝑡
[

𝑝
�̇�
𝑞
𝜔

] =  

[
 
 
 
 
 

�̇�

𝑞 ⊗
𝑇

𝑚
⊗ 𝑞∗ + �̅�

1

2
𝑞 ⊗ 𝜔

𝐽−1(𝜏 −  𝜔 × 𝐽𝜔)]
 
 
 
 
 

                                          (8) 

 Where 𝑝 ∈  ℝ3
 and �̇�  ∈  ℝ3

 are the position and velocity 

vectors with respect to the inertial frame, 𝑇 defines the thrust 

vector generated by the quadrotor motors, 𝑚 and �̅� represent 

the vehicle’s mass and gravity vector, respectively, 𝑞 

describes the quaternion that represents the vehicle orientation 

with respect to the inertial frame, 𝐽 introduces the inertia 

matrix with respect to the body-fixed frame and                   

𝜏 =  𝜏𝑢 + 𝜏𝑒𝑥𝑡  , where 𝜏𝑢 and 𝜏𝑒𝑥𝑡  are the input and external 

torques respectively, applied on the aerial vehicle in the body-

fixed frame. [11] 

 

 

Fig. 1. Inertial and body-fixed frame of the quadrotor 

The relationships between the input torques and forces is: 

[

𝑇 

𝜏𝑢𝑥

𝜏𝑢𝑦

𝜏𝑢𝑧

] =  

[
 
 
 
 
 
 
 

∑𝑘𝑖𝜔𝑖
2

4

𝑖=1

 

𝑙(𝑘1𝜔1
2 − 𝑘2𝜔2

2 − 𝑘3𝜔3
2 + 𝑘4𝜔4

2)

𝑙(𝑘1𝜔1
2 + 𝑘2𝜔2

2 − 𝑘3𝜔3
2 − 𝑘4𝜔4

2)

∑ 𝜏𝑖(−1)2

4

𝑖=1 ]
 
 
 
 
 
 
 

               (9) 

 

Where 𝑘𝑖𝜔𝑖
2defines the thrust of the propeller of motor 𝑖 with 

respect to its angular velocity 𝜔𝑖, 𝑙 is the distance from the 

center of mass to the motor axis of action and 𝜏𝑖  denotes the 

torque of motor 𝑖. [11] 

The selected operating point is such the quadrotors is in 

hover, where : �̇�  = [0,0,0]𝑇 , 𝜔 = [0,0,0]𝑇 and                    

𝑞 = [1,0,0,0]𝑇  .Thus the dynamic equations can be linearized 

as follow:  

 

 

 



𝐽�̇� =  𝜏 

 

�̇� =  
1

2
[
0
𝜔

] 

 

𝑚�̈� =  [
𝑚𝑔(2𝑞0𝑞2)

−𝑚𝑔(2𝑞0𝑞2)
𝑇

] − [
0
0

𝑚𝑔
] =   [

𝑚𝑔(𝑢𝑥)
−𝑚𝑔(𝑢𝑦)

𝑇

] − [
0
0

𝑚𝑔
]           (10) 

 

IV. DIFFERENTIAL FLATNESS 

A system defined by the equation: 

�̇�(𝑡) =  𝑓(𝑥(𝑡), 𝑢(𝑡)) 

𝑦 = ℎ(𝑥(𝑡))                                                                                  (11) 

 

Where 𝑥(𝑡) is the state and 𝑢(𝑡) is the controller, is flat if 

there exists a vector (𝑥(𝑡), 𝑢(𝑡), 𝑢(1)(𝑡), 𝑢(2)(𝑡), ….  , 𝑢(𝛿)(𝑡)) , 

where the components are differentially independent, such 

that: 

𝑥(𝑡) =  𝛯1(𝑧(𝑡), 𝑧
(1)(𝑡), 𝑧(2)(𝑡), ….  , 𝑧(𝛼)(𝑡)) 

𝑢(𝑡) =  𝛯2 (𝑧(𝑡), 𝑧(1)(𝑡), 𝑧(2)(𝑡), ….  , 𝑧(𝛽)(𝑡))                        (12) 

where 𝛼, 𝛽 and 𝛿 are finite integers. Notations 𝛯1 and 𝛯2 

represent two smooth maps, 𝑧(𝑖)(𝑡) is the 𝑖𝑡ℎ derivative of 𝑧(𝑡). 

The vector 𝑧(𝑡) in the foregoing definition is called the flat 

output of the system. 

By introducing the functions of  𝛯1 and 𝛯2, the flat output is 

composed by the variables which permit to parameterize all 

the other variables of the system. 

Quadrotors have been shown to be a differentially at system 

with 4 at outputs. These at outputs are the inertial position of 

the vehicle, x, y, and z, and the yaw angle 𝜓. All of the 

quadrotor states can be written as a function of these four at 

outputs and the at output derivatives. These states include the 

position, velocity, and acceleration of the vehicle's center of 

mass, as well as the orientation, rotational velocity, and 

rotational acceleration of the vehicle. [12] 

 

𝒳 = [

𝑥
𝑦
𝑧
𝜓

]                                                                                      (13)  

 

The mapping from the at outputs to the position, velocity, and 

acceleration of the quadrotors center of mass expressed in the 

inertial coordinate frame is trivial, as shown in Eq. (14). 

[𝑥, 𝑦, 𝑧]𝑇 = [𝒳1 , 𝒳2 , 𝒳3]
𝑇 

[�̇�, �̇�, �̇�]𝑇 = [�̇�1 , �̇�2 , �̇�3]
𝑇                                                        (14) 

By manipulation of the equation of motion, the state vector 

and input vector can be expressed as a function of the output 

vector. [6] 

 

𝜃𝑑 = arctan (
𝒳1̈ cos(𝒳4) + 𝒳2

̈ sin (𝒳4)

𝒳3
̈ + 𝑔

) 

 

𝜑𝑑 = arctan (
𝒳1

̈ cos(𝒳4) − 𝒳2
̈ sin(𝒳4)

𝒳3
̈ + 𝑔

. cos (arctan (
𝒳1

̈ cos(𝒳4) + 𝒳2
̈ sin(𝒳4)

𝒳3
̈ + 𝑔

))) 

 

𝜃�̇� = [arctan (
𝒳1̈ cos(𝒳4) + 𝒳2

̈ sin (𝒳4)

𝒳3
̈ + 𝑔

)]

(1)

 

 

𝜑�̇� = [arctan (
𝒳1

̈ cos(𝒳4) − 𝒳2
̈ sin(𝒳4)

𝒳3
̈ + 𝑔

. cos (arctan (
𝒳1

̈ cos(𝒳4) + 𝒳2
̈ sin(𝒳4)

𝒳3
̈ + 𝑔

)))]

(1)

              (15)  

 

Eq. (15).imply that the state 𝑥𝑖  can be parameterized by 

variable 𝒳𝑖  and its derivatives.  Additionally, according to Eq. 

(9).the control input 𝑢(𝑡) is in terms of 𝑧(𝑡), �̇�(t), 𝜔  and �̇�. 

Therefore, the variable 𝒳 is the flat output of system. The 

double loop control structure used in this work is shown in 

Fig.2.  

            

 

Fig. 2. Quadrotors double loop control structure 

III. CONTROLLER DESIGN 

Once the linearized model of the quadrotors in hover is 

derived given by Eq. (10), it can be written in the form of a 

state space system. The general formula of the state space 

representation is given by the following equation. 

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

                                                                                 (16) 

The state space model of the simplified quadrotors attitude and 

position is given by Eqs. (17) and (18), respectively. The 

attitude state vector is 𝑥𝐴  = [�̅�  𝜔] and the position state 

vector is 𝑥𝑃  = [𝑝  �̇�]. [3] 

𝑥�̇� = [
03×3 0.5𝐼3×3

03×3 03×3
] 𝑥𝐴  +  [

03×3

𝐼𝑞
−1 ] [

 

𝜏𝑢𝑥

𝜏𝑢𝑦

𝜏𝑢𝑧

]                          (17) 

𝑥�̇� = [
03×3 𝐼3×3

03×3 03×3
] 𝑥𝑃 + 

[
 
 
 
 

03×3

𝑔 0 0
0 −𝑔 0

0 0
1

𝑚]
 
 
 
 

[

𝑢𝑥𝑑

𝑢𝑦𝑑

𝑇𝑑

]               (18) 

   
The trajectory tracking controller consists of two parts, namely 

the position and the altitude controller. 

The outer trajectory tracking controller is comprised of the 

altitude and the position controller as depicted in .Fig. 3. The 

output of the altitude controller is the desired total thrust Td. 

The position controller generates the desired position 

quaternion value 𝑞𝑝𝑑   for the attitude controller. Note that the 



position quaternion will always have the 4th element equal to 

zero. [3] 

𝑞𝑝𝑑  = [𝑞0𝑝𝑑, 𝑞1𝑝𝑑, 𝑞2𝑝𝑑 , 0]𝑇                                                     (19) 

The 4th element of the quaternion refers to a rotation around 

the z axis, which is given by the desired yaw angle and 

computed using expression (5), where the 2nd and 3rd 

elements of the quaternion will be zero, as we can see in      

Eq. (20).[3] 

𝑞𝑧𝑑  = [𝑞0𝑧𝑑, 0,0, 𝑞4𝑧𝑑]𝑇                                                             (20) 
 

The desired quaternion for the attitude controller is then 

calculated as a combination of both rotations using the 

quaternion multiplication (2), which results in Eq. (21). [3] 

 

𝑞𝑑 =  𝑞𝑝𝑑 ⊗ 𝑞𝑧𝑑                                                                           (21) 
 

For both controllers the LQR command is used because 

it’s a method to find the optimum solution for a problem of 

minimization that assures the system stability in close-loop, in 

addition its calculation is easy.  

     The Eq.(22). represents the quadratic cost function to 

minimize: 

 

𝐽(𝑥, 𝑢) =
1

2
∫ (𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇𝑅𝑢(𝑡))𝑑𝑡

∞

0

                         (22) 

R and Q are weight matrix used respectively in order to 

increase or to diminish the effect of the states and the 

entrances of individual form and are select for the designer in 

agreement with the required performance. 

      The optimum input is defined as U = -Lx With               

𝐿 = 𝑅−1𝐵𝑇𝑃  and P is the solution to the Ricatti differential 

equation given by:  

 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                                          (23) 
 

 

Fig. 3. Block diagram of the prposed control structure 

IV. SIMULATIONS RESULTS 

The study case of the simulation is the tracking of a 

circular path with a 1m of diameter at a fixed altitude (1m) 

from a starting point  𝑝0 = (−1,0,0).  

The gain matrix L in the inner and outer loop of the LQR 

controller was tuned to be adaptive with the full non-linear 

model described in Eq. (8). 

The controller was simulated at a rate of 200 Hz which 

makes it suitable for a real implementation. All the necessary 

limitations over the actuators and the battery modeling were 

taking into consideration.        

  
Fig. 4. X axes response 

 
Fig. 5. Y axes response 

Fig. 4,5,6  show the response obtained from the three 

coordinate tracking, we can see that the LQR controller has 

followed the desired consigns with a high accuracy, a delay of 

1 sec in the X and Y axes is occurred due to the altitude 

settling time. 

 

 
Fig. 6. Z axes response 

The full trajectory is shown in Fig.7. 

 



 

Fig. 7. Full trajectory tracking 

Fig.8. introduces the input PMW control signals the four 

rotors, we notice that all the signals are within the range of    

1-2 sec which correspond to the ESC ( Electronic Speed 

Controller) functional rate.     

 
Fig. 8. PWM input control signals 

The obtained quaternions used in the attitude stability are 

depicted in Fig.9. , it can be seen that stability is assured 

around the unit quaternion. 

 

Fig. 9. Quternions used for attitude stability  

I. CONCLUSION 

In this paper the problem of the quadrotors trajectory 

tracking was studied using a differential flatness- quaternion 

based approach.  

The obtained results were juged to be satisfactory since the 

quadrotors has successfully followed the desired path.  

A double loop control structure based on the LQR 

command was applied in order to maintain the trajectory 

tracking and the attitude stability. 

The use of the quaternion instead of Euler angles eliminate 

the gimball lock or any discontinuities that can occur.  

Despite we have obtained good results we recommend the 

use of the non-linear control laws such as the backstepping 

control to make the system more robust.  
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