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Abstract: 

With the fast development of electronics and wireless communication technologies in recent years, intelligent 

wireless sensor nodes are becoming increasingly popular in the online machinery condition monitoring systems. 

They bring a number of benefits, such as reduced investment on the installation and maintenance of expensive 

communication cables, ease of deployment and upgrading. For the condition monitoring of dynamic signals, 

distributed computation on wireless sensor nodes is getting popular with wireless sensor nodes becoming more 

computation powerful and power efficient. As a widely recognised algorithm for bearing fault diagnosis, 

envelope analysis has been previously proved suitable for being embedded on the wireless sensor nodes to 

effectively extract fault features from common machinery components such as bearings and gears. As a 

continuation, this paper studies into several envelope detection methods, including Hilbert transform, spectral 

correlation, band-pass squared rectifier and short-time RMS. Regarding to the fact that only low frequency 

components in the bearing envelope is of interest, spectral correlation can be simplified for fast calculation and 

short-time RMS method can be considered as a simplified band-pass squared rectifier, in which partial aliasing 

is allowed. Thereafter, spectral correlation and short-time RMS are employed to speed up the calculation of 

envelope analysis on a wireless sensor node, which thereafter provides the potential to reduce power 

consumption of wireless sensor nodes. The computation speed comparison shows that the spectral correlation 

method and short-time RMS can speed up the computation speed by more than two times and five times in 

comparison with the Hilbert transform method. The simulation study shows that spectral correlation and short-

time RMS based methods achieves similar level of accuracy as Hilbert transform. Furthermore, the experimental 

study shows that spectral correlation and short-time RMS based methods can well reveal the simulated three 

types of bearing faults while with the computation speed significantly improved.  

Keywords: Envelope analysis, Hilbert transform, Spectral correlation, Short-time RMS, Wireless sensor node, 

Fault diagnosis. 

1 Introduction 

With the fast development of electronics and wireless communication technologies in recent years, 

intelligent wireless sensor nodes are becoming increasingly popular in the online condition 

monitoring (CM) systems [1], [2]. They bring numerous benefits, such as reduced costs of the 

installation and maintenance of expensive communication cables, ease of deployment and upgrading. 

In a vast number of scenarios, wireless sensor nodes are powered by batteries, which means they 

have limited energy and need to be changed/replaced regularly. To reduce such maintenance 

operations, wireless sensor nodes are usually designed with restricted computation capability and 

limited memory to keep their power consumption to a minimum level and thus prolong their lifespan. 

In recent years, different energy harvesting techniques are emerging to provide power for the sensor 

nodes by absorbing energy from their ambient environment, like wasted heat [3] or mechanical 
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vibrations [4] from machines. By utilising such energy resources, it is expected to significantly 

prolong the lifespan of these wireless sensor nodes. In the meantime, energy harvested from such 

resources are usually limited, for example, the energy harvested from temperature gradient is only 10 

𝜇W/cm3 and that from vibrations is about 200 𝜇W/cm3 (for consultancy, the energy from direct sun 

is 15000 𝜇W/cm3) [5]. Therefore, it is still crucial to utilise the limited power wisely. 

To minimise power consumption, the popular wireless communication protocols utilised in the 

wireless sensor networks typically have a low transmission data rate. For instance, the maximum 

data rate of Zigbee and WirelesHart is 250 kbps and that of Bluetooth Low Energy (BLE) is 

restricted to 1 Mbps. In practice, their data throughput can be even lower than this due to packet 

overhead, multi-hop and transmission faults [6]. Such a data throughput is sufficient for static type 

signals, like temperature, pressure, etc. However, they become incompetent for dynamic type signals, 

like vibration, acoustics and motor current. In practice, these dynamic signals are widely employed 

for the condition monitoring of rotating machines and are usually more helpful for analysing 

dynamic behaviour and diagnosing faults in such machines [7]. 

For processing such dynamic signals, distributed computation scheme can be more suitable than the 

common centralised computation scheme. In distributed computation scheme, the large raw data set 

is pre-processed on the wireless sensor nodes and only the resultant data set containing sufficient 

diagnosis information is transmitted over the bandwidth limited wireless network. By utilising such a 

scheme, not only the limited bandwidth can be well utilised but also it has the potential to save the 

valuable power energies of sensor nodes [8]. 

With the advancement in electronics technology, the sensor nodes are becoming more powerful, with 

more computation capability but less power consumption. This has reduced the challenges in 

embedding intelligent signal processing algorithms on resource limited wireless sensor nodes. For 

this reason, distributed computation is becoming increasingly popular in wireless CM in recent years. 

In [9], Sreenuch et al. proposed an approach for distributed CM systems that offers a reusable 

software architecture for a number of applications. Yin and Zhong [10] monitored rotating auxiliaries 

at power plants based on a distributed wireless vibration based CM system, in which they employ a 

data-level fusion for comparing the similarity of adjacent data and a task-level fusion for providing 

the strategy of sending data and the way to judge nodes’ survival. Hou et al. [1] proposed a scheme 

for induction motor condition monitoring and fault diagnosis based on motor stator current and the 

vibrational signatures. In this system, feature extraction and classification by the neural network 

classifier are implemented on the node and decision level fusion is executed at the centre. 

As a widely accepted algorithm for the fault diagnosis of bearings and gears, envelope analysis has 

been proved to be an effective method for extracting bearing fault features on resources limited 

wireless sensor nodes. The authors implemented envelope analysis on a wireless sensor node to 

extract bearing fault features and the results showed that envelope analysis can produce a small 

resultant data set while retaining key bearing fault diagnosis information [11]. On this basis, a down-

sampling and cascading scheme was proposed to increase the envelope spectrum resolution so as to 
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improve the fault diagnosis accuracy [12]. Furthermore, the fast kurtogram method was brought into 

the wireless CM network to adjust the band-pass filter adaptively [13], which has improved the 

robustness of the envelope analysis. Although the previous implementations have been optimised to 

well utilise the limited computation and memory resources, the calculation of envelope analysis, 

especially the envelope detection part, is still rather time consuming, requiring the embedded 

processor to run almost at full speed to finish the frame calculations in time. 

This paper studies into the envelope analysis and tries to find more efficient implementations suitable 

for resources limited wireless sensor nodes. The structure of this paper is organised as follows. 

Section 2 discusses the theoretical background for the envelope detection methods, including 

envelope analysis, spectral correlation, band-pass squared rectifier and short-time RMS. Then, 

spectral correlation and short-time RMS are selected for implementation in Section 3. A simulation 

study is conducted in Section 4 to prove the effectiveness of the implemented methods for extracting 

bearing fault features and an experimental study is performed in Section 5 to compare the processing 

results of Hilbert transform, spectral correlation and short-time RMS. Finally, the conclusion is 

drawn in Section 6. 

2 Theoretical background 

2.1 Envelope analysis and its implementation 

Envelope analysis calculates the frequency spectrum of the envelope of a signal. It is suitable for 

extracting fault features from impulsive and modulating type signals, which can be found in many 

key machinery components, such as bearings [14], [15], gears [16], turbines [17] and valves [18]. 

This type of signal is characterised by the presence of a periodic repetition of sharp peaks modulated 

by high-frequency resonance components [19]. Especially for rolling bearing diagnostics, envelope 

analysis has been recognised as the benchmark method over many years of development [20], [21].  

As presented in Figure 1, the envelope analysis mainly includes three steps: band-pass filtration, 

envelope detection and power spectrum calculation. The band-pass filter is employed to enhance the 

signal to noise ratio (SNR) by rejecting low-frequency high-amplitude signals caused by imbalance 

or misalignment and eliminating random noises outside the pass-band [15]. The envelope detection 

extracts the modulating fault signal and transfers the high-frequency problem to a low-frequency one. 

The power spectrum step shows the frequency components in the detected envelope, namely 

envelope spectrum. By observing the envelope spectrum, the existence of localised bearing faults can 

be easily verified. 

x Band-pass 
filter

Envelope 
dectection

XenvPower
spectrum

 
Figure 1 Procedures of envelope analysis 
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From the previous implementations, it is found the envelope detection is the most time consuming 

part in the calculation of envelope analysis. Normally, envelope analysis is performed by the Hilbert 

transform (HT) based method due to that it is more precise and is not sensitive to the carrier [22]. 

Supposing the HT of a real valued modulating signal 𝑥(𝑡) is �̃�(𝑡), they can compose a complex 

signal 𝑥𝑎(𝑡) as presented in (1), such a signal is usually named as analytic or quadrature signal [22]. 

 𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗�̃�(𝑡) (1) 

By calculating the amplitude of an analytic signal, the envelope of 𝑥(𝑡) can be obtained. The Fourier 

transform of the analytic signal 𝑥𝑎(𝑡) can be expressed as: 

𝑋𝑎(𝑓) = {

2𝑋(𝑓),     𝑓 > 0,

𝑋(𝑓),      𝑓 = 0,
0,             𝑓 < 0

= 2𝑢(𝑓)𝑋(𝑓) 

(2) 

where 𝑋(𝑓) is the Fourier transform of 𝑥(𝑡) and 𝑢(𝑓) is the step function. 

A straight forward implementation of HT is the frequency domain method, as presented in Figure 2. 

In this method, an HT window is forced to apply on the spectrum 𝑋(𝑓) to obtain 𝑋𝑎(𝑓), which is 

then used to calculate the analytic signal 𝑥𝑎(𝑡). It can be observed this implementation includes two 

forward fast Fourier transform (FFT) and one inverse FFT (IFFT), which are the most time 

consuming part. This is the approach that the authors have employed in the previous studies [11]–

[13]. Note that the band-pass filer is implemented in the frequency domain in Figure 2 to speed up 

the computation while it was previously implemented by a finite impulse response (FIR) filter in the 

time domain. 

Band-pass 

window

HT 
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IFFT Amplitude

x xenvxa
FFT Amplitude
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Hilbert transform based envelope detection
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Figure 2 Schematic of frequency domain HT based envelope analysis 

2.2 Spectral correlation 

In Figure 2, the analytic signal 𝑥𝑎 is obtained after the IFFT operation. By calculating the amplitude 

of the analytic signal 𝑥𝑎, the envelope of the input signal 𝑥 can be obtained. Here, the amplitude is 

computed by the square root of the product of 𝑥𝑎 with its conjugate 𝑥𝑎
∗  in the time domain. In the 

frequency domain, as shown in Figure 3, the product between 𝑥𝑎  and 𝑥𝑎
∗  is equivalent to the 

convolution of 𝑋𝑎 and 𝐺𝑎 according to convolution theorem, where 𝑋𝑎 and 𝐺𝑎 are the FFT of 𝑥𝑎 and 

𝑥𝑎
∗ , respectively; •  is the inner product operator and ⊛  is convolution operator. The result of 

convolution between 𝑋𝑎 and 𝐺𝑎 produces 𝑋𝑒𝑛𝑣𝑠, which is the FFT of squared envelope 𝑥𝑒𝑛𝑣
2 . In [14], 

Ho and Randall show that analysing the squared envelope can also verify the existence of localised 

bearing fault. 
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Figure 3 The amplitude calculation of analytic signal 𝑥𝑎 in time domain and frequency domain 

For 𝑋𝑎 and  𝐺𝑎, they only contain either the positive or negative frequency components. According 

to the definition of 𝑋𝑎(𝑓) in Eq. (2), the Fourier transform of 𝑥𝑎
∗(𝑓) can be derived as: 

𝐺𝑎(𝑓) = 2𝑢(−𝑓)𝑋∗(𝑓) = 𝑋𝑎
∗(−𝑓) (3) 

This shows that the Fourier transform 𝐺𝑎(𝑓) of 𝑥𝑎
∗(𝑡) can be obtained directly from the spectrum of 

𝑋(𝑓). Thus, the convolution between 𝐺𝑎[𝑓] and 𝑋𝑎[𝑓] become: 

𝐺𝑎[𝑓] ⊛ 𝑋𝑎[𝑓] = 𝑋𝑎
∗[−𝑓] ⊛ 𝑋𝑎[𝑓] = 𝑋𝑎[𝑓] ⊗ 𝑋𝑎[𝑓] (4) 

where ⊗ and ⊛ are cross-correlation and convolution operator, respectively. 

This expression is useful, which means the squared envelope spectrum 𝑋𝑒𝑛𝑣𝑠 can be computed from 

the cross-correlation of 𝑋𝑎  with itself, i.e. the correlation of 𝑋𝑎 . Thereafter, the convolution and 

correlation operation on the spectrum of the analytic signal are equivalent, as illustrated in Figure 4. 

In comparison, the conjugate operation in correlation is more straightforward to understand than the 

folding operation in convolution. Usually, the correlation is used to represent similarity of a signal to 

a delayed version of itself. Here, the correlation of 𝑋𝑎 can be interpreted as finding the difference 

frequency components in 𝑋𝑎. 

Fs  /2 Fs  
Fs  /2 Fs  
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Figure 4 Illustration of convolution and correlation operation of the spectrum of the analytic signal 

As usually only a partial band in the spectrum of an analytic signal is selected for correlation, only 

data within the selected band are involved in the correlation process. Therefore, the correlation of 𝑋𝑎 

can be updated as: 

𝑋𝑎[𝑛]⊗ 𝑋𝑎[𝑛] = ∑ 𝑋𝑎
∗[𝑚]𝑋𝑎[𝑚 − 𝑛]

𝑁

𝑚=0

= ∑ 𝑋𝑎
∗[𝑚]𝑋𝑎[𝑚 − 𝑛]

𝑛𝑓𝐻

𝑚=𝑛𝑓𝐿

 (5) 

where 𝑛𝑓𝐿  and 𝑛𝑓𝐻  are the index for low and high cut-off frequencies of the band-pass filter, 

respectively. 
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As we know from previous study [11], only a small portion of the squared envelope spectrum is of 

interest in bearing fault diagnosis, hence there does not need a through computation of correlation. 

The number of data points effective for squared envelope spectrum calculation are: 

𝑁𝑒𝑛𝑣𝑠 = 2𝑁𝑓𝑒𝑀𝑎𝑥 𝐹𝑠⁄  (6) 

where 𝑁 is the FFT size, 𝑓𝑒𝑀𝑎𝑥 is the interested maximum envelope frequency and 𝐹𝑠 is the sampling 

frequency. In practice, considering the squared envelope is real-valued signal, its spectrum has 

symmetrical property and thus only half of 𝑁𝑒𝑛𝑣𝑠 is required to be calculated, further reducing the 

computation load. 

These indicate spectral correlation can be efficient in terms of computation time. To utilise the 

scheme proposed in [12] and improve spectrum resolution, the envelope signal can be calculated for 

cascading from the spectrum of envelope spectrum, as shown in Figure 5. This will be further 

explored in Section 3.2. Note that only a small number of data points are involved in the IFFT 

operation, making the calculation of envelope significantly faster than that in Figure 2. 
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Figure 5 Schematic of spectral correlation based envelope detection 

2.3 Band-pass squared rectifier 

Since the inner production of an analytic signal with its conjugate is equivalent to the spectral 

correlation of the analytic signal, one question comes to us: how to understand the inner production 

of a real-valued signal, i.e. square operation, in the frequency domain? 

According to convolution theorem, a square process in the time domain is equivalent to the spectrum 

being convolved with itself in the frequency domain. For the spectrum  𝑋[𝑛] of a real-valued signal 

𝑥, it has the property of conjugate symmetric [23], i.e. 𝑋[𝑛] = 𝑋∗[−𝑛], thereby, the convolution of 

𝑋[𝑛] with itself is equivalent to its correlation: 

𝑋[𝑛] ⊛ 𝑋[𝑛] = 𝑋[𝑛] ⊗ 𝑋[𝑛] (7) 

The convolution of a full baseband signal is presented in Figure 6(a) using an equivalent correlation. 

It can be seen that aliasing is brought in and the envelope spectrum includes both sum and difference 

frequency components. Note that, the correlation is actually a circular one due to the circular 

convolution in Fourier transform and the first aliasing area in Figure 6(a) is caused by this 

phenomenon. Furthermore, it can be observed that difference frequency components come from the 

correlation of positive or negative frequency components while sum frequency components are 

contributed by the cross-correlation between positive and negative ones. 

On the occasion when a signal is band-pass filtered, as shown in Figure 6(b), the aliasing problem 

can be effectively avoided. It has been proved in [14] that through proper zero-padding on both lower 
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and the upper side of the passband in the frequency domain, the band-pass squared rectifier can 

achieve the same results as Hilbert transform. In practice, there is no need to transform signals to the 

frequency domain, zero-pad the spectrum and then perform correlation, as this operation will have 

the same result apart from there being more computation requirement than frequency domain HT. 

Fs /2 Fs Fs /2 Fs 

⊗ 
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Aliasing
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B B
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fL fH Fs-fH Fs-fL

(a)

(b)

Spectral correlation.

Down-arrow frequency components are 

conjugate of up-arrow frequency components

Correlation spectrum

⊗ 

 
Figure 6 Equivalent spectral correlation of time domain squared operation: 

(a) full baseband signal and (b) band-pass filter signal 

For a band-pass filtered signal, its square operation in the time domain can avoid the aliasing 

problem on the condition that its spectrum is already zero-padded, i.e. its lower pass band 𝑓𝐿 and 

upper pass band 𝑓𝐻 can satisfy the following criteria: 

𝑓L ≥ (𝑓H − 𝑓L)/2 
(8) 

𝐹𝑠/2 − 𝑓𝐻 ≥ (𝑓H − 𝑓L)/2 

where 𝐹𝑠 is the sampling frequency. 

When analysing bearing signal, only low-frequency components in the envelope spectrum are of 

interest. This indicates aliasing in the high-frequency range of a squared signal is acceptable as they 

are ineffective for bearing fault diagnosis and can be easily eliminated with a high-pass filter. 

Supposing the maximum interested frequency component in the envelope spectrum is 𝑓𝑒𝑀𝑎𝑥 , the 

band-pass filter restriction in Eq. (8) becomes: 

𝑓L ≥ 𝑓𝑒𝑀𝑎𝑥/2 
(9) 

𝐹𝑠/2 − 𝑓𝐻 ≥ 𝑓𝑒𝑀𝑎𝑥/2 

For a bearing vibration signal sampled at 32 kHz, discussed in this paper, the frequency range of 

interest for an envelope spectrum is well within 500 Hz (see Section 5.1). According to Eq. (8), a 

band-pass filter whose pass-band falls inside the range between 250 Hz and 15,750 Hz can 

effectively avoid aliasing problem within the interested envelope spectrum. Such a requirement can 

be easily satisfied by the band-pass filters. 
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2.4 Short-time RMS 

Short-time statistical features are another effective method for extracting bearing fault features, 

which are based on the concept of cyclostationary [24], [25]. The idea of this method is to extract the 

fault characteristics by finding the cyclic information from the short-time features. The statistical 

features for calculation can be second and fourth statistical moments, peak value and kurtosis. The 

short-time statistical feature of signal 𝑥 by using a statistical operator 𝑃, can be written as: 

 𝑆𝑇𝑥
𝑃(𝑡, 𝑑) = 𝑃{𝑥(𝜏) × 𝑤𝑑(𝜏 − 𝑡)} (10) 

Where 𝑤 is the window function, 𝑡 is the origin of the window, 𝜏 is the time variable, and 𝑑 is the 

window size. The window function may be different types, such as uniform, triangle, Hanning, or 

Hamming. After statistical features at all windows are calculated, an FFT operation is performed on 

the extracted statistical features to find periodic patterns. 

For better understanding, the computation process for short-time statistical features is illustrated in 

Figure 7, where a window of size 𝑀 slides over the signal 𝑥 with a step size of 𝑆. At each step, a 

statistical feature 𝑃 is computed for the signal extracted by the sliding window. 

P1

S

M

M

M

0 2S 3S 4S 5S

P2 P3 P4 ...

M
x

 
Figure 7 Illustration of short-time statistical feature calculation with step size of S and window size of M 

In [24], Behzad et al. showed that the best statistical feature for detecting localised bearing fault is 

the square root of the second moment, i.e. root mean square (RMS). By considering the definition of 

RMS in Eq. (11) and the calculation of short-time statistical features in Figure 7, it can be observed 

that short-time RMS can be regarded as a simplified version of squared rectifier with the low-pass 

filter and downsample operation being implemented by an overlapped average. The sliding window 

together with RMS calculation acts like a low-pass filter to omit high-frequency fluctuations in the 

squared signal and the step size 𝑆 is the downsample ratio. 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑛

2

𝑁

𝑛=1

 (11) 

The window length and step size are critical parameters for short-time RMS calculation. The larger 

the step size, the lower the computation amount. From the view of low-pass filter and down-

sampling, the window size 𝑀 can be determined by the maximum interested frequency 𝑓𝑒𝑀𝑎𝑥 and 
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sampling frequency 𝐹𝑠 and the step size 𝑆 should be less than half of the window size 𝑀 to avoid 

aliasing. 

𝑀 ≤ 𝐹𝑠/𝑓𝑒𝑀𝑎𝑥 (12) 

𝑆 ≤ 𝑀/2 (13) 

The schematic for a short-time RMS based envelope analysis is presented in Figure 8.  
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Figure 8 Schematic of short-time RMS based envelope analysis 

3 Implementation for high spectrum resolution 

From the discussions in Section 2, it shows that the spectral correlation allows the down-sampling 

process to be performed in the frequency domain and thus provides the potential to speed up the 

envelop detection in comparison with the frequency domain HT method; the band-pass squared 

rectifier can effectively avoid aliasing in the interested envelope spectrum with a suitable band-pass 

filter selected and the short-time RMS can be considered as a simplified version of band-pass 

squared rectifier, indicating its computation speed should be faster than band-pass squared rectifier. 

Therefore, the spectral correlation and short-time RMS method are selected for implementation in 

this section. The scheme proposed in [12] is employed to achieve high envelope spectrum resolution. 

Same as the previous implementations [11]–[13], the state-of-the-art Cortex-M4F processor is 

employed, which has a good balance between signal processing capability and power consumption, 

making it suitable for wireless sensor nodes that requiring signal processing capabilities. In recent 

years, this core based processors have been found on the new generation wireless Internet of Things 

(IOT) solutions, such as the CC3200 WiFi chip from Texas Instruments [26] and nRF52832 BLE 

solution from Nordic [27]. The algorithms discussed in Section 2 can be confidently migrated into 

such processors, showing wide suitability of the proposed implementation. 

3.1 Overall data processing structure 

The overall data processing structure is illustrated in Figure 9. The on-chip analogue to digital 

converter (ADC), timer and direct memory access (DMA) unit together construct an automatic data 

acquisition structure to reduce the interrupts to CPU and thus improve the efficiency of signal 

processing.  

In this paper, the sampling frequency is set at 32 kHz and a size of 512 points is processed as a 

frame. The envelope analysis is mainly computed in the buffer fBuf, which is efficiently reused in the 

calculation procedure. A buffer named lastFrame is used to temporarily store data in the last frame so 

as to achieve the overlap processing and the computed envelope spectrum is stored in the buffer 
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envOut and then sent to the ZigBee network through UART. 
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Figure 9 Data flow inside the processor 

3.2 Implementation of cascaded spectral correlation 

The diagram for cascaded spectral correlation is shown in Figure 10. Similar as the cascaded 

frequency domain HT in [12], this implementation processes a group of frames with 512 points with 

an overlap ratio of 50% to minimise edge distortions. For each frame, a 1024-points FFT operation is 

performed. Considering the maximum interested envelope spectrum frequency is 500Hz, so the 

number of data points effective for envelope spectrum analysis is 32, according to Eq. (6). Because 

of the symmetrical property in the spectrum of real-value signal, only half of the data needs to be 

calculated, i.e. 16 points. 
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Figure 10 Diagram for cascaded spectral correlation based envelope analysis 

In Figure 10, each frame is firstly converted into single floating point format and the first frame is 

just stored in the buffer lastFrame. From the second frame, the following operations are performed: 

1) Convert data in current frame to single floating point format and combine with data in 

lastFrame buffer to compose a frame with 1024 points. 

2) Perform a 1024-points real valued FFT on the composed data frame in the buffer fBuf[1]. 

3) Extract the frequency components from 𝑓𝐿 to 𝑓𝐻 and double their amplitude to get the analytic 

spectrum. 

4) Perform a 16-points correlation operation on the obtained analytic spectrum to get the 

positive part of the squared envelope spectrum. Note that only 16-points correlation instead 

of 32-points correlation is performed due to the symmetrical property in squared envelope 

spectrum. 

5) Perform a 32-points real-valued IFFT to get the squared envelope signal and a following 

square root operation to obtain the envelope signal. 

6) Extract 16-points in the middle of the calculated envelope signal and append them in the 

buffer fBuf[0]. 

After 128 frames of data are calculated, the buffer fBuf[0] are filled with 2048 points of envelope 

signal and finally a 2048-points real valued forward FFT is performed to get the envelope spectrum. 

This finishes one cycle of envelope analysis. 

To verify the implementation of spectral correlation and the consecutiveness of the cascaded 

envelope, a simulated modulating signal is processed on the processor and the detected envelope 

from first three frames are extracted and illustrated in Figure 11. It can be observed that the obtained 

envelope has a good match with the upper outline of the modulating signal in Figure 11(d). Note that 

small mismatches can be seen on the edges of the obtained envelope in Figure 11 (b) and (c), which 

are not included for cascaded processing. 



12 

 
Figure 11 Illustration of cascaded spectral correlation for envelope calculation: 

(a) first frame result, (b) second frame result, (c) third frame result and (d) cascaded envelope 

3.3 Implementation of cascaded short-time RMS 

The diagram for cascaded short-time RMS is presented in Figure 12, which also follows the overall 

data processing structure in Figure 12 but with slight changes in the cascading part. The collected 

data are also processed frame by frame with the size of 512 points. Considering the maximum 

interested envelope spectrum frequency is 500Hz, the window size is set as 64 and step size is set as 

32, according to Eq. (12) and (13). 

In Figure 12, each frame is firstly filtered by an 81-tap FIR type band-pass filter. Then, the short-

time RMS of the filtered data is computed and stored in a buffer. Note that for the first frame of data, 

13 effective feature data are produced due to the first 40 data of the FIR filter being invalid and thus 

the short RMS calculation actually starts from the third step. 

From the second frame until the second last frame, last 32 points from the previous frame are 

concatenated in front of the current frame of data for the short-time RMS calculation and hence they 

produce 16 points of effective feature data. For the last frame, only 3 points of feature data are 

required for filling the 2048-point buffer. After the 2048-point buffer is full, the spectrum of short-

time RMS features is computed by FFT calculations to get the envelope spectrum. 
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Figure 12 Diagram for cascaded short-time RMS based envelope analysis 

To verify the implementation of cascaded short-time RMS, a simulated modulating signal is 

processed on the processor and the calculated results are illustrated in Figure 13. It shows the 

calculated short-time RMS follows the trend of the outline of the modulating signal but with its 

amplitude proportionally attenuated, which can be explained by the squared operation in short-time 

RMS. This means short-time RMS has similar frequency components as the envelope of the signal 

and thus can also be used for bearing fault diagnosis. 

 
Figure 13 Illustration of short-time RMS calculation on a simulated modulating signal. 

3.4 Computation speed benchmark 

In the above implementations, the envelope detection part requires real-time calculations. For both 

implementations in the cascaded spectral correlation and cascaded short-time RMS, the data is 

processed with a frame size of 512 points. With the sampling frequency at 32 kHz, the deadline for 

calculating one frame is 512/32 = 16 ms. 
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Several methods can be employed to measure the computation time for one part of codes, for 

example, setting break points in the beginning and end of the codes and count CPU clocks using 

tools integrated in the development environment, or changing a GPIO output in the codes and then 

measuring the outputs using oscilloscope. If the program is written on the real-time operating system 

(RTOS), namely TI-RTOS [30], the timestamp function can be a convenient method. In this paper, 

the timestamp method is employed. 

The time for processing one frame of data by the frequency domain HT method [13] and the 

implemented two methods are measured and presented in Figure 14. It can be seen that both spectral 

correlation and short-time RMS show faster computation speed than the previously implemented 

frequency domain HT method does. Note that the computation speed of spectral correlation is 

affected by the data points involved with spectral correlation, i.e. data length from 𝑛𝑓𝐻 to 𝑛𝑓𝐿 in Eq. 

(5), and data points useful for squared envelope spectrum analysis 𝑁𝑒𝑛𝑣𝑠 in Eq. (6). This means the 

pass band width, FFT size and sampling frequency have an influence on the computation time of 

spectral correlation. For this implementation, the sampling frequency and FFT size have been fixed, 

so the pass band width becomes the main influence factor. As shown in Figure 14, the computation 

time of spectral correlation increases linearly with the pass band width. In practice, the optimum 

band-pass filter usually has a narrow bandwidth, typically less than 3 kHz for bearing signals 

analysed in this paper, meaning the computation time is typically less than 4.2 ms. This is more than 

two times faster than the frequency domain HT method in [13].  

For short-time RMS, the computation time for one frame is measured as about 2.2 ms when an 81-

tap FIR band-pass filter is employed, which is more than five times faster than the frequency domain 

HT method in [13]. This time consumption is even lower than the smallest one (3.12 ms) in the 

spectral correlation based method, meaning short-time RMS method is more computation efficient 

than spectral correlation one. 

 
Figure 14 Computation time comparison for one frame data 
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4 Simulation study 

To validate the performance of implemented algorithms for extracting bearing fault features, a group 

of rolling bearing signals are simulated according to Eq. (14) [28], [29]. 

𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) =∑ 𝐴0ℎ(𝑡 − 𝑖𝑇) + 𝑛(𝑡)
𝑖

 

ℎ(𝑡) = exp(−𝐶𝑡) cos(2𝜋𝑓𝑛𝑡) 

𝑛(𝑡) = 𝑀𝐴0𝑟𝑎𝑛𝑑() 

(14) 

where 𝐴0 is the amplitude of the impact force; 𝑇 is the average period of impulse series which equals 

1/83s≈0.012s;  𝑓
𝑛

 is the structural resonance frequency which equals 4500Hz; 𝐶  is the damping 

coefficient which equals 900; 𝑟𝑎𝑛𝑑() is a random value generator function and can generate a 

random value in the range of (-1,1); 𝑀 controls the severity of the added noise. 

The simulated bearing signals and their spectrum are presented in Figure 15, with different noise 

severity levels. In Figure 15(a), a series of impulses can be clearly in the time domain signal and high 

spectrum appears around 4500 Hz, which is in accordance with the resonance frequency. As the 

noise level increases from Figure 15(a) to (d), the impulses are gradually submerged by noises. Note 

that these signals are directly generated on the processor because the processor doesn’t have 

sufficient memory to store the simulated signals. 

 

Figure 15 Simulated bearing signal in the time domain and frequency domain with different noise levels:  

(a) no noise, (b) noise level of A0, (c) noise level of 2A0 and (d) noise level of 4A0 

Then, these signals are processed by the frequency domain HT (FHT) and the two methods 

implemented in Section 3, i.e. spectral correlation (SCORR) and short-time RMS (STRMS). The 
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processing results are presented in Figure 16. It can be observed that the harmonics of the fault 

frequency can be clearly observed for all three methods when the noise level is less than two times of 

the impulse amplitude and the fault frequencies are not so clear when the noise level increases to four 

times of the impulse amplitude. Specially, the higher order harmonics in STRMS method is more 

attenuated in comparison with those in FHT and SCORR methods. This is in accordance with the 

high attenuation effect of the overlapped average process in STRMS method. In addition, the 

processing results of FHT and SCORR show high similarity, which means the implemented SCORR 

and STRMS methods have achieved similar level of accuracy. 

 

Figure 16 Comparsion of processing results by different methods for bearing signals with different noise levels:  

(a) no noise, (b) noise level of A0, (c) noise level of 2A0 and (d) noise level of 4A0 

5 Experimental results 

5.1 Bearing test rig description 

To evaluate the effectiveness of the implemented envelope analysis methods, they are employed to 

analyse true bearing fault signals. The bearing test rig is shown in Figure 17(a), which is composed 

of five main parts: an electrical induction motor, shaft couplings, a DC generator, bearings and 

motion shaft. The bearing in the test rig is N406 cylindrical roller type. During the test, the shaft ran 

at a full speed of 1460 rpm, i.e. 24.3 Hz. 

Four bearing conditions are simulated on the test rig, as shown in Figure 17(b-e). The healthy 

bearing was employed for producing the baseline signal and the other three bearings were seeded 

with outer race fault, inner race fault and roller fault. A piezoelectric (PE) type accelerometer was 

mounted on the bearing house horizontally to collect the vibration signal. The accelerometer was 
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connected to the assembled wireless sensor node based on TM4C123GH6PM for data processing and 

wireless transmission, as shown in Figure 17(f). 

The localised fault frequencies are calculated and listed in Table 1. It can observed that the inner race 

fault has the highest characteristic frequency, at 135.5 Hz, whose 3rd harmonic frequency (406.5 Hz) 

is within 500 Hz. This means fault frequencies of interests are all within 500 Hz, which is used for 

determining key parameters in Eq. (6) for spectral correlation and Eq. (12) for short-time RMS. 

 
Figure 17 Bearing test rig and bearings for experiments: (a) bearing test rig, (b) healthy bearing, (c) bearing with outer 

race defect, (d) bearing with inner race defect, (e) bearing with roller defect and (f) wireless sensor node 

Table 1 Bearing fault characteristic frequencies 

Defect location Fault frequency (Hz) 

Inner race (BPFI) 135.5 

Outer race (BPFO) 83.5 

Ball (BSF) 48.4 

5.2 Results and discussion 

The vibration signals collected from the three bearing fault conditions are analysed by the two 

methods implemented in Section 3, together with the frequency domain HT method implemented in 

[13]. The sampling frequency is set as 32 kHz, same as the implementation in Section 3. The fast 

kurtogram method implemented in [13] is employed to select the optimal band-pass filters. A 

diagram for implementing fast kurtogram in the wireless CM system is illustrated in Figure 18, in 

which the system works in two modes, namely configuration mode and monitoring mode. The 

configuration mode is used for updating the optimal band-pass filter coefficients and it operates at 

the installation time of the system and during a period when a significant change appears in the 

monitoring mode or at a given long time interval. Most of the time, the system works in the 

monitoring mode, in which the wireless sensor node uses the optimum band-pass filter calculated in 
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the configuration mode to analyse the vibration signal and transmit the envelope spectrum to the host 

computer for fault diagnosis. The calculated optimum band-pass filters by fast kurtogram are: 8-

10.67 kHz for outer race fault signal, 2.67-5.33 kHz for inner race fault signal and 4-5 kHz for roller 

fault signal. 

Host computer

Vibration

signal 8192-point 

raw data

Calculate optimum 

band-pass filter

Band-pass filter 

parameters

Envelope 

analysis

Display 

spectrum

Sensor node

Wired

Wireless
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Figure 18 Diagram for implementing fast kurtogram to select optimum band-pass filter 

The analysis results for outer race fault, inner race fault and roller fault are presented in Figure 19, 

Figure 20 and Figure 21, respectively. Take the processing results for outer race for example. The 

harmonics of the outer race fault characteristic frequency can be clearly observed in the envelope 

spectrum of all three algorithms, as shown in Figure 19(b), (c) and (d), verifying the existence of the 

outer race fault on the bearing component. In comparison, the higher harmonics from short-time 

RMS method in Figure 19(d) are smaller than those from frequency domain HT in Figure 19(b) and 

spectral correlation in Figure 19(c). This can be explained by the high attenuation effect of the 

overlapped average process in short-time RMS based method. For frequency domain HT and spectral 

correlation, they can reveal the same amount of harmonics and the amplitudes of the corresponding 

harmonic components are similar. However, more noises can be observed in the low-frequency range 

of spectral correlation than those in frequency domain HT. Nevertheless, these differences cause 

little influences on the diagnostic results. 

Similar processing results can be observed for the inner race fault and roller fault in Figure 19 and 

Figure 20, respectively. Note that the third harmonic for inner race fault in Figure 19(d) and fourth 

harmonic for roller fault in Figure 20(d) can be hardly seen in the results from short-time RMS 

method. 
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Figure 19 Detection results for a bearing vibration signal with outer race fault: (a) raw signal, (b) envelope spectrum from 

frequency domain HT, (c) envelope spectrum from spectral correlation and (d) envelope spectrum from short-time RMS 

 
Figure 20 Detection results for a bearing vibration signal with inner race fault: (a) raw signal, (b) envelope spectrum from 

frequency domain HT, (c) envelope spectrum from spectral correlation and (d) envelope spectrum from short-time RMS 
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Figure 21 Detection results for a bearing vibration signal with roller fault: (a) raw signal, (b) envelope spectrum from 

frequency domain HT, (c) envelope spectrum from spectral correlation and (d) envelope spectrum from short-time RMS 

5.3 Data throughput analysis 

All these three methods produce an envelope spectrum with 1024 points, so their transmission data 

size is exactly the same. This data has been converted to 16-bit resolution for transmission over the 

wireless network. This 1024 points envelope spectrum is calculated from about 129 frames of the 

raw data set, each of which has 512 points of data. This means the resultant data set is only about 

1024/512/129≈0.0155, i.e. 1.55%, of the raw data set, which is a very high reduction ratio. 

As the band-pass filter parameters can be adaptively updated, there also requires a configuration 

packet. The HT frequency domain and spectral correlation method only require the two boundaries 

of the band-pass filter while the short-time RMS method requires the coefficients of the FIR filter, 

that is 81 points of floating type data in this implementation. From this point of view, the spectral 

correlation method is better than the short-time RMS method in terms of fast parameter 

configuration. 

6 Conclusion 

In this paper, the envelope analysis method is studied to explore its efficient implementations in a 

wireless sensor node for condition monitoring. It shows that the spectral correlation allows the down-

sampling process to be performed in the frequency domain and thus provides the potential to speed 

up the computation; the short-time RMS method can be considered as a simplified squared rectifier 

and it can avoid aliasing in the interested frequency band of the envelope spectrum with a proper 

band-pass filter selected. On this basis, the spectral correlation and short-time RMS methods are 
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implemented on the resource limited wireless sensor nodes, showing satisfactory computation speed 

improvement and good capability for identifying localized bearing faults. These two implemented 

methods make the envelope analysis even more suitable for being embedded on resource limited 

wireless sensor nodes for bearing fault diagnosis. Overall, the benefits of the proposed 

implementation include: 

 Result data set is much smaller than raw data set, allowing data transmission over the 

bandwidth limited wireless sensor network 

 Computation speed is fast, allowing lower power consumption of the wireless sensor nodes 

 Memory usage is efficient, allowing the implementation on low cost wireless sensor nodes 

 Envelope spectrum resolution is high, allowing reliable fault diagnosis 
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