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Abstract. In this paper, we propose a decomposition procedure for con-
structing robust optimal production plans for reverse inventory systems.
Our method is motivated by the need of overcoming the excessive com-
putational time requirements, as well as the inaccuracies caused by im-
precise representations of problem parameters. The method is based on
a min-max formulation that avoids the excessive conservatism of the
dualization technique employed by Wei et al. (2011). We perform a com-
putational study using our decomposition framework on several classes
of computer generated test instances and we report our experience. Bi-
enstock and Özbay (2008) computed optimal base stock levels for the
traditional lot sizing problem when the production cost is linear and we
extend this work here by considering return inventories and setup costs
for production. We use the approach of Bertsimas and Sim (2004) to
model the uncertainties in the input.

Keywords: robust lot sizing, remanufacturing, decomposition

1 Introduction

Traditional lot sizing problems mainly aim to construct production plans that
minimize the total operational cost for a specific production system, while en-
suring that demand in each time period is satisfied. For such models to re-
main applicable for present production systems, recent shifts in manufacturing
practices have to be taken into consideration through revising model structure
and assumptions. A practice that has been increasingly applied is the reuse
of deformed items to manufacture as-good-as-new products, motivated by the
increasing interest of implementing recycling activities. More specifically, such
production systems with item recoveries are expected to have reduced overall
production costs and waste through restoring deformed products to their usable
state. Recovery of these items can be undertaken in several ways (see Thierry
et al. 1995). In our work, we are interested in investigating the option of re-
covering these items through remanufacturing. Applications of remanufacturing



are observed in the production of a wide range of products, such as electronic
goods and industrial items (see, Thierry et al. 1995, Guide and Van Wassenhove
2009, Agrawal et al. 2015). Our main focus is to consider the additional deci-
sions regarding remanufacturing while constructing an optimal production plan
for a discrete and finite time horizon, where the exact values for demands and
returned items are known to be uncertain.

Despite the wide range of research on lot sizing problems (see, e.g., Akartunalı
et al. 2016), very few studies have focused on lot sizing problems with remanufac-
turing (LSR). Preliminary research on LSR problems includes the implementa-
tion of the Wagner-Whithin algorithm by Richter and Sombrutzki (2000), which
was later extended to one with manufacturing and remanufacturing costs by
Richter and Weber (2001). An economic LSR formulation (ELSR) with disposal
costs was introduced by Golany et al. (2001), where the ELSR problem was
shown to be NP-complete. A dynamic programming algorithm was presented
by Teunter et al. (2006), which solves the ELSR problem in O(T 4) time for a
special case of the problem. In more recent work, Helmrich et al. (2014) have
introduced alternative formulations for the ELSR problem, and have shown that
the problem with joint or separate setups is NP-hard. The work of Akartunalı
and Arulselvan (2016) has shown the tractability of a polynomial time special
case and have introduced two classes of valid inequalities for the capacitated
version of the problem. However, there is a lack of literature on the impact of
uncertainty on these formulations, with the exception of Wei et al. (2011). The
present study aims to contribute to the growing research on ELSR problems by
studying the implications of parameter uncertainties within the framework of
robust optimization.

Robust optimization was first introduced by Soyster (1973), where uncertain
parameters are defined through uncertainty sets and a robust optimal solution is
defined as one that remains optimal for every parameter representation in an un-
certainty set. More recent studies relaxed this conservative assumption, with the
seminal work of Ben-Tal and Nemirovski (1998, 1999) constructing uncertainty
sets as ellipsoids. Later, Bertsimas and Sim (2004) defined the uncertainty sets
as budgeted polytopes, where robust parameter representations are constrained
by a specified value. Their approach was applied to traditional lot sizing prob-
lems by Bertsimas and Thiele (2006) and adapted to the robust ELSR in Wei
et al. (2011). Bienstock and Özbay (2008) propose a decomposition approach
for solving a min-max formulation of the special lot sizing problem consisting in
the computation of basestock levels. Robust lot sizing problems have also been
considered as particular cases of the general problems addressed in Agra et al.
(2016), and Atamtürk and Zhang (2007). For comprehensive books on robust
optimization we refer the reader to Bertsimas and Sim (2004) and Ben-Tal et
al. (2009). For concise overviews on robust optimization methods see Bertsimas
and Thiele (2011), Gabrel et al. (2014), Gorissen et al. (2015).

Here we consider a min-max formulation for the robust ELSR problem, since
the approach followed in Wei et al. (2011) is known to be too conservative and
uses many dual variables which restricts its applicability. For a detailed expla-



nation of this conservativeness, see Bienstock and Özbay (2008). A common
approach to handle min-max robust optimization problems is to use a variant
of the Benders’ decomposition, (see Thiele et al. 2010). Frequently, this decom-
position results in the iterative inclusion of rows and columns (Agra et al. 2013;
Zeng and Zhao 2013). Such approach is also known as the Adversarial approach
(Gorissen et al. 2015). For solving robust inventory problems, the decomposi-
tion framework was introduced by Bienstock and Özbay (2008) and revisited
later by Agra et al. (2016), where demand in each time period is assumed to
be uncertain. Our approach for the robust ELSR problem is also motivated by
these studies, where our objective is to generate optimal production plans when
demands and returns are uncertain. We use the approach of Bertsimas and Sim
(2004) to model the uncertainty set as budgeted polytopes, where the variation
of the demands and returns in relation to their nominal values is constrained by
a specified value. A robust model with recourse is considered where the inven-
tory levels are allowed to adjust to the realization of the uncertain parameters.
Our contribution is two-fold. Firstly, we model an extended version of the lot
sizing problem, wherein we consider uncertainty in both the return and demand
sets with set up costs for production. Our second contribution lies in reporting
our computational experience with several input classes of costs and inventory
levels.

The remainder of this paper is organized as follows: In Section 2, we introduce
the deterministic and robust formulations for the ELSR problem. We introduce
the robust decomposition algorithm in Section 3, and finally we conclude by
presenting preliminary performance results in Section 4.

2 Problem Definition

The main problem addressed in this study is the economic lot sizing problem
with remanufacturing and joint setups in a robust setting. Throughout the paper,
the term “robust” refers to probability-free uncertainty. Problem assumptions
and notations, the deterministic ELSR formulation, and a detailed description
of parameter uncertainties are presented prior to the robust formulation. The
decomposition algorithm introduced in Section 3 is based on the robust min-max
formulation given in Section 2.2. Thus, the assumptions and notations given un-
der this section remain valid for the decomposition algorithm. The objective of
our problem is to produce a production plan detailing the amounts to be manu-
factured, remanufactured, kept in inventory, backlogged and disposed of, where
total operational costs are minimized for the maximum value of return and de-
mand deviations. Our assumptions are: a) remanufacturing is a single operation
(has no accompanying inspection/disassembly) b) remanufactured items are as
good as manufactured ones c) serviceable inventory (ready to serve demand) can
either be positive (incurs holding cost) or negative (incurs a backlogging cost)
d) return items can be disposed at a cost e) manufacturing and remanufacturing
are not capacitated and incur a joint setup cost of K f) The production plan is
generated for a finite and discrete time horizon, T .



In addition, we assume that all problem parameters are known. The values
of demands and returns are inexact, however, the inputs used to construct the
relevant uncertainty sets are known. All cost parameters are time-invariant, and
serviceables have a greater holding cost than returned items. Similarly, manu-
facturing an item is more expensive than remanufacturing a returned item.

Manufacturing, remanufacturing, disposal and backlogging costs of a single
item are represented as m, r, f and b, respectively. The unit holding cost of
serviceable (returned) goods are shown as hs (hr). Let the demands (returns)
for periods t = 1, . . . , T be Dt (Rt). For modelling the set up decision, we
introduce a binary variable yt and a sufficiently big Mt for all t. Variable xm

t

(xr
t ) indicates the number of items manufactured (remanufactured) in time t.

Let the the number of items disposed at the end of period t be dt. Finally, Z
D
t

(ZR
t ) models the scaled deviation of demands (returns) from the nominal value

in period t. We might drop the time index t, to denote the corresponding vector.
For instance, ΓR will denote the vector in T dimensions with the tth component
being ΓR

t .

2.1 Classical Deterministic Model

The ELSR problem can be written as:

min
(x,y)∈P

θD,R(x, y) (1)

where

θD,R(x, y) =

T
∑

t=1

(Kyt +mxm
t + rxr

t + fdt +Hs
t +Hr

t ), (2)

and x = (xm, xr) and y are vectors specifying a feasible production plan that
belongs to the set

P := {(xm
t , xr

t , yt) ∈ R
2T
+ × Z

T
+ : Ir0 +

t
∑

i=1

(Ri − xr
i − di) ≥ 0, ∀t = 1, ..., T

Mtyt ≥ xm
t + xr

t , ∀t = 1, ..., T}

(3)

As reverse flows do not exist for returns, their inventory levels are restricted
to be nonnegative and we ensure that the setup cost K is incurred for the time
period t when yt = 1, where Mt =

∑T

i=t Di . Variables Hs
t (Hr

t ) model the total
cost of serviceable (return) inventory held in period t and is given by

Hs
t = max{hs[Is0 +

t
∑

i=1

(xm
i + xr

i −Di)],−b[Is0 +

t
∑

i=1

(xm
i + xr

i −Di)]} (4)

Hr
t = hr[Ir0 +

t
∑

i=1

(Ri − xr
i − di)] (5)



2.2 Uncertainty

In practical cases some of the parameters may not be known in advance. Here
we assume the demands Dt and the returns Rt are uncertain, and consider a
twostage robust model. The number of items manufactured, remanufactured and
disposals (and consequently the set-up decisions) are assumed to be first stage
or “here-and-now” decisions. Thus, such decisions are taken before the value of
the uncertain parameters is revealed. While the serviceable and return inventory
levels are second-stage variables since they are allowed to adjust to the value of
the parameters.

We apply the robust optimization approach of Bertsimas and Sim (2004)
defining uncertainty sets as budgeted polytopes. The uncertainty on demand and
return parameters is considered to be independent from each other. Therefore,
an independent uncertainty set for demands (UD), and returns (UR) exist. For
each time period t = 1, . . . , T, parameters ΓD

t , D̄t, D̂t (Γ
R
t , R̄t, R̂t) are the budget

of uncertainty for demands (returns), nominal demands (returns) and maximum
deviation in demands (returns) respectively. The robust parameter Dt takes its
value in the interval [D̄t, D̄t + D̂t]. Similarly, Rt takes its value in the interval
[R̄t, R̄t + R̂t]. Hence, our uncertainty sets are defined as:

UD(ΓD) := {D ∈ R
T
+ : Dt = D̄t + D̂tz

D
t , ∀t = 1, ..., T, zDt ∈ ZD

t (ΓD
t )} (6)

UR(ΓR) := {R ∈ R
T
+ : Rt = R̄t + R̂tz

R
t , ∀t = 1, ..., T, zRt ∈ ZR

t (ΓR
t )} (7)

The variables zDt and zRt in (6) and (7) take their values in the interval
[0, 1] and are used to indicate a given proportion of the maximum deviations
D̂t and R̂t. In order to avoid overconservative parameter representations, the
parameters ΓD

t and ΓR
t are introduced to constrain zDt and zRt . More specifically,

the cumulative values of scaled deviation variables for demands and returns are
required to be strictly less than or equal to ΓD

t and ΓR
t , hence we obtain:

ZD
t (ΓD

t ) := {zDt ∈ [0, 1]t :

t
∑

i=1

zDi ≤ ΓD
t , ∀t = 1, ..., T} (8)

ZR
t (ΓR

t ) := {zRt ∈ [0, 1]t :

t
∑

i=1

zRi ≤ ΓR
t , ∀t = 1, ..., T} (9)

As the inventory levels are allowed to adjust to the uncertain parameters, the
variables Hs

t and Hr
t will depend on the demands and returns. So, for each t =

1, . . . , T and D ∈ UD, we have Hs
t (D) given from (4), and for each t = 1, . . . , T

and R ∈ UR, we have Hr
t (R) given from (5).

We can now extend the deterministic ELSR problem to this uncertain case
as a robust min-max formulation:

min
(x,y)∈P

max
D∈UD(ΓD)

R∈UR(ΓR)

θD,R(x,y) (10)



where θD,R(x, y) is extended as follows:

θD,R(x, y) =
T
∑

t=1

(Kyt +mxm
t + rxr

t + fdt +Hs
t (D) +Hr

t (R)) (11)

3 Decomposition Approach

As the number of variables Hs
t (D) and Hr

t (R) is not finite, the inner maximiza-
tion problem is not finite. However, practical experience based on decomposition
algorithms for related problems (see, for instance, Agra et al. 2013 for the case
of the robust vehicle routing problem with time windows, Agra et al. 2016 for a
general class of problems including the robut lot-sizing problem, and Bienstock
and Özbay 2008 for the problem of computing robust basestock levels) has shown
that only a few of the values of the uncertainty sets UD(ΓD) and UR(ΓR) are
necessary to solve the problem.

Here we present a decomposition algorithm that iteratively solves a restricted
version of the robust min-max problem (10) with respect to a subset of points of
UD(ΓD) and of UR(ΓR) which will be denoted by ŨD and ŨR, respectively. We
call this restricted version of (10) as “Decision Maker’s” problem (DMP). Given
an optimal solution (x∗, y∗) ∈ P to the DMP, we solve a certain maximization
problem, which seeks a demand D ∈ UD(ΓD) and return R ∈ UR(ΓR) that
maximises the total inventory and backlogging costs for the production plan
(x∗, y∗) ∈ P. We refer to this subproblem as the “Adversarial Problem” (AP).
The extreme point D∗, R∗ generated by AP is used to update ŨD and ŨR and
the process is repeated. Convergence is guaranteed through the finiteness of the
number of extreme points of the uncertainty sets UD(ΓD) and UR(ΓD). The
formal description of this idea is given in Algorithm ??.

Initialize UB = +∞, LB = 0, ŨD = {D̄}, ŨD = {R̄}
while (UB − LB)/LB ≥ ǫ do

1. Solve DMP

a. (x∗, y∗) be the solution of min(x,y)∈P maxD,R∈ŨD×ŨR θD,R(x, y)

b. Set LB = maxD,R∈ŨD×ŨR θD,R(x∗, y∗)
2. Solve AP

a. (D∗, R∗) = argmaxD,R∈UD×UR θD,R(x∗, y∗)

b. ŨD = ŨD ∪ {D∗}, ŨR = ŨR ∪ {R∗}
c. UB = min{UB, θD

∗,R∗

(x∗, y∗)}

end

Algorithm 1: Robust decomposition algorithm



For the sake of completeness, we give the DMP and the AP. In order to model
the DMP, notice that the inner maximization problem in (10) defined for the
restricted set ŨD × ŨR, maxD,R∈ŨD×ŨR θD,R(x,y), can be written as:

T
∑

t=1

(Kyt +mxm
t + rxr

t + fdt) + max
D,R∈ŨD×ŨR

T
∑

t=1

(Hs
t (D) +Hr

t (R))). (12)

Introducing variable π to indicate the maximum value of the total inventory
and backlogging costs over all possible realizations of demands and returns, the
DMP can be written as follows:

min
T
∑

t=1

(Kyt +mxm
t + rxr

t + fdt) + π (13)

s.t. π ≥

T
∑

t=1

(Hs
t (D) +Hr

t (R)) ∀D ∈ ŨD

∀R ∈ ŨR
(14)

Hs
t (D) ≥ hs

(

Is0 +
t

∑

i=1

(xm
i + xr

i −Di)
)

∀t = 1, ..., T
∀D ∈ ŨD

(15)

Hs
t (D) ≥ −b

(

Is0 +

t
∑

i=1

(xm
i + xr

i −Di))
)

∀t = 1, ..., T
∀D ∈ ŨD

(16)

Hr
t (R) = hr

(

Ir0 +

t
∑

i=1

(Ri − xr
i − di)

)

,
∀t = 1, ..., T
∀R ∈ ŨR

(17)

t
∑

i=1

(Ri − di − xr
i ) ≥ 0

∀t = 1, ..., T
∀R ∈ ŨR

(18)

Mtyt ≥ xm
t + xr

t ∀t = 1, ..., T (19)

(x, y) ∈ P



Note that variables Hr
t (R) can be eliminated using equations (17). Given a

solution for variables xm
i , xr

i , di, the AP is formulated as follows:

max π (20)

s.t. π ≤

T
∑

t=1

(Hs
t + hr

t
∑

i=1

(R̄i + R̂iz
R
i − di − xr

i )) (21)

Hs
t = max

{

hs
(

Is0 +
t

∑

i=1

(xm
i + xr

i − (D̄i + D̂iz
D
i )

)

,

− b
(

Is0 +

t
∑

i=1

(xm
i + xr

i − (D̄i + D̂iz
D
i )

)

}

∀t = 1, ..., T (22)

Ir0 +
t

∑

i=1

(R̄i + R̂iz
R
i − xr

i − di) ≥ 0 ∀t = 1, ..., T (23)

t
∑

i=1

zDi ≤ ΓD
t ,

t
∑

i=1

zRi ≤ ΓR
t ∀t = 1, ..., T (24)

0 ≤ zDj
t ≤ 1, 0 ≤ zRj

t ≤ 1 ∀t = 1, ..., T (25)

In order to linearize (22), we introduce binary variable st indicating whether
inventory is kept or demand is backlogged, and rewrite it as:

Hs
t ≤ hs

(

Is0 +

t
∑

i=1

(xm
i + xr

i − (D̄i + D̂iz
D
i )

)

+M1t(1− st) ∀t = 1, ..., T (26)

Hs
t ≤ −b

(

Is0 +
t

∑

i=1

(xm
i + xr

i − (D̄i + D̂iz
D
i )

)

+M2tst ∀t = 1, ..., T (27)

4 Experiments

The proposed decomposition algorithm was implemented in Java using Eclipse
Mars. Our formulations were implemented and solved as MIPs using Java API for
CPLEX 12.6 on an Intel Core i5, 3.30GHz CPU, 3.29GHz, 8 GB RAM machine.

Additionally, each run has been restricted to a total running time of 10,000
seconds. The terminating condition for instances with a smaller running time is
set as ǫ = 0.01, where ǫ = UB−LB

LB
.

4.1 Data Generation

Data sets have been generated for different levels of four parameter types: num-
ber of returns, probability of constraint violation caused by ΓD

t and ΓR
t , the

setup cost and the disposal cost. We consider three different levels for each
group, except for disposal costs: low, medium and high. For disposal costs, we
are interested in observing two different cases, namely when the disposal cost is



greater or less than the remanufacturing cost. Throughout this section, the data
sets are abbreviated as “ABCD T”, where each letter indicates the levels of the
aforementioned parameters in their given order, with T time periods.

For all data sets, nominal demand is generated randomly in the interval
[50, 100]. Likewise, returns are generated randomly in intervals [15, 30], [25, 50]
and [35, 70], for low, medium and high levels, respectively. Maximum demand
and return deviations are calculated as D̂t = 0.1D̄t and R̂t = 0.1R̄t . In order to
determine ΓD

t and ΓR
t , we use the probabilistic bounds given by Bertsimas and

Sim (2004). We set the probability of constraint violation as 0.01, 0.05 and 0.10,
for low, medium and high levels, respectively. To determine the setup cost, we
use the following equations: K = 0.1D̄minh

s, K = 2D̄medh
s and K = 5D̄maxh

s,
where D̄min = 50, D̄med = 75 and D̄max = 100, for low, medium and high
levels. Finally, the disposal cost is set as d = 0.5r when it is less than the
remanufacturing cost, and as d = 2r otherwise.

In addition, the holding cost of serviceables is generated in the interval [5, 10],
through which the remaining cost parameters are defined. We set the holding cost
for returns as hr = 0.1hs, the backlogging cost as b = 4hs, the manufacturing
cost as m = 2hr, and the remanufacturing cost as r = 2hr .

4.2 Preliminary Results

To observe the performance of our decomposition algorithm, we analyse the
total time requirements for obtaining the smallest possible UB − LB gap. The
following performance measures are preliminary results that are obtained from
16 different data sets for T = 10, and 5 different data sets for T = 50. A total
of 10 instances were solved for each data set.

When T = 10, all instances can be solved to ǫ = 0.07 or better. It is possible
to achieve ǫ = 0.001 very quickly for the vast majority of the data sets. However,
a few instances were aborted due to the time limit, for which the gap remains
relatively large. For each data set, the total running time, final gap and total
iterations for T = 10 are given in Table 1. The overall performance of cases when
the gap could not be reduced down to ǫ = 0.001 under 10,000 seconds are given
in Figures 1 and 2.
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Fig. 2: Total running time for T=10
(when ǫ > 0.01 could not be achieved
under 10,000 seconds).

Table 1: Gap, time, iteration performance for T=10.

Gap (ǫ) Time Performance (s) Number of Iterations

Dataset Avg. Std.Dev. Avg. Std.Dev. Avg. Std.Dev.

HHHG 0.004 0.002 0.4 0.1 4.2 0.9
HHHL 0.003 0.003 0.7 0.3 4.9 1.1
HHMG 0.005 0.003 27.8 40.5 5.9 1.2
HHML 0.003 0.002 236.2 692.5 5.3 0.9
HHLG 0.020 0.021 1706.0 2314.5 4.2 1.5
HHLL 0.018 0.022 6783.9 4337.9 4.2 1.2
HMHG 0.004 0.004 0.4 0.2 3.7 0.9
HMHL 0.005 0.004 0.3 0.2 3.9 0.3
HMLG 0.007 0.008 5247.2 4542.0 4.6 1.0
HMLL 0.008 0.013 4713.2 4512.3 4.5 1.2
HLHG 0.007 0.004 0.3 0.1 2.8 0.4
HLHL 0.005 0.004 0.4 0.2 3.0 0.5
HLMG 0.005 0.003 32.7 54.7 3.8 0.4
HLML 0.004 0.005 19.8 34.1 3.9 0.6
HLLG 0.002 0.004 401.4 617.4 4.2 0.6
HLLL 0.002 0.003 433.5 1024.5 4.2 0.8



As the detailed results in Table 1 indicate, the gaps achieved and number of
iterations needed are in general consistent across different data sets, in addition
to being in general very small (e.g., the highest maximum gap is still under 0.1,
and no more than 8 iterations were necessary for any instance). On the other
hand, as it can be also observed from the Figures 1 and 2, the time performance
can vary significantly not only among different datasets but also among different
instances of most datasets.

When we look into the datasets with T = 50, a greater number of instances
naturally run until the maximum time limit is reached as a consequence of the
increased number of periods. However, the algorithm is still able to close the gap
up to ǫ = 0.003 for some instances.

In comparison to T = 10, the total number of iterations reduce as the time
limit is reached in earlier iterations. We also observe a greater variety in terms of
the total solution time for several data sets (see Figure 4). For groups where the
total running time is invariant, the final gap remains larger compared to others,
in which case ǫ is less than 0.05. The gap, time and iteration performances for
T = 50 are presented in Table 2. Although many instances exhausted the time
limit, it is encouraging to see that the maximum gaps still remain very small.

0

0.05

0.1

0.15

0.2

0.25

HHLG HHLL

G
a

p
 

Dataset

Fig. 3: Total UB - LB gap for T=50
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Fig. 4: Total running time for T=50.

5 Conclusions

In this paper, we studied the robust lot sizing problem with remanufacturing
option, where, to the best of our knowledge, the literature is at best scarce.



Table 2: Gap, time, iteration performance for T=50.

Gap (ǫ) Time Performance (s) Number of Iterations

Data Set Avg. Std.Dev. Avg. Std.Dev. Avg. Std.Dev.

HHHG 0.010 0.006 8203.7 2092.2 3.5 0.7
HHHL 0.012 0.006 7595.5 3305.4 2.8 0.8
HHLG 0.159 0.043 10002.9 1.1 2.1 0.3
HHLL 0.141 0.028 10004.3 1.1 2.0 0.0
HHMG 0.029 0.008 9044.4 3033.3 2.7 0.5

We proposed a simple but effective decomposition procedure for constructing
robust optimal production plans, where the approach of Bertsimas and Sim
(2004) was used to model the uncertainties in input. Preliminary computational
results on various datasets indicate that this procedure can work effectively,
in particular to address current issues caused by imprecise representations of
problem parameters.

Future work includes further development and improvement of the current
computational framework in order to achieve more effective results, in particular
of the computational times. It is also important to perform extensive computa-
tional testing to allow a thorough statistical analysis of the performance.

References

Agra, A., Santos, M.C., Nace, D., Poss, M.: A dynamic programming approach for
a class of robust optimization problems. SIAM Journal on Optimization 26(3),
1799–1823 (2016)

Agra, A., Christiansen, M., Figueiredo, R., Hvattum, L.M., Poss, M., Requejo, C.: The
robust vehicle routing problem with time windows. Computers and Operations
Research 40(3), 856–866 (2013)

Agrawal, Vishal V., Atalay Atasu, and Koert Van Ittersum: Remanufacturing, third-
party competition, and consumers’ perceived value of new products. Management
Science (61)1, 60 – 72 (2015)

Akartunalı, K., Fragkos, I., Miller, A., Wu, T.: Local cuts and two-period convex hull
closures for big-bucket lot-sizing problems. INFORMS Journal on Computing 28(4),
766–780 (2016)

Akartunalı, K., Arulselvan, A.: Economic lot-sizing problem with remanufacturing op-
tion: Complexity and algorithms. In: Machine Learning, Optimization, and Big
Data, MOD. pp. 132–143 (2016)

Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand
uncertainty. Operations Research 55(4), 662–673 (2007)

Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton Series in
Applied Mathematics, Princeton University Press (October 2009)

Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Mathematics of operations
research 23(4), 769–805 (1998)

Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Operations
research letters 25(1), 1–13 (1999)



Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM Review 53, 464 – 501 (2011)

Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53
(2004)

Bertsimas, D., Thiele, A.: A robust optimization approach to inventory theory. Oper-
ations Research 54(1), 150–168 (2006)
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