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Abstract 

Under normal physiological conditions, the intestinal immunity remains largely 

hyporesponsive to the commensal microbiota, yet also retains the inherent ability to rapidly 

respond to pathogenic antigens. However, immunomodulatory activities of extracellular 

products from commensal bacteria have been little studied, with previous investigations 

generally utilising the live bacterium to study microbiota-epithelial interactions. In this study, 

we demonstrate that extracellular products of a commensal bacterium, Escherichia coli C25, 

elicit a moderate release of proinflammatory IL-8 and stimulate transcriptional up-regulation 

of Toll-like receptors (TLRs) in intestinal epithelial cell lines, HT29-19A and Caco-2. 

Additionally, we show that removal of outer membrane vesicles (OMVs) diminishes the 

proinflammatory effect of secreted products from E. coli C25. Furthermore, we show that 

isolated OMVs have a dose-dependent proinflammatory effect on IECs. Interestingly, a 

relatively high concentration (10x culture concentration) of OMVs had no significant 

regulatory effects on TLR mRNA expression in both cell lines. Finally, we also demonstrate 

a that pre-incubation with E. coli C25-derived OMVs subsequently inhibited the 

internalisation of the bacterium itself in both cell lines. Taken together, our results suggest 

that commensal-derived extracellular products, in particular OMVs, could significantly 

contribute to intestinal homeostasis. We also demonstrate a unique interaction between 

commensal-derived OMVs and host cells.   

 

  



Introduction 

The intestinal commensal microbiota, consisting of ~1014 bacteria (Gill et al., 2006), is 

considered one of the densest and most diverse microbial communities on the planet (Artis, 

2008); consequently, our knowledge of the highly dynamic role the microbiota plays in host 

immunity is still very basic. Nevertheless, advances in technology have allowed some 

compositional characterisation of the commensal microbiota via metagenomic analyses (Gill 

et al. 2006). For example, in early neonatal life, E. coli are among the first bacteria to 

colonise the human intestine (Hooper, 2004) and these early commensal pioneers offer an 

preliminary defence against enteropathogens, due to physical and nutritional competition 

(Hudault et al., 2001). An early example of a commensal bacterium is E. coli C25 which was 

originally isolated from the faeces of a healthy individual in the mid-1950s (Freter and 

Hentges, 1956) and was subsequently demonstrated to have antagonistic activities against the 

enteric pathogen, Shigella flexneri (Hentges and Freter, 1962; Freter, 1962). Also, C25 lacks 

the traditional virulence genes found in pathogenic strains of E. coli, such as extraintestinal 

pathogenic (ExPEC), enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) (Zareie et 

al., 2005; Macutkiewicz et al., 2008); moreover, it is a poor recipient of plasmid transfer 

(Freter and Brickner, 1983), so is unlikely to acquire such genes from other bacteria. 

Nevertheless, studies utilising live C25 have demonstrated its ability to translocate through 

the intestinal epithelial barrier (Clark et al., 2003; Macutkiewicz et al., 2008; Suzuki and 

Okada, 2014) and to initiate a proinflammatory response in intestinal epithelial cell lines 

(Michalsky et al., 1997; Clark et al., 2003; Zareie et al., 2005; Macutkiewicz et al., 2008). 

Yet, the immunoregulatory ability of the extracellular products from C25 have only been 

briefly considered previously (Bannon, 2008).  



Gram negative bacteria, and E. coli in particular, are well characterised in their production of 

outer membrane vesicles (OMVs) (Horstman and Kuehn, 2000; Kesty and Kuehn, 2004; 

McBroom et al. 2006; Aguilera et al. 2014; Kulp et al., 2015), which are small (50-250 nm 

diameter), spherical, bilayered membranous structures naturally secreted into the bacterium’s 

immediate surroundings (Beveridge, 1999). OMVs have been isolated from a diverse range 

of environments, from liquid and solid lab cultures to river beds and waste water pipes 

(Schooling and Beveridge, 2006), and even from the human body (Fiocca et al, 1999, Keenan 

et al., 2000). The composition, conformation and surface chemistry of OMVs is 

representative of the intact outer membrane (OM) of Gram-negative bacteria, with 

lipopolysaccharides (LPSs), outer membrane proteins (OMPs), phospholipids and 

periplasmic proteins all present (Beveridge, 1999, Kesty and Kuehn, 2004). Therefore, it is 

unsurprising that OMVs from pathogens, such as Pseudomonas aeruginosa, Helicobacter 

pylori and Vibrio cholera have been suggested to contribute to the pathology of chronic 

inflammatory diseases, as they exhibit the ability to elicit IL-8 from gastric (Ismail et al., 

2003), bronchial (Bauman and Kuehn, 2006) and intestinal epithelial cells (Chatterjee and 

Chaudhuri, 2012; Kunsmann et al., 2015), respectively. However, more recent studies have 

focussed on OMVs derived from probiotic bacteria, such as E. coli Nissle 1917 (Aguilera et 

al, 2014; Fábrega et al., 2016) and commensal bacteria, such as Bacteroides fragilis (Shen et 

al., 2012), Bacteroides thetaiotaomicron (Hickey et al., 2015) and E. coli strain ECOR12 

(Fábrega et al., 2016). Nevertheless, with the recent exception of Fábrega et al. (2016), who 

showed that the two strains of E. coli studied were able to stimulate cytokine release from 

explanted colonic tissue, the direct interactions of OMVs from non-pathogenic bacteria with 

the host intestinal epithelium have been little studied (Muraca et al., 2015). Therefore, the 

current study aimed to investigate the direct inflammatory potential of OMVs derived from E. 

coli C25 on the intestinal epithelial cell lines, HT29-19A and Caco-2.  



Materials and Methods 

Cell culture 

HT29-19A and Caco-2 cell lines were kindly donated by Prof. G. Warhurst (Royal NHS 

Foundation Trust and University of Salford, UK). Both cell lines were cultured in a standard 

media of high glucose (4500mg/l) Dulbecco’s Modified Eagles Media (DMEM), 10 % foetal 

bovine serum (FBS), 4 mM glutamine and a mixture of 50 IU/ml penicillin and 50 µg/ml 

streptomycin (PenStrep). Additionally, HT29-19A cells were supplemented with 20 mM 

HEPES and Caco-2 cells had 0.1 mM MEM NEAA (non-essential amino acids) added. Both 

cell lines were seeded at a density of 0.5 x 105 cells/cm2 and cultured to confluence (~7 days) 

in 35 mm x 10 mm cell culture dishes. 

 

Bacterial products 

E. coli C25 was a kind gift from Prof. G. Warhurst and was cultured on tryptone soy agar 

(TSA) at 37 °C. DMEM, supplemented with 4 mM glutamine was inoculated with E. coli 

C25 and incubated overnight (~15 h), until the culture reached the stationary phase of growth 

(Supplementary Fig 1; ~1 x 109 CFU/ml). Subsequent to incubation, the culture was 

centrifuged at 6000 x g for 10 min to pellet out the bacteria. The supernatant was removed, 

had its pH adjusted to 7.4 and was subsequently filtered using 0.45 μm syringe-driven filters 

(Millex®, Millipore UK Ltd.). The cell-free supernatant was diluted 1 in 10 in cell culture 

medium and used in cell challenge experiments.  

 10 ml aliquots of E. coli C25 cultures were sonicated, using a Vibracell VCX 130 

(Sonics and Materials Inc.) at 85 % amplitude for a 5 x 6 s pulse program. Cultures were 

sonicated on ice and with a 24 s cooling step between pulses, in order to minimise 

denaturation of bacterial products. Resultant solutions were filtered through a 0.45 µm 



syringe-driven filter, diluted 1 in 10 in cell culture medium and subsequently used in cell 

challenge experiments. 

Flagellin isolated from Salmonella typhimurium strain 14028 was purchased from 

Enzo Life Sciences Ltd. 

 

Cytokine stimulation and analysis 

Cells were challenged with the bacterial stimuli for 24 h, at 37 °C, 5 % CO2 and constant 

humidity. Supernatants were collected and frozen at -80 °C until assayed for IL-8 and/or IL-

10 by enzyme-linked immunosorbant assay (ELISA) analysis (IL-8 and IL-10 Human 

Antibody Pairs, Invitrogen). ELISA analysis was carried out according to the manufacturer’s 

instructions.  

 

qPCR 

Epithelial cells were challenged with the various stimuli for 24 h. The cells were 

subsequently lysed and the total RNA was extracted using the RNeasy® Mini Kit and RNase-

free DNase Set (Qiagen). RNA was quantified spectrophotometrically using the absorbance 

at 260 nm (A260) x 44 μg/ml x dilution factor and the purity was measured using A260/A280. 

cDNA was synthesised from 2 μg of total RNA by the iScript™ cDNA Synthesis Kit (Bio-

Rad Laboratories Ltd.). cDNA synthesis was carried out to the manufacturer’s instructions.  

PCR primers (Table 1) were purchased from Eurofins MWG Operon. Universal 

ProbeLibrary probes and Lightcycler® Taqman® Master Mix were purchased from Roche 

Diagnostics Ltd. Amplification was carried out in 20 μl reaction volume containing 1.5 μl 

cDNA, 0.5 μl F-primer and R-primer (0.4 μM), 0.5 μl Universal probe, 4 μl 5x Mastermix 

and 13 μl DNase/RNase-free water. The following program was used: 95 °C for 10 min 

followed by 45 cycles of 95 °C for 10 s, 60 °C for 30 s and 72 °C for 1 s. Target gene 



expression was normalised to the housekeeping gene GAPDH, and the fold difference of 

expression from the control was calculating using the 2-ΔΔCt method (Livak and Schmittgen, 

2001). 

  

OMV isolation  

Outer membrane vesicle isolation was achieved by a well-established method first described 

by Kadurugamuwa and Beveridge (1995) and more recently modified by Vanaja et al. (2016) 

and Fabrega et al. (2016). Briefly, 250 ml overnight (15 h) cultures of E. coli C25 in tryptone 

soy broth (TSB) were centrifuged at 6000 x g for 10 min to pellet out the bacteria. The 

supernatant was sequentially filtered through 0.80 and 0.45 μm pore size vacuum-driven 

bottle top filters. A sample of the filtrate was transferred to TSA plates and incubated at 37 

°C to ensure there was no contaminating bacteria were present. The filtrates were 

ultracentrifuged at 150,000 x g for 1.5 h, at 5 °C, to pellet out the OMVs. The supernatant 

was removed and the pellet was resuspended in 50 mM HEPES buffer (pH 6.8) and 

ultracentrifuged again for 30 min at 120,000 x g, 5 °C. The supernatant was again removed 

and the pellet was resuspended in 2.5 ml of 50 mM HEPES buffer (pH 6.8) (100-fold 

increase from the culture concentration of OMVs; 100x), filtered through a 0.45 μm syringe 

filter and stored at 4 °C. Subsequently, OMVs were serially diluted (to give 1-25x range of 

OMV culture concentrations) in cell culture medium and utilised in cell challenge 

experiments. 

 

Outer membrane isolation 

E. coli C25 outer membrane (OM) was isolated using a slightly modified protocol from that 

previously described by Zhou et al. (1998). Briefly, 250 ml overnight (15 h) cultures of E. coli 

C25 grown in TSB were centrifuged at 10,000 x g for 10 min and the resultant pellet was 



washed twice in PBS. The bacterial pellet was then resuspended in 10ml PBS with 0.01 M 

EDTA, incubated at room temperature for 30 min and sonicated for 10 s at 85% amplitude. 

The mixture was then centrifuged again at 10,000 x g for 10 min at 4°C and the supernatant 

was collected, with the pellet being discarded. The supernatant was subsequently centrifuged at 

80,000 x g for 2 h at 4°C. The translucent yellow pellet was resuspended in sterile water and 

was centrifuged again at 80,000 x g for 2 h at 4°C. The final pellet was resuspended in sterile 

water and frozen at -80°C (Zhou et al, 1998). 

 

Transmission electron microscopy 

OMVs were isolated and resuspended at 250x culture concentration in 50 mM HEPES buffer 

(pH 6.8). Vesicles were placed on Carbon Films on 400 Copper Mesh Grids (Agar Scientific) 

for 1 min. Grids were then negatively stained with 1% aqueous uranyl acetate for 1 min and 

visualized on a LoJeol 1200EX TEM.  

 

SDS-PAGE 

Protein concentrations of isolated OMVs and OMs were measured using the modified Lowry 

assay as per the manufacturer’s instructions (DC™ Protein Assay; Bio-Rad), with BSA used 

as a protein standard (Sigma-Aldrich). 30 µg of samples were heated at 70°C for 10 minutes 

and subsequently resolved on a 4-12% NuPAGE Novex Bis-Tris precast protein gel 

(Invitrogen) in 1x MES buffer (50 mM MES, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 

7.0). The gel was then stained using the Pierce™ Silver Stain Kit (Thermo Scientific) to the 

manufacturer’s instructions and viewed using the InGenius gel viewing cabinet (Syngene) 

and GeneSnap software (Syngene). 

 

 



 

Bacterial internalisation assay 

The method for this assay was developed from the technique described by Macutkiewicz et 

al. (2008).  Epithelial cells were cultured to confluence (~7 days) and treated with fresh 

medium 24 h in advance of the assay. 10 ml sterile tryptone soy broth (TSB) was inoculated 

with E. coli C25 and incubated at 37 °C overnight (15 h), giving a culture entering the 

stationary phase of growth (Supplementary Fig 1) and at a density of ~1 x 109 CFU/ml (serial 

dilutions and plating out on to tryptone soy agar (TSA) gave exact numbers retrospectively). 

The culture was centrifuged at 10,000 x g for 10 min and the bacterial pellet was resuspended 

in 10 ml HBSS supplemented with 10 mM sodium bicarbonate and 180 mg/dl glucose 

(Trans-HBSS) in order to reduce bacterial growth during the assay (Clark et al., 2003). 

Epithelial cells were washed twice in sterile Trans-HBSS, had ~1 x 109 CFU C25 in 2 ml 

Trans-HBSS added and were incubated at 37 °C for 4 h. After incubation epithelial cells were 

washed twice with Trans-HBSS, thus removing any non-adherent/non-internalised bacteria. 1 

ml Trans-HBSS/50 µg/ml gentamicin was added to the cells and incubated at room 

temperature for 15 min, killing all but the internalised bacteria. The supernatant was removed 

and plated out neat, in TSA, to confirm that the antibiotic had killed the extracellular bacteria. 

The epithelial cells were lysed by osmotic pressure with the addition of 1 ml sterile deionised 

water, and subsequently by sheer force with repeated pipetting, thus releasing the bacteria 

contained within the cells. A serial dilution of the resultant lysates was performed to give 10-3 

and 10-4 dilutions, which were subsequently plated out on TSA, using the agar pour plate 

method. All resultant plates were incubated overnight at 37°C and bacterial colonies were 

manually counted. 

 

Statistical Analysis 



Results are expressed as median ± interquartile range (IQR) for the stated number of 

experimental repeats (n). Statistical significance was calculated using Mann Whitney U-test 

or Kruskal-Wallis test with Dunn’s post hoc analysis and a p value ≤ 0.05 was considered 

significant. All statistical analyses were undertaken using Prism® 6 (GraphPad Software Inc.). 

  



Results 

Extracellular products derived from E. coli C25 elicit a moderate proinflammatory 

response from IECs 

Earlier studies have shown that live E. coli C25 can induce secretion of proinflammatory 

cytokines from intestinal epithelial cells (Michalsky et al., 1997; Zareie et al., 2005); 

however, the extracellular products from this bacterium have only briefly been considered 

before (Bannon, 2008).  To investigate the inflammatory potential of E. coli C25-derived 

extracellular products, HT29-19A and Caco-2 intestinal epithelial cells lines were challenged 

with the cell-free supernatant from cultures of E. coli C25 (C25 cfs) and sonicated samples of 

E. coli C25 cultures (C25 Son) for 24 h. C25 Son samples were used to give maximal levels 

of antigenic material and mimic cells lysed by antimicrobial peptides (AMPs) in vivo. 

Additionally, the responses to both C25 cfs and C25 Son samples were compared to the 

pathogenic antigen, flagellin, which is known to be a major contributing antigen in the 

pathology of inflammatory bowel disease (Lodes et al. 2004) and therefore represents a 

relevant positive control. Moreover, significant IL-8 release in response to flagellin has 

previously been described in both cell lines utilised in this study (Streiner et al., 2000; Gewirtz et 

al., 2001). 

C25 cfs was shown to elicit a significant (~5-fold; p ≤ 0.005) increase in IL-8 release 

in HT29-19A cells (Fig. 1a). The 1.5-fold increase in IL-8 release in Caco-2 cells was much 

more modest (Fig. 1b), but still statistically significant (p ≤ 0.05). The increased IL-8 release 

in both cell lines was also reflected at the transcriptional level, with up-regulation of IL-8 

mRNA in both HT29-19A (~9 fold increase; Fig 1c) and Caco-2 (~5-fold increase; Fig. 1d) 

cells, but neither was statistically significant. Additionally, both HT29-19A and Caco-2 cells 

exhibited an increased release (~7-fold; p ≤ 0.01 and ~2-fold; p ≤ 0.05, respectively) of IL-8 

when challenged with the C25 Son samples, with levels comparable to those seen for the C25 



cfs challenges (Figs. 1a and 1b). Furthermore, as with C25 cfs, challenging with C25 Son 

increased IL-8 mRNA expression in both cell lines, with HT29-19A cells exhibiting ~20-fold 

increase (Fig. 1c) and Caco-2 cells demonstrating a ~4-fold increase (Fig 1 d),  although 

neither of these trends were calculated to be statistically significant. 

Although the release and transcriptional up-regulation of IL-8 was potentiated in 

response to the extracellular products of E. coli C25 in both cell lines, when compared to that 

observed in response to the pathogenic positive control, 100 ng/ml flagellin, the increase is 

relatively modest (Fig 1); on addition of flagellin, IL-8 release was ~20-fold (p ≤ 0.005) 

higher in HT29-19A (Fig 1a) and ~40-fold (p ≤ 0.005) in Caco-2 cells (Fig. 1b), compared to 

control. mRNA expression was up-regulated ~250-fold (p ≤ 0.01) and ~35-fold (p ≤ 0.01) in 

HT29-19A (Fig. 1(c)) and Caco-2 cells (Fig. 1d), respectively. Despite this, upon direct 

comparison of cells treated with C25 extracellular products and those treated with flagellin, 

none of the trends were calculated to be statistically significant. 

 

Removal of OMVs from E. coli C25 extracellular products reduces their 

proinflammatory effect on IECs 

Gram negative bacteria are well characterised in their production of outer membrane vesicles 

(OMVs; Beveridge, 1999; Schwechheimer and Kuehn, 2015), which, when derived from 

either pathogenic or commensal bacteria, have previously shown immunomodulatory activity 

on different intestinal cell types (Chatterjee and Chaudhuri, 2012; Shen et al., 2012, Fábrega 

et al., 2016). Therefore, to elucidate the contribution of OMVs to the proinflammatory profile 

of E. coli C25-derived extracellular products, we removed them from the C25 cfs via 

ultracentrifugation. HT29-19A and Caco-2 cells were subsequently challenged with a 1 in 10 

dilution of the OMV-free cell-free supernatant (cfs) for 24 h and the resultant release of IL-8 

was quantified. 



 In both cell lines, the release of IL-8 in response to the OMV-free cfs was 

significantly (p ≤ 0.001) increased from the control (Fig. 1a, 1b and 2). Once the OMVs had 

been removed from the supernatant, the level of IL-8 expressed from both cell lines in 

response to OMV-free cfs appeared to be diminished in comparison to untampered cfs (Fig. 

2); nevertheless, it was only statistically significant (p ≤ 0.01) in Caco-2 cells (Fig. 2b) and 

not HT29-19A (Fig. 2a).  

 

E. coli C25-derived OMVs elicit a dose-dependent proinflammatory response from 

IECs, but have no regulatory effects on TLR mRNA expression. 

To investigate the immunomodulatory potential of isolated E. coli C25 outer membrane 

vesicles (C25 OMVs), HT29-19A and Caco-2 cells were challenged with a 0-25x culture 

concentration range of OMVs for 24 h. Release and expression of proinflammatory IL-8 was 

investigated by ELISA and qPCR analysis.  

In the HT29-19A cell line, an increased level of IL-8 was observed at a 1x culture 

concentration of OMVs and increased in a dose-dependent manner; nevertheless, the increase 

was only calculated to be statistically significant (p ≤ 0.05)  from a 5x culture concentration 

of OMVs (Fig. 3a). Similarly, in Caco-2 cells, a 5x culture concentration was the minimum 

concentration required to elicit a statistically significant (p ≤ 0.05) increase in IL-8 secretion 

(Fig. 3b). A ~6-fold  increase in IL-8 mRNA was produced by a 10x culture concentration of 

OMVs in HT29-19A cells (p ≤ 0.001), in contrast, no change was observed in Caco-2 cells 

(Fig. 3c). This distinct difference in the responsiveness to OMVs was again indicative of the 

phenotypic variance between the two cell lines. C25 OMVs, which were shown to measure 

50-100 nm (Fig 3d), had their protein content compared to that of the outer membrane (OM) 

via SDS-PAGE (Fig 3e). The two had very similar protein compositions, with only subtle 

differences in band intensity evident; therefore, we can speculate that the surface composition 



of C25 OMVs is representative of the whole bacterium, with the OMVs possessing all the 

surface antigens of the parent bacterium. 

 Previous studies have reported that agonist binding results in the up-regulation of their 

cognate TLR receptors (Poltorak et al. 1998; Visintin et al.  2001; Hornung et al. 2002); we 

confirmed this phenomenon in the current study by measuring the regulation of TLR-5 

mRNA expression in both cell lines, in response to a 24 h challenge with 100 ng/ml flagellin. 

Significant (p ≤ 0.001) up-regulation of TLR-5 mRNA was observed in HT29-19A cells 

(~110-fold increase; Supplementary Fig. 2) and Caco-2 cells (~26-fold increase; 

Supplementary Fig. 2). To investigate whether this was also true in reaction to commensal-

derived antigenic material, we monitored transcriptional expression of the TLRs most 

relevant to bacterial antigens (TLRs-1, -2, -4, -5 and -9) in response to C25 cfs. In HT29-19A 

cells, we observed a significant (p ≤ 0.05) increase in all the TLRs tested in response to 

challenge with C25 cfs (Fig 4a). Similarly, the Caco-2 cell line showed up-regulation in 

mRNA expression of TLR-1, -4, -5 and -9, although only the data for TLRs-1 and -9 was 

considered statistically significant (p ≤ 0.05; Fig. 4b). Interestingly, C25 cfs-challenged 

Caco-2 cells did not exhibit any regulation in TLR-2 mRNA expression, as the levels 

remained comparable to the control. This was in complete contrast to HT29-19A cells, which 

showed the largest increase in TLR-2 mRNA expression (~17-fold increase (Fig. 4a)). This 

contradiction in reaction is likely to arise from the distinct phenotypic differences between 

the two cell lines, as Caco-2 cells exhibit a significant (p ≤ 0.001; ~540-fold) increased 

constitutive expression in TLR-2 mRNA, when compared to HT29-19A cells (data not 

shown). 

Surprisingly, given the fact that the OMVs possess all the surface antigens of the 

parent bacterium (Fig. 3e) when HT29-19A cells were challenged with a 10x culture 

concentration of OMVs no significant differences were observed in TLR mRNA expression 



(Fig. 4a), despite TLRs-2, -4 and -5 appearing to be slightly up-regulated and TLR-9 was 

completely undetectable in the presence of C25 cfs, when compared to the control. Indeed, a 

number of TLRs appeared to be down-regulated in Caco-2 cells; however, none of these were 

statistically significant (Fig. 4b).  

 

Pre-incubation with E. coli C25-derived OMVs inhibits the internalisation of the parent 

bacterium 

As mentioned previously, past studies have utilised E. coli C25 as a model strain for bacterial 

translocation across the intestinal epithelium (Clark et al., 2003; Macutkiewicz et al., 2008); 

therefore, we sought to investigate the regulatory ability of OMVs on this process. To explore 

this, we performed a bacterial internalisation assay in both HT29-19A and Caco-2 cells.

 Interestingly, we observed a reduction in the number of bacteria internalised in both 

cell lines (Fig. 5); however, only the decrease (~3.5-fold) seen in Caco-2 cells was significant 

(p ≤ 0.05).   



Discussion 

We have previously described the potential of specific extracellular products derived from 

commensal enteric bacteria to modulate the low-level inflammation which exists in intestinal 

homeostasis (Patten and Collett, 2013; Patten et al. 2014); however, there is still a paucity of 

research in this field. In the present study, we aimed to explore the inflammatory profile of 

extracellular products secreted by the commensal enteric bacterium E. coli C25 on two 

immortalised intestinal epithelial cell lines, HT29-19A and Caco-2.  

Here, we principally demonstrate that the extracellular products of E. coli C25 (both 

naturally secreted and after the artificial enhancement of their production via bacterial 

sonication) elicit a moderate proinflammatory response, via secretion of the potent neutrophil 

chemoattractant, IL-8, from the intestinal cell lines, HT29-19A and Caco-2. However, it is 

evident that the two cell lines possess a marked difference in constitutive secretion of IL-8 

and that their responsiveness to antigenic material is relatively dissimilar. It has previously 

been speculated that HT29 and Caco-2 cell lines were isolated from different cell type 

populations within the epithelial layer. HT29 cell lines are thought to originate from hyper-

responsive intestinal epithelial crypt cells (Huet et al., 1987; Warhurst et al., 1998), whereas 

Caco-2 cells were derived from the more immunotolerant villus enterocytes (Delie and 

Rubas, 1997; Yee, 1997; Warhurst et al., 1998). Nevertheless, despite the distinct phenotypic 

differences between HT29-19A and Caco-2 cells, we were able to confirm a mild 

proinflammatory response in both cells lines during challenges with extracellular products 

derived from E. coli C25. Also, we show that the naturally secreted products present in cell-

free supernatant from cultures of E. coli C25 can induce a modest up-regulation of the major 

TLRs associated with recognition of bacterial antigens. As mentioned previously, agonist 

binding of TLRs results in the up-regulation of their cognate receptor (Poltorak et al. 1998; 

Visintin et al.  2001; Hornung et al. 2002) and we confirmed this phenomenon occurs in IECs 



in response to flagellin; therefore, from the mRNA up-regulation of multiple TLRs observed 

in this study, we can speculate that C25 cfs contains multiple TLR ligands. One such 

secretory product which we hypothesised to contribute to this was outer membrane vesicles 

(OMVs). 

OMVs isolated from Gram-negative bacteria are receiving increasing interest in 

microbiological research (Kaparakis-Liaskos and Ferrero, 2015; Schwechheimer and Kuehn, 

2015); yet, despite the vast number of Gram-negative bacteria present within the intestinal 

microbiota, there is a lack of studies considering the immnuoregulatory activity of OMVs 

derived from this population (Muraca et al., 2015). Also, the limited studies performed to 

date are divided in their opinion of the pontential role of OMVs in the intestinal niche. It has 

recently been suggested that macrophage-induced immune responses to OMVs from the 

commensal bacterium B. thetaiotaomicron could drive colitis in genetically susceptible hosts 

(Hickey et al., 2015); however, this is contradicted by an elegant study previously undertaken 

by Shen et al., (2012), which suggests a more beneficial role for commensal-derived OMVs. 

In their study, they demonstrated that capsular polysaccharide (PSA)-containing OMVs, 

isolated from B. fragilis, can protect against inflammation in the 2,4,6-trinitrobenzenesulfonic 

acid (TNBS) experimental model of colitis in mice via the production of anti-inflammatory 

cytokines by DCs, which subsequently enhanced the protective regulatory T cell response. 

Additionally, Fábrega et al. (2016) have recently shown that OMVs from both probiotic and 

commensal strains of E. coli stimulate a more anti-inflammatory cytokine profile from 

explanted colonic tissue, despite a moderate increase in proinflammatory cytokines, such as 

IL-6 and IL-8. In the current study, we corroborate the findings of Fábrega et al., as we show 

that the naturally secreted OMVs of an enteric commensal bacterium have a direct 

proinflammatory effect on the intestinal epithelial cell lines, HT29-19A and Caco-2. 

However, we suggest that, should this proinflammatory effect also be observable in vivo, then 



it is moderate enough to be beneficial to the host by contributing to the homeostatic low-level 

inflammatory environment which is characteristic of the normal intestine. 

Previously, it has been shown that OMVs are able to directly interact with host cells 

via TLRs (Cecil et al., 2016; Kunsmann et al., 2015; Laughlin et al. 2015; Schaar et al, 2011; 

Waller et al., 2016); nevertheless, we have demonstrated that a relatively high concentration 

of C25-derived OMVs does not elicit an up-regulation of TLR mRNA expression, as was 

observed in response to the cell-free supernatant from cultures of the parent bacterium. It is 

well established that activation of TLRs by their agonists significantly enhances the 

internalisation of bacteria in both professional immune cells, such as macrophages (Blander 

and Medzhitov, 2004; Doyle et al., 2004), and non-professional immune cells, such as 

intestinal epithelial cells (Neal et al, 2006). In addition to this, E. coli C25 has been used as a 

model strain for bacterial translocation through the intestinal epithelial barrier (Clark et al., 

2003; Macutkiewicz et al., 2008; Suzuki and Okada, 2014); therefore, we decided to explore 

the regulatory effects of OMVs on this process. Consequently, we demonstrate that pre-

treatment with C25 OMVs was able to reduce the subsequent internalisation of the C25 

bacterium in intestinal epithelial cells.  

Therefore, we propose that, through limiting the up-regulation of TLRs by other 

secretory products, OMVs can reduce the number of their parent bacterium which translocate 

the intestinal epithelial layer. It has been suggested that indigenous bacteria constitutively 

translocate transcellularly from the intestinal lumen of healthy, immunocompetent 

individuals, but are subsequently killed en route or in situ by professional immune cells once 

they reach the lymphoid organs (Berg, 1995). Furthermore, Lichtman et al. (2001) suggested 

that bacterial translocation is required to generate immunocompetent cells within the gut-

associated lymphoid tissue (GALT); however, prolonged and excessive immune reaction to 

the microflora leads to the chronic inflammation of the intestinal mucosa classically 



associated with inflammatory bowel disease (IBD) (Bene et al., 2011). Consequently, in 

order to maintain the fine balance of intestinal homeostasis, it is necessary to allow low 

numbers of commensal bacteria to translocate the intestinal epithelium; however, it is evident 

that this process must be stringently regulated. Here, we propose that, through the production 

of OMVs, the commensal microbiota themselves are able to directly contribute to the 

regulation of their own translocation, thus maintaining the mutually beneficial symbiosis with 

a healthy host and avoiding the pathogenesis of IBD. 

In summary, these data demonstrate that, in vitro, extracellular products derived from 

a commensal bacterium have a mild proinflammatory effect on host intestinal epithelial cells 

and stimulate a moderate up-regulation of TLRs. We hypothesise these effects could be 

beneficial in vivo by priming the intestine and subsequently allowing a rapid, but more 

controlled, response to pathogenic bacteria and their associated antigens. Also, we show that 

OMVs are key contributors to the proinflammatory effect of the E. coli C25-derived 

extracellular products. Furthermore, we demonstrate a novel interaction between the 

commensal microbiota and host cells; through the inhibition of TLR up-regulation, 

membrane vesicles derived from a commensal bacterium are able limit the internalisation of 

the parent bacterium into intestinal epithelial cells. Finally, we hypothesise that, were the 

results presented here to be representative of the in vivo environment, then the products 

secreted into the intestinal milieu by the commensal microbiota, and OMVs in particular, 

could play a key role in the induction of the homeostatic low-level inflammatory response 

that is highly characteristic of the healthy intestine.  
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Table 1 – qPCR primers and probes 

 

  

Gene  Primer Sequence 
Universal 

Probe No. 

GAPDH F – gctctctgctcctcctgttc R – acgaccaaatccgttgactc #60 

IL-8 F – agacagcagagcacacaagc R – aggaaggctgccaagagag #72 

TLR-1 F – aaacaacattgaaacaacttggaa R – cacgtttgaaattgagaaatacca # 65 

TLR-2 F – ctctcggtgtcggaatgtc R – aggatcagcaggaacagagc #56 

TLR-4 F – gaaggttcccagaaaagaatgtt R – cctgattgtccttttcttgaatg # 75 

TLR-5 F – ctccacagtcaccaaaccag R – cctgtgtattgatgggcaaa # 72 

TLR-9 F – tgtgaagcatccttccctgta R – gagagacagcgggtgcag #56 



Figure Legends 

Figure 1 – E. coli C25-derived extracellular products elicit IL-8 release expression in 

IECs. HT29-19A and Caco-2 cells were challenged with 1 in 10 dilutions of E. coli C25 cell-

free supernatant (C25 cfs) and sonicated (C25 Son) bacteria for 24 h; 100 ng/ml of flagellin 

was used a positive pathogenic control. (a) IL-8 release from HT29-19A cells (n = 3-12).  (b) 

IL-8 release from Caco-2 cells (n = 3-12). (c) mRNA expression of IL-8 in HT29-19A cells 

(n = 3-6). (d) mRNA expression of IL-8 in HT29-19A cells (n = 3-6). Results are median ± 

IQR. *, ** and *** indicate significance from the control, where p ≤ 0.05, 0.01 and 0.005, 

respectively. 

Figure 2 – Removal of OMVs decreases the proinflammatory activity of E. coli C25-

derived extracellular products. E. coli C25 cfs was ultracentrifuged to remove OMVs. The 

resultant OMV-free cfs was diluted 1 in 10 in cell culture media and (a) HT29-19A and (b) 

Caco-2 cells were challenged for 24 h and IL-8 release was measured via ELISA (n = 6-12). 

Results are median ± IQR. ** and **** indicate statistical significance, where p ≤ 0.01 and 

0.001, respectively; ns = not significant. 

Figure 3 – OMVs isolated from E. coli C25 mediate a dose dependent release of IL-8 

from IECs. (a) HT29-19A and (b) Caco-2 cells were challenged with serial dilutions (1-25x) 

of E. coli C25 OMVs for 24 h and IL-8 expression was measured (n = 6). (c) mRNA 

expression of IL-8 in cells challenged with 10x OMVs for 24 h (n = 3). Results are median ± 

IQR. *, ** and *** indicate significance from the control, where p ≤ 0.05, 0.01 and 0.005, 

respectively. (d)TEM micrograph of C25 OMVs. (e) Comparison of protein content of E. coli 

C25 outer membrane vesicles (OMV) and outer membrane (OM) preparations by SDS-

PAGE.   

Figure 4 – E. coli C25-derived OMVs have no regulatory effects on TLR mRNA 

expression. HT29-19A (a) and Caco-2 (b) cells were challenged with 1 in 10 dilutions of E. 



coli C25 cell-free supernatant (cfs) or 10x culture concentration of E. coli C25 outer 

membrane vesicles (C25 OMVs) for 24 h and qPCR was utilised to study TLR mRNA 

expression. Results are median ± IQR, n = 3. * and ** indicate significance from the control, 

where p ≤ 0.05 and 0.01, respectively. 

Figure 5 – Commensal- derived OMVs block internalisation of their parent bacterium. 

HT29-19A (a) and Caco-2 (b) cells were challenged with 10x OMVs isolated from E. coli 

C25 for 24 h. Subsequently, the supernatants were removed and cell layers were co-cultured 

with ~1 x 109 CFU of E. coli C25 for 4 h. Non-internalised bacteria were killed and epithelial 

cells were lysed, releasing internalised bacteria. Lysates were serially diluted, plated out and 

incubated for 24h. Resultant colonies were counted and expressed as a % of the original 

inoculum. Results are median ± IQR, n = 4-6. * indicates significance from the control, 

where p ≤ 0.05; ns = not significant.   

Supplementary Figure 1 – E. coli C25 growth curve. E. coli C25 was cultured in TSB 

broth for 24 h, with the absorbance at 400 nm measured every 30 min. The 15 h culture time 

utilised in the experiments in this study is indicated by the dotted line. 

Supplementary Figure 2 – Flagellin up-regulates TLR5 mRNA expression in IECs. 

HT29-19A and Caco-2 cells were challenged with 100 ng/ml of flagellin for 24 h and TLR5 

mRNA expression was measured. Results are median ± IQR, n = 4-6. * indicates significance 

from the control, where p ≤ 0.05. 
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Figure 3 
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Figure 4 
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Figure 5 
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