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Abstract: Programming tools are being used in education to teach computer science to children as young as 5 years old. 

This research aims to explore young children’s approaches to programming in two tools with contrasting programming 

interfaces, ScratchJr and Lightbot, and considers the impact of programming approaches on developing computational 

thinking. A study was conducted using two versions of a Lightbot-style game, either using a ScratchJr-like or Lightbot style 

programming interface. A test of non-verbal reasoning was used to perform a matched assignment of 40, 6 and 7-year-olds 

to the two conditions. Each child then played their version of the game for 30 minutes. The results showed that both 

groups had similar overall performance, but as expected, the children using the ScratchJr-like interface performed more 

program manipulation or ‘tinkering’. The most interesting finding was that non-verbal reasoning was a predictor of 

program manipulation, but only for the ScratchJr-like condition. Children approached the ScratchJr-like program differently 

depending on prior ability. More research is required to establish how children use programming tools and how these 

approaches influence computational thinking. 

 

Keywords: Visual programming, Education, Computational thinking, K-12, Lightbot, Scratch 

1. Introduction 

This paper focuses on two tools used to teach programming to young children, ScratchJr (Flannery et al., 2013) 

and Lightbot (Lightbot Inc., 2016). Existing literature suggests that both these tools encourage computational 

thinking, yet there are clear theoretical contrasts in the type of programming interfaces that they use. We 

describe an exploratory study to investigate whether there was a difference in the way that young children use 

these tools and consider its relationship to developing computational thinking skills. 

 

We live in a digital age where technology plays a key role in almost everything we do, making it increasingly 

important for us to understand how it works. Today’s children will go on to live a life dominated by computing, 

both in the home and at work (Barr and Stephenson, 2011). Computing education is receiving increasing 

attention in classrooms worldwide, with the aim of developing digital, media and information literacies. The 

need for children to be effective users of computational tools has led to the re-examination of the concept of 

‘computational thinking’. Although the term was originally used by Papert (1980), Wing (2006) describes it as 

the problem-solving processes used by computer scientists. She stated that it should be taught as a basic skill 

across the school curriculum (2008). Since Wing reintroduced the concept of computational thinking; many 

researchers have attempted to clarify what it is and how we can teach it (e.g. Grover and Pea, 2013; Yadav, 

Hong and Stephenson, 2016). 

 

Programming tools are seen as a means of developing computational thinking skills (e.g. Wilson and Moffat, 

2010; Brennan and Resnick, 2012; Berland and Wilensky, 2015). This has led to the release of a variety of new 

tools, such as ScratchJr, Hopscotch and Kodable. Scratch remains the most widely-used of children’s 

programming tools. It takes inspiration from constructionism and the LOGO programming language (Papert, 

1980). Constructionism is a pedagogical theory based on constructivism (Piaget, 1970), which makes specific 

use of the construction of artefacts as a basis for building knowledge. Papert theorised that by thinking about 

programming, learners would learn about the process of thinking, and he believed these skills would transfer 

to other contexts (1980). Scratch provides a constructionist learning environment through block-based 

programming, where learners combine instruction blocks to form programs (Resnick et al., 2009). Researchers 

have identified differing approaches when children program in Scratch (Meerbaum-Salant, Armoni and Ben-

Ari, 2011). 
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Several countries have now introduced computer science into national curricula (Heintz, Mannila and 

Farnqvist, 2016), meaning that children as young as 5 years old are now learning basic programming skills. 

Whilst there is evidence to suggest that children can learn to program at this age (Bers, 2010; Fessakis, Gouli 

and Mavroudi, 2013), there is comparatively little empirical research on children’s use of programming tools 

under the age of 7. This is particularly important due to the cognitive developments that children undergo 

around this age (Manches and Plowman, 2015). Some researchers are concerned that younger children 

struggle to understand fundamental computer science concepts like abstraction (e.g. Armoni, 2012). 

2. Computational thinking 

Seymour Papert first described computational thinking as part of his research into how children develop 

procedural thinking through computer programming (1980). Wing sparked a renewed interest in the topic 

(2006), suggesting that “to reading, writing, and arithmetic, we should add computational thinking to every 

child’s analytical ability” (p. 33). Furthermore, Wing suggested that teaching computational thinking enables 

children to learn to think in an abstract and algorithmic manner relevant to many disciplines, including 

mathematics and science. She went on to define computational thinking as “solving problems, designing 

systems, and understanding human behaviour, by drawing on the concepts fundamental to computer science” 

(Wing, 2006, p. 33), but ten years later there is still no unanimous  agreement on a definition (Garcia-Peñalvo, 

2016; Weintrop et al., 2016). 

 

There have been many efforts to clarify what is involved in computational thinking (e.g. Barr and Stephenson, 

2011; Grover and Pea, 2013; Kalelioglu, Gulbahar and Kukul, 2016). There is a general agreement that it 

includes all the concepts that a computer scientist would typically use to solve computational problems (Riley 

and Hunt, 2014), but the list of concepts is up for debate. Table 1 shows the different concepts used in 7 

existing definitions of computational thinking. 

Table 1: The concepts included in existing definitions of computational thinking 

Barr and 

Stephenson 

(2011) 

Brennan and 

Resnick 

(2012) 

Grover and Pea 

(2013) 

Seiter and 

Foreman (2013) 

Kalelioglu, 

Gulbahar and 

Kukul (2016) 

Angeli et al. 

(2016) 

Repenning, 

Basawapatna 

and Escherle 

(2016) 

Abstraction 

Abstracting 

and 

modularising 

Abstraction and 

pattern 

generalisation 

Abstraction Abstraction Abstraction Abstraction 

Algorithms and 

procedures 
Sequences 

Algorithmic 

notions of flow 

of control 

Procedures and 

algorithms 

Algorithms and 

procedures 

Algorithms 

(including 

sequencing and 

flow of control) 

 

Data collection, 

analysis and 

representation 

Data 

Symbol systems 

and 

representations 

Data 

Representation 

Data collection, 

analysis and 

representation 

  

Problem 

decomposition 
 

Structured 

problem 

decomposition 

Decomposition Decomposition Decomposition  

Parallelisation Parallelism 

Iterative, 

recursive and 

parallel thinking 

Parallelisation 

and 

synchronisation 

Parallelisation   

Testing and 

verification 

Testing and 

debugging 

Debugging and 

systematic error 

detection 

 
Testing and 

debugging 
 Analysis 

Control structures 
Conditionals 

and loops 
Conditional logic  

Mathematical 

reasoning 
  

Automation  Automation Automation

   Generalisation Generalisation  

Simulation    
Modelling and 

simulations 
  

 Events   

  

Efficiency and 

performance 

constraints 

    

  
Systematic 

processing 
    

   Conceptualising  
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For the purposes of this work, we have defined a working definition for computational thinking using the 7 

most common concepts included in the definitions above: 

 

• Abstraction and generalisation (removing the detail from a problem and formulating solutions in 

generic terms) 

• Algorithms and procedures (using sequences of steps and rules to solve a problem) 

• Data collection, analysis and representation (using and analysing data to help solve a problem) 

• Decomposition (breaking a problem down into parts) 

• Parallelism (having more than one thing happening at once) 

• Debugging, testing and analysis (identifying, removing and fixing errors) 

• Control structures (using conditional statements and loops) 

 

This process helped to identify individual concepts and provided a deeper understanding of computational 

thinking. This is the definition of computational thinking used in the rest of the work and will be used to 

evaluate two programming tools for their potential to develop computational thinking skills. 

3. Programming tools for young children 

In the previous section, we defined a working set of computational thinking concepts. This section will analyse 

two programming tools designed for young children and evaluate their potential to develop computational 

thinking with respect to this set of concepts. 

3.1 ScratchJr 

Scratch is a block-based programming tool designed for children aged 8-16. It aims to “support self-directed 

learning through tinkering and collaboration” (Maloney, Resnick and Rusk, 2010, p. 2) and requires the 

application of computational thinking concepts (Resnick et al., 2009). 

 

ScratchJr is a version of Scratch redesigned for younger children aged 5-7 (figure 1). It maintains the creative 

programming elements of Scratch, which allow children to easily create short stories and games. Characters 

can be added to a scene, and are given behaviours by combining instruction blocks. The interface is entirely 

symbolic and contains only a third of the original Scratch instruction set because young children can struggle 

with several levels of decomposition (Flannery et al., 2013). ScratchJr also executes instructions from left to 

right (the way that the English language is read) instead of the top to bottom approach used in Scratch. It has 

large buttons for touchscreen use, which apparently compounds difficulties that young children often have 

with mouse movement. The Cartesian coordinate system used in Scratch has been replaced by a natural 

coordinate system, and there is a grid that can be overlaid on top of the scene to help children calculate 

distance. Numerical parameter values have a maximum limit of 25, and children can execute individual 

instructions simply by pressing on them to help them explore what each instruction does. ScratchJr was 

developed using several age-appropriate design principles (Flannery et al., 2013). It makes it easy to get 

started but provides room to use more complex concepts (low floor and high ceiling), it allows many pathways 

and styles of exploration (wide walls), ideas can be incrementally developed through experimentation 

(tinkerability), the interface is friendly and playful (conviviality) and it can be used with a wide range of 

learning outcomes (classroom support). 

 

 

Figure 1: A scene from ScratchJr 
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3.2 Lightbot 

Lightbot is an educational puzzle game. The player must arrange a fixed set of block-based instructions in a 

finite program space that tell a robot what to do (figure 2). The goal is to program the robot to turn all the blue 

blocks in a level into illuminated yellow blocks. This is done by navigating the robot to a blue block and 

executing the light command. Players can decompose a level into different sections, which can then be solved 

one after the other until they have a complete solution. Some of the later levels can only be completed 

through the correct use of procedures and conditionals. For procedures, the player is given other program 

spaces below the main program that can be called using special instructions.  Conditionals are implemented 

using a paint tool that colours the robot so that only instructions of that colour are executed. Gouws, 

Bradshaw and Wentworth (2013) suggest that Lightbot is useful for practising computational thinking. It 

concentrates on using computational thinking as a problem-solving process, and players are rewarded for 

producing optimised solutions. 

3.2.1 Non-verbal reasoning 

Successful Lightbot players can use mental transformations to predict the movement of the robot, recognise 

patterns from other levels and implement these patterns using known sequences of instructions (Gouws, 

Bradshaw and Wentworth, 2013). This is comparable to non-verbal reasoning, which is the ability to analyse 

information and solve problems using visual information. Non-verbal reasoning contains both abstract (or 

diagrammatic) and spatial reasoning, which includes spatial transformations, recognising visual sequences, and 

identifying relationships between shapes and patterns. Non-verbal reasoning is not reliant upon or limited by 

language ability, and research suggests that it can indicate mathematical ability in children (Halberda, 

Mazzocco and Feigenson, 2008). 

 

 

Figure 2: A simple level from Lightbot 

3.3 Comparison of the tools 

These tools were analysed for their support of computational thinking using the definition in the previous 

section (table 2). From this, it is reasonable to conclude that both tools encourage computational thinking. 

They both use almost all the common computational thinking concepts identified in section 2. The only 

difference is that Lightbot doesn’t support parallelism. 
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Table 2: The computational thinking concepts used in ScratchJr and Lightbot 

  ScratchJr Lightbot 

Abstraction and generalisation 

• Understanding of the grid and character 

movement 

• Identifying common behaviours using 

instructions and instruction blocks 

• Understanding of the grid and robot 

movement 

• Identifying common solutions to levels 

Algorithms and procedures 

• Sequencing instructions to create algorithms 

• Using procedures to repeat common 

instructions 

• Sequencing instructions to create 

algorithms 

• Using procedures to repeat common 

instructions 

Data collection, analysis and 

representation 
• Counting movement needed using the grid 

• Counting movement needed using the 

level grid 

Decomposition 

• Applying behaviours to different characters 

• Having multiple instruction blocks in one 

character 

• Applying behaviours in steps 

• Breaking down and solving levels in 

parts 

Parallelism • Blocks of instructions are executed in parallel 

Debugging, testing and analysis 

• The instruction currently being executed is 

highlighted 

• Programs can be re-run to check for errors 

• Instructions can be pressed individually to test 

what they do 

• The instruction currently being 

executed is highlighted 

• Programs can be re-run to check for 

errors 

Control structures 

• Using blocks such as repeat and wait to control 

execution 

• Looping instructions using procedures 

• Using conditionals in later levels 

• Looping instructions using procedures 

 

Despite their similarities, there is a specific operational difference between the visual programming paradigms 

employed in ScratchJr and Lightbot. In ScratchJr, a limitless number of blocks can be added to the program 

space, these blocks are not executed unless they are linked to a trigger block or individually pressed to execute 

them. Whereas in Lightbot, the play button sequentially executes all the instructions included in the main 

program. Lightbot also limits how many instructions can be in the program depending on the current level. It is 

this operational difference which led us to explore how young children used these tools and whether they 

encouraged a fundamentally different programming approach. 

4. Programming approaches 

Turkle and Papert described two approaches to problem-solving. The first was an analytical top-down 

approach where solutions to problems are planned. The second was a bottom-up or “bricolage” approach, 

where solutions are attempted “by arranging and rearranging, by negotiating and renegotiating with a set of 

well-known materials” (1991, p. 136). In constructivist learning theory, a child builds knowledge through 

experience. The information they receive through interactions challenges their world view (Piaget, 1970). 

Constructionism applies this theory to the construction of artefacts (Papert, 1980). It is a pedagogical theory 

which suggests that learners should be given the opportunity to experiment and explore ideas by tinkering 

with an artefact. Learners are guided “by the work as it proceeds rather than staying with a pre-established 

plan” (Papert and Harel, 1991, p. 6), leading to self-directed learning. Scratch is based on these principles 

(Resnick et al., 2009). 

 

Research has shown that children aged 10-15 can learn computer science using Scratch (Meerbaum-Salant, 

Armoni and Ben-Ari, 2013; Sáez López, González and Cano, 2016). Despite this, there are some suggestions 

that Scratch may encourage unusual programming approaches (Meerbaum-Salant, Armoni and Ben-Ari, 2011). 

A top-down approach is traditionally taught in programming, where software is decomposed into coherent 

units that can be better maintained. Meerbaum-Salant, Armoni and Ben-Ari observed that 14 and 15-year-olds 

took the top-down approach to the extreme. They decomposed programs into many small blocks of 

instructions (sometimes hundreds) that lacked logical coherency. This can make programs particularly difficult 

to debug in Scratch and ScratchJr due to the way they both execute all instruction blocks in parallel. Children in 

the study by Meerbaum-Salant, Armoni and Ben-Ari (2011) became frustrated and lost motivation because 
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they did not understand what was happening in their programs. They also observed that Scratch programs 

were often developed using a bottom-up approach. In bottom-up programming, components are designed in 

isolation then linked together to form a complete solution. This can be an appropriate method of software 

design, but children once again took it to the extreme. When faced with a problem, they would attempt to 

solve it by "dragging all the blocks that seemed to be appropriate for solving the task, and then combining 

them into a script” (2011, p. 169). This tinkering behaviour is encouraged in Scratch and ScratchJr by the fact 

that instructions can be left in the script area without affecting the execution of the program. 

 

We have identified two approaches to programming; top-down and bottom-up. Along with indications that 

both are used by children in Scratch. In contrast, Lightbot provides a programming interface which doesn’t 

allow much tinkering. Instructions can be freely added to and deleted from the main program, but when an 

instruction is visible, it is always part of the program and executed in strict sequence. It was this central 

difference that provided the basis for this study, exploring the affect that the two programming paradigms had 

on children’s approaches to programming. Lightbot contains only a subset of the commands available in 

ScratchJr, so it was decided that the programming tasks used for the study should be based on navigating 

robots (as in Lightbot), as such tasks could be easily undertaken in both programming environments. 

5. Method 

5.1 Aims and hypotheses 

This was an explorative study examining young children’s approaches to programming using the two different 

programming paradigms. Although some hypotheses were formed, the study was primarily undertaken to 

identify questions that could become the focus of future research. 

 

Three hypotheses were initially formed based on the existing literature: 

a) A ScratchJr-like programming interface would lead to more “tinkering” than a Lightbot interface. 

b) A ScratchJr-like programming interface would lead to improved outcomes on problem-solving tasks. 

c) Higher-ability players would benefit more from a ScratchJr-like programming interface. 

5.2 Participants 

The participants were from a large primary school in a low-income area in northern England. Most pupils at 

the school are of White British heritage. The school has a well above average proportion of disadvantaged 

pupils and pupils that require support for special educational need. The study participants included 20 boys 

and 20 girls between the age of 6 years, 3 months and 7 years, 3 months (M = 6 years, 9 months). 

5.3 Materials and procedure 

A non-verbal reasoning test was created for this study to produce matching pairs, based on the assumption 

that non-verbal reasoning is required in Lightbot (section 3.2.1). Standardised school worksheets (Primary Leap 

Limited, 2011) were used as a model for the questions. There were three types of questions; matching shapes 

(as seen in figure 3), selecting the odd one out from a series of shapes, and selecting the next shape or missing 

shape in a pattern. The possible answers to some questions were rotated, requiring the participant to perform 

mental transformations, similar to the rotation process required in Lightbot. 

 

The test took place in the school IT suite in groups of 15. It was 40 questions long, and the participants had 5 

minutes to answer as many as they could. Participants were told there was no rush to answer the questions, 

and that their answers should be carefully thought through. The time-limit and number of questions aimed to 

produce a greater range of test scores, reducing the possibility of ceiling effects. 
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Figure 3: An example question from the non-verbal reasoning test 

Two versions of a Lightbot style game for 6 and 7-year-olds were created for this study. One that used the 

Lightbot programming interface, and one that used a ScratchJr-like interface (see figure 4). The versions were 

identical apart from that in the ScratchJr-like version, instructions can be added to the program that will not 

execute unless linked to the trigger block (see table 3). The game has 15 levels; it begins with simple levels that 

require only forward and light instructions. The later levels then introduce more complex movements and 

levels with several lights. The difficulty progression was designed so that it could challenge more able children 

in the target age group. 

 

 

Figure 4: The Lightbot (left) and ScratchJr-like version (right) of the game  

Table 3: The similarities and differences between the two versions of the game 

 Lightbot ScratchJr-like

Similarities 

• A fixed set of instructions (forward, 90° rotation clockwise, 90° rotation anti-clockwise, light). 

• Instructions can each be used more than once. 

• Instructions can be added, rearranged and removed from the program space. 

Differences 
• All instructions in the program will be 

performed by the robot. 

• Only the instructions linked to the trigger 

block will be performed by the robot. 

 

Two groups of 20 participants were created using the non-verbal reasoning scores as a matching variable 

(based on the assumption that non-verbal reasoning ability was required to be successful in the game). Each 

child then played one version of the game for thirty minutes in a small reading room joined to the children’s 

classroom. Two laptops were set up facing away from each other so that one child from each group could play 

the game without being aware that they were using a different version to their classmate. Testing the 

conditions together meant that any extraneous variables (e.g. time of day) would affect both groups equally. 

All participants were given a uniform introduction to the game via a tutorial video. 

5.4 Measures 

A range of measures were used to explore how the participants used each version of the game: 

1. The non-verbal reasoning scores for each participant. 

2. Program manipulation; additions, moves and deletions of instructions per attempt. 

3. The number of attempts needed by a participant to complete a level. 
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4. The highest level reached by each participant. 

5. The time taken by a participant per attempt. 

6. The time taken by a participant to complete a level. 

 

As explained in section 5.3, the scores of a non-verbal reasoning test were used as a matching variable to 

create two even ability groups. It is, therefore, expected that these scores should predict how well a 

participant performed in the game and this would be demonstrated by a correlation between the participant 

test scores and the highest level they reached. 

 

Program manipulation was measured by the number of additions, moves and deletions of instructions from 

the program space between each attempt. An attempt was defined as each time a participant ran their 

program by pressing the play button. It was hoped that this measure, and the amount of time between each 

attempt, would provide some indication of how participants are interacting with the game and could be used 

to infer something about their programming approach (particularly in terms of the amount of ‘tinkering’ taking 

place).  

 

Overall performance was measured using the highest level reached by each participant. This can be combined 

with program manipulation to explore the effect of the two conditions on overall performance. Data was also 

collected on other performance measures, such as how many attempts it took for participants to complete a 

level and how much time it took them to do so. These measures can be used to show if the two games were as 

similar as expected. 

6. Results 

6.1 Comparing the difficulty of the two versions 

The programming interface should have been the only difference between the two versions of the game. 

Independent T-tests were performed on the overall performance measures between groups (see table 4). On 

average, Lightbot players reached a slightly higher level in 30 minutes than the ScratchJr-like players, but this 

difference was not significant, t(38) = .54, p = .59. ScratchJr-like players spent slightly more time (in seconds) 

on each level than the Lightbot players, again the difference was not significant, t(38) = -1.12, p = .27. Finally, 

ScratchJr-like players took fewer attempts on average to complete levels than Lightbot players. This difference 

was not significant, t(38) = .98, p = .33. 

Table 4: T-test detail for the overall performance measures between groups 

Measure Lightbot (N = 20) ScratchJr-like (N = 20) 

 M SD SE M SD SE 

Highest level reached 10.25 4.25 .95 9.5 4.48 1 

Average time taken to complete a level (seconds) 187 86.1 19.25 224.35 121.33 27.13 

Average attempts needed to complete a level 9.4 6.86 1.53 7.54 5.02 1.12 

6.2 Non-verbal reasoning as a predictor of game performance 

The non-verbal reasoning test was designed to produce a range of scores, containing 40 questions and using a 

5-minute time-limit. The median of the collected scores was 23.5 with a minimum of 15 and a maximum of 35. 

The middle 50% of scores were between 20.25 and 30.75. The groups were created based on the assumption 

that the scores would indicate how well participants would perform in the game. This was supported by a 

strong correlation between the scores and the highest level reached by each participant, r(40) = .73, p < 0.001. 

The game was designed to challenge the more able participants, but not be too difficult for the lower-ability 

participants. The median highest level that participants reached was 8.5, with a minimum of 4 and a maximum 

of 15 (the last level). The middle 50% fell between 6 and 15, with 13 participants reaching or completing the 

last level. 

6.3 Comparing program interaction between groups 

Participant’s program manipulation was compared to see if there was any difference in how they were 

interacting with the game. A one-way ANCOVA was used to compare the average instruction additions, moves 

and deletions per attempt from the program. The non-verbal reasoning scores were used as a covariate 

because participant ability may have influenced the amount of program manipulation they performed. There 

was a significant difference between the conditions, F(1,37) = 192.19, p < .001. Participants in the ScratchJr-
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like condition manipulated the program more (M = 9.06, SD = 3.27, SE = .73) than the participants in the 

Lightbot condition (M = 4.68, SD = 1.9, SE = .42). A similar one-way ANCOVA was used to test for differences in 

the time (in seconds) taken to formulate an attempt. This also showed a significant difference between 

conditions, F(1,37) = 9.58, p = .004. The participants in the ScratchJr-like condition took longer on average (M = 

34.15, SD = 11.38) to construct their programs than the Lightbot group (M = 24.29, SD = 8.87). 

6.4 Using non-verbal reasoning to predict program interaction 

We then tested if non-verbal reasoning scores would indicate how much a participant was manipulating their 

program. A single linear regression was used to predict the average program manipulation per attempt based 

on the test score. The results of the regression show that overall the scores significantly predicted program 

manipulation, β = .37, t(37) = 3.32, p = .002. Participants with higher non-verbal reasoning scores performed 

more manipulation. The tests scores also explained a significant proportion of variance in program 

manipulation, R² of .55, F(2,37) = 22.46, p < .001. An interaction effect was added to test if there was a 

difference between groups. This showed that in the ScratchJr-like version, there was a bigger effect of the 

condition when participants had higher scores of non-verbal reasoning, β = .35, t(36) = -2.35, p = .025. This 

result was supported by a correlation between non-verbal reasoning and program manipulation in the 

ScratchJr-like condition, r(20) = .65, p = .002, but not in the Lightbot condition, r(20) = .22, p = .342 (figure 5). 

 

 

Figure 5: The correlations between non-verbal reasoning and average program manipulation per attempt for 

each condition 

6.5 Using the highest level reached to predict program interaction 

A similar analysis was then conducted using the highest level reached by each participant as an indicator of in-

game success, instead of their non-verbal reasoning scores. Participants were divided according to whether 

they had completed level 8 or not, as this represented a median split. Using the non-verbal reasoning scores as 

a covariate, a two-way ANCOVA was conducted that examined the effect of the interface-type, and whether a 

participant completed level 8, on program manipulation. The results showed a significant interaction between 

the interface-type and program manipulation, F(1,35) = 45, p < .001, and a significant interaction between the 

interface-type and whether the participant completed level 8, F(1,35) = 10.16, p = .003. Completing level 8 

alone was not a predictor of program manipulation, F(1,35) = 1.77, p = .192. The average program 

manipulation per attempt for both groups is shown in table 5. This is further supported by the graph in figure 

6, which shows the average amount of program manipulation per attempt for each level.  
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Figure 6: The average amount of program manipulation used per attempt in each level 

Table 5: The average program manipulation per attempt dependant on whether a participant completed level 

8.  

Level Completed Lightbot (N = 20) ScratchJr-like (N = 20)

N M SD SE N M SD SE

< 8 9 4.47 1.6 .53 11 7.06 2.01 .6

>= 8 11 4.84 2.17 .65 9 11.51 2.86 .95

7. Discussion 

The results showed that overall performance was similar in both versions of the game. Participants reached a 

similar level, spent a similar amount of time on each level and took a similar number of attempts to complete 

each level. This is not surprising given that the programming interface was the only difference between the 

two versions. We can also say that the game provided a suitable level of challenge, as all participants 

completed at least the third level of the game and around a third of participants reached or completed the last 

level. 

 

The non-verbal reasoning test produced a good range of scores (between 15 and 35), suggesting that the 

difficulty of the questions was appropriate for the age group. The correlation between these scores and the 

highest level reached shows that non-verbal reasoning was a strong indicator of success in the game, and 

justifies the use of these scores as a matching variable to create two even ability groups. Furthermore, if both 

Lightbot and ScratchJr encourage computational thinking as has been suggested (Flannery et al., 2013; Gouws, 

Bradshaw and Wentworth, 2013) then this correlation could also support the idea that non-verbal reasoning 

and computational thinking are linked. 

 

There was a pronounced difference in the amount of program manipulation between groups as measured by 

additions, moves and deletions of instructions. Participants in the ScratchJr-like condition performed 1.9 times 

more manipulation per attempt than the participants in the Lightbot condition. They also took 1.4 times longer 

on average to formulate each attempt. These findings are in line with the constructionist principles of Scratch’s 

design and consistent with the idea that children using the ScratchJr-like interface are being guided “by the 

work as it proceeds rather than staying with a pre-established plan” (Papert and Harel, 1991, p. 6). The 

increased tinkering in the ScratchJr-like condition could also suggest a bottom-up, or bricolage, approach to 

programming. 

 

The role of prior ability in the level of program manipulation was a particularly interesting finding of this study. 

Non-verbal reasoning test scores were used as an indicator of participant ability and our analysis showed that 

these were a strong predictor of program manipulation overall. The higher their score of non-verbal reasoning, 

the more program manipulation a participant performed, but interestingly the effect was only significant for 

the ScratchJr-like condition. This indicates a contrast between how lower and higher ability players 

approached tasks in the ScratchJr-like condition. High-ability players performed more tinkering than their low-

ability counterparts, suggesting that they were more suited to the free-design approach of ScratchJr-like 
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instructions. On the other hand, Lightbot players all manipulated their programs roughly the same amount. 

This is an interesting finding given the similar overall performance of participants in both groups. 

 

This finding was mirrored by using the highest level reached as an indicator of participant ability instead of 

non-verbal reasoning scores. Around half the participants progressed beyond level 8, so this point was used to 

group participants according to their success within the game. The analysis showed that there was a significant 

difference in manipulation within the ScratchJr-like group, with the more successful participants performing 

more manipulation on average throughout the game. Whereas the Lightbot participants altered their 

programs a similar amount per attempt no matter how successful they were within the game. This is further 

supported by the level-by-level data, which shows an increase in manipulation in the ScratchJr-like condition 

above level 8 (figure 6). 

 

ScratchJr was designed with a low floor and (appropriately) high ceiling (Flannery et al., 2013). Yet we have 

found indications that the ability (measured using non-verbal reasoning and game performance) of a child can 

affect how they interact with a ScratchJr-like programming interface. More-able children tinkered 1.6 times 

more with their ScratchJr-like programs than less-able children using the ScratchJr interface, while children 

using the Lightbot interface used the same amount of manipulation throughout the game. Of course, there are 

many possible explanations for this. Lightbot users may have used less manipulation because programs were 

faster to create, making a trial and error approach efficient, even as the levels got more difficult. The apparent 

consistency in strategy could also suggest that the Lightbot interface naturally helped players to decompose 

levels into smaller sections where instructions could be added incrementally to their programs. Nonetheless, 

the finding that higher-ability ScratchJr players performed more tinkering is very intriguing and it would be 

natural to consider whether their approach allowed them to develop a deeper understanding of the game’s 

abstract concepts and design solutions that more accurately predicted what the robot needed to do. It may 

suggest that lower ability children need more support when using block-based programming tools like 

ScratchJr. Their lack of tinkering may be because of underdeveloped working memory and the cognitive load 

of the task (Sweller, 1988), leading us to question how low the floor should be in low floor and high ceiling 

design for young children. It also poses several possible questions about how programming tools are used in 

education; do less-able children get the support they require using these tools to meet learning outcomes? Is 

this influenced by the teacher’s knowledge of the programming tool? And can cognitive load be reduced by 

teaching the skills required by these tools individually? 

8. Limitations 

This study was intended to be exploratory in nature, and clearly, the design has limitations which should be 

acknowledged. Post-hoc analyses are appropriate to exploratory work, and useful for generating new 

hypotheses, but limit the validity of the findings. Although a matched design was used, the matching variable 

would normally have been the same as the dependent variable of the study, rather than a separate measure. 

Future studies will use a pre-to post-test design based on a common measure of computational thinking to 

address this, but developing an instrument which reliably measures computational thinking is a non-trivial task 

(Jenson and Droumeva, 2016). 

 

The software itself had some limitations which could have affected the outcome of the study. It was observed 

that many participants completed levels using non-optimal solutions. This included over compensating for 

turns and having to rotate back the other way or having instructions in a direction where the robot could not 

go (shown by the robot ‘shaking its head’ when the block was executed). Arguably the Lightbot version of the 

experimental software should have had finite program space per level to contrast with the bottom-up 

approach employed by ScratchJr. This would have required participants to produce optimal solutions 

consistent with the original Lightbot game. This could potentially have increased the difference between 

versions as ScratchJr programming doesn't have this restriction. 

9. Conclusion  

Using an exploratory approach, we aimed to establish how children used two different programming tools. We 

found indications that children aged six and seven interacted differently with the ScratchJr-like programming 

interface compared to the Lightbot interface. Children using the ScratchJr-like interface performed more 

program manipulation, which could indicate a more bottom-up programming approach. These findings are in 

line with the constructionist foundations of Scratch and ScratchJr. A more surprising finding was that more 
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able children (as measured by non-verbal reasoning skill or game performance), manipulated their programs 

more. This difference was only found in players using the ScratchJr-like interface, whereas ability had no effect 

on the program manipulation of Lightbot players.  

 

This exploratory work offers some potential explanations for these findings, but more research is clearly 

required to establish how young children use programming tools and how they influence their development of 

problem-solving and computational thinking abilities. 

 

This paper also examined the existing definitions (and expectations) of computational thinking, and we would 

share the concerns of other authors that these may be too broad (Weintrop et al., 2016). We propose that 

future research in this area focuses on the individual concepts involved in computational thinking. 

Investigating whether programming tools can be used to develop concepts such as decomposition, abstraction 

and algorithmic thinking. This would seem particularly important given concerns that young children may 

struggle to understand these concepts (Armoni, 2012; Manches and Plowman, 2015) despite the pressure on 

schools to teach them. 
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