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0 Introduction

In the mathematical treatment of physical phenomena of heterogeneous materials one is
confronted with partial differential equations with variable coefficients. Sometimes one
observes that there is a scale separation, that is, there is a “large” and a “small” scale
and the heterogeneities occur on the “small” scale only. In consequence, the coefficients
are highly oscillatory. Therefore, the computational effort for solving these equations is
considerably high. That is why one seeks for a replacement for the partial differential
equation with heterogeneous coefficients, such that this replacement is easier to solve
with a computer. In some cases, it is possible to derive such a replacement by studying
the limit behavior of the equation by letting the ratio of “small” scale over “large” scale
tend to 0. So, one asks whether the solutions corresponding to strictly positive ratio
converge in some sense for the ratio tending to 0. Given the convergence of the solutions,
one asks further, whether the limit satisfies an equation similar to the ones one started
out with. A main objective in homogenization theory is to show the convergence of the
solutions as the ratio tends to zero and to derive the limit equation.

If one assumes periodicity in the coefficients, many results are available for particular
equations, see e.g. [5, 9, 37] as general references. In the non-periodic case one cannot
expect a similar behavior as very simple equations show, see e.g. [40, p. x, equation p˚q].
In this note, we discuss a general compactness result: Given a bounded sequence of
coefficients, we prove that there exists a limit equation at least for a subsequence. We
emphasize that we do not assume periodicity of the coefficients. Further, we show that
this compactness result may be applied to coupled systems or to equations with memory
terms. By means of an example, we elaborate on the precise strategy in Section 1.

In the literature, there are many techniques available that allow the study of homoge-
nization in the non-periodic case. We mention here the method of H-convergence in the
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sense of [13, 22, 37] or [9, Definition 13.3], which is well-suited for elliptic equations. The
method of Γ-convergence is tailored for variational integrals and optimization problems
related to them, see e.g. [6, 7, 21]. G-convergence and two-scale-convergence, see respec-
tively [10, 35, 55] and [2, 23, 53], are concepts that may be applied to many equations
of mathematical physics, as well.

The concept of G-convergence can be formulated in an abstract Hilbert space setting,
see [55, p.74] (see also Section 4 in this paper). More precisely, given a sequence of
continuously invertible operators pAnqn its G-limit is an invertible operator B, if pA´1

n qn
converges to B´1 in the weak operator topology. In this general setting, it is unclear
how to derive a more explicit expression for B. The notion of two-scale convergence
uses a L2-setting and does not apply to general Hilbert spaces. For a possible way of
dealing with specific non-periodic coefficients, we refer to the generalization of two-scale
convergence in [24, 25].

Here we provide an alternative way of discussing homogenization problems, which was
introduced in [40, 41, 42] with (substantial) extensions in [43, 46, 45, 44, 48]. The idea
bases on results of [28, 29]. In [28, 29], a functional analytic Hilbert space framework
is developed, which serves to derive a unified solution theory for many equations of
mathematical physics. In this exposition, we will use the term evolutionary equations
to refer to the class described in [28, 29]. Note that evolutionary equations cover for
example equations from thermoelasticity ([19]) or equations with dynamic boundary
conditions ([30]) or equations typical in control theory with unbounded control and
observation operators ([31]).

Next, we sketch the functional analytic set up of evolutionary equations. For a given
forcing term f , we consider

Btw ` Au “ f. (0.1)

Here Bt is a realization of the time-derivative as a normal continuously invertible operator,
A is a skew-selfadjoint operator in some Hilbert space H modeling the spatial derivatives.
We want to solve (0.1) for the unknown quantities w and u. Clearly, the equation (0.1)
is under-determined. Thus, (0.1) needs to be completed by a constitutive relation or
material law M, being a continuous linear operator in time-space, which links w and u
via

Mu “ w. (0.2)

Hence, we solve the equation
BtMu ` Au “ f (0.3)

for u. In applications, the operator M describes the material’s properties, hence the
name ‘material law’: The operator M consists of the inverse of the conductivity κ if one
discusses the heat equation. More precisely, the heat equation fits into (0.3) with the
settings

u “
ˆ
θ

q

˙
, M “

ˆ
1 0

0 B´1
t κ´1

˙
, A “

ˆ
0 div

grad 0

˙
, f “

ˆ
Q

0

˙

3



where θ and q are the heat and heat flux, respectively, and Q is some external heat
source. Indeed, with these setting, (0.3) reads

Bt

ˆ
1 0

0 B´1
t κ´1

˙ˆ
θ

q

˙
`
ˆ

0 div

grad 0

˙ˆ
θ

q

˙
“
ˆ
Q

0

˙
.

Reading off the first line, we obtain Btθ ` div q “ Q. The second line is q “ ´κ grad θ.
Hence, Btθ ´ div κ grad θ “ Q.

Maxwell’s equations for the electro-magnetic field pE,Hq read

ˆ
Bt

ˆ
ε 0

0 µ

˙
`
ˆ
σ 0

0 0

˙
`
ˆ

0 ´ curl

curl 0

˙˙ˆ
E

H

˙
“
ˆ
J

0

˙
,

where ε is the dielectricity, σ is the (electric) conductivity, and µ is the magnetic per-
meability. J are external currents. Thus, we obtain the shape of equation (0.3) with the
settings

u “
ˆ
E

H

˙
, M “

ˆ
ε 0

0 µ

˙
` B´1

t

ˆ
σ 0

0 0

˙
, A “

ˆ
0 ´ curl

curl 0

˙
, f “

ˆ
J

0

˙
.

In general, we assume here that M may be represented as a function of B´1
t . Examples

of such autonomous material laws are time-shifts, fractional time-derivatives or convo-
lutions with respect to the temporal variable, see e.g. [15, 41, 45].

Our treatment of homogenization problems within this setting boils down to the discus-
sion of continuous dependence on M under a suitable topology, see also Section 1 for a
more detailed discussion. Consider a sequence of material laws pMnqn and corresponding
solutions punqn of the equation

BtMnun ` Aun “ f.

We ask, whether the sequence punqn converges to some limit v and whether there is a
material law N , such that v solves

BtN v ` Av “ f.

In [43], this question was answered for A with compact resolvent. It has been successfully
applied to the heat equation, the wave equation or the visco-elastic equations with
fractional time-derivatives or ordinary differential equations as constitutive relations,
see [43, Theorem 4.3 and Theorem 4.5] or [45]. In this paper, we complement the result
obtained in [43, 45]. Imposing more restrictions on M, we merely require A to have
compact resolvent when restricted to a domain orthogonal to the nullspace of A. That
is to say, instead of assuming that1 pDpAq, |¨|Aq ãÑãÑ pH, |¨|Hq, we only assume the
following: Any sequence punqn in DpAq with both punqn and pAunqn bounded in H as

1For Hilbert spaces H1, H2 and a linear operator A : DpAq Ň H1 Ñ H2 with domain DpAq, we denote
the norm in the Hilbert space H1 by |¨|H1

and the graph norm of A by |¨|A. If H1 is continuously
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well as un P NpAqK consists of a H-norm convergent subsequence. We refer to the latter
property as the nullspace-compactness-property (or pNCq-property for short) see also
Corollary 4.7 below.

A relevant example for an operator satisfying the pNCq-property is the Maxwell operator

A “
ˆ

0 ´ curl
˚curl 0

˙
in L2pΩq6, where ˚curl is the curl operator with electric boundary

condition and Ω Ň R3 is a bounded domain satisfying additional geometric requirements,
cf. [54, Theorem 2] or [26, 33]; other boundary conditions may also be admitted, see [3].

Furthermore, in [40] it is shown that the operator

ˆ
0 div
˚grad 0

˙
defined in L2pΩqN`1 sat-

isfies the pNCq-property, where Ω Ň RN is open and bounded, ˚grad is the distributional
gradient in L2pΩq with domain equal to W 1

2,0pΩq. The superscript “˚” refers to Dirich-

let boundary conditions and div is the negative adjoint of ˚grad. The same reasoning

can be applied to the spatial operator of the elastic equations

ˆ
0 Grad˚

´Grad 0

˙
, where

Grad is the symmetrized gradient as defined in [43, Definition 4.9] with some boundary
conditions imposed on a bounded domain Ω satisfying suitable geometric requirements,
cf. e.g. [52, Theorem 2].

Our main theorem, Theorem 4.5, may be seen as a general theorem giving a compactness
result for the homogenization of (coupled) equations in mathematical physics. We shall
also mention that the results obtained in this article not only generalize [40, Theorem
2.3.14] but improve the representation of the homogenized equations. Moreover, we
show that the homogenized equations satisfy the assumptions of Theorem 2.1, that is,
we have a solution theory for the effective equations.

A detailed discussion of our main result is given in Section 1. In this section we also
give an account of the ideas used and compare it to other strategies in the literature.

We sketch our plan to achieve our main result as follows. In Section 2, we discuss the
mathematical framework of evolutionary equations and recall the main theorem of [28].
Section 3 sketches the ideas, definitions and main theorems of [41] and [43]. In Section
4 we present our main result, Theorem 4.5. We show optimality of this theorem by
means of counterexamples. The proofs in Section 4 also require the results from Section
6, where some technical tools are provided. The results from Section 6 are needed to
prove the well-posedness of the limit equation constructed in Theorem 4.5. The abstract
results obtained in Section 4 are exemplified in Section 5.

We indicate weak convergence in a Hilbert space by ‘á’ or ‘w- lim’. Norm-convergence
will be denoted by ‘Ñ’ if not specified differently. The underlying scalar field of any
vector space discussed here is C.

embedded in H2, we write H1 ãÑ H2 or pH1, |¨|H1
q ãÑ pH2, |¨|H2

q. If this embedding is compact we
write H1 ãÑãÑ H2 or pH1, |¨|H1

q ãÑãÑ pH2, |¨|H2
q.
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1 Discussion of the main result

Our aim is to provide homogenization results for a large class of partial differential
equations. The homogenized coefficients, however, have a different representation as in
classical results in the literature, cf. e.g. [5, 35]. We illustrate the difference between the
classical approach and the approach considered here with the heat equation (cf. e.g. [29,
p. 350]):

Let Ω Ň RN be a bounded domain. Denote by θ : p0,8q ˆ Ω Ñ R the heat distribution
and by q : p0,8q ˆ Ω Ñ RN the heat flux. The heat equation is a system of the two
equations #

Btθ ` div q “ f

q “ ´κ grad θ.
(1.1)

Here Btθ denotes the time-derivative of θ, f is a given source term and κ : RN Ñ RNˆN

is a bounded function being the (material dependent, symmetric) conductivity tensor
satisfying κpxq ŕ c for some c ą 0 and all x P RN . Of course, θ and q are the unknowns
in the system. The first equation in (1.1) is called the heat flux balance and the second
one is Fourier’s law. The system is completed by boundary and initial conditions. For
simplicity, we assume both homogeneous Dirichlet boundary conditions and homoge-
neous initial conditions for θ. As a reminder for Dirichlet boundary conditions, we shall
write ˚grad instead of grad.

The classical way of discussing the heat equation is to substitute Fourier’s law into the
heat flux balance. Thus, the heat equation reads

Btθ ´ div κ ˚gradθ “ f. (1.2)

Next, assume that κ is p0, 1qN -periodic, that is, κpx`eq “ κpxq for all x P RN , e P ZN . In
homogenization theory one is interested in the effective behavior of solutions of equations
with highly oscillatory coefficients. A possible way to model that is the following. For
n P N consider the solutions pθn, qnq and θn of the following respective equations

#
Btθn ` div qn “ f

qn “ ´κpn¨q ˚gradθn.
(1.3)

and
Btθn ´ div κpn¨q ˚gradθn “ f. (1.4)

Standard a priori estimates imply that (possibly after passing to a subsequence) pθn, qnqn
and pθnqn converge weakly to some functions pθ, qq and θ, respectively. Classically, in
order to determine the heat distribution θ, one shows that θ solves Btθ´div κ0 ˚gradθ “ f .
Here κ0 is a well-known (constant-coefficient-)matrix. The main step in the classical
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approach is to prove

ż

Ω

κpnxq ˚gradθnpt, xq ¨ ˚gradθnpt, xq dx Ñ
ż

Ω

κ0 ˚gradθpt, xq ¨ ˚gradθpt, xq dx pn Ñ 8q

The tool for the proof of the latter is the famous “div-curl-lemma”, which is due to Murat
and Tartar, see e.g. [22, 36], or [37, 8]. The strategy of doing so is well-established and
can also be applied to other cases such as linearized elasticity.

Starting out with the sequence of equations given by (1.3), we shall sketch another way
of deducing the limit equation. Written in a block-operator-matrix-form the equations
(1.3) read as

ˆ
Bt

ˆ
1 0

0 0

˙
`
ˆ
0 0

0 κpn¨q´1

˙
`
ˆ

0 div
˚grad 0

˙˙ˆ
θn
qn

˙
“
ˆ
f

0

˙
. (1.5)

Following the introduction and recalling that Bt can be realized as a continuously in-

vertible operator, the latter equations are clearly of the form (0.3) with Mn “
ˆ
1 0

0 0

˙
`

B´1
t

ˆ
0 0

0 κpn¨q´1

˙
and A “

ˆ
0 div
˚grad 0

˙
. Note that, due to the imposed homogeneous

Dirichlet boundary conditions, A is a skew-selfadjoint operator in L2pΩqN`1 since div˚ “
´ ˚grad.

For computing the limit as n Ñ 8, we want to apply [40, Theorem 3.5] (or Theorem
4.3 in this article). For this we require that A has compact resolvent.

If Ω Ň R is a bounded, open interval, Theorem 4.3 is already applicable. Indeed, in

this case the operator A “
ˆ
0 B1

B̊1 0

˙
has compact resolvent. Thus, we infer that κp¨q´1

is periodic, and, hence, κpn¨q´1 converges in the weak*-topology of L8 to the constant

function
ş1
0
1{κ. The limit equation reads

Btθ ´ B1

´ ż 1

0

1{κ
¯´1

B̊1θ “ f,

where θ “ w- limnÑ8 θn. Here, the homogenized coefficient, that is,
´ ş1

0
1{κ

¯´1

coincides

with the harmonic mean of κ.

Next, we consider the case N ŕ 2, that is, the underlying medium is at least 2-
dimensional. Then, the nullspace of div is the infinite-dimensional. Hence, the operatorˆ

0 div
˚grad 0

˙
has no compact resolvent. Thus, a rationale similar to the one-dimensional

case fails.

In the following, we propose yet another reformulation of (1.3) making Theorem 4.3
applicable. For this, note that the domain of ˚grad (endowed with its graph norm) equals
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W 1
2,0pΩq. By the selection theorem of Rellich and Kondrachov, we have W 1

2,0pΩq ãÑãÑ
L2pΩq, since Ω was assumed to be bounded. Next, we try to overcome the problem of
the infinite-dimensional nullspace of div (and hence of A). The idea is to restrict A to
a domain being orthogonal to the nullspace of A. Due to Dirichlet boundary conditions
the operator ˚grad is one-to-one, thus NpAq, the nullspace of A, equals t0u ‘ Npdivq Ň
L2pΩq ‘ L2pΩqN . Since div˚ “ ´ ˚grad, we have L2pΩqN “ Rp ˚gradq ‘ Npdivq. Using
Poincaré’s inequality, we deduce that the range of ˚grad is closed in L2pΩqN . Hence,

L2pΩqN “ Rp ˚gradq ‘ Npdivq.

Along that decomposition of L2pΩqN , we decompose the heat flux qn from equation (1.5)

as qn “ q
p1q
n ` q

p2q
n with q

p1q
n P Rp ˚gradq and q

p2q
n P Npdivq. We introduce the operator

P : L2pΩqN Ñ Rp ˚gradq, which maps any g P L2pΩqN to its orthogonal projection Pg in
the range of ˚grad. Then the adjoint of P is the canonical embedding from Rp ˚gradq into
L2pΩqN . Hence, A as an operator acting on L2pΩq ‘ Rp ˚gradq ‘ Npdivq may be written
as follows

A “
ˆ rA 0

0 0

˙
with rA “

ˆ
0 divP ˚

P ˚grad 0

˙

Observe that A leaves the space L2pΩq ‘ Rp ˚gradq invariant. Moreover, note that rA is
one-to-one and skew-selfadjoint on L2pΩq ‘Rp ˚gradq. Furthermore, it is not hard to see
that the domain of divP ˚ if endowed with the graph norm is compactly embedded into
Rp ˚gradq, see e.g. [43, Lemma 4.1]. Thus, the operator rA has compact resolvent.

Denoting by Q : L2pΩqN Ñ Npdivq the operator, which maps g P L2pΩqN to its orthog-
onal projection Qg P Npdivq, we deduce from (1.5) the following system

¨
˝Bt

¨
˝
1 0 0

0 0 0

0 0 0

˛
‚`

¨
˝
0 0 0

0 Pκpn¨q´1P ˚ Pκpn¨q´1Q˚

0 Qκpn¨q´1P ˚ Qκpn¨q´1Q˚

˛
‚`

¨
˝

0 divP ˚ 0

P ˚grad 0 0

0 0 0

˛
‚
˛
‚
¨
˝
θn

q
p1q
n

q
p2q
n

˛
‚“

¨
˝
f

0

0

˛
‚.

(1.6)
Next, we could apply Theorem 4.3 to the first two rows of equation (1.6) by putting

Pκpn¨q´1Q˚q
p2q
n to the right-hand side, that is,

ˆ
Bt

ˆ
1 0

0 0

˙
`
ˆ
0 0

0 Pκpn¨q´1P ˚

˙
` rA

˙ˆ
θn

q
p1q
n

˙
“
ˆ

f

´Pκpn¨q´1Q˚q
p2q
n

˙
.

If we let n Ñ 8 in the latter formulation, we are not able to identify the limit of

´Pκpn¨q´1Q˚q
p2q
n . A closer look into Theorem 4.3 reveals that due to the compactness

of the resolvent of rA the sequence pθn, qp1q
n qn converges in a way that the so-called ‘weak-

strong principle’ can be applied, cf. Theorem 3.5. Hence, we are led to express q
p2q
n in

terms of pθn, qp1q
n q. Therefore, we perform similarity transformations of (1.6). We arrive

at
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¨
˝Bt

¨
˝
1 0 0

0 0 0

0 0 0

˛
‚`

¨
˝
0 0 0

0 Pκpn¨q´1P˚ ´ Pκpn¨q´1Q˚
`
Qκpn¨q´1Q˚

˘´1
Qκpn¨q´1P˚ 0

0 Qκpn¨q´1P˚ Qκpn¨q´1Q˚

˛
‚

`

¨
˝

0 divP˚ 0

P ˚grad 0 0

0 0 0

˛
‚
˛
‚

¨
˚̋

θn

q
p1q
n

q
p2q
n

˛
‹‚“

¨
˝
f

0

0

˛
‚.

Multiplication by

¨
˝
1 0 0

0 1 0

0 0 pQκpn¨q´1Q˚q´1

˛
‚gives

¨
˝Bt

¨
˝
1 0 0

0 0 0

0 0 0

˛
‚`

¨
˝
0 0 0

0 Pκpn¨q´1P ˚ ´ Pκpn¨q´1Q˚ pQκpn¨q´1Q˚q´1
Qκpn¨q´1P ˚ 0

0 pQκpn¨q´1Q˚q´1
Qκpn¨q´1P ˚ 1

˛
‚

`

¨
˝

0 divP ˚ 0

P ˚grad 0 0

0 0 0

˛
‚
˛
‚
¨
˝
θn

q
p1q
n

q
p2q
n

˛
‚“

¨
˝
f

0

0

˛
‚.

Note that the operators

¨
˝
0 0 0

0 Pκpn¨q´1P ˚ ´ Pκpn¨q´1Q˚ pQκpn¨q´1Q˚q´1
Qκpn¨q´1P ˚ 0

0 pQκpn¨q´1Q˚q´1
Qκpn¨q´1P ˚ 1

˛
‚ pn P Nq

form a bounded sequence in the space of linear operators in the separable Hilbert space
L2pΩqN`1. Thus, there exists a subsequence, which converges in the weak operator
topology of L

`
L2pΩqN`1

˘
. Applying Theorem 4.3 to the first two rows of the latter

equation, that is,

ˆ
Bt

ˆ
1 0

0 0

˙
`
ˆ
0 0

0 Pκpn¨q´1P ˚ ´ Pκpn¨q´1Q˚ pQκpn¨q´1Q˚q´1
Qκpn¨q´1P ˚

˙

`
ˆ

0 divP ˚

P ˚grad 0

˙˙ˆ
θn

q
p1q
n

˙
“
ˆ
f

0

˙
,

we deduce that pθn, qp1q
n qn weakly converges and that the sequence pB´3

t θnptq, B´3
t q

p1q
n ptqqn

strongly converges in L2pΩq ‘ Rp ˚gradq for all t P R, cf. Theorem 4.3. Hence,

´`
Qκpn¨q´1Q˚

˘´1
Qκpn¨q´1P ˚qp1q

n

¯
n

converges to the product of the limits of
´

pQκpn¨q´1Q˚q´1
Qκpn¨q´1P ˚

¯
n

and pqp1q
n qn,

see Corollary 3.6. Thus, we may let n Ñ 8 in

`
Qκpn¨q´1Q˚

˘´1
Qκpn¨q´1P ˚qp1q

n ` qp2q
n “ 0.
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We get that pθn, qp1q
n , q

p2q
n qn weakly converges to a solution of the following equation

¨
˚̊
˝Bt

¨
˝
1 0 0

0 0 0

0 0 0

˛
‚`

¨
˚̊
˝

0 0 0

0 limnÑ8

´
Pκpn¨q´1P ˚ ´ Pκpn¨q´1Q˚

`
Qκpn¨q´1Q˚

˘´1
Qκpn¨q´1P ˚

¯
0

0 limnÑ8

´`
Qκpn¨q´1Q˚

˘´1
Qκpn¨q´1P ˚

¯
1

˛
‹‹‚

`

¨
˝

0 divP ˚ 0

P ˚grad 0 0

0 0 0

˛
‚
˛
‚
¨
˝

θ

qp1q

qp2q

˛
‚“

¨
˝
f

0

0

˛
‚.

Next, we want to apply Theorem 2.1 in order to obtain well-posedness of the limit
equation. For this, we again apply similarity transformations. The details are given in
Section 6. We arrive at

´
Bt

´
1 0 0
0 0 0
0 0 0

¯
`

˜
0 0 0

0 limnÑ8

´
Pκpn¨q´1P˚´Pκpn¨q´1Q˚pQκpn¨q´1Q˚q´1

Qκpn¨q´1P˚
¯
limnÑ8

´
Pκpn¨q´1Q˚pQκpn¨q´1Q˚q´1

¯

0 limnÑ8

´
pQκpn¨q´1Q˚q´1

Qκpn¨q´1P˚
¯

limnÑ8pQκpn¨q´1Q˚q´1

¸

`
´

0 divP˚ 0

P ˚grad 0 0
0 0 0

¯¯ˆ θ
qp1q

qp2q

˙
“
´

f
0
0

¯
. (1.7)

It can be shown that Theorem 2.1 applies to the latter equation yielding the limit
equation to be well-posed. Note that, if one is only interested in the behavior of the
heat distribution θ, we can reformulate the latter equation into a second order form.
The resulting equation would be

Btθ ´ divP ˚
´
lim
nÑ8

Pκpn¨q´1P ˚ ´ Pκpn¨q´1Q˚
`
Qκpn¨q´1Q˚

˘´1
Qκpn¨q´1P ˚

¯´1

P ˚gradθ “ f.

Using the periodicity of κ, we deduce that Pκpn¨q´1P ˚ converges in the weak operator
topology to P

ş
p0,1qN

κpxq´1 dxP ˚, cf. [43, Proposition 4.3]. Hence, the limit equation
reads

Btθ ´ divP˚

˜
P

ż

p0,1qN
κ´1P˚ ´ lim

nÑ8
Pκpn¨q´1Q˚

`
Qκpn¨q´1Q˚

˘´1

Qκpn¨q´1P˚

¸´1

P ˚gradθ “ f.

The interested reader might think, why such a seemingly complicated strategy yielding
the homogenized equations should be applied. In the case of the heat equation this strat-
egy indeed does not give anything new despite the fact that the homogenized equations
have a different representation. Further, with this strategy one cannot easily deduce
the convergence of the whole sequence. However, note that the approach presented here
only uses abstract theory from functional analysis and does not rely on the specific form
of κ being a periodic multiplication operator. If κ is a linear operator invoking non-
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local terms, well-known homogenization theory might fail to work. Moreover, the way
of computing the homogenized coefficients carries over to a large class of evolutionary
equations: It is possible to treat Maxwell’s equations, the wave equation, the heat equa-
tion or general coupled systems in mathematical physics in a unified manner. It is also
possible that a second order formulation might not be available or is not easy to handle,
cf. e.g. [29, Equation (6.3.9), p. 455] so that the usual strategy might not work.

2 Setting

We recall the setting of evolutionary equations established in [28] or [29, Chapter 6].
For the construction of the time-derivative Bt, we particularly refer to [15]. Let H be a
Hilbert space and denote by L2pR;Hq the space of H-valued L2-functions. The operator

B : W 1
2 pR;Hq Ň L2pR;Hq Ñ L2pR;Hq : f ÞÑ f 1

assigning to each weakly differentiable H-valued function its weak derivative is skew-
selfadjoint. Define the unitary Fourier transform F : L2pR;Hq Ñ L2pR;Hq as the
closure of the mapping

f ÞÑ
ˆ
ξ ÞÑ 1?

2π

ż

R

e´ixξfpxq dx

˙

defined for f P C8
c pR;Hq. Let

m : tf P L2pR;Hq; px ÞÑ xfpxqq P L2pR;Hqu Ň
L2pR;Hq Ñ L2pR;Hq : f ÞÑ px ÞÑ xfpxqq.

For ν ą 0 define Hν,0pR;Hq :“ L2pR, expp´2νxq dx;Hq the space of H-valued (equiv-
alence classes of) square-integrable functions with respect to the weighted Lebesgue
measure with Radon-Nikodym derivative expp´2νp¨qq. We also write Hν,0pRq if H “ C.
The mapping expp´νmq : Hν,0pR;Hq Ñ L2pR;Hq : f ÞÑ px ÞÑ expp´νxqfpxqq is unitary
and the operator

Bt,ν :“ expp´νmq˚pB ` νq expp´νmq
is normal in Hν,0pR;Hq. If there is no risk of confusion, we simply write Bt instead of
Bt,ν . We have B´1

t,ν P LpHν,0pR;Hqq with
∥

∥B´1
t,ν

∥

∥ “ 1{ν. Introducing the Fourier-Laplace
transform Lν :“ F expp´νmq, we get

Bt,ν “ L˚
νpim` νqLν .

Consequently,
B´1
t,ν “ L˚

ν pim ` νq´1 Lν .

The latter equation gives a functional calculus for the normal operator B´1
t,ν :

11



Definition (Hardy space and functional calculus for Bt,ν). For an open set E Ň C and
a Banach space X, we define the Hardy space

H8pE;Xq :“ tM : E Ñ X ;M bounded, analyticu

and ‖M‖8 :“ supt|Mpzq|X ; z P Eu. Let H1, H2 be Hilbert spaces, ν ą 0, r ą 1{p2νq.
• For M P H8pBCpr, rq;LpH1, H2qq define

MpB´1
t,ν q :“ L˚

ν

ˆ
M

ˆ
1

im ` ν

˙˙
Lν ,

where
`
M

`
1

im`ν

˘
φ
˘

ptq “
`
M

`
1

it`ν

˘˘
pφptqq for all t P R and φ P C8

c pR;H1q.
• For c ą 0 define

H8,cpBCpr, rq;LpH1qq :“
tM P H8pBCpr, rq;LpH1qq; Re z´1Mpzq ŕ c pz P BCpr, rqqu.

For easy reference, we call elements of H8pBCpr, rq;LpH1qq material laws or constitutive
relations and elements of H8,cpBCpr, rq;LpH1qq pcq-material laws.

We will deal with operators in Hν,0pR;Hq in the following. In consequence, we identify
any closed, densely defined operator A : DpAq Ň H Ñ H in some Hilbert space H with
its canonical extension on the space of H-valued Hν,0pRq-functions, cf. [28]. We have
the following well-posedness theorem taken from [28].

Theorem 2.1 ([28, Solution theory]). Let H be a Hilbert space, c, ν ą 0, r ą 1{p2νq
and M P H8,cpBpr, rq;LpHqq. Let A : DpAq Ň H Ñ H be skew-selfadjoint. Then the
equation

pBtMpB´1
t q ` Aqu “ f

admits a unique solution u P Hν,0pR;Hq for all f P D for some D Ň Hν,0pR;Hq dense.
Moreover, the solution operator pBtMpB´1

t q `Aq´1 is a densely defined, continuous oper-

ator in Hν,0pR;Hq with operator norm bounded by 1
c
, and the operator pBtMpB´1

t q ` Aq´1

is causal, that is, for all f P Hν,0pR;Hq and a P R we have

χp´8,aqpBtMpB´1
t q ` Aq´1pχp´8,aqfq “ χp´8,aqpBtMpB´1

t q ` Aq´1pfq,

where χp´8,aq denotes the multiplication operator mapping f P Hν,0pR;Hq to the trun-
cated function t ÞÑ χp´8,aqptqfptq.

Remark 2.1. The latter theorem may be generalized to non-autonomous equations, see
[47, 34].

We note that the results in Theorem 2.1 results carry over to “tailor made” distribution
spaces – so-called Sobolev lattices – discussed in [27]. In [43, Remarks 1.2: (i)–(iii)]
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and [28, Sections 2 and 3] the core issues are sketched. We will use the notation from
[43] and for the sake of clarity, we recall the main definitions. For k P Z, a Hilbert
space H and a densely defined, closed linear operator C : DpCq Ň H Ñ H with
0 P ̺pCq, we denote by HkpCq the Hilbert space defined as the completion of DpC |k|q
with respect to the norm |¨|HkpCq : u ÞÑ |Cku|H . It can be shown that the closure of
H|k|pCq Ň HkpCq Ñ Hk´1pCq : u ÞÑ Cu is unitary. We will re-use the letter C for this
extension. We are interested in the special cases C “ A ` 1 with A skew-selfadjoint or
C “ Bt. For ℓ P t´1, 0, 1u we let Hℓ,A :“ HℓpA` 1q. For Bt defined on Hν,0pRq-functions
with values in a Hilbert space H we write Hν,kpR;Hq :“ HkpBtq. Consequently, we also
use the spaces Hν,kpR;Hℓ,Aq, ℓ P t´1, 0, 1u. The extension of the solution operator to
Hν,´1pR;Hq also serves as a way to model initial value problems, see e.g. [29, Section
6.2.5].

3 Preliminary results

We summarize some findings from [41, 43].

Definition. For an open set E Ň C and Hilbert spaces H1, H2, we define on the set
H8pE;LpH1, H2qq the initial topology τM induced by the mappings

H8pE;LpH1, H2qq Q M ÞÑ xφ,Mp¨qψy P HpEq,

where HpEq is the set of holomorphic C-valued functions endowed with the compact
open topology. We define H8

w
pE;LpH1, H2qq :“ pH8pE;LpH1, H2qq, τMq and re-use the

name H8
w

pE;LpH1, H2qq for the underlying set.

Theorem 3.1 (sequential compactness, [41, Theorem 3.4]). Let H1, H2 be separable
Hilbert spaces, E Ň C open. Let B Ň H8

w
pE;LpH1, H2qq be bounded, that is,

supt‖Mpzq‖LpH1,H2q ; z P E,M P Bu ă 8.

Then B is relatively sequentially compact.

Lemma 3.2 ([41, Lemma 3.5]). Let H be a Hilbert space, r ą 0. Let pMnqn be a
bounded and convergent sequence in the space H8

w
pBpr, rq;LpH1, H2qq with limit M P

H8
w

pBpr, rq;LpH1, H2qq. Then pMnpB´1
t qqn converges to MpB´1

t q in the weak operator
topology of LpHν,kpR;H1q, Hν,kpR;H2qq, where ν ą 1{p2rq, k P Z.

Proof. In [41, Lemma 3.5], the claim was shown for the case k “ 0 and H1 “ H2. The
general case follows by observing that Bk

t : Hν,kpR;H1q Ñ Hν,0pR;H1q is unitary and
obvious modifications.

Lemma 3.3 ([40, Lemma 1.5]). Let H1, H2 be Hilbert spaces. Let E Ň C be an open
disc with center z and let pMnqn “ př8

k“0p¨ ´ zqkAnkqn be a convergent sequence in
H8

w
pE;LpH1, H2qq with limit

ř8
k“0p¨ ´ zqkAk. Then Ank Ñ Ak as n Ñ 8 in the weak

operator topology of LpH1, H2q for all k P N0.
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For a Hilbert space H and ν ą 0, we define

CνpR;Hq :“ tφ P CpR;Hq; sup
tPR

|expp´νtqφptq|H ă 8u.

We endow CνpR;Hq with the norm |¨|Cν
: φ ÞÑ suptPR|expp´νtqφptq|H . Recall from [29,

Lemma 3.1.59] that Hν,1pR;Hq continuously embeds into CνpR;Hq.
Lemma 3.4 ([43, Lemma 2.2]). Let H be a Hilbert space, ν ą 0. If pfnqn in Hν,1pR;Hq
is bounded and converges pointwise to some f P Hν,1pR;Hq, then

B´1
t fnptq nÑ8ÝÑ B´1

t fptq,

for all t P R.

Theorem 3.5 (weak-strong principle, [43, Theorem 2.3]). Let H be a Hilbert space,
ε ą 0, pMnqn be a convergent sequence in H8

w
pBCp0, εq;LpH1, H2qq with limit M . Then,

for ν ą 2{ε and any bounded sequence pvnqn in Hν,1pR;H1q and v P Hν,1pR;H1q such

that vnptq nÑ8ÝÑ vptq in H1 for all t P R,

w- lim
nÑ8

pMnpB´1
t qvnqptq “ pMpB´1

t qvqptq P H2,

for all t P R.

Proof. In [43] the proof is given for the case H1 “ H2. The assertion follows analogously
with obvious modifications.

Corollary 3.6. Let H1, H2 be Hilbert spaces, ε ą 0, pMnqn be a convergent sequence in
H8

w
pBCp0, εq;LpH1, H2qq with limit M P H8

w
pBCp0, εq;LpH1, H2qq. Let ν ą 2{ε, k P Z

and let pvnqn be bounded in Hν,kpR;H1q, v P Hν,kpR;H1q. Assume there is l P N0 such

that B´l
t vn P Hν,1pR;H1q and B´l

t vnptq nÑ8ÝÑ B´l
t vptq in H1 for all t P R. Then

w- lim
nÑ8

MnpB´1
t qvn “ MpB´1

t qv P Hν,kpR;H2q.

Proof. Since pMnpB´1
t qvnqn is bounded inHν,kpR;H2q, there is a subsequence with indices

pnjqj weakly converging to some w P Hν,kpR;H2q. The assumption guarantees that

pB´|k|´l
t vnqn is bounded in Hν,1pR;H1q. Moreover, by Lemma 3.4, pB´|k|´l

t vnqn converges

pointwise to B´|k|´l
t v. Thus, by Theorem 3.5 and the weak continuity of point-evaluation,

we deduce that, for t P R,

pB´|k|´l
t wqptq “ w- lim

jÑ8
pB´|k|´l

t Mnj
pB´1

t qvnj
qptq

“ w- lim
jÑ8

Mnj
pB´1

t qB´|k|´l
t vnj

ptq

“ MpB´1
t qB´|k|´l

t vptq “ B´|k|´l
t MpB´1

t qvptq.

Hence, w “ MpB´1
t qv.
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4 A general compactness theorem for the

homogenization of evolutionary equations

We introduce the concept of G-convergence to bridge the gap between the classical
approach to homogenization theory and the Hilbert space perspective discussed here.

Definition (G-convergence, [55, p. 74]). Let H be a Hilbert space. Let pAn : DpAnq Ň
H Ñ Hqn be a sequence of one-to-one mappings onto H and let B : DpBq Ň H Ñ H be
one-to-one. We say that pAnqn G-converges to B if for all f P H the sequence pA´1

n pfqqn
converges weakly to some u, which satisfies u P DpBq and Bpuq “ f . B is called a
G-limit of pAnqn. We say that pAnqn strongly G-converges to B in H , if for all weakly
converging sequences pfnqn in H , pA´1

n pfnqqn weakly converges to some u, which satisfies
u P DpBq and Bpuq “ w- limnÑ8 fn.

Proposition 4.1. The G-limit is uniquely determined.

Proof. Let H be a Hilbert space. Let pAnqn be a sequence of one-to-one onto mappings
which is G-convergent to the one-to-one mapping B : DpBq Ň H Ñ H . Define C :“
tpu, fq P H ‘ H ; u “ w- limnÑ8 A

´1
n pfqu. Then C Ň B, so that C is a mapping.

Moreover, since C is onto and B is one-to-one, we conclude that C “ B.

Remark 4.2. Assume, in addition, that pAnqn in the above definition is a sequence of
linear and closed operators. Further assume B to be closed and linear. Then the above
definition ofG-convergence is precisely convergence of the resolvents in the weak operator
topology, which is the original definition in [55] in the Hilbert space setting.

We now prove compactness results concerning G-convergence for operators that are
associated with evolutionary equations. More precisely, we will deal with the following
cases:

Definition. Let H1, H2 be Hilbert spaces. We say a pair ppMnqn,Aq satisfies

(P1) if there exists ε, r, c ą 0 such that pMnqn is a bounded sequence in

H8pBp0, εq;LpH1qq X H8,cpBpr, rq;LpH1qq

and
A : DpAq Ň H1 Ñ H1

is skew-selfadjoint and the embedding pDpAq, |¨|Aq ãÑ pH1, |¨|H1
q is compact,

(P2) if there exists ε, c, r ą 0 such that pMnqn “
ˆˆ

M11,n M12,n

M21,n M22,n

˙˙

n

is bounded in

H8pBp0, εq;LpH1 ‘H2qqXH8,cpBpr, rq;LpH1 ‘H2qq and A “
ˆ
A 0

0 0

˙
is such that

ppM11,nqn, Aq satisfies (P1). Moreover,

(i) for all n P N, RpM1p0qq “ RpMnp0qq and Mnp0q ŕ c on RpM1p0qq,
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(ii) denoting by qj : Hj Ñ Rpπ˚
j q X NpM1p0qq pj P t1, 2uq the canonical ortho-

projections, we have for all n P N

´`
q2M

1
22,np0qq˚

2

˘´1
q2M

1
21,np0qq˚

1

¯˚

“ q1M
1
12,np0qq˚

2

`
q2M

1
22,np0qq˚

2

˘´1
.

With these definitions, the core result in [43] now reads as follows.

Theorem 4.3 ([43, Theorem 3.5]). Let H be a Hilbert space and assume that ppMnqn,Aq
satisfies (P1) and that pMnqn converges to N P H8

w
pBp0, εq;LpHqq. Then there exists

ν0 ŕ 0 such that for all ν ą ν0, pBtMnk
pB´1

t q`Aqk strongly G-converges to BtNpB´1
t q`A

in Hν,´1pR;Hq. Moreover, N P H8,cpBpr, rq;LpHqq and

B´3
t pBtMnpB´1

t q ` Aq´1fnptq Ñ B´3
t pBtNpB´1

t q ` Aq´1pw- lim
nÑ8

fnqptq P H

as n Ñ 8 for all t P R and all weakly convergent sequences pfnqn in Hν,´1pR;Hq.

The generalization of this theorem to the case pP2q requires a homogenization result for
the case of A “ 0, that is to say, a result on the homogenization of ordinary integro-
differential equations. Since we deal with a possibly degenerate case in the sense of [28,
Section 3.3], we cannot use the homogenization result for ordinary integro-differential
equations already established in [41, Theorem 5.2]. The refined argument is tailored for
the 0-analytic case (cf. Section 6), which, however, does not cover the results in [41], see
also [44] for a related result.

Theorem 4.4. Let H be a separable Hilbert space, ε, c, d, r ą 0. Let pMnqn be a bounded
sequence in H8pBp0, εq;LpHqq X H8,cpBpr, rq;LpHqq and assume that for all n P N,
Mnp0q ŕ d on RpMnp0qq “ RpM1p0qq. Then there exists r1 P p0, rs and a strictly
monotone sequence of positive integers pnkqk such that, for ν ą 1{p2r1q, pBtMnk

pB´1
t qqk

G-converges to BtµpB´1
t q in Hν,´1pR;Hq, where µ has the following properties: there is

ε1, c1 ą 0 such that

(i) µ P H8pBp0, ε1q;LpHqq X H8,c1pBpr1, r1q;LpHqq,
(ii) Rpµp0qq “ RpM1p0qq,
(iii) for all open E Ň C relatively compact in Bp0, ε1qzt0u (: ðñ E ĂĂ Bp0, ε1qzt0u),

Mnk
p¨q´1 Ñ µp¨q´1 P H8

w
pE;LpHqq pk Ñ 8q.

Proof. Define the Hilbert spaces H1 :“ RpM1p0qq and H2 :“ NpM1p0qq together with
the canonical (orthogonal) projections πj : H Ñ Hj, j P t1, 2u. Then, for all n P N and
j, k P t1, 2u, set Mjk,np¨q :“ πjMnp¨qπ˚

k . Now, the first assertion in Lemma 6.10 ensures
the existence of ε1 ą 0 such that, for all E Ň C relatively compact in Bp0, ε1qzt0u, the
sequence pMnp¨q´1qn is bounded in H8pE;LpH1‘H2qq. By σ-compactness of Bp0, ε1qzt0u
and Theorem 3.1, we may choose a subsequence pMnk

p¨q´1qk of pMnp¨q´1qn such that
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there is a holomorphic mapping η : Bp0, ε1qzt0u Ñ LpHq with

Mnk
p¨q´1 Ñ η P H8

w
pE;LpHqq pk Ñ 8, E ĂĂ Bp0, ε1qzt0uq.

By Cauchy’s integral formulas, we infer that the coefficients of the Laurent series expan-
sions of Mnk

p¨q´1 converge in the weak operator topology τw to the respective ones of η.
Hence, with the help of the first assertion of Lemma 6.10, the Laurent series expansion
of η is of the form

ηpzq “
˜

pτw-q limkÑ8 M11,nk
p0q´1 ` xM11pzq xM12pzq

xM21pzq z´1pτw-q limkÑ8 M22,nk
p0q´1 ` xM22pzq

¸

for suitable bounded holomorphic operator-valued functions xMjk for j, k P t1, 2u. The
second assertion of Lemma 6.10 yields the existence of ε2 ą 0 such that µ :“ ηp¨q´1 P
H8pBp0, ε2q;LpHqq. Moreover, from the representation in Lemma 6.10, we read off
that RpM1p0qq “ Rpµp0qq and µp0q ŕ d1 on H1 for some d1 ą 0 according to Inequal-
ity (6.3) and the fact that positive definiteness is preserved under limits in the weak
operator topology. Similarly, Reµ1p0q ŕ c1 ą 0 on H2. Thus, by Remark 6.3 it fol-
lows that µ lies in H8,c2pBpr1, r1q;LpHqq for some r1, c2 ą 0. It remains to show the
G-convergence result. To this end let ν ą 1{p2r1q. By the convergence of the coefficients
in the Laurent series of ppMnk

p¨qq´1qk, we get that pp¨qpMnk
p¨qq´1qk converges to p¨qηp¨q

in H8
w

pBp1{p2νq, 1{p2νqq;LpHqq. Thus, Lemma 3.2 implies that ppBtMnk
pB´1

t qq´1qk con-
verges to B´1

t ηpB´1
t q in the weak operator topology of LpHν,´1pR;Hqq. Employing Re-

mark 4.2, we obtain the desired G-convergence.

Theorem 4.5. Let H1, H2 be separable Hilbert spaces. Assume that ppMnqn,Aq satisfies
(P2). Then there exists ν0 ŕ 0, ε1, c1 ą 0 and pnkqk a strictly monotone sequence of
positive integers such that for all ν ą ν0 the sequence pBtMnk

pB´1
t q `Aqk G-converges to

pBtNpB´1
t q ` Aq in Hν,´1pR;H1 ‘ H2q with

Np¨q :“
ˆ
η1p¨q ` η4p¨qη2p¨q´1η3p¨q η4p¨qη2p¨q´1

η2p¨q´1η3p¨q η2p¨q´1

˙

P H8pBp0, ε1q;LpH1 ‘ H2qq X H8,c1pBp1{p2ν0q, 1{p2ν0qq;LpH1 ‘ H2qq,

where

η1p¨q :“ lim
kÑ8

M11,nk
p¨q ´ M12,nk

p¨qM22,nk
p¨q´1M21,nk

p¨q P H8
w

pBp0, ε1q;LpH1qq

η2p¨q :“ lim
kÑ8

pM22,nk
p¨qq´1 P H8

w
pE;LpH2qq pE ĂĂ Bp0, ε1qzt0uq

η3p¨q :“ lim
kÑ8

M22,nk
p¨q´1M21,nk

p¨q P H8
w

pBp0, ε1q;LpH1, H2qq and

η4p¨q :“ lim
kÑ8

M12,nk
p¨qM22,nk

p¨q´1 P H8
w

pBp0, ε1q;LpH2, H1qq.

Moreover, RpNp0qq “ RpM1p0qq.
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Proof. By Theorem 6.11 (applied to M “ Mn and the sequence N just the constant
sequence consisting of Mn as every entry) there exist ε1, r1, c1 ą 0 such that, for all
n P N,

ˆ
1 ´M12,np¨qM22,np¨q´1

0 1

˙ˆ
M11,np¨q M12,np¨q
M21,np¨q M22,np¨q

˙ˆ
1 0

´M22,np¨q´1M21,np¨q 1

˙

“
ˆ
M11,np¨q ´ M12,np¨qM22,np¨q´1M21,np¨q 0

0 M22,np¨q

˙

P H8pBp0, ε1q;LpH1 ‘ H2qq X H8,c1pBpr1, r1q;LpH1 ‘ H2qq.

Let ν ą 1{p2r1q. By Theorem 3.1 and Theorem 4.4, we may choose convergent subse-
quences of the material law sequences

pµ1,nqn :“ pM11,np¨q ´ M12,np¨qM22,np¨q´1M21,np¨qqn
pµ2,nqn :“ pM22,np¨q´1qn
pµ3,nqn :“ pM22,np¨q´1M21,np¨qqn and

pµ4,nqn :“ pM12,np¨qM22,np¨q´1qn.

We will use the same index for the subsequences and denote the respective limits by
η1, η2, η3 and η4. Using the representation from Theorem 6.6, we get with the help of
Theorem 6.11:

pG1 ‘ t0uq ‘ pG3 ‘ t0uq “ R

¨
˚̊
˝

¨
˚̊
˝

ˆ
M

p0q
11,n 0

0 0

˙ ˆ
M

p0q
13,n 0

0 0

˙

ˆ
M

p0q
31,n 0

0 0

˙ ˆ
M

p0q
33,n 0

0 0

˙

˛
‹‹‚

˛
‹‹‚

“ R

ˆˆ
M11,np0q M12,np0q
M21,np0q M22,np0q

˙˙

“ R

ˆˆ
M11,np0q ´ M12,np0qM22,np0q´1M21,np0q 0

0 M22,np0q

˙˙

“ R
`
M11,np0q ´ M12,np0qM22,np0q´1M21,np0q

˘
‘ R pM22,np0qq .

Now, M11,np0q´M12,np0qM22,np0q´1M21,np0q is strictly positive on G1 “ RpM11,1p0qq and
M22,np0q is strictly positive on G3 “ RpM22,1p0qq uniformly in n. Hence, we deduce that
Rpη1p0qq “ RpM11,1p0qq and, from Theorem 4.4, that Rpη2p¨q´1p0qq “ RpM22,1p0qq. Let
pf1, f2q P Hν,´1pR;H1 ‘ H2q and for n P N, let pu1,n, u2,nq P Hν,´1pR;H1 ‘ H2q be the
unique solution of

Bt

ˆ
M11,npB´1

t q M12,npB´1
t q

M21,npB´1
t q M22,npB´1

t q

˙ˆ
u1,n
u2,n

˙
`
ˆ
A 0

0 0

˙ˆ
u1,n
u2,n

˙
“
ˆ
f1
f2

˙
.
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Multiplying this equation by

ˆ
1 ´M12,npB´1

t qM22,npB´1
t q´1

0 pBtM22,npB´1
t qq´1

˙
, we obtain

ˆ
Btµ1,npB´1

t q 0

µ3,npB´1
t q 1

˙ˆ
u1,n
u2,n

˙
`
ˆ
A 0

0 0

˙ˆ
u1,n
u2,n

˙
“
ˆ
f1 ´ µ4,npB´1

t qf2
µ2,npB´1

t qB´1
t f2

˙
.

Thus, ˆ
u1,n
u2,n

˙
“
ˆ

pBtµ1,npB´1
t q ` Aq´1pf1 ´ µ4,npB´1

t qf2q
´µ3,npB´1

t qu1,n ` µ2,npB´1
t qB´1

t f2

˙
.

Lemma 3.2 ensures that pµ4,npB´1
t qf2qn weakly converges to η4pB´1

t qf2. Thus, by Theorem
4.3, we deduce that pu1,nqn weakly converges to pBtη1pB´1

t q `Aq´1pf1 ´ η4pB´1
t qf2q “: v1.

Moreover, pB´3
t u1,nqn converges pointwise to B´3

t v1. Using the equality

u2,n “ ´µ3,npB´1
t qu1,n ` µ2,npB´1

t qB´1
t f2 P Hν,´1pR;H2q,

we deduce, with the help of Corollary 3.6 for the first term on the right-hand side and
Theorem 4.4 for the second term, that

u2,n á v2 :“ ´η3pB´1
t qv1 ` η2pB´1

t qB´1
t f2 P Hν,´1pR;H2q

as n Ñ 8. We arrive at the limit system

ˆ
Btη1pB´1

t q 0

η3pB´1
t q 1

˙ˆ
v1
v2

˙
`
ˆ
A 0

0 0

˙ˆ
v1
v2

˙
“
ˆ
f1 ´ η4pB´1

t qf2
η2pB´1

t qB´1
t f2

˙
.

Multiplying this equation by

ˆ
1 Btη4pB´1

t qη2pB´1
t q´1

0 η2pB´1
t q´1Bt

˙
, we obtain

Bt

ˆ
η1pB´1

t q ` η4pB´1
t qη2pB´1

t q´1η3pB´1
t q η4pB´1

t qη2pB´1
t q´1

η2pB´1
t q´1η3pB´1

t q η2pB´1
t q´1

˙ˆ
v1
v2

˙
`

ˆ
A 0

0 0

˙ˆ
v1
v2

˙
“
ˆ
f1
f2

˙
.

Next, we consider the operator

Np¨q “
ˆ
η1p¨q ` η4p¨qη2p¨q´1η3p¨q η4p¨qη2p¨q´1

η2p¨q´1η3p¨q η2p¨q´1

˙
“
ˆ
1 η4p¨q
0 1

˙ˆ
η1p¨q 0

0 η2p¨q´1

˙ˆ
1 0

η3p¨q 1

˙
.

By Theorem 4.4, we deduce that η2p¨q´1 is a pc2q-material law with strictly positive zeroth
order term on the range of M22,1p0q for some c2 ą 0. Moreover, η1 is a pc1q-material law
by Theorem 4.3. Hence, using Theorem 6.11, we deduce the existence of ε2, r2, c3 ą 0

such that N P H8,c3pBpr2, r2q;LpH1 ‘ H2qq X H8pBp0, ε2q;LpH1 ‘ H2qq.

Remark 4.6. In Theorem 4.5, we have proved that 0-analytic material laws lead to 0-
analytic material laws after the homogenization process. Hence, it cannot be expected
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that the homogenized material law contains fractional derivatives with respect to time
or explicit delay terms: Indeed, these operators cannot be represented as material laws,
which are analytic in 0, see e.g. [29, pp. 448 (a),(c)] or [32]. By Theorem 2.1 we see
that the limit equation is also well-posed and causal. The assertion concerning the range
of the material law N may be interpreted as “the main physical phenomenon remains
unchanged under the homogenization process”: A clarification of the latter statement is
in order. One difference between the wave equation and the heat equation written as
a first order system as in [40, Example 1.4.6] or [49, Example 3.2] is the range of the
zeroth order term in the material law. More precisely, let Ω Ň RN open, κ P L8pΩqNˆN

such that κ´1 P L8pΩqNˆN . For smooth and compactly supported f and g we shall
rewrite the wave equation

B2
t u´ div κ ˚gradu “ f

and the heat equation
Btθ ´ div κ ˚gradθ “ g

as first order systems. Setting v :“ Btu, w :“ ´κ ˚gradu; q :“ ´κ ˚gradθ, we get

´
Bt

ˆ
1 0

0 κ´1

˙
`
ˆ

0 div
˚grad 0

˙¯ˆ
v

w

˙
“
ˆ
f

0

˙

and ´
Bt

ˆ
1 0

0 0

˙
`
ˆ
0 0

0 κ´1

˙
`
ˆ

0 div
˚grad 0

˙¯ˆ
θ

q

˙
“
ˆ
g

0

˙
,

respectively. Therefore, the corresponding material laws read

MwavepB´1
t q “

ˆ
1 0

0 κ´1

˙

and

MheatpB´1
t q “

ˆ
1 0

0 0

˙
` B´1

t

ˆ
0 0

0 κ´1

˙
.

So, Mwavep0q is onto. But the range of Mheatp0q coincides with L2pΩq ‘ t0u Ň L2pΩq ‘
L2pΩqN . According to Theorem 4.5, this property remains unchanged due to the ho-
mogenization process.

Corollary 4.7. Let H be a separable Hilbert space, ε, c, r ą 0, A : DpAq Ň H Ñ
H skew-selfadjoint. Denote by P : H Ñ NpAqK, Q : H Ñ NpAq the orthogonal
projections onto the respective spaces NpAqK and NpAq. Assume that the operator A
has the pNCq-property, that is, pDpPAP ˚q, |¨|PAP˚q ãÑ pH, |¨|Hq is compact. Let pMnqn
be a bounded sequence in H8pBp0, εq;LpHqq X H8,cpBpr, rq;LpHqq with Mnp0q ŕ c on
RpMnp0qq “ RpM1p0qq for all n P N. Denote by q2 : H Ñ NpM1p0qq XNpAqK, q4 : H Ñ
NpM1p0qq X NpAq the canonical orthogonal projections and assume

q2M
1
np0qq˚

4 pq4M 1
np0qq˚

4 q´1 “ q2M
1
np0q˚q˚

4 pq4M 1
np0q˚q˚

4 q´1 for all n P N. (4.1)
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Then there exists ν0 ŕ 0, ε1, c1 ą 0 and pnkqk a strictly monotone sequence of positive
integers such that for all ν ą ν0, the sequence

pBtMnk
pB´1

t q ` Aqk

G-converges to

Bt

`
P ˚η1pB´1

t qP ` P ˚η4pB´1
t qη2pB´1

t q´1η3pB´1
t qP ` P ˚η4pB´1

t qη2pB´1
t q´1Q

`Q˚η2pB´1
t q´1η3pB´1

t qP ` Q˚η2pB´1
t q´1Q

˘
` A

in Hν,´1pR;Hq, where2

η1p¨q :“ lim
kÑ8

PMnk
p¨qP ˚ ´ PMnk

p¨qQ˚pQMnk
p¨qQ˚q´1QMnk

p¨qP ˚

η2p¨q :“ lim
kÑ8

pQMnk
p¨qQ˚q´1

η3p¨q :“ lim
kÑ8

pQMnk
p¨qQ˚q´1QMnk

p¨qP ˚ and

η4p¨q :“ lim
kÑ8

pPMnk
p¨qQ˚qpQMnk

p¨qQ˚q´1.

Proof. The assertion follows by applying Theorem 4.5 to

ppMnqn,Aq “
ˆˆˆ

PMnp¨qP ˚ PMnp¨qQ˚

QMnp¨qP ˚ QMnp¨qQ˚

˙˙

n

,

ˆ
PAP ˚ 0

0 0

˙˙
.

Remark 4.8. The compatibility condition (4.1) may be hard to check in applications.
However, there are some situations in which the Condition (4.1) is trivially satisfied:

• A is one-to-one; then NpAq “ t0u and q4 “ 0.

• RpM1p0qq Ŋ NpAqK; then NpM1p0qq X NpAqK “ t0u and q2 “ 0.

• M1p0q is onto; then the preceding condition is satisfied. We remark here that this
condition was imposed in [40, Theorem 2.3.14]. This condition corresponds to
hyperbolic-type equations in applications.

• M 1
np0q “ M 1

np0q˚; then q2M
1
np0qq˚

4 pq4M 1
np0qq˚

4 q´1 “ q2M
1
np0q˚q˚

4 pq4M 1
np0q˚q˚

4 q´1.

We do not yet know whether the compatibility condition is optimal. We can however
give some examples to show that the other assumptions in pP2q are reasonable. The
following example shows that without the requirement on A to have the pNCq-property
the limit equation can differ from the expressions given in Theorem 4.5 or Corollary 4.7.

Example 4.9 (Compactness assumption does not hold). Let ν, ε ą 0. Consider the
mapping a : R Ñ R given by

apxq :“ χr0, 1
2

qpx ´ kq ` 2χr 1
2
,1spx ´ kq

2The limits are computed in the way similar to Theorem 4.5 with H1 “ NpAqK and H2 “ NpAq.
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for all x P rk, k` 1q, where k P Z. By apn ¨ pmqφ :“ px ÞÑ apnxqφpxqq for n P N, we define
the corresponding multiplication operator in L2pRq. Note that apx ` kq “ apxq for all
x P R and k P Z.

Let f P Hν,0pR;L2pRqq. We consider the evolutionary equation with pMnpB´1
t qqn :“

pB´1
t apn ¨ pmqqn and A “ i : L2pRq Ñ L2pRq : φ ÞÑ iφ. Clearly, NpAq “ t0u. By [41,

Theorem 4.5] or [12, Theorem 1.5], we deduce that

Mn Ñ
ˆ
z ÞÑ z

ż 1

0

apxq dx

˙
“
ˆ
z ÞÑ 3

2
z

˙
P H8

w
pBp0, εq;LpL2pRqqq

as n Ñ 8. If the assertion of Corollary 4.7 remains true in this case, then pBtMnpB´1
t q `

Aqn G-converges to 3
2

` i. For n P N, let un P Hν,0pR;L2pRqq be the unique solution of
the equation

pBtMnpB´1
t q ` Aqun “ papn ¨ pmq ` iqun “ f. (4.2)

Observe that by [12, Theorem 1.5]

un “ papnpmq ` iq´1f á
ˆż 1

0

papxq ` iq´1 dx

˙
f “: u.

as n Ñ 8. We integrate

ż 1

0

papxq ` iq´1 dx “ 1

2
p1 ` iq´1 ` 1

2
p2 ` iq´1.

Inverting the latter equation yields

ˆż 1

0

papxq ` iq´1 dx

˙´1

“
ˆ
1

2
p1 ` iq´1 ` 1

2
p2 ` iq´1

˙´1

“ 18

13
` 14

13
i.

Hence, u satisfies ˆ
3

2
` i

˙
u “ f and

ˆ
18

13
` 14

13
i

˙
u “ f,

which of course is a contradiction.

In the next example, the uniform positive definiteness is violated.

Example 4.10 (Uniform positive definiteness condition does not hold). Let H “ C,
ν ą 0 and, for n P N, let MnpB´1

t q “ B´1
t

1
n
, A “ 0, f P Hν,0pRqzt0u. For n P N, let

un P Hν,0pRq be defined by

BtMnpB´1
t qun “ 1

n
un “ f.

Then punqn is not relatively weakly compact and contains no weakly convergent subse-
quence.
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In the final example, the range condition in pP2q is violated.

Example 4.11 (Range condition does not hold). Let H be an infinite-dimensional,
separable Hilbert space. Let pφnqn be a complete orthonormal system. For n P N define
MnpB´1

t q :“ xφn, ¨yφn ` B´1
t p1 ´ xφn, ¨yφnq. For the sequence pMnqn the range condition

in pP2q (applied with A “ 0) is violated. Let f P Hν,0pR;Hq, ν ą 0. For n P N, let
un P Hν,0pR;Hq be such that

BtMnpB´1
t qun “ Btxφn, unyφn ` un ´ xφn, unyφn “ f.

It is easy to see that punqn is bounded. Take the inner product of the last equation with
φm for some m P N. If n P N is larger than m we arrive at

xun, φmy “ xf, φmy,

and we deduce that pBtMnpB´1
t qqn G-converges to BtB´1

t “ 1. This, however, does not
yield a differential equation.

5 Applications

We demonstrate the applicability of our main theorem to the mathematical models of
some physical phenomena. For notational details, we refer to [40, pp. 34 and p. 98] or
to [39, 3.2 Examples].

Thermodynamics

Let α, β P R, 0 ă α ă β, Ω Ň RN open and bounded, N P N. Recall [9, Definition 4.11]:

Mpα, β,Ωq :“
 
κ P L8pΩqNˆN ;

Rexκpxqξ, ξy ŕ α|ξ|2, |κpxqξ| ő β|ξ|, ξ P R
N , a.e. x P Ω

(
.

Let Mselfpα, β,Ωq :“ tκ P Mpα, β,Ωq; κ selfadjoint a.e.u. For κ P Mpα, β,Ωq denote
by κppmq the associated multiplication operator in L2pΩqN . Let pκnqn be a sequence in
Mselfpα, β,Ωq. Recall from Section 1 that a first order formulation of the heat equation
with Dirichlet boundary conditions in the context of evolutionary equations introduced
in [28] is the following

ˆ
Bt

ˆ
1 0

0 0

˙
`
ˆ
0 0

0 κnppmq´1

˙
`
ˆ

0 div
˚grad 0

˙˙ˆ
u1,n
u2,n

˙
“
ˆ
f1
f2

˙
.

We want to apply Corollary 4.7 with

A “
ˆ

0 div
˚grad 0

˙
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and

pMnpB´1
t qqn :“

ˆˆ
1 0

0 0

˙
` B´1

t

ˆ
0 0

0 κnppmq´1

˙˙

n

.

The compactness condition on the operator

ˆ
0 div
˚grad 0

˙
has already been established

e.g. in [40, Remark 3.2.2] or [43, the end of the proof of Theorem 4.3] and the sequence

pκnppmq´1qn is a sequence of selfadjoint operators. Since Mnp0q “ M1p0q “
ˆ
1 0

0 0

˙
for

all n P N, the range condition is satisfied. Thus Corollary 4.7 applies. The sequence
pMnqn could be replaced by some convolution terms. Moreover it should be noted that
the case of not necessarily symmetric κn’s has been considered in [43]. There, however,
a second-order formulation was used which, for more general material laws, may not be
available. The homogenized equations are derived in Section 1, see equation (1.7).

Electromagnetism

Let Ω Ň R3 open. The general form of Maxwell’s equations in bi-anisotropic dissipative
media used in [4] is

ˆ
Bt

ˆ
ε γ

γ˚ µ

˙
`
ˆ
σ11˚ σ12˚
σ21˚ σ22˚

˙
`
ˆ

0 ´ curl
˚curl 0

˙˙ˆ
E

H

˙
“
ˆ
J

0

˙

with a pcq-material law (see Section 2 for a definition)

MpB´1
t q :“

ˆ
ε γ

γ˚ µ

˙
` B´1

t

ˆ
σ11˚ σ12˚
σ21˚ σ22˚

˙

for a c ą 0. Here, σjk are LpL2pΩq3q-valued functions on R, vanishing on Ră0 and being
such that the temporal convolutions σjk˚ yield 0-analytic material laws, j, k P t1, 2u.
Moreover, the operator

ˆ
ε γ

γ˚ µ

˙
is assumed to be selfadjoint and strictly positive definite

in L2pΩq6. We emphasize here that the convolution kernels may also take values in the
linear operators on L2pΩq3, which are not representable as multiplication operators,
thus, in this way, generalizing the assumptions in [4]. Now, consider a sequence of pcq-
material laws pMnqn of the above form with non-singular, strictly positive zeroth order

term:

ˆ
εn γn
γ˚
n µn

˙
ŕ d ą 0 for all n P N. Then, Corollary 4.7 applies if we assume Ω

to be bounded and to satisfy suitable smoothness assumptions on the boundary, see
e.g. [26, 33, 54] (or (also for possibly other boundary conditions) [3, 11, 14, 16, 50, 51]).

Indeed, the range condition is satisfied since Mnp0q “
ˆ
εn γn
γ˚
n µn

˙
is onto for all n P N

and, since NpMnp0qq “ t0u, the compatibility condition (4.1) also follows. Note that
the homogenized equations are more complicated than in the case of the heat equation.
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This is due to the fact that both the off-diagonal operators in A “
ˆ

0 ´ curl
˚curl 0

˙
have

an infinite-dimensional nullspace. In case of the heat equation with Dirichlet boundary

conditions, we have A “
ˆ

0 div
˚grad 0

˙
, where the nullspace of ˚grad is trivial.

To illustrate the versatility and applicability of Theorem 4.5 we show how our methods
apply to the equations of thermopiezoelectricity.

Thermopiezoelectricity

We assume Ω Ň R3 to be open and bounded. The equations of thermopiezoelectricity
describe the interconnected effects of elasticity, thermodynamics and electro-magnetism.
The set Ω models a body in its non deformed state. We recall the formulation as in [29,
6.3.3, p. 457], where the model given in [18] is discussed, see also [20]. The unknowns
of the system are the time-derivative of the displacement field v, the stress tensor T ,
the electric and magnetic field E and H as well as the heat distributions θ and the
heat flux q. Recall the spatial derivative operators from the introduction and define Div

as the negative adjoint of ˚Grad, the symmetrized gradient with homogeneous Dirichlet
boundary conditions. The equations read as follows

¨
˚̊
˚̊
˚̊
˝

Bt

¨
˚̊
˚̊
˚̊
˝

̺0 0 0 0 0 0

0 C´1 C´1d 0 C´1λ 0

0 d˚C´1 ε ` d˚C´1d 0 p ` d˚C´1λ 0

0 0 0 µ 0 0

0 λ˚C´1 p˚ ` λ˚C´1d 0 α ` λ˚C´1λ 0

0 0 0 0 0 q0 ` q1pα ` κBtq´1

˛
‹‹‹‹‹‹‚

`

¨
˚̊
˚̊
˚̊
˝

0 Div 0 0 0 0
˚Grad 0 0 0 0 0

0 0 0 ´ curl 0 0

0 0 ˚curl 0 0 0

0 0 0 0 0 div

0 0 0 0 ˚grad 0

˛
‹‹‹‹‹‹‚

˛
‹‹‹‹‹‹‚

¨
˚̊
˚̊
˚̊
˝

v

T

E

H

θ

q

˛
‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˝

f

0

J

0

g

0

˛
‹‹‹‹‹‹‚
,

where ̺0, C, ε, µ, q0, q1, α, κ, d, λ, p are bounded linear operators in appropriate L2pΩq-
spaces. To frame the latter system into the general context of this exposition, we find
that

A “

¨
˚̊
˚̊
˚̊
˝

0 Div 0 0 0 0
˚Grad 0 0 0 0 0

0 0 0 ´ curl 0 0

0 0 ˚curl 0 0 0

0 0 0 0 0 div

0 0 0 0 ˚grad 0

˛
‹‹‹‹‹‹‚
.
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The material law is given by

MpB´1
t q “

¨
˚̊
˚̊
˚̊
˝

̺0 0 0 0 0 0

0 C´1 C´1d 0 C´1λ 0

0 d˚C´1 ε` d˚C´1d 0 p ` d˚C´1λ 0

0 0 0 µ 0 0

0 λ˚C´1 p˚ ` λ˚C´1d 0 α ` λ˚C´1λ 0

0 0 0 0 0 q0 ` q1pα ` κBtq´1

˛
‹‹‹‹‹‹‚
,

M is a pcq-material law, if we assume that one of the following conditions is satisfied

(i) ̺0, C, ε, µ, q0, α ´ p˚ε´1p, κ are selfadjoint and strictly positive,

(ii) ̺0, C, ε, µ, q1, α ´ p˚ε´1p, κ are selfadjoint, strictly positive, q1κ
´1 “ κ´1q1 and

q0 “ 0.

Indeed, the material law can be written as a block operator matrix in the form

MpB´1
t q “

ˆ
M11 0

0 M22pB´1
t q

˙
,

where

M11 “

¨
˚̊
˚̊
˝

̺0 0 0 0 0

0 C´1 C´1d 0 C´1λ

0 d˚C´1 ε ` d˚C´1d 0 p ` d˚C´1λ

0 0 0 µ 0

0 λ˚C´1 p˚ ` λ˚C´1d 0 α ` λ˚C´1λ

˛
‹‹‹‹‚

“

¨
˚̊
˚̊
˝

1 0 0 0 0

0 1 0 0 0

0 d˚ 1 0 0

0 0 0 1 0

0 λ˚ p˚ε´1 0 1

˛
‹‹‹‹‚

¨
˚̊
˚̊
˝

̺0 0 0 0 0

0 C´1 0 0 0

0 0 ε 0 0

0 0 0 µ 0

0 0 0 0 α´ p˚ε´1p

˛
‹‹‹‹‚

¨
˚̊
˚̊
˝

1 0 0 0 0

0 1 d 0 λ

0 0 1 0 ε´1p

0 0 0 1 0

0 0 0 0 1

˛
‹‹‹‹‚

is strictly positive and, by choosing ν ą 0 sufficiently large such that
∥

∥B´1
t

∥

∥ becomes
small enough,

M22pB´1
t q “ q0 ` q1pα ` κBtq´1 “ q0 ` q1κ

´1B´1
t `

8ÿ

n“1

p´1qnB´n´1
t pκ´1αqnκ´1

is such that either M22p0q or M 1
22p0q is strictly positive. Thus, M is a pcq-material law

for some c ą 0.

Considering a sequence pMnqn of such material laws with the boundedness and uniform
positive definiteness assumptions from Corollary 4.7, one may derive a homogenization
result for these equations. We will not do this explicitly here. However, in order to satisfy
the range condition, one has to assume that all entries of the material law sequence satisfy
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either condition (i) or (ii). To deduce that A has the pNCq-property, we have to impose
suitable geometric requirements on Ω as in the previous example.

We refer the interested reader to more examples of first order formulations of standard
evolutionary equations in mathematical physics to [28, 29]. With these formulations it
is then rather straightforward to see when and how our homogenization result applies.

6 Auxiliary results on 0-analytic material laws

In this section, we provide the remaining results needed in Section 4. Our main concern
will be the discussion of 0-analytic material laws, that is, material laws that are analytic
at 0 P C, cf. [28, Section 3.3]. To establish Theorem 4.5 similarity transformations
of 0-analytic material laws have to be discussed, where our main interest is to show
that under any of these similarity transformations a pcq-material law transforms into a
pc1q-material law for suitable c1 ą 0. In order to achieve the main goal of this section,
Theorem 6.11, some technical results are required. We start with a fact concerning
Hardy space functions.

Lemma 6.1. Let X be a Banach space, ε ą 0, µp¨q “ ř8
n“0p¨qnµn P H8pBp0, εq;Xq.

Then for all k, n P N0 we have

(i) ‖µn‖ ő ‖µ‖8

`
2
ε

˘n

(ii)
∥

∥

ř8
n“k z

n´kµn

∥

∥ ő 2 ‖µ‖8

`
2
ε

˘k
for all z P B

`
0, ε

4

˘
.

Proof. The first assertion follows immediately from Cauchy’s integral formula (integrate
over a circle around 0 with radius ε{2) and the second is a straightforward consequence
of the first.

With these estimates, we can establish some properties of 0-analytic material laws.
Recall that the inner products discussed here are linear in the second and conjugate
linear in the first component.

Proposition 6.2. Let H be a Hilbert space, ε, c ą 0, 0 ă r ă ε{2. Let M be a
material law in H8pBp0, εq;LpHqq X H8,cpBpr, rq;LpHqq. Then Mp0q is selfadjoint.
For φ “ φ1 ‘ φ2 P RpMp0qq ‘ NpMp0qq, the inequalities

xMp0qφ1, φ1y ŕ 0 and xReM 1p0qφ2, φ2y ŕ cxφ2, φ2y

hold. If, in addition, RpMp0qq Ň H is closed, there exists d ą 0, such that for φ1 P
RpMp0qq we have

xMp0qφ1, φ1y ŕ dxφ1, φ1y.

Proof. We expand M into a power series about 0: Mpzq “ ř8
n“0 z

nMn for z P Bp0, εq
and suitable pMnqn in LpHq. Then Mp0q “ M0 and M 1p0q “ M1. For φ P H define
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xφ :“ ImxMp0qφ, φy and yφ :“ RexMp0qφ, φy. It is easy to see that T : Bpr, rq Ñ
Rą 1

2r
` iR : z ÞÑ z´1 is homeomorphic. Thus, for z P Bpr, rq with z1 :“ ImT pzq,

z2 :“ ReT pzq, we have

cxφ, φy ő Rexφ, z´1Mpzqφy

“ Repiz1 ` z2qpixφ ` yφq ` Rexφ,
8ÿ

n“1

zn´1Mnφy

“ ´z1xφ ` z2yφ ` Rexφ,
8ÿ

n“1

zn´1Mnφy.

The left-hand side is non-negative. The last term on the right-hand side is bounded for
z Ñ 0. Moreover, since T is bijective (in particular, for every z2 the values of z1 range
over the whole real axis), it follows that xφ “ 0. Thus, we arrive at

cxφ, φy ő z2yφ ` Rexφ,
8ÿ

n“1

zn´1Mnφy.

Now, since z2 can be chosen arbitrarily large, while the second term of the right-hand
side remains bounded, it follows that yφ ŕ 0. Thus, for every φ P H , we deduce
that xφ,Mp0qφy ŕ 0. Since Mp0q is a bounded operator in the complex Hilbert space
H , the operator Mp0q is selfadjoint and positive (semi-)definite and therefore H “
RpMp0qq ‘ NpMp0qq. Let φ P NpMp0qq. Then for ε{2 ą η ą 0,

c|φ|2 ő Rexφ,
8ÿ

k“1

ηk´1Mkφy

“ Rexφ,M 1p0qφy ` ηRexφ,
8ÿ

k“2

ηk´2Mkφy.

If we let η Ñ 0`, we get that Rexφ,M 1p0qφy ŕ c|φ|2. Now, Mp0q is invariant on its
range and the restriction of Mp0q to its range is one-to-one. Thus, if RpMp0qq is closed,
the closed graph theorem implies that Mp0q : RpMp0qq Ñ RpMp0qq is continuously
invertible. By the spectral theorem for continuous and selfadjoint operators it follows
that Mp0q is strictly positive on its range.

Remark 6.3. We shall note here that the converse of Proposition 6.2 is also true in the
following sense: Let M P H8pBp0, εq;LpHqq be such that Mp0q “ Mp0q˚. Assume that
there exist d, c ą 0 such that for all φ1 P RpMp0qq, φ2 P NpMp0qq

xMp0qφ1, φ1y ŕ dxφ1, φ1y and xReM 1p0qφ2, φ2y ŕ cxφ2, φ2y.

Then RpMp0qq Ň H is closed and for 0 ă r ő 1

2maxtν1,pδ´1u
, M P H8,c{3pBpr, rq;LpHqq,

cf. [38, Lemma 2.3] or [29, Remark 6.2.7], where ν1 :“ 1
d

´
2c
3

` 3
c

`
‖M‖8

2
ε

˘2 ` 2
ε
‖M‖8

¯
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and pδ :“ mint‖M‖´1

8

`
ε
2

˘2 c
6
, ε
4
u.

Proof. It is easy to see that RpMp0qq is closed. Let pMnqn in LpHq be such that Mpzq “ř8
n“0 z

nMn for all z P Bp0, εq. By Lemma 6.1, we have ‖M 1p0q‖ ő 2
ε
‖M‖8 and, for all

0 ă δ ő ε{4 and z P Bp0, δq,
∥

∥

ř8
n“2 z

n´1Mn

∥

∥ ő 2δ
`
2
ε

˘2
‖M‖8. For ν ŕ maxtν1, pδ´1u,

z P Bp1{p2νq, 1{p2νqq, φ “ pφ1, φ2q P RpMp0qq ‘ NpMp0qq and η ą 0,

xφ,Re z´1Mpzqφy

“
`
Re z´1

˘
xφ1,Mp0qφ1y ` xφ,ReM 1p0qφy ` Rexφ,

8ÿ

n“2

zn´1Mnφy

ŕ νd|φ1|
2 ` c|φ2|

2 ´ 2 ‖M 1p0q‖ |φ1||φ2| ´ ‖M 1p0q‖ |φ1|
2 ´ 2pδ ‖M‖8

ˆ
2

ε

˙2

|φ|2

ŕ
´
νd ´ η ‖M 1p0q‖2 ´ ‖M 1p0q‖

¯
|φ1|

2 `
ˆ
c´ 1

η

˙
|φ2|

2 ´ c

3
|φ|2

ŕ
˜
νd ´ η

ˆ
‖M‖8

2

ε

˙2

´ ‖M‖8

2

ε
´ c

3

¸
|φ1|

2 `
ˆ
2c

3
´ 1

η

˙
|φ2|

2.

If η “ 3{c, using ν ą ν1, we obtain

xRe z´1Mpzqφ, φy ŕ
˜
νd ´ 3

c

ˆ
‖M‖8

2

ε

˙2

´ ‖M‖8

2

ε
´ c

3

¸
|φ1|

2 ` c

3
|φ2|

2 ŕ c

3
|φ|2.

This completes the general discussion on 0-analytic material laws. In the following we
focus on material laws, which satisfy the following assumption.

Assumption 6.4. Assume there exist Hilbert spaces H1, H2 and constants ε, c ą 0,
0 ă r ă ε{2 with

M P H8pBp0, εq;LpH1 ‘ H2qq X H8,cpBpr, rq;LpH1 ‘ H2qq

and RpMp0qq Ň H1 ‘ H2 closed.

Before we turn to similarity transformations on the material law, we study some prop-
erties of a material law satisfying Assumption 6.4. These properties are stated in the
next theorem for which we need the following elementary prerequisite.

Lemma 6.5. Let H1, H2 be Hilbert spaces. Assume that

ˆ
M11 M12

M21 M22

˙
P LpH1 ‘ H2q

is selfadjoint and positive definite. Then M12 “ M˚
21 and if M22 “ 0 then M12 “ 0.
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Proof. It is easy to see that M11 “ M˚
11 and M22 “ M˚

22 and thus

ˆ
0 M12

M21 0

˙
“
ˆ
M11 M12

M21 M22

˙
´
ˆ
M11 0

0 M22

˙

is selfadjoint. Assume now that M22 “ 0. If M12 “ M˚
21 ‰ 0, then there exists pφ1, φ2q P

H1 ‘H2 such that RexM12φ2, φ1y “ xM12φ2, φ1y`xM21φ1, φ2y ă 0. For α ą 0 we deduce
that

0 ő
Bˆ

M11 M12

M21 0

˙ˆ
φ1

αφ2

˙
,

ˆ
φ1

αφ2

˙F
“ xM11φ1, φ1y ` α pxM12φ2, φ1y ` xM21φ1, φ2yq ,

which yields a contradiction if α is chosen large enough.

In the following, for Hilbert spaces H1, H2 we denote the canonical orthogonal projection
H1 ‘ H2 Ñ Hj onto the jth coordinate by πj , j P t1, 2u.

Theorem 6.6. Let M satisfy Assumption 6.4. Using the notation from Assumption
6.4, we define

G1 :“ Rpπ1Mp0qπ˚
1 q, G2 :“ Npπ1Mp0qπ˚

1 q, G3 :“ Rpπ2Mp0qπ˚
2 q, G4 :“ Npπ2Mp0qπ˚

2 q.

Then M has the following form:

M “

¨
˚̊
˚̋z ÞÑ

¨
˚̊
˝

M
p0q
11 0 M

p0q
13 0

0 0 0 0

M
p0q
31 0 M

p0q
33 0

0 0 0 0

˛
‹‹‚` z

¨
˚̊
˚̋

M
p1q
11 pzq M p1q

12 pzq M p1q
13 pzq M p1q

14 pzq
M

p1q
21 pzq M p1q

22 pzq M p1q
23 pzq M p1q

24 pzq
M

p1q
31 pzq M p1q

32 pzq M p1q
33 pzq M p1q

34 pzq
M

p1q
41 pzq M p1q

42 pzq M p1q
43 pzq M p1q

44 pzq

˛
‹‹‹‚

˛
‹‹‹‚

P H8

˜
Bp0, εq;L

˜
4à

j“1

Gj

¸¸
,

where for j, k P t1, 2, 3, 4u we have M
p1q
jk P H8pBp0, εq;LpGk, Gjqq and if j, k P t1, 3u

we have M
p0q
kj

˚ “ M
p0q
jk P LpGk, Gjq. Moreover, there is d ą 0 such that M

p0q
jj ŕ d for

j P t1, 3u.

Proof. By Proposition 6.2, we know that Mp0q is selfadjoint and strictly positive definite
on its range. Thus,

M
p0q
jj “

`
π˚
jMp0qπj : Gj Ñ Gj

˘

is selfadjoint and strictly positive definite and therefore H 1

2
j` 1

2

“ Gj ‘ Gj`1 for j P
t1, 3u. We denote by ̺j : H1 ‘ H2 Ñ Gj the orthogonal projections onto Gj and define
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M
p0q
jk

:“ ̺jMp0q̺˚
k , M

p1q
jk

:“ ̺j pM ´ Mp0qq ̺˚
k for all j, k P t1, 2, 3, 4u. Hence,

M “

¨
˚̊
˚̋z ÞÑ

¨
˚̊
˚̋

M
p0q
11 0 M

p0q
13 M

p0q
14

0 0 M
p0q
23 M

p0q
24

M
p0q
31 M

p0q
32 M

p0q
33 0

M
p0q
41 M

p0q
42 0 0

˛
‹‹‹‚` z

¨
˚̊
˚̋

M
p1q
11 pzq M p1q

12 pzq M p1q
13 pzq M p1q

14 pzq
M

p1q
21 pzq M p1q

22 pzq M p1q
23 pzq M p1q

24 pzq
M

p1q
31 pzq M p1q

32 pzq M p1q
33 pzq M p1q

34 pzq
M

p1q
41 pzq M p1q

42 pzq M p1q
43 pzq M p1q

44 pzq

˛
‹‹‹‚

˛
‹‹‹‚.

As Mp0q is selfadjoint, Lemma 6.5 shows that M
p0q
kj

˚ “ M
p0q
jk P LpGk, Gjq for all k, j P

t1, 2, 3, 4u. Since Mp0q is positive definite, it follows that the block operator matrices

¨
˚̊
˝

M
p0q
11 0 0 M

p0q
14

0 0 0 0

0 0 0 0

M
p0q
41 0 0 0

˛
‹‹‚,

¨
˚̊
˝

0 0 0 0

0 0 M
p0q
23 0

0 M
p0q
32 M

p0q
33 0

0 0 0 0

˛
‹‹‚,

¨
˚̊
˝

0 0 0 0

0 0 0 M
p0q
24

0 0 0 0

0 M
p0q
42 0 0

˛
‹‹‚

are positive definite as well. Thus, by Lemma 6.5, we deduce that M
p0q
14 “ M

p0q
41

˚ “ 0,

M
p0q
23 “ M

p0q
32

˚ “ 0 and M
p0q
24 “ M

p0q
42

˚ “ 0.

For the next theorem we note that, for Hilbert spaces H1, H2 and B P LpH2, H1q, we
have ˆ

1 B

0 1

˙´1

“
ˆ
1 ´B
0 1

˙
and

∥

∥

∥

∥

∥

ˆ
1 B

0 1

˙´1
∥

∥

∥

∥

∥

ő
b
1 ` ‖B‖ ` ‖B‖2. (6.1)

Moreover, we need the following lemmas:

Lemma 6.7. Let H be a Hilbert space. Let T P LpHq be continuously invertible, A,B P
LpHq. If A “ T ˚BT , i.e., A and B are similar, then ReA “ T ˚ ReBT and if in
addition ReB ŕ c ą 0 then ReA ŕ c

‖T´1‖2
.

Proof. We have 2ReA “ A˚ ` A “ T ˚B˚T ` T ˚BT “ 2T ˚ ReBT . Assume that
ReB ŕ c for some c ą 0. Then, for φ P H ,

xReAφ, φy “ xReBTφ, Tφy ŕ cxTφ, Tφy ŕ c

‖T´1‖2
xφ, φy.

Lemma 6.8. Let M satisfy Assumption 6.4. Using the notation from Assumption 6.4,
we define

G1 :“ Rpπ1Mp0qπ˚
1 q, G2 :“ Npπ1Mp0qπ˚

1 q, G3 :“ Rpπ2Mp0qπ˚
2 q, G4 :“ Npπ2Mp0qπ˚

2 q.

Let N
p0q
13 P LpG3, G1q, N p0q

14 P LpG4, G1q, N p0q
41 P LpG1, G4q, N p0q

24 P LpG4, G2q, N p1q
1 P
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H8pBp0, εq;LpG3 ‘ G4, G1 ‘ G2qq, N p1q
11 P H8pBp0, εq;LpG1 ‘ G2, G3 ‘ G4qq and

N1 :“
˜
z ÞÑ

˜
N

p0q
13 N

p0q
14

0 N
p0q
24

¸
` zN

p1q
1 pzq

¸

N11 :“
˜
z ÞÑ

˜
N

p0q
13

˚
0

N
p0q
41 N

p0q
24

˚

¸
` zN

p1q
11 pzq

¸
.

Then,

M :“
ˆ
z ÞÑ

ˆ
1 N1pzq
0 1

˙
Mpzq

ˆ
1 0

N11pzq 1

˙˙
P H8pBp0, εq;LpH1 ‘ H2qq

and RpMp0qq “ RpMp0qq, Mp0q ŕ d1 on its range and ReM1p0q ŕ c1 on the nullspace
of Mp0q, where

d1 :“ d

˜c
1 `

∥

∥

∥
N

p0q
13

∥

∥

∥
`
∥

∥

∥
N

p0q
13

∥

∥

∥

2

¸´2

and c1 :“ c

˜c
1 `

∥

∥

∥
N

p0q
24

∥

∥

∥
`
∥

∥

∥
N

p0q
24

∥

∥

∥

2

¸´2

,

with d ą 0 being the constant of positive definiteness of Mp0q on its range from Theorem
6.6.

Proof. Using the representation of M given in Theorem 6.6, we compute Mp0q:

Mp0q “

¨
˚̋1

˜
N

p0q
13 N

p0q
14

0 N
p0q
24

¸

0 1

˛
‹‚

¨
˚̊
˝

M
p0q
11 0 M

p0q
13 0

0 0 0 0

M
p0q
31 0 M

p0q
33 0

0 0 0 0

˛
‹‹‚

¨
˚̋

1 0˜
N

p0q
13

˚
0

N
p0q
41 N

p0q
42

˚

¸
1

˛
‹‚

“

¨
˝1

ˆ
N

p0q
13 0

0 0

˙

0 1

˛
‚

¨
˚̊
˝

M
p0q
11 0 M

p0q
13 0

0 0 0 0

M
p0q
31 0 M

p0q
33 0

0 0 0 0

˛
‹‹‚

¨
˝

1 0ˆ
N

p0q
13

˚
0

0 0

˙
1

˛
‚.

Hence, Mp0q is similar to a positive definite operator. Moreover, the similarity trans-
formation commutes with the projector

P :“

¨
˚̊
˝

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

˛
‹‹‚.

Thus, Mp0q and Mp0q have the same range and are both strictly positive on it. Indeed,
Mp0q is strictly positive on G1 ‘ t0u ‘G3 ‘ t0u and since the similarity transformation
is a bijection on G1 ‘ t0u ‘G3 ‘ t0u, Mp0q is a bijection on G1 ‘ t0u ‘G3 ‘ t0u as well.
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In view of Lemma 6.7 and Inequality (6.1), we deduce Mp0q ŕ d1 on its range. Next,
consider p1 ´ P qM1p0qp1 ´ P q. For this purpose, we compute

p1 ´ P q
ˆ
1 N1pzq
0 1

˙

“

¨
˚̊
˝

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

˛
‹‹‚

¨
˚̊
˚̋

¨
˚̊
˚̋

ˆ
1 0

0 1

˙ ˜
N

p0q
13 N

p0q
14

0 N
p0q
24

¸

ˆ
0 0

0 0

˙ ˆ
1 0

0 1

˙

˛
‹‹‹‚`

¨
˚̊
˝

ˆ
0 0

0 0

˙
zN

p1q
1 pzq

ˆ
0 0

0 0

˙ ˆ
0 0

0 0

˙

˛
‹‹‚

˛
‹‹‹‚

“

¨
˚̊
˝

ˆ
0 0

0 1

˙ ˆ
0 0

0 N
p0q
24

˙

ˆ
0 0

0 0

˙ ˆ
0 0

0 1

˙

˛
‹‹‚`

¨
˚̊
˝

ˆ
0 0

0 0

˙
z

ˆ
0 0

N
p1q
1,23pzq N p1q

1,24pzq

˙

ˆ
0 0

0 0

˙ ˆ
0 0

0 0

˙

˛
‹‹‚

with suitable N
p1q
1,2k P H8pBp0, εq;LpGk, G2qq pk P t3, 4uq and, similarly, we find

ˆ
1 0

N11pzq 1

˙
p1 ´ P q “

¨
˚̊
˝

ˆ
0 0

0 1

˙ ˆ
0 0

0 0

˙

ˆ
0 0

0 N
p0q
24

˚

˙ ˆ
0 0

0 1

˙

˛
‹‹‚`

¨
˚̊
˚̋

ˆ
0 0

0 0

˙ ˆ
0 0

0 0

˙

z

˜
0 N

p1q
11,32pzq

0 N
p1q
11,42pzq

¸ ˆ
0 0

0 0

˙

˛
‹‹‹‚,

for suitable N
p1q
11,k2 P H8pBp0, εq;LpG2, Gkqq pk P t3, 4uq. We obtain

p1 ´ P qM1p0qp1 ´ P q

“

¨
˚̊
˝

ˆ
0 0

0 1

˙ ˆ
0 0

0 N
p0q
24

˙

ˆ
0 0

0 0

˙ ˆ
0 0

0 1

˙

˛
‹‹‚

¨
˚̊
˚̋

M
p1q
11

p0q M
p1q
12

p0q M
p1q
13

p0q M
p1q
14

p0q

M
p1q
21

p0q M
p1q
22

p0q M
p1q
23

p0q M
p1q
24

p0q

M
p1q
31

p0q M
p1q
32

p0q M
p1q
33

p0q M
p1q
34

p0q

M
p1q
41

p0q M
p1q
42

p0q M
p1q
43

p0q M
p1q
44

p0q

˛
‹‹‹‚

¨
˚̊
˚̋

ˆ
0 0

0 1

˙ ˆ
0 0

0 0

˙

˜
0 0

0 N
p0q
24

˚

¸ ˆ
0 0

0 1

˙

˛
‹‹‹‚

“

¨
˚̊
˝

ˆ
0 0

0 1

˙ ˆ
0 0

0 N
p0q
24

˙

ˆ
0 0

0 0

˙ ˆ
0 0

0 1

˙

˛
‹‹‚

¨
˚̊
˝

0 0 0 0

0 M
p1q
22

p0q 0 M
p1q
24

p0q
0 0 0 0

0 M
p1q
42

p0q 0 M
p1q
44

p0q

˛
‹‹‚

¨
˚̊
˚̋

ˆ
0 0

0 1

˙ ˆ
0 0

0 0

˙

˜
0 0

0 N
p0q
24

˚

¸ ˆ
0 0

0 1

˙

˛
‹‹‹‚

Now, by Lemma 6.7 and Inequality (6.1), we see ReM1p0q ŕ c1 on the nullspace of
Mp0q.

Remark 6.9. Consider the following situation where we apply Lemma 6.8. Let Gj be a
Hilbert space for j P t1, 2, 3, 4u. Let

N2 :“
˜
z ÞÑ

ˆ
N

p0q
13 0

0 0

˙
` z

˜
N

p1q
13 pzq N p1q

14 pzq
N

p1q
23 pzq N p1q

24 pzq

¸¸
P H8pBp0, εq;LpG3 ‘ G4, G1 ‘ G2qq
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N21 :“
˜
z ÞÑ

ˆ
N

p0q
31 0

0 0

˙
` z

˜
N

p1q
31 pzq N p1q

32 pzq
N

p1q
41 pzq N p1q

42 pzq

¸¸
P H8pBp0, εq;LpG1 ‘ G2, G3 ‘ G4qq

and assume N
p0q
13

˚ “ N
p0q
31 P LpG3, G1q. Moreover, let

N3 :“
˜
z ÞÑ

˜
N

p0q
33 ` zN

p1q
33 pzq N

p1q
34 pzq

N
p1q
43 pzq z´1N

p0q
44 ` N

p1q
44 pzq

¸¸

with N
p0q
33

˚ “ N
p0q
33 P LpG3q, N p0q

44 P LpG4q, N p1q
jk P H8pBp0, εq;LpGk, Gjqq, j, k P

t3, 4u. Then it is easy to see that N2p¨qN3p¨q P H8pBp0, εq;LpG3 ‘ G4, G1 ‘ G2qq and
N3p¨qN21p¨q P H8pBp0, εq;LpG1 ‘ G2, G3 ‘ G4qq and the following expansions hold

N2pzqN3pzq “
ˆ
N

p0q
13 N

p0q
33 N

p0q
13 N

p1q
34 p0q

0 0

˙
`
˜
0 N

p1q
14 p0qN p0q

44

0 N
p1q
24 p0qN p0q

44

¸
` Opzq

and

N3pzqN21 pzq “
˜

N
p0q
33 N

p0q
31 0

N
p1q
43 p0qN p0q

31 0

¸
`
ˆ

0 0

N
p0q
44 N

p1q
41 p0q N p0q

44 N
p1q
42 p0q

˙
` Opzq

for z Ñ 0. Now, let M and the Gj’s be as in Lemma 6.8. Assume the following
compatibility condition ´

N
p0q
44 N

p1q
42 p0q

¯˚

“ N
p1q
24 p0qN p0q

44 .

Then N1 :“ N2N3 and N11 :“ N3N21 satisfy the assumptions from Lemma 6.8.

We now turn to the analysis of inverses of material laws. Since we need to estimate the
norm bounds of these inverses, we observe that, for a Hilbert space H and a continuous
linear operator B P LpHq satisfying ReB ŕ h for some h ą 0, B´1 P LpHq. Moreover,
using the Cauchy-Schwarz inequality, we deduce the estimate

∥

∥B´1
∥

∥ ő 1{h. (6.2)

Another consequence of ReB ŕ h is

ReB´1 ŕ h{p‖B‖2q. (6.3)

Lemma 6.10. Let H1, H2 be Hilbert spaces, d, c, ε ą 0. Let LpH1q Q M p0q
11 “ M

p0q
11

˚ ŕ d.

Moreover, let M
p1q
jk P H8pBp0, εq;LpHk, Hjqq with ReM

p1q
22 p0q ŕ c. Define

MI :“
˜
Bp0, εq Q z ÞÑ

ˆ
M

p0q
11 0

0 0

˙
` z

˜
M

p1q
11 pzq M p1q

12 pzq
M

p1q
21 pzq M p1q

22 pzq

¸¸
.
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Then there exists ε1 ą 0 depending on ε, ‖MI‖8 , c and d such that, for z P Bp0, ε1qzt0u,

MIpzq´1

“

˜
M121pzq ´M121pzqM

p1q
12

pzqM
p1q
22

pzq´1

´M
p1q
22

pzq´1M
p1q
21

pzqM121pzq M
p1q
22

pzq´1M
p1q
21

pzqM121pzqM
p1q
12

pzqM
p1q
22

pzq´1 ` z´1M
p1q
22

pzq´1

¸
,

where

M121pzq :“
´
M

p0q
11 ` z

´
M

p1q
11 pzq ´ M

p1q
12 pzqM p1q

22 pzq´1M
p1q
21 pzq

¯¯´1

“
´
M

p0q
11

¯´1

` Opzq and

M
p1q
22 pzq´1 “ M

p1q
22 p0q´1 ` Opzq

On the other hand, for xMjk P H8pBp0, ε1q;LpHk, Hjqq with Re xM p1q
22 p0q ŕ c and

xMI :“
˜
Bp0, ε1qzt0u Q z ÞÑ

˜
M

p0q
11 ` zxM p1q

11 pzq xM p1q
12 pzq

xM p1q
21 pzq z´1xM p1q

22 pzq

¸¸

there exists ε2 ą 0 depending on c, d,
∥

∥

∥

xMjk

∥

∥

∥

8
pj, k P t1, 2uq such that, for all z P Bp0, ε2q,

xMIpzq´1

“

˜
xM121pzq ´zxM121pzqxM p1q

12
pzqxM p1q

22
pzq´1

´zxM p1q
22

pzq´1xM p1q
21

pzqxM121pzq z2xM p1q
22

pzq´1xM p1q
21

pzqxM121pzqM
p1q
12

pzqxM p1q
22

pzq´1 ` zxM p1q
22

pzq´1.

¸
,

where

xM121pzq :“
´
M

p0q
11 ` z

´
xM p1q

11 pzq ´ xM p1q
12 pzqzxM p1q

22 pzq´1xM p1q
21 pzq

¯¯´1

“
´
M

p0q
11

¯´1

` Opzq and xM p1q
22 pzq´1 “ xM p1q

22 p0q´1 ` Opzq.

In particular, MI 1 P H8pBp0, ε2q;LpH1 ‘ H2qq.

Proof. The expressions for the inverses of MI and MI 1 can be verified immediately. The
asymptotic expansions are straightforward applications of the Neumann series expansion.
The respective convergence radii can be estimated in terms of ε, ‖MI‖8 , c and d or

ε,
∥

∥

∥

xMjk

∥

∥

∥

8
pj, k P t1, 2uq, c and d by Lemma 6.1 and Inequality (6.2).

Theorem 6.11. Let H1, H2 be separable Hilbert spaces, c, d, ε, r ą 0. Let pNnqn “´´
N11,n N12,n

N21,n N22,n

¯¯
n

be a bounded sequence in

H8pBp0, εq;LpH1 ‘ H2qq X H8,cpBpr, rq;LpH1 ‘ H2qq

and M P H8pBp0, εq;LpH1 ‘ H2qq X H8,cpBpr, rq;LpH1 ‘ H2qq. Assume that for all
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n P N we have RpMp0qq “ RpNnp0qq and Mp0q, Nnp0q ŕ d on RpMp0qq. Denote by
qj : Hj Ñ Rpπ˚

j q XNpMp0qq pj P t1, 2uq the canonical ortho-projections. Assume for all
n P N the compatibility condition

´`
q2N

1
22,np0qq˚

2

˘´1
q2N

1
21,np0qq˚

1

¯˚

“ q1N
1
12,np0qq˚

2

`
q2N

1
22,np0qq˚

2

˘´1
.

Then there exist ε1, r1, c1 ą 0 depending on ε, c, r, ‖M‖8 , supt‖Nn‖8 ;n P Nu, d such that

pN1,nqn :“
``
z ÞÑ N12,npzqN22,npzq´1

˘˘
n

pN11,nqn :“
``
z ÞÑ N22,npzq´1N21,npzq

˘˘
n

are bounded in H8pBp0, ε1q;LpH2, H1qq and H8pBp0, ε1q;LpH1, H2qq, respectively. More-
over, denoting by M1 P H8

w
pBp0, ε1q;LpH2, H1qq and M11 P H8

w
pBp0, ε1q;LpH1, H2qq the

respective limits of pN1,nk
qk and pN11,nk

qk for a strictly monotone sequence of positive
integers pnkqk, we have

M :“
ˆ
z ÞÑ

ˆ
1 ˘M1pzq
0 1

˙
Mpzq

ˆ
1 0

˘M11pzq 1

˙˙

P H8pBp0, ε1q;LpH1 ‘ H2qq X H8,c1pBpr1, r1q;LpH1 ‘ H2qq,

and RpMp0qq “ RpMp0qq.

Proof. In the following, we use Hilbert spaces Gj, j P t1, 2, 3, 4u as in Theorem 6.6 and

represent Nn for n P N using bounded operators N
p0q
jk,n, j, k P t1, 3u, and Hardy space

functions N
p1q
jk,n, j, k P t1, 2, 3, 4u, as in Theorem 6.6. From Lemma 6.10 we have an

explicit expression for N22,npzq´1, namely

N22,npzq´1 “

¨
˝
´
N

p0q
33,n

¯´1

` Opzq Op1q
Op1q z´1N

p1q
44,np0q´1 ` Op1q

˛
‚ for z Ñ 0.

Moreover, we have an estimate for the radius of convergence ε1 for the Neumann ex-
pansion involved in this expression in terms of supt‖Nn‖8 ;n P Nu, d, c, ε. In par-
ticular, z ÞÑ N22,npzq´1 satisfies the assumptions on N3 in Remark 6.9 (note thatˆ´

N
p0q
33,n

¯´1
˙˚

“
´
N

p0q
33,n

¯´1

, by Theorem 6.6). Moreover, using Theorem 6.6, we deduce

that N12,n and N21,n satisfy the assumptions on N2 and N21 in Remark 6.9. Indeed, we
have

N12,npzq :“
˜
z ÞÑ

ˆ
N

p0q
13,n 0

0 0

˙
` z

˜
N

p1q
13,npzq N p1q

14,npzq
N

p1q
23,npzq N p1q

24,npzq

¸¸

P H8pBp0, εq;LpG3 ‘ G4, G1 ‘ G2qq
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N21,npzq :“
˜
z ÞÑ

ˆ
N

p0q
31,n 0

0 0

˙
` z

˜
N

p1q
31,npzq N p1q

32,npzq
N

p1q
41,npzq N p1q

42,npzq

¸¸

P H8pBp0, εq;LpG1 ‘ G2, G3 ‘ G4qq

with
´
N

p0q
13,n

¯˚

“ N
p0q
31,n by Theorem 6.6.

Moreover, Remark 6.9 shows that N1,n and N11,n satisfy the assumptions imposed on N1

and N11 in Lemma 6.8. More precisely, we have the expansions

N1,npzq “
˜
N

p0q
13,npN p0q

33,nq´1 pN14,n

0 N
p1q
24,np0qN p1q

44,np0q´1

¸
` Opzq

N11,npzq “
˜

pN p0q
33,nq´1N

p0q
31,n 0

pN41,n N
p1q
44,np0q´1N

p1q
42 p0q

¸
` Opzq

for suitable continuous linear operators pN14,n, pN41,n. We deduce that

´
N

p0q
13,npN p0q

33,nq´1
¯˚

“ pN p0q
33,nq´1N

p0q
31,n.

Moreover, the compatibility condition is precisely

´
N

p1q
24,np0qN p1q

44,np0q´1
¯˚

“ N
p1q
44,np0q´1N

p1q
42,np0q.

Lemma 3.3 together with the fact that computing the adjoint is a continuous process in
the weak operator topology ensures that M1 and M11 satisfy the assumptions imposed
on N1 and N11 in Lemma 6.8. To estimate the norm bounds of M1 and M11 in terms
of d, c, supt‖Nn‖8 ;n P Nu and ε, we use Lemma 6.1 and Lemma 6.10. Hence with the
help of Lemma 6.8, we may estimate the constants of positive definiteness of Mp0q and
ReM1p0q on RpMp0qq and NpMp0qq, respectively, also in terms of d, c, supt‖Nn‖8 ;n P
Nu and ε. Note that we also have RpMp0qq “ RpMp0qq. Remark 6.3 implies the
remaining assertion.
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