
An exploration of the role of visual programming tools in
the development of young children’s computational
thinking

ROSE, Simon <http://orcid.org/0000-0002-8165-3016>, HABGOOD, Jacob
<http://orcid.org/0000-0003-4531-0507> and JAY, Tim <http://orcid.org/0000-
0003-4759-9543>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/16235/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ROSE, Simon, HABGOOD, Jacob and JAY, Tim (2017). An exploration of the role of
visual programming tools in the development of young children’s computational
thinking. Electronic journal of e-learning, 15 (4), 297-309.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/84310425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/

ISSN 1479-4403 297 ©ACPIL

Reference this paper as: Rose S P., Habgood J M. P. and Jay T, “An Exploration of the Role of Visual Programming Tools in

the Development of Young Children’s Computational Thinking” The Electronic Journal of e-Learning Volume 15 Issue 4

2017, (pp297-309) available online at www.ejel.org

An Exploration of the Role of Visual Programming Tools in the

Development of Young Children’s Computational Thinking

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

Sheffield Hallam University, Sheffield, UK

simon.rose@shu.ac.uk

j.habgood@shu.ac.uk

t.jay@shu.ac.uk

Abstract: Programming tools are being used in education to teach computer science to children as young as 5 years old.

This research aims to explore young children’s approaches to programming in two tools with contrasting programming

interfaces, ScratchJr and Lightbot, and considers the impact of programming approaches on developing computational

thinking. A study was conducted using two versions of a Lightbot-style game, either using a ScratchJr-like or Lightbot style

programming interface. A test of non-verbal reasoning was used to perform a matched assignment of 40, 6 and 7-year-olds

to the two conditions. Each child then played their version of the game for 30 minutes. The results showed that both

groups had similar overall performance, but as expected, the children using the ScratchJr-like interface performed more

program manipulation or ‘tinkering’. The most interesting finding was that non-verbal reasoning was a predictor of

program manipulation, but only for the ScratchJr-like condition. Children approached the ScratchJr-like program differently

depending on prior ability. More research is required to establish how children use programming tools and how these

approaches influence computational thinking.

Keywords: Visual programming, Education, Computational thinking, K-12, Lightbot, Scratch

1. Introduction

This paper focuses on two tools used to teach programming to young children, ScratchJr (Flannery et al., 2013)

and Lightbot (Lightbot Inc., 2016). Existing literature suggests that both these tools encourage computational

thinking, yet there are clear theoretical contrasts in the type of programming interfaces that they use. We

describe an exploratory study to investigate whether there was a difference in the way that young children use

these tools and consider its relationship to developing computational thinking skills.

We live in a digital age where technology plays a key role in almost everything we do, making it increasingly

important for us to understand how it works. Today’s children will go on to live a life dominated by computing,

both in the home and at work (Barr and Stephenson, 2011). Computing education is receiving increasing

attention in classrooms worldwide, with the aim of developing digital, media and information literacies. The

need for children to be effective users of computational tools has led to the re-examination of the concept of

‘computational thinking’. Although the term was originally used by Papert (1980), Wing (2006) describes it as

the problem-solving processes used by computer scientists. She stated that it should be taught as a basic skill

across the school curriculum (2008). Since Wing reintroduced the concept of computational thinking; many

researchers have attempted to clarify what it is and how we can teach it (e.g. Grover and Pea, 2013; Yadav,

Hong and Stephenson, 2016).

Programming tools are seen as a means of developing computational thinking skills (e.g. Wilson and Moffat,

2010; Brennan and Resnick, 2012; Berland and Wilensky, 2015). This has led to the release of a variety of new

tools, such as ScratchJr, Hopscotch and Kodable. Scratch remains the most widely-used of children’s

programming tools. It takes inspiration from constructionism and the LOGO programming language (Papert,

1980). Constructionism is a pedagogical theory based on constructivism (Piaget, 1970), which makes specific

use of the construction of artefacts as a basis for building knowledge. Papert theorised that by thinking about

programming, learners would learn about the process of thinking, and he believed these skills would transfer

to other contexts (1980). Scratch provides a constructionist learning environment through block-based

programming, where learners combine instruction blocks to form programs (Resnick et al., 2009). Researchers

have identified differing approaches when children program in Scratch (Meerbaum-Salant, Armoni and Ben-

Ari, 2011).

The Electronic Journal of e-Learning Volume 15 Issue 4 2017

www.ejel.org 298 ©ACPIL

Several countries have now introduced computer science into national curricula (Heintz, Mannila and

Farnqvist, 2016), meaning that children as young as 5 years old are now learning basic programming skills.

Whilst there is evidence to suggest that children can learn to program at this age (Bers, 2010; Fessakis, Gouli

and Mavroudi, 2013), there is comparatively little empirical research on children’s use of programming tools

under the age of 7. This is particularly important due to the cognitive developments that children undergo

around this age (Manches and Plowman, 2015). Some researchers are concerned that younger children

struggle to understand fundamental computer science concepts like abstraction (e.g. Armoni, 2012).

2. Computational thinking

Seymour Papert first described computational thinking as part of his research into how children develop

procedural thinking through computer programming (1980). Wing sparked a renewed interest in the topic

(2006), suggesting that “to reading, writing, and arithmetic, we should add computational thinking to every

child’s analytical ability” (p. 33). Furthermore, Wing suggested that teaching computational thinking enables

children to learn to think in an abstract and algorithmic manner relevant to many disciplines, including

mathematics and science. She went on to define computational thinking as “solving problems, designing

systems, and understanding human behaviour, by drawing on the concepts fundamental to computer science”

(Wing, 2006, p. 33), but ten years later there is still no unanimous agreement on a definition (Garcia-Peñalvo,

2016; Weintrop et al., 2016).

There have been many efforts to clarify what is involved in computational thinking (e.g. Barr and Stephenson,

2011; Grover and Pea, 2013; Kalelioglu, Gulbahar and Kukul, 2016). There is a general agreement that it

includes all the concepts that a computer scientist would typically use to solve computational problems (Riley

and Hunt, 2014), but the list of concepts is up for debate. Table 1 shows the different concepts used in 7

existing definitions of computational thinking.

Table 1: The concepts included in existing definitions of computational thinking

Barr and

Stephenson

(2011)

Brennan and

Resnick

(2012)

Grover and Pea

(2013)

Seiter and

Foreman (2013)

Kalelioglu,

Gulbahar and

Kukul (2016)

Angeli et al.

(2016)

Repenning,

Basawapatna

and Escherle

(2016)

Abstraction

Abstracting

and

modularising

Abstraction and

pattern

generalisation

Abstraction Abstraction Abstraction Abstraction

Algorithms and

procedures
Sequences

Algorithmic

notions of flow

of control

Procedures and

algorithms

Algorithms and

procedures

Algorithms

(including

sequencing and

flow of control)

Data collection,

analysis and

representation

Data

Symbol systems

and

representations

Data

Representation

Data collection,

analysis and

representation

Problem

decomposition

Structured

problem

decomposition

Decomposition Decomposition Decomposition

Parallelisation Parallelism

Iterative,

recursive and

parallel thinking

Parallelisation

and

synchronisation

Parallelisation

Testing and

verification

Testing and

debugging

Debugging and

systematic error

detection

Testing and

debugging
 Analysis

Control structures
Conditionals

and loops
Conditional logic

Mathematical

reasoning

Automation Automation Automation

 Generalisation Generalisation

Simulation
Modelling and

simulations

 Events

Efficiency and

performance

constraints

Systematic

processing

 Conceptualising

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

www.ejel.org 299 ISSN 1479-4403

For the purposes of this work, we have defined a working definition for computational thinking using the 7

most common concepts included in the definitions above:

• Abstraction and generalisation (removing the detail from a problem and formulating solutions in

generic terms)

• Algorithms and procedures (using sequences of steps and rules to solve a problem)

• Data collection, analysis and representation (using and analysing data to help solve a problem)

• Decomposition (breaking a problem down into parts)

• Parallelism (having more than one thing happening at once)

• Debugging, testing and analysis (identifying, removing and fixing errors)

• Control structures (using conditional statements and loops)

This process helped to identify individual concepts and provided a deeper understanding of computational

thinking. This is the definition of computational thinking used in the rest of the work and will be used to

evaluate two programming tools for their potential to develop computational thinking skills.

3. Programming tools for young children

In the previous section, we defined a working set of computational thinking concepts. This section will analyse

two programming tools designed for young children and evaluate their potential to develop computational

thinking with respect to this set of concepts.

3.1 ScratchJr

Scratch is a block-based programming tool designed for children aged 8-16. It aims to “support self-directed

learning through tinkering and collaboration” (Maloney, Resnick and Rusk, 2010, p. 2) and requires the

application of computational thinking concepts (Resnick et al., 2009).

ScratchJr is a version of Scratch redesigned for younger children aged 5-7 (figure 1). It maintains the creative

programming elements of Scratch, which allow children to easily create short stories and games. Characters

can be added to a scene, and are given behaviours by combining instruction blocks. The interface is entirely

symbolic and contains only a third of the original Scratch instruction set because young children can struggle

with several levels of decomposition (Flannery et al., 2013). ScratchJr also executes instructions from left to

right (the way that the English language is read) instead of the top to bottom approach used in Scratch. It has

large buttons for touchscreen use, which apparently compounds difficulties that young children often have

with mouse movement. The Cartesian coordinate system used in Scratch has been replaced by a natural

coordinate system, and there is a grid that can be overlaid on top of the scene to help children calculate

distance. Numerical parameter values have a maximum limit of 25, and children can execute individual

instructions simply by pressing on them to help them explore what each instruction does. ScratchJr was

developed using several age-appropriate design principles (Flannery et al., 2013). It makes it easy to get

started but provides room to use more complex concepts (low floor and high ceiling), it allows many pathways

and styles of exploration (wide walls), ideas can be incrementally developed through experimentation

(tinkerability), the interface is friendly and playful (conviviality) and it can be used with a wide range of

learning outcomes (classroom support).

Figure 1: A scene from ScratchJr

The Electronic Journal of e-Learning Volume 15 Issue 4 2017

www.ejel.org 300 ©ACPIL

3.2 Lightbot

Lightbot is an educational puzzle game. The player must arrange a fixed set of block-based instructions in a

finite program space that tell a robot what to do (figure 2). The goal is to program the robot to turn all the blue

blocks in a level into illuminated yellow blocks. This is done by navigating the robot to a blue block and

executing the light command. Players can decompose a level into different sections, which can then be solved

one after the other until they have a complete solution. Some of the later levels can only be completed

through the correct use of procedures and conditionals. For procedures, the player is given other program

spaces below the main program that can be called using special instructions. Conditionals are implemented

using a paint tool that colours the robot so that only instructions of that colour are executed. Gouws,

Bradshaw and Wentworth (2013) suggest that Lightbot is useful for practising computational thinking. It

concentrates on using computational thinking as a problem-solving process, and players are rewarded for

producing optimised solutions.

3.2.1 Non-verbal reasoning

Successful Lightbot players can use mental transformations to predict the movement of the robot, recognise

patterns from other levels and implement these patterns using known sequences of instructions (Gouws,

Bradshaw and Wentworth, 2013). This is comparable to non-verbal reasoning, which is the ability to analyse

information and solve problems using visual information. Non-verbal reasoning contains both abstract (or

diagrammatic) and spatial reasoning, which includes spatial transformations, recognising visual sequences, and

identifying relationships between shapes and patterns. Non-verbal reasoning is not reliant upon or limited by

language ability, and research suggests that it can indicate mathematical ability in children (Halberda,

Mazzocco and Feigenson, 2008).

Figure 2: A simple level from Lightbot

3.3 Comparison of the tools

These tools were analysed for their support of computational thinking using the definition in the previous

section (table 2). From this, it is reasonable to conclude that both tools encourage computational thinking.

They both use almost all the common computational thinking concepts identified in section 2. The only

difference is that Lightbot doesn’t support parallelism.

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

www.ejel.org 301 ISSN 1479-4403

Table 2: The computational thinking concepts used in ScratchJr and Lightbot

 ScratchJr Lightbot

Abstraction and generalisation

• Understanding of the grid and character

movement

• Identifying common behaviours using

instructions and instruction blocks

• Understanding of the grid and robot

movement

• Identifying common solutions to levels

Algorithms and procedures

• Sequencing instructions to create algorithms

• Using procedures to repeat common

instructions

• Sequencing instructions to create

algorithms

• Using procedures to repeat common

instructions

Data collection, analysis and

representation
• Counting movement needed using the grid

• Counting movement needed using the

level grid

Decomposition

• Applying behaviours to different characters

• Having multiple instruction blocks in one

character

• Applying behaviours in steps

• Breaking down and solving levels in

parts

Parallelism • Blocks of instructions are executed in parallel

Debugging, testing and analysis

• The instruction currently being executed is

highlighted

• Programs can be re-run to check for errors

• Instructions can be pressed individually to test

what they do

• The instruction currently being

executed is highlighted

• Programs can be re-run to check for

errors

Control structures

• Using blocks such as repeat and wait to control

execution

• Looping instructions using procedures

• Using conditionals in later levels

• Looping instructions using procedures

Despite their similarities, there is a specific operational difference between the visual programming paradigms

employed in ScratchJr and Lightbot. In ScratchJr, a limitless number of blocks can be added to the program

space, these blocks are not executed unless they are linked to a trigger block or individually pressed to execute

them. Whereas in Lightbot, the play button sequentially executes all the instructions included in the main

program. Lightbot also limits how many instructions can be in the program depending on the current level. It is

this operational difference which led us to explore how young children used these tools and whether they

encouraged a fundamentally different programming approach.

4. Programming approaches

Turkle and Papert described two approaches to problem-solving. The first was an analytical top-down

approach where solutions to problems are planned. The second was a bottom-up or “bricolage” approach,

where solutions are attempted “by arranging and rearranging, by negotiating and renegotiating with a set of

well-known materials” (1991, p. 136). In constructivist learning theory, a child builds knowledge through

experience. The information they receive through interactions challenges their world view (Piaget, 1970).

Constructionism applies this theory to the construction of artefacts (Papert, 1980). It is a pedagogical theory

which suggests that learners should be given the opportunity to experiment and explore ideas by tinkering

with an artefact. Learners are guided “by the work as it proceeds rather than staying with a pre-established

plan” (Papert and Harel, 1991, p. 6), leading to self-directed learning. Scratch is based on these principles

(Resnick et al., 2009).

Research has shown that children aged 10-15 can learn computer science using Scratch (Meerbaum-Salant,

Armoni and Ben-Ari, 2013; Sáez López, González and Cano, 2016). Despite this, there are some suggestions

that Scratch may encourage unusual programming approaches (Meerbaum-Salant, Armoni and Ben-Ari, 2011).

A top-down approach is traditionally taught in programming, where software is decomposed into coherent

units that can be better maintained. Meerbaum-Salant, Armoni and Ben-Ari observed that 14 and 15-year-olds

took the top-down approach to the extreme. They decomposed programs into many small blocks of

instructions (sometimes hundreds) that lacked logical coherency. This can make programs particularly difficult

to debug in Scratch and ScratchJr due to the way they both execute all instruction blocks in parallel. Children in

the study by Meerbaum-Salant, Armoni and Ben-Ari (2011) became frustrated and lost motivation because

The Electronic Journal of e-Learning Volume 15 Issue 4 2017

www.ejel.org 302 ©ACPIL

they did not understand what was happening in their programs. They also observed that Scratch programs

were often developed using a bottom-up approach. In bottom-up programming, components are designed in

isolation then linked together to form a complete solution. This can be an appropriate method of software

design, but children once again took it to the extreme. When faced with a problem, they would attempt to

solve it by "dragging all the blocks that seemed to be appropriate for solving the task, and then combining

them into a script” (2011, p. 169). This tinkering behaviour is encouraged in Scratch and ScratchJr by the fact

that instructions can be left in the script area without affecting the execution of the program.

We have identified two approaches to programming; top-down and bottom-up. Along with indications that

both are used by children in Scratch. In contrast, Lightbot provides a programming interface which doesn’t

allow much tinkering. Instructions can be freely added to and deleted from the main program, but when an

instruction is visible, it is always part of the program and executed in strict sequence. It was this central

difference that provided the basis for this study, exploring the affect that the two programming paradigms had

on children’s approaches to programming. Lightbot contains only a subset of the commands available in

ScratchJr, so it was decided that the programming tasks used for the study should be based on navigating

robots (as in Lightbot), as such tasks could be easily undertaken in both programming environments.

5. Method

5.1 Aims and hypotheses

This was an explorative study examining young children’s approaches to programming using the two different

programming paradigms. Although some hypotheses were formed, the study was primarily undertaken to

identify questions that could become the focus of future research.

Three hypotheses were initially formed based on the existing literature:

a) A ScratchJr-like programming interface would lead to more “tinkering” than a Lightbot interface.

b) A ScratchJr-like programming interface would lead to improved outcomes on problem-solving tasks.

c) Higher-ability players would benefit more from a ScratchJr-like programming interface.

5.2 Participants

The participants were from a large primary school in a low-income area in northern England. Most pupils at

the school are of White British heritage. The school has a well above average proportion of disadvantaged

pupils and pupils that require support for special educational need. The study participants included 20 boys

and 20 girls between the age of 6 years, 3 months and 7 years, 3 months (M = 6 years, 9 months).

5.3 Materials and procedure

A non-verbal reasoning test was created for this study to produce matching pairs, based on the assumption

that non-verbal reasoning is required in Lightbot (section 3.2.1). Standardised school worksheets (Primary Leap

Limited, 2011) were used as a model for the questions. There were three types of questions; matching shapes

(as seen in figure 3), selecting the odd one out from a series of shapes, and selecting the next shape or missing

shape in a pattern. The possible answers to some questions were rotated, requiring the participant to perform

mental transformations, similar to the rotation process required in Lightbot.

The test took place in the school IT suite in groups of 15. It was 40 questions long, and the participants had 5

minutes to answer as many as they could. Participants were told there was no rush to answer the questions,

and that their answers should be carefully thought through. The time-limit and number of questions aimed to

produce a greater range of test scores, reducing the possibility of ceiling effects.

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

www.ejel.org 303 ISSN 1479-4403

Figure 3: An example question from the non-verbal reasoning test

Two versions of a Lightbot style game for 6 and 7-year-olds were created for this study. One that used the

Lightbot programming interface, and one that used a ScratchJr-like interface (see figure 4). The versions were

identical apart from that in the ScratchJr-like version, instructions can be added to the program that will not

execute unless linked to the trigger block (see table 3). The game has 15 levels; it begins with simple levels that

require only forward and light instructions. The later levels then introduce more complex movements and

levels with several lights. The difficulty progression was designed so that it could challenge more able children

in the target age group.

Figure 4: The Lightbot (left) and ScratchJr-like version (right) of the game

Table 3: The similarities and differences between the two versions of the game

 Lightbot ScratchJr-like

Similarities

• A fixed set of instructions (forward, 90° rotation clockwise, 90° rotation anti-clockwise, light).

• Instructions can each be used more than once.

• Instructions can be added, rearranged and removed from the program space.

Differences
• All instructions in the program will be

performed by the robot.

• Only the instructions linked to the trigger

block will be performed by the robot.

Two groups of 20 participants were created using the non-verbal reasoning scores as a matching variable

(based on the assumption that non-verbal reasoning ability was required to be successful in the game). Each

child then played one version of the game for thirty minutes in a small reading room joined to the children’s

classroom. Two laptops were set up facing away from each other so that one child from each group could play

the game without being aware that they were using a different version to their classmate. Testing the

conditions together meant that any extraneous variables (e.g. time of day) would affect both groups equally.

All participants were given a uniform introduction to the game via a tutorial video.

5.4 Measures

A range of measures were used to explore how the participants used each version of the game:

1. The non-verbal reasoning scores for each participant.

2. Program manipulation; additions, moves and deletions of instructions per attempt.

3. The number of attempts needed by a participant to complete a level.

The Electronic Journal of e-Learning Volume 15 Issue 4 2017

www.ejel.org 304 ©ACPIL

4. The highest level reached by each participant.

5. The time taken by a participant per attempt.

6. The time taken by a participant to complete a level.

As explained in section 5.3, the scores of a non-verbal reasoning test were used as a matching variable to

create two even ability groups. It is, therefore, expected that these scores should predict how well a

participant performed in the game and this would be demonstrated by a correlation between the participant

test scores and the highest level they reached.

Program manipulation was measured by the number of additions, moves and deletions of instructions from

the program space between each attempt. An attempt was defined as each time a participant ran their

program by pressing the play button. It was hoped that this measure, and the amount of time between each

attempt, would provide some indication of how participants are interacting with the game and could be used

to infer something about their programming approach (particularly in terms of the amount of ‘tinkering’ taking

place).

Overall performance was measured using the highest level reached by each participant. This can be combined

with program manipulation to explore the effect of the two conditions on overall performance. Data was also

collected on other performance measures, such as how many attempts it took for participants to complete a

level and how much time it took them to do so. These measures can be used to show if the two games were as

similar as expected.

6. Results

6.1 Comparing the difficulty of the two versions

The programming interface should have been the only difference between the two versions of the game.

Independent T-tests were performed on the overall performance measures between groups (see table 4). On

average, Lightbot players reached a slightly higher level in 30 minutes than the ScratchJr-like players, but this

difference was not significant, t(38) = .54, p = .59. ScratchJr-like players spent slightly more time (in seconds)

on each level than the Lightbot players, again the difference was not significant, t(38) = -1.12, p = .27. Finally,

ScratchJr-like players took fewer attempts on average to complete levels than Lightbot players. This difference

was not significant, t(38) = .98, p = .33.

Table 4: T-test detail for the overall performance measures between groups

Measure Lightbot (N = 20) ScratchJr-like (N = 20)

 M SD SE M SD SE

Highest level reached 10.25 4.25 .95 9.5 4.48 1

Average time taken to complete a level (seconds) 187 86.1 19.25 224.35 121.33 27.13

Average attempts needed to complete a level 9.4 6.86 1.53 7.54 5.02 1.12

6.2 Non-verbal reasoning as a predictor of game performance

The non-verbal reasoning test was designed to produce a range of scores, containing 40 questions and using a

5-minute time-limit. The median of the collected scores was 23.5 with a minimum of 15 and a maximum of 35.

The middle 50% of scores were between 20.25 and 30.75. The groups were created based on the assumption

that the scores would indicate how well participants would perform in the game. This was supported by a

strong correlation between the scores and the highest level reached by each participant, r(40) = .73, p < 0.001.

The game was designed to challenge the more able participants, but not be too difficult for the lower-ability

participants. The median highest level that participants reached was 8.5, with a minimum of 4 and a maximum

of 15 (the last level). The middle 50% fell between 6 and 15, with 13 participants reaching or completing the

last level.

6.3 Comparing program interaction between groups

Participant’s program manipulation was compared to see if there was any difference in how they were

interacting with the game. A one-way ANCOVA was used to compare the average instruction additions, moves

and deletions per attempt from the program. The non-verbal reasoning scores were used as a covariate

because participant ability may have influenced the amount of program manipulation they performed. There

was a significant difference between the conditions, F(1,37) = 192.19, p < .001. Participants in the ScratchJr-

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

www.ejel.org 305 ISSN 1479-4403

like condition manipulated the program more (M = 9.06, SD = 3.27, SE = .73) than the participants in the

Lightbot condition (M = 4.68, SD = 1.9, SE = .42). A similar one-way ANCOVA was used to test for differences in

the time (in seconds) taken to formulate an attempt. This also showed a significant difference between

conditions, F(1,37) = 9.58, p = .004. The participants in the ScratchJr-like condition took longer on average (M =

34.15, SD = 11.38) to construct their programs than the Lightbot group (M = 24.29, SD = 8.87).

6.4 Using non-verbal reasoning to predict program interaction

We then tested if non-verbal reasoning scores would indicate how much a participant was manipulating their

program. A single linear regression was used to predict the average program manipulation per attempt based

on the test score. The results of the regression show that overall the scores significantly predicted program

manipulation, β = .37, t(37) = 3.32, p = .002. Participants with higher non-verbal reasoning scores performed

more manipulation. The tests scores also explained a significant proportion of variance in program

manipulation, R² of .55, F(2,37) = 22.46, p < .001. An interaction effect was added to test if there was a

difference between groups. This showed that in the ScratchJr-like version, there was a bigger effect of the

condition when participants had higher scores of non-verbal reasoning, β = .35, t(36) = -2.35, p = .025. This

result was supported by a correlation between non-verbal reasoning and program manipulation in the

ScratchJr-like condition, r(20) = .65, p = .002, but not in the Lightbot condition, r(20) = .22, p = .342 (figure 5).

Figure 5: The correlations between non-verbal reasoning and average program manipulation per attempt for

each condition

6.5 Using the highest level reached to predict program interaction

A similar analysis was then conducted using the highest level reached by each participant as an indicator of in-

game success, instead of their non-verbal reasoning scores. Participants were divided according to whether

they had completed level 8 or not, as this represented a median split. Using the non-verbal reasoning scores as

a covariate, a two-way ANCOVA was conducted that examined the effect of the interface-type, and whether a

participant completed level 8, on program manipulation. The results showed a significant interaction between

the interface-type and program manipulation, F(1,35) = 45, p < .001, and a significant interaction between the

interface-type and whether the participant completed level 8, F(1,35) = 10.16, p = .003. Completing level 8

alone was not a predictor of program manipulation, F(1,35) = 1.77, p = .192. The average program

manipulation per attempt for both groups is shown in table 5. This is further supported by the graph in figure

6, which shows the average amount of program manipulation per attempt for each level.

The Electronic Journal of e-Learning Volume 15 Issue 4 2017

www.ejel.org 306 ©ACPIL

Figure 6: The average amount of program manipulation used per attempt in each level

Table 5: The average program manipulation per attempt dependant on whether a participant completed level

8.

Level Completed Lightbot (N = 20) ScratchJr-like (N = 20)

N M SD SE N M SD SE

< 8 9 4.47 1.6 .53 11 7.06 2.01 .6

>= 8 11 4.84 2.17 .65 9 11.51 2.86 .95

7. Discussion

The results showed that overall performance was similar in both versions of the game. Participants reached a

similar level, spent a similar amount of time on each level and took a similar number of attempts to complete

each level. This is not surprising given that the programming interface was the only difference between the

two versions. We can also say that the game provided a suitable level of challenge, as all participants

completed at least the third level of the game and around a third of participants reached or completed the last

level.

The non-verbal reasoning test produced a good range of scores (between 15 and 35), suggesting that the

difficulty of the questions was appropriate for the age group. The correlation between these scores and the

highest level reached shows that non-verbal reasoning was a strong indicator of success in the game, and

justifies the use of these scores as a matching variable to create two even ability groups. Furthermore, if both

Lightbot and ScratchJr encourage computational thinking as has been suggested (Flannery et al., 2013; Gouws,

Bradshaw and Wentworth, 2013) then this correlation could also support the idea that non-verbal reasoning

and computational thinking are linked.

There was a pronounced difference in the amount of program manipulation between groups as measured by

additions, moves and deletions of instructions. Participants in the ScratchJr-like condition performed 1.9 times

more manipulation per attempt than the participants in the Lightbot condition. They also took 1.4 times longer

on average to formulate each attempt. These findings are in line with the constructionist principles of Scratch’s

design and consistent with the idea that children using the ScratchJr-like interface are being guided “by the

work as it proceeds rather than staying with a pre-established plan” (Papert and Harel, 1991, p. 6). The

increased tinkering in the ScratchJr-like condition could also suggest a bottom-up, or bricolage, approach to

programming.

The role of prior ability in the level of program manipulation was a particularly interesting finding of this study.

Non-verbal reasoning test scores were used as an indicator of participant ability and our analysis showed that

these were a strong predictor of program manipulation overall. The higher their score of non-verbal reasoning,

the more program manipulation a participant performed, but interestingly the effect was only significant for

the ScratchJr-like condition. This indicates a contrast between how lower and higher ability players

approached tasks in the ScratchJr-like condition. High-ability players performed more tinkering than their low-

ability counterparts, suggesting that they were more suited to the free-design approach of ScratchJr-like

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

www.ejel.org 307 ISSN 1479-4403

instructions. On the other hand, Lightbot players all manipulated their programs roughly the same amount.

This is an interesting finding given the similar overall performance of participants in both groups.

This finding was mirrored by using the highest level reached as an indicator of participant ability instead of

non-verbal reasoning scores. Around half the participants progressed beyond level 8, so this point was used to

group participants according to their success within the game. The analysis showed that there was a significant

difference in manipulation within the ScratchJr-like group, with the more successful participants performing

more manipulation on average throughout the game. Whereas the Lightbot participants altered their

programs a similar amount per attempt no matter how successful they were within the game. This is further

supported by the level-by-level data, which shows an increase in manipulation in the ScratchJr-like condition

above level 8 (figure 6).

ScratchJr was designed with a low floor and (appropriately) high ceiling (Flannery et al., 2013). Yet we have

found indications that the ability (measured using non-verbal reasoning and game performance) of a child can

affect how they interact with a ScratchJr-like programming interface. More-able children tinkered 1.6 times

more with their ScratchJr-like programs than less-able children using the ScratchJr interface, while children

using the Lightbot interface used the same amount of manipulation throughout the game. Of course, there are

many possible explanations for this. Lightbot users may have used less manipulation because programs were

faster to create, making a trial and error approach efficient, even as the levels got more difficult. The apparent

consistency in strategy could also suggest that the Lightbot interface naturally helped players to decompose

levels into smaller sections where instructions could be added incrementally to their programs. Nonetheless,

the finding that higher-ability ScratchJr players performed more tinkering is very intriguing and it would be

natural to consider whether their approach allowed them to develop a deeper understanding of the game’s

abstract concepts and design solutions that more accurately predicted what the robot needed to do. It may

suggest that lower ability children need more support when using block-based programming tools like

ScratchJr. Their lack of tinkering may be because of underdeveloped working memory and the cognitive load

of the task (Sweller, 1988), leading us to question how low the floor should be in low floor and high ceiling

design for young children. It also poses several possible questions about how programming tools are used in

education; do less-able children get the support they require using these tools to meet learning outcomes? Is

this influenced by the teacher’s knowledge of the programming tool? And can cognitive load be reduced by

teaching the skills required by these tools individually?

8. Limitations

This study was intended to be exploratory in nature, and clearly, the design has limitations which should be

acknowledged. Post-hoc analyses are appropriate to exploratory work, and useful for generating new

hypotheses, but limit the validity of the findings. Although a matched design was used, the matching variable

would normally have been the same as the dependent variable of the study, rather than a separate measure.

Future studies will use a pre-to post-test design based on a common measure of computational thinking to

address this, but developing an instrument which reliably measures computational thinking is a non-trivial task

(Jenson and Droumeva, 2016).

The software itself had some limitations which could have affected the outcome of the study. It was observed

that many participants completed levels using non-optimal solutions. This included over compensating for

turns and having to rotate back the other way or having instructions in a direction where the robot could not

go (shown by the robot ‘shaking its head’ when the block was executed). Arguably the Lightbot version of the

experimental software should have had finite program space per level to contrast with the bottom-up

approach employed by ScratchJr. This would have required participants to produce optimal solutions

consistent with the original Lightbot game. This could potentially have increased the difference between

versions as ScratchJr programming doesn't have this restriction.

9. Conclusion

Using an exploratory approach, we aimed to establish how children used two different programming tools. We

found indications that children aged six and seven interacted differently with the ScratchJr-like programming

interface compared to the Lightbot interface. Children using the ScratchJr-like interface performed more

program manipulation, which could indicate a more bottom-up programming approach. These findings are in

line with the constructionist foundations of Scratch and ScratchJr. A more surprising finding was that more

The Electronic Journal of e-Learning Volume 15 Issue 4 2017

www.ejel.org 308 ©ACPIL

able children (as measured by non-verbal reasoning skill or game performance), manipulated their programs

more. This difference was only found in players using the ScratchJr-like interface, whereas ability had no effect

on the program manipulation of Lightbot players.

This exploratory work offers some potential explanations for these findings, but more research is clearly

required to establish how young children use programming tools and how they influence their development of

problem-solving and computational thinking abilities.

This paper also examined the existing definitions (and expectations) of computational thinking, and we would

share the concerns of other authors that these may be too broad (Weintrop et al., 2016). We propose that

future research in this area focuses on the individual concepts involved in computational thinking.

Investigating whether programming tools can be used to develop concepts such as decomposition, abstraction

and algorithmic thinking. This would seem particularly important given concerns that young children may

struggle to understand these concepts (Armoni, 2012; Manches and Plowman, 2015) despite the pressure on

schools to teach them.

References

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J. and Zagami, J. (2016) ‘A K-6 Computational Thinking

Curriculum Framework: Implications for Teacher Knowledge’, Educational Technology & Society, 19(3), pp. 47–57.

Armoni, M. (2012) ‘Teaching CS in Kindergarten: How Early Can the Pipeline Begin?’, ACM Inroads, 3(4), pp. 18–19. doi:

10.1145/2381083.2381091.

Barr, V. and Stephenson, C. (2011) ‘Bringing Computational Thinking to K-12: What is Involved and What is the Role of the

Computer Science Education Community?’, ACM Inroads, 2(1), pp. 48–54. doi: 10.1145/1929887.1929905.

Berland, M. and Wilensky, U. (2015) ‘Comparing Virtual and Physical Robotics Environments for Supporting Complex

Systems and Computational Thinking’, Journal of Science Education and Technology. Springer Netherlands, 24(5), pp.

628–647. doi: 10.1007/s10956-015-9552-x.

Bers, M. U. (2010) ‘The TangibleK robotics program: Applied computational thinking for young children’, Early Childhood

Research and Practice, 12(2), pp. 1–20.

Brennan, K. and Resnick, M. (2012) ‘New frameworks for studying and assessing the development of computational

thinking’, in Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver,

Canada, pp. 1–25.

Fessakis, G., Gouli, E. and Mavroudi, E. (2013) ‘Problem solving by 5-6 years old kindergarten children in a computer

programming environment: A case study’, Computers and Education. Elsevier Ltd, 63, pp. 87–97. doi:

10.1016/j.compedu.2012.11.016.

Flannery, L. P., Kazakoff, E. R., Bontá, P., Silverman, B., Bers, M. U., Resnick, M., Kazakoff, E. R., Bers, M. U., Bontá, P. and

Resnick, M. (2013) ‘Designing ScratchJr: Support for Early Childhood Learning Through Computer Programming’, in

Proceedings of the 12th International Conference on Interaction Design and Children (IDC ’13), pp. 1–10. doi:

10.1145/2485760.2485785.

Garcia-Peñalvo, F. J. (2016) ‘What Computational Thinking Is’, Journal of Information Technology Research, 9(3), pp. 5–8.

Gouws, L., Bradshaw, K. and Wentworth, P. P. (2013) ‘Computational Thinking in Educational Activities An evaluation of the

educational game Light-Bot’, in Proceedings of the 18th ACM conference on Innovation and technology in computer

science education.

Grover, S. and Pea, R. (2013) ‘Computational Thinking in K-12: A Review of the State of the Field’, Educational Researcher,

42(1), pp. 38–43. doi: 10.3102/0013189X12463051.

Halberda, J., Mazzocco, M. M. M. and Feigenson, L. (2008) ‘Individual differences in non-verbal number acuity correlate

with maths achievement.’, Nature, 455(October), pp. 665–668. doi: 10.1038/nature07246.

Heintz, F., Mannila, L. and Farnqvist, T. (2016) ‘A Review of Models for Introducing Computational Thinking, Computer

Science and Computing in K–12 Education’, in 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–9. doi:

10.1109/FIE.2016.7757410.

Jenson, J. and Droumeva, M. (2016) ‘Exploring media literacy and computational thinking: A game maker curriculum study’,

Electronic Journal of e-Learning, 14(2), pp. 111–121.

Kalelioglu, F., Gulbahar, Y. and Kukul, V. (2016) ‘A Framework for Computational Thinking Based on a Systematic Research

Review’, Baltic Journal of Modern Computing, 4(3), pp. 583–596.

Lightbot Inc. (2016) Lightbot. Available at: https://lightbot.com/.

Maloney, J., Resnick, M. and Rusk, N. (2010) ‘The Scratch programming language and environment’, ACM Transactions on

Computing Education, 10(4), pp. 1–15. doi: 10.1145/1868358.1868363.http.

Manches, A. and Plowman, L. (2015) ‘Computing education in children’s early years: A call for debate’, British Journal of

Educational Technology, 48(1), pp. 191–201. doi: 10.1111/bjet.12355.

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. (2011) ‘Habits of Programming in Scratch’, in Proceedings of the 16th

annual joint conference on Innovation and technology in computer science education, pp. 168–172. doi:

10.1145/1999747.1999796.

Simon P. Rose, M. P. Jacob Habgood and Tim Jay

www.ejel.org 309 ISSN 1479-4403

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. (2013) ‘Learning computer science concepts with Scratch’, Computer

Science Education, 233, pp. 239–264. doi: 10.1080/08993408.2013.832022.

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Papert, S. and Harel, I. (1991) Situating constructionism, Constructionism. Ablex Publishing Corporation.

Piaget, J. (1970) Science of education and the psychology of the child. New York: Orion Press.

Primary Leap Limited (2011) Non-Verbal Reasoning Worksheets. Available at: http://primaryleap.co.uk/primary-

resources/Year+1/Reasoning/Non+-+Verbal/ (Accessed: 1 November 2015).

Repenning, A., Basawapatna, A. R. and Escherle, N. (2016) ‘Computational thinking tools’, in 2016 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC), pp. 1–5.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J. a

Y., Silverman, B. and Kafai, Y. (2009) ‘Scratch: Programming for All.’, Communications of the ACM, 52(11), pp. 60–67.

doi: 10.1145/1592761.1592779.

Riley, D. D. and Hunt, K. A. (2014) Computational Thinking for the Modern Problem Solver. CRC Press.

Sáez López, J. M., González, M. R. and Cano, E. V. (2016) ‘Visual programming languages integrated across the curriculum in

elementary school: A two year case study using “scratch” in five schools’, Computers & Education, 97, pp. 129–141.

doi: 10.1016/j.compedu.2016.03.003.

Seiter, L. and Foreman, B. (2013) ‘Modeling the learning progressions of computational thinking of primary grade students’,

in Proceedings of the ninth annual international ACM conference on International computing education research -

ICER ’13, pp. 59–66. doi: 10.1145/2493394.2493403.

Sweller, J. (1988) ‘Cognitive load during problem solving: Effects on learning’, Cognitive Science, 12(2), pp. 257–285. doi:

10.1016/0364-0213(88)90023-7.

Turkle, S. and Papert, S. (1991) ‘Epistemological Pluralism and the Revaluation of the Concrete’, in Constructionism, pp.

161–191. doi: citeulike-article-id:513444.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. and Wilensky, U. (2016) ‘Defining Computational

Thinking for Mathematics and Science Classrooms’, Journal of Science Education and Technology. Springer

Netherlands, 25(1), pp. 127–147. doi: 10.1007/s10956-015-9581-5.

Wilson, A. and Moffat, D. C. (2010) ‘Evaluating Scratch to introduce younger schoolchildren to programming’, Proceedings

of the 22nd Annual Workshop of the Psychology of Programming Interest Group, pp. 64–75.

Wing, J. M. (2006) ‘Computational Thinking’, Communications of the Association for Computing Machinery (ACM), 49(3),

pp. 33–35. doi: https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf.

Wing, J. M. (2008) ‘Computational thinking and thinking about computing’, Philosophical Transactions of the Royal Society

of London. Series A: Mathematical, Physical and Engineering Sciences, 366(1881), pp. 3717–3725. doi:

10.1109/IPDPS.2008.4536091.

Yadav, A., Hong, H. and Stephenson, C. (2016) ‘Computational Thinking for All: Pedagogical Approaches to Embedding 21st

Century Problem Solving in K-12 Classrooms’, TechTrends: for leaders in education & training. TechTrends, 60(6), pp.

565–568. doi: 10.1007/s11528-016-0087-7.

