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The Dirichlet-to-Neumann operator for divergence

form problems

A.F.M. ter Elst, G. Gordon and M. Waurick
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Abstract

We present a way of defining the Dirichlet-to-Neumann operator on general

Hilbert spaces using a pair of operators for which each one’s adjoint is formally

the negative of the other. In particular, we define an abstract analogue of trace

spaces and are able to give meaning to the Dirichlet-to-Neumann operator of diver-

gence form operators perturbed by a bounded potential in cases where the boundary

of the underlying domain does not allow for a well-defined trace. Moreover, a rep-

resentation of the Dirichlet-to-Neumann operator as a first-order system of partial

differential operators is provided. Using this representation, we address convergence

of the Dirichlet-to-Neumann operators in the case that the appropriate reciprocals

of the leading coefficients converge in the weak operator topology. We also provide

some extensions to the case where the bounded potential is not coercive and consider

resolvent convergence.

Keywords: Dirichlet-to-Neumann operator, resolvent convergence, continuous depen-

dence on the coefficients.

MSC 2010: 35F45, 46E35, 47A07.

1 Introduction

In the theory of elliptic partial differential operators, the Dirichlet-to-Neumann operator

is a central object of study. In recent years it attracted a lot of attention and triggered

profound research in many directions. In particular, we mention applications of the form

method, relations to the extension theory of symmetric operators as well as the intimate

connection to the Calderón problem, see, for instance, the references in [BE1].

The Dirichlet-to-Neumann operator relates Dirichlet boundary data to the correspond-

ing Neumann boundary data of solutions to a partial differential equation. As an introduc-

tion, we provide a definition for the Dirichlet-to-Neumann operator in its arguably simplest

form.

Let Ω⊂ Rd be a bounded domain with smooth boundary Γ = ∂Ω and where d > 2. Note

that in this case, the trace map Tr fromH1(Ω) into H1/2(Γ) is a well-defined, surjective and
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continuous operator. Let ϕ ∈ H1/2(Γ) and let u ∈ H1(Ω) be the solution of the boundary

value problem

−∆u = 0 weakly on Ω and Tr u = ϕ.

The Dirichlet-to-Neumann operator Λ assigns to ϕ the normal derivative of u, that is,

Λϕ = ∂νu ∈ H−1/2(Γ).

We can also consider the part of Λ in L2(Γ). If we call this restriction ΛL2(Γ), then

ΛL2(Γ) is an unbounded operator in L2(Γ) such that for all ϕ, ψ ∈ L2(Γ) it follows that

ϕ ∈ dom(ΛL2(Γ)) and ΛL2(Γ)ϕ = ψ if and only if there exists a u ∈H1(Ω) such that −∆u = 0

weakly on Ω, Tr u = ϕ and ψ = ∂νu. A problem with the above descriptions is that they

only make sense if the boundary of Ω is sufficiently smooth. We may also refer to [AE1]

for a variant of the Dirichlet-to-Neumann operator for domains with a rough boundary

that has finite (d − 1)-dimensional Hausdorff measure. If, however, Ω has for example a

fractal boundary with infinite (d− 1)-dimensional Hausdorff measure, then in [AE1] there

is no notion of the Dirichlet-to-Neumann operator at hand simply because there is no

appropriate notion of a trace. Using the concepts developed in [PTW2] (with extensions

in [PTW1] and [Tro]), we are able to provide a substitute for the space H1/2(Γ). We note

here that this ‘trace-free’ concept has proven to be useful for dealing with boundary value

problems on domains with rough boundary, see [PSTW].

The substitute for the space H1/2(Γ) is a variant of 1-harmonic functions in Ω. This

removes the need for function evaluation at the boundary. For the definition of this sub-

stitute of H1/2(Γ), the only concept that we use, if we relate our findings to the Laplacian,

is that the matrix
(

0 div
grad 0

)
is skew-symmetric on the space of infinite differentiable func-

tions with compact support, see Example 2.3. Thus, without further effort, our results

directly apply to similar problems involving the equations of linearized elasticity or the full

3-dimensional system of static Maxwell’s equations. More generally, our methods apply to

the covariant derivative defined on suitable L2-tensor fields and a formal skew-adjoint.

As our central object of study, we shall deviate from the classical elliptic partial differ-

ential operator −∆ discussed above and treat abstract divergence form operators of the

form

−DaG+m, (1)

where a and m are bounded coercive operators (called coefficients) and D and G are

densely defined, closed, unbounded operators in Hilbert spacesH1 andH0 with the property

−D∗ ⊂ G, like div and grad.

If dom(G), endowed with the graph norm, embeds compactly into H0, we will also

address the concept of continuous dependence of the Dirichlet-to-Neumann operator asso-

ciated with (1) on the bounded coefficients a and m under the weak operator topology.

This result has applications in homogenization problems, see [Tar] and [Wau] Section 5.5.

Moreover, it complements the study of continuous dependence of the Dirichlet-to-Neumann

operator on its coefficients in [AEKS], where the authors focus on possible non-coercive

cases and convergence of the principal coefficients in L∞(Ω). In order to prove convergence

results, we derive a reformulation of the Dirichlet-to-Neumann operator as a system of two

first-order partial differential equations, similar to [AKM].



In the present work we also consider removing the coercivity condition on m. That is

to say, we define the abstract analogue of the Dirichlet-to-Neumann graph with m being

possibly not coercive. We note here that these results are the abstract counterpart of

results developed in [BE1] and [AEKS]. In the case that the potentials m are not coercive

we consider resolvent convergence for Dirichlet-to-Neumann operators.

We mention here that a possible non-linear variant of the Dirichlet-to-Neumann oper-

ator, where the coercive operator a is replaced by a (strictly) maximal monotone relation,

can be discussed using the results of [TW]. This however is beyond the scope of the present

manuscript and will be addressed in future work.

We briefly comment on the organization of the paper. In Section 2, we provide the basic

functional analytic setting and recall some notions and results of [PTW2], [PTW1] and

[Tro]. We then state the definition of the Dirichlet-to-Neumann operator in the abstract

setting discussed above. We also provide an extensive example that justifies this abstrac-

tion by relating it to the classical formulation of the Dirichlet-to-Neumann operator. In

Section 3 we give a representation formula for the Dirichlet-to-Neumann operator as a

first-order system and show that this operator is m-sectorial, provided both m and a are

coercive. For this we use a representation result for operators given via forms, see [AE2].

In Section 4 we prove resolvent convergence of the Dirichlet-to-Neumann operators when

the coefficients converge in an appropriate weak operator topology. Under some additional

hypotheses we also obtain in Theorem 4.2 uniform convergence even though the coefficients

converge in the weak operator topology only. In Section 5 we consider the non-coercive case

and discuss the domain and multi-valued parts of the Dirichlet-to-Neumann graph when

m is merely assumed to be a bounded operator, that is not necessarily coercive. Moreover,

we also prove a convergence theorem for the non-coercive case in Section 6. We conclude

with two more examples in Section 7.

2 The Dirichlet-to-Neumann operator and boundary

spaces

We start with a description of boundary data spaces as in [PTW2] Subsection 5.2. Through-

out this paper fix Hilbert spaces H0 and H1. Further, let G be an operator in H0 with

values in H1 and let D be an operator in H1 with values in H0. We assume throughout that

both G and D are densely defined and closed, and that −G∗ ⊂ D. We define D̊ = −G∗

and G̊ = −D∗.

Note that

(G̊u, q)H1 = −(u, D̊q)H0

for all u ∈ dom(G̊) and q ∈ dom(D̊). Equivalently, the matrix

(
0 D̊

G̊ 0

)

with dense domain dom(G̊)× dom(D̊) is skew-symmetric in H0 ×H1.



Remark 2.1. Note that G̊ = −D∗ ⊂ −(−G∗)∗ = G = G. So one can simultaneously swap

H0 with H1 and D with G.

Example 2.2. All examples in this paper are of the following type. Let H0 and H1

be Hilbert spaces. Consider dense subspaces dom(Ĝ) ⊂ H0 and dom(D̂) ⊂ H1. Let

Ĝ : dom(Ĝ) → H1 and D̂ : dom(D̂) → H0 be two operators such that

(Ĝu, q)H1 = −(u, D̂q)H0 (2)

for all u ∈ dom(Ĝ) and q ∈ dom(D̂). Equivalently, the matrix
(
0 D̂

Ĝ 0

)

with dense domain dom(Ĝ)× dom(D̂) is skew-symmetric in H0 ×H1.

Then Ĝ ⊂ −(D̂)∗ and D̂ ⊂ −(Ĝ)∗, so both Ĝ and D̂ are closable. Let G̊ and D̊

denote the closures. Define G = −(D̊)∗ and D = −(G̊)∗. Since D̊ and G̊ are closed,

therefore closable, it follows that G and D are densely defined. Obviously both G and

D are closed. Next G∗ = −(D̊)∗∗ = −D̊ since D̊ is closed and similarly D∗ = −G̊. Also

D̊ ⊂ −(Ĝ)∗ = −(G̊)∗, so G̊ ⊂ −(D̊)∗ = G. Similarly D̊ ⊂ D. Then G∗ = −D̊ ⊂ −D as

required.

The classical example for this paper is as follows. Note that we do not assume any

condition on the boundary of Ω.

Example 2.3. Let Ω⊂ Rd be open. Define Ĝ : C∞
c (Ω)→ L2(Ω)

d and D̂ : C∞
c (Ω)d → L2(Ω)

by

Ĝu = (∂1u, . . . , ∂du) and D̂q =
d∑

k=1

∂kqk.

Define H0 = L2(Ω) and H1 = L2(Ω)
d. Then (2) in Example 2.2 follows from integration

by parts. The associated operators are denoted by G = grad, G̊ = ˚grad, D = div and

D̊ = d̊iv. It is not hard to show that dom( ˚grad) = H1
0 (Ω), dom(grad) = H1(Ω) and

dom(div) = Hdiv(Ω) = {q ∈ L2(Ω)
d : div q ∈ L2(Ω)}.

We next define an (abstract) variant of the trace spacesH1/2(Γ) andH−1/2(Γ). Through-

out this paper we provide the domain of an operator with the graph norm. Define

BD(G) = dom(G̊)⊥dom(G) and BD(D) = dom(D̊)⊥dom(D).

We provide BD(G) and BD(D) with the induced inner products of dom(G) and dom(D).

We denote by πBD(G) and πBD(D) the corresponding projections onto BD(G) and BD(D),

respectively.

Example 2.4. Let Ω, G and D be as in Example 2.3. Then BD(G) = {u ∈ H1(Ω) :

∆u = u weakly on Ω}. Indeed, let u ∈ BD(G). Then u ∈ H1(Ω) and 0 = (u, v)dom(G) =

(u, v)L2(Ω) + (grad u, grad v)L2(Ω) for all v ∈ dom(G̊) = H1
0 (Ω). So ∆u = u weakly on Ω.

The converse inclusion is similar.



Lemma 2.5. BD(G) = ker(I −DG) and BD(D) = ker(I −GD).

Proof. By Remark 2.1 it suffices to prove the first equality. Let u ∈ BD(G). Then

(u, v)H0 + (Gu, G̊v)H1 = (u, v)dom(G) = 0

for all v ∈ dom(G̊). So Gu ∈ dom((G̊)∗) = dom(D) and DGu = −(G̊)∗Gu = u. Therefore

u ∈ ker(I −DG). The converse follows similarly.

Corollary 2.6. If u ∈ BD(G), then Gu ∈ BD(D). If q ∈ BD(D), then Dq ∈ BD(G).

Proof. Let u ∈ BD(G). Then u ∈ dom(DG) and DGu = u ∈ dom(DG). Therefore

u ∈ dom(GDG) and (I −GD)Gu = G(I −DG)u = 0. So Gu ∈ ker(I −GD) = BD(D) by

Lemma 2.5. The other statement follows similarly.

Define Ġ : BD(G) → BD(D) and Ḋ : BD(D) → BD(G) by

Ġu = Gu and Ḋq = Dq.

Lemma 2.7. The operators Ġ and Ḋ are unitary. Moreover, (Ġ)∗ = Ḋ.

Proof. See [PTW2, Theorem 5.2]. For the convenience of the reader we include the proof.

Clearly ḊĠ = IBD(G) and ĠḊ = IBD(D) by Lemma 2.5. Moreover,

(Ġu, q)BD(D) = (Ġu, q)H1 + (ḊĠu, Ḋq)H0 = (Ġu, ĠḊq)H1 + (u, Ḋq)H0 = (u, Ḋq)BD(G)

for all u ∈ BD(G) and q ∈ BD(D), from which the lemma follows.

In the situation of Example 2.3 the space BD(G) models the boundary data of an

H1(Ω)-function if Ω is a bounded Lipschitz domain, as shown in [Tro, Corollary 4.4].

Indeed, let Γ = ∂Ω. Since Tr: H1(Ω) → H1/2(Γ) is continuous, surjective and ker Tr =

H1
0 (Ω) = dom( ˚grad), it follows that

Tr |BD(G) : BD(G) → H1/2(Γ) (3)

is bijective and hence a topological isomorphism.

We next consider the space BD(D). Denote by BD(G)′ the space of all antilinear

continuous maps from BD(G) into C. There is a natural unitary map from BD(D) onto

BD(G)′.

Proposition 2.8. Define Φ: BD(D) → BD(G)′ by
(
Φ(q)

)
(u) = (Dq, u)H0 + (q, Gu)H1.

Then Φ is unitary.

Proof. Let q ∈ BD(D) and u ∈ BD(G). Then
(
Φ(q)

)
(u) = (Dq, u)H0 + (q, Gu)H1

= (q, Gu)H1 + (Dq,DGu)H0 = (q, Gu)dom(D) = (q, Ġu)BD(D). (4)

Then the proposition follows from Lemma 2.7 and the Riesz representation theorem.



For clarity and contrast we include the proof of the next proposition. We provide

TrH1(Ω) with the quotient norm.

Proposition 2.9. Let Ω ⊂ Rd be open, bounded with Lipschitz boundary. Then one has

the following.

(a) For all q ∈ Hdiv(Ω) there exists a unique Q ∈ (TrH1(Ω))′ such that

〈Q,Tr u〉(TrH1(Ω))′×TrH1(Ω) =

∫

Ω

(divq)u+

∫

Ω

q · ∇u (5)

for all u ∈ H1(Ω).

(b) If q ∈ dom(d̊iv), then Q = 0, where Q is as in (5).

(c) If q ∈ H1(Ω)d, then Q = ν · Tr q, where ν is the outward normal vector on the

boundary Γ of Ω and Q is as in (5).

Proof. ‘(a)’. Define F : H1(Ω) → C by

F (u) =

∫

Ω

(divq)u+

∫

Ω

q · ∇u.

Then F ∈ H1(Ω)′. Moreover, if u ∈ H1
0 (Ω), then F (u) = 0. Hence there exists a unique

continuous antilinear map F̃ : TrH1(Ω) → C such that F̃ (Tr u) = F (u) for all u ∈ H1(Ω).

Then the first statement follows.

‘(b)’. We use the notation as in Example 2.3. Let q ∈ dom(D̊). Since D̊ = −G∗ one

deduces that F (u) =
∫
Ω
(divq)u+

∫
Ω
q ·∇u = (D̊q, u)H1 +(q, Gu)H0 = 0 for all u ∈ dom(G).

So Q = 0, because dom(G) is dense in H1(Ω).

‘(c)’. Suppose that q ∈H1(Ω)d. Let u ∈H1(Ω). Then uq ∈W 1,1(Ω)d and the divergence

theorem gives

∫

Ω

(divq)u+

∫

Ω

q · ∇u =

∫

Ω

div(uq) =

∫

Γ

ν · Tr(uq) =
∫

Γ

(ν · Tr q) Tru.

So Q = ν · Tr q.

If q ∈ Hdiv(Ω) and Q is as in Proposition 2.9, then we define (νq) = Q. So (νq) = ν ·Tr q
if q ∈ H1(Ω)d.

Example 2.10. Let Ω be a bounded Lipschitz domain with boundary Γ. Let G and D be

as in Example 2.3. Let Φ be as in Proposition 2.8. Then

(Φ(q))(u) = 〈(νq),Tru〉(TrH1(Ω))′×TrH1(Ω)

for all q ∈ BD(D) and u ∈ BD(G).

It follows from (3) and Proposition 2.8 that the spaces BD(D) and H−1/2(Γ) are iso-

morphic. Hence Ġ is a variant of the Dirichlet-to-Neumann operator.



Next we introduce the (variable) coefficients for our abstract Dirichlet-to-Neumann

operator. Recall that a bounded operator M in a Hilbert space H is called coercive if

there exists a µ > 0 such that ReM > µI, where ReM = 1
2
(M + M∗). That is M is

coercive if and only if there exists a µ > 0 such that Re(Mx, x) > µ‖x‖2H for all x ∈ H .

As for the classical Dirichlet-to-Neumann operator, we first show that the Dirichlet

problem has a unique solution.

Proposition 2.11. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Let u0 ∈ BD(G). Then

there exists a unique u ∈ dom(DaG) such that mu−DaGu = 0 and u− u0 ∈ dom(G̊).

For the proof of the proposition we need several auxiliary results.

Lemma 2.12. Let H be a Hilbert space, M ∈ L(H) and A a skew-adjoint operator in H.

Let λ > 0 and assume that Re(Mx, x)H > λ‖x‖2H for all x ∈ H. Then the operator M +A

is invertible. Moreover, the operator (M + A)−1 is bounded from H into dom(A) and

‖(M + A)−1‖H→dom(A) 6
1+λ+‖M‖

λ
.

Proof. If x ∈ dom(A), then Re((M + A)x, x)H = Re((Mx, x)H > λ‖x‖2H . Hence M + A

is one-to-one, its range is closed and M + A is continuously invertible on its range. Since

Re(Mx, x)H = Re(M∗x, x)H for all x ∈ H , we obtain similarly that (M +A)∗ =M∗ −A is

one-to-one. Therefore M + A is onto. So M + A is invertible and ‖(M + A)−1‖H→H 6
1
λ
.

Since A(M + A)−1 = I −M(M +A)−1, the operator A(M +A)−1 is bounded from H

into H and the estimate follows.

Next we consider matrix operators.

Lemma 2.13. Let a ∈ L(H1) and m ∈ L(H0) be coercive.

(a) The operators

(
m −D̊
−G a−1

)
and

(
m −D
−G̊ a−1

)
in H0 ×H1 are invertible.

(b) The operator

(
m −D̊
−G a−1

)−1

is bounded from H0 ×H1 into dom(G)× dom(D̊).

(c) The operator

(
m −D
−G̊ a−1

)−1

is bounded from H0 ×H1 into dom(G̊)× dom(D).

Proof. Let H = H0 × H1, M =

(
m 0

0 a−1

)
and A =

(
0 −D̊

−G 0

)
with dom(A) =

dom(G)× dom(D̊). Since −D̊∗ = G and −G∗ = D̊, the operator A is skew-adjoint. Also

Re a−1 > ‖a‖−2Re a, so M is coercive. Therefore M + A is invertible and the operator

(M + A)−1 is bounded from H into dom(A) by Lemma 2.12. This proves the first part of

Statement (a) and Statement (b)

The remaining parts of the lemma follow similarly.

Lemma 2.14. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Let u ∈ dom(G), q ∈ dom(D),

u0 ∈ BD(G) and q0 ∈ BD(D).



(a) The following conditions are equivalent.

(i) Dq = mu, q = aGu and u− u0 ∈ dom(G̊).

(ii) q = aGu, u− u0 ∈ dom(G̊) and

(aGu, G̊v)H1 = −(mu, v)H0

for all v ∈ dom(G̊).

(iii)

(
u− u0

q

)
=

(
m −D
−G̊ a−1

)−1(
−mu0
Gu0

)
.

(b) The following conditions are equivalent.

(i) Dq = mu, q = aGu and q − q0 ∈ dom(D̊).

(ii)

(
u

q − q0

)
=

(
m −D̊
−G a−1

)−1(
Dq0

−a−1q0

)
.

Proof. ‘(a)’. ‘(i)⇔(ii)’. This follows immediately from the equality D = −(G̊)∗.

‘(i)⇔(iii)’. By a simple algebraic manipulation Condition (i) is equivalent to

u− u0 ∈ dom(G̊) and

(
m −D
−G a−1

)(
u− u0

q

)
=

(
−mu0
Gu0

)
.

By Lemma 2.13(a) this is equivalent to Condition (iii).

‘(b)’. The proof is similar.

Now we are able to prove Proposition 2.11.

Proof of Proposition 2.11. First we show existence. Let u ∈ dom(G) and q ∈ dom(D)

be such that (
u− u0

q

)
=

(
m −D
−G̊ a−1

)−1(
−mu0
Gu0

)
.

Then u satisfies the desired properties by Lemma 2.14(a) (iii)⇒(i).

It remains to show uniqueness. Let ũ ∈ dom(DaG) and suppose that mũ−DaGũ = 0

and ũ− u0 ∈ dom(G̊). Set q̃ = aGũ. Then it follows from Lemma 2.14(a) (i)⇒(iii) that

(
ũ− u0

q̃

)
=

(
m −D
−G̊ a−1

)−1(
−mu0
Gu0

)
,

which implies that u = ũ.

There is a similar version of Proposition 2.11 for the Neumann problem.

Proposition 2.15. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Let q0 ∈ BD(D). Then

there exists a unique u ∈ dom(DaG) such that mu−DaGu = 0 and aGu− q0 ∈ dom(D̊).

Proof. This follows similarly to the proof of Proposition 2.11, but now use Lemma 2.14(b)

instead of Lemma 2.14(a).



At this stage we are able to define the Dirichlet-to-Neumann operator with variable

coefficients as an operator acting from BD(G) (the abstract realization of H1/2(Γ)) to

BD(D) (the abstract realization of H−1/2(Γ)).

Definition 2.16. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Define the operator

Λ: BD(G) → BD(D)

as follows. Let u0 ∈ BD(G). By Proposition 2.11 there exists a unique u ∈ dom(DaG)

such that mu−DaGu = 0 and u − u0 ∈ dom(G̊). Then we define Λu0 = πBD(D)aGu. We

call Λ the Dirichlet-to-Neumann operator associated with −DaG +m.

So the graph of the operator Λ is equal to

{(πBD(G)u, πBD(D)aGu) : u ∈ dom(DaG) and mu−DaGu = 0}.

Theorem 2.17. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Then the operator Λ associated

with −DaG +m is bounded and invertible. Moreover,

Λ u0 =
(
0 πBD(D)

)( m −D
−G̊ a−1

)−1(
−m
G

)
u0

for all u0 ∈ BD(G) and

Λ−1 q0 =
(
πBD(G) 0

)( m −D̊
−G a−1

)−1(
D

−a−1

)
q0

for all q0 ∈ BD(D).

Proof. The expression for Λ follows from Lemma 2.14(a), arguing as in the proof of

Proposition 2.11. The boundedness of Λ is then a consequence of Lemma 2.13(c).

The proof for Λ−1 is similar, using Lemma 2.14(b), Proposition 2.15 and Lemma 2.13(b).

3 An intermediate operator and m-sectoriality

In Proposition 2.8 we showed that the space BD(D) is naturally isomorphic to BD(G)′. In

this section we assume that there is a Hilbert space H such that BD(G) →֒ H →֒ BD(G)′

is a Gelfand triple. Then we study the part of the Dirichlet-to-Neumann operator in H .

In the model example, Example 2.3, one can take H = L2(Γ).

Throughout this section, we adopt the notation and assumptions as in the beginning

of Section 2. In addition, let H be a Hilbert space and κ ∈ L(BD(G), H). We assume that

κ is one-to-one and has dense range.

Example 3.1. Let Ω be a bounded Lipschitz domain with boundary Γ. Let G and D be

as in Example 2.3. Let σ ∈ (−∞, 1
2
] and choose H = Hσ(Γ). Define κ : BD(G) → H by



κ(u) = Tr u. Then κ is one-to-one and has dense range. Note that κ is compact if and

only if σ < 1
2
.

Now suppose that σ = 0, so H = L2(Γ). Let ψ ∈ L2(Γ) and set u = κ∗ψ. Then

u ∈ BD(G), so u ∈ H1(Ω) and ∆u = u weakly on Ω by Example 2.4. If v ∈ BD(G), then
∫

Γ

ψTr v = (ψ, κ(v))L2(Γ) = (κ∗ψ, v)BD(G) = (u, v)BD(G)

=

∫

Ω

uv +

∫

Ω

∇u · ∇v =
∫

Ω

(∆u)v +

∫

Ω

∇u · ∇v.

Alternatively, if v ∈ H1
0 (Ω) = dom(G̊), then
∫

Γ

ψTr v = 0 =

∫

Ω

(∆u)v +

∫

Ω

∇u · ∇v.

So by linearity ∫

Γ

ψTr v =

∫

Ω

(∆u)v +

∫

Ω

∇u · ∇v

for all v ∈ H1(Ω). Hence u has a weak normal derivative and ∂νu = ψ.

We consider the Gelfand triple

BD(G)
κ→֒ H ≃ H ′ κ′

→֒ BD(G)′

with H as pivot space. Recall that BD(G)′ is naturally isomorphic to BD(D) by Proposi-

tion 2.8. We aim to describe the part of the Dirichlet-to-Neumann operator Λ in H . We

describe the image of H in BD(D) under the above maps H ≃ H ′ κ′

→֒ BD(G)′ ≃ BD(D).

Lemma 3.2. Let Φ: BD(D) → BD(G)′ be as in Proposition 2.8. Define F : H → H ′ by

(Fϕ)(ψ) = (ϕ, ψ)H . Then Φ−1 ◦ κ′ ◦ F = G ◦ κ∗.

Proof. Let ϕ ∈ H and write q = (Φ−1 ◦ κ′ ◦ F )(ϕ). Let u ∈ BD(G). Then it follows from

Lemma 2.7 and (4) that

(Ḋq, u)BD(G) = (q, Ġu)BD(D)

= (Φ(q))(u) = ((κ′ ◦ F )ϕ)(u) = (ϕ, κ(u))H = (κ∗ϕ, u)BD(G).

So Ḋq = κ∗ϕ and q = ĠḊq = Ġκ∗ϕ.

Now we are able to define the part of the Dirichlet-to-Neumann operator in H .

Definition 3.3. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Define the operator ΛH in

H as follows. Let ϕ, ψ ∈ H . Then we say that ϕ ∈ dom(ΛH) and ΛHϕ = ψ if there exists

a u0 ∈ BD(G) such that κ(u0) = ϕ and Λu0 = (G ◦ κ∗)(ψ), where Λ is the Dirichlet-to-

Neumann operator associated with −DaG+m. We call ΛH the Dirichlet-to-Neumann

operator in H associated with −DaG+m.

Despite the abundance of choice of the space H , see Example 3.1, the operator −ΛH is

always a semigroup generator.



Theorem 3.4. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Then the Dirichlet-to-Neumann

operator ΛH associated with −DaG+m is m-sectorial. In particular, if both a and m are

symmetric, then ΛH is self-adjoint.

The proof of this theorem is based on form methods and the next theorem.

Theorem 3.5. Let H̃, V be Hilbert spaces and let j ∈ L(V, H̃) with dense range. Let

b : V × V → C be a continuous coercive sesquilinear form, that is there exists a µ > 0

such that Re b(v) > µ‖v‖2V for all v ∈ V . Define the operator A in H̃ as follows. Let

x, f ∈ H̃. Then x ∈ dom(A) and Ax = f if there exists a u ∈ V such that j(u) = x and

b(u, v) = (f, j(v))H̃ for all v ∈ V . Then A is well-defined and m-sectorial. If, in addition,

b is symmetric, then A is self-adjoint.

Proof. See [AE2, Theorem 2.1].

In the situation of Theorem 3.5 we call A the operator associated with (b, j).

Theorem 3.4 is an immediate consequence of Theorem 3.5 and the next proposition.

Proposition 3.6. Let a ∈ L(H1) and m ∈ L(H0) be coercive. Define the sesquilinear form

b : dom(G)× dom(G) → C by

b(u, v) = (aGu,Gv)H1 + (mu, v)H0.

Then b is coercive and continuous. Further define j : dom(G) → H by j = κ ◦ πBD(G).

Then the Dirichlet-to-Neumann operator ΛH associated with −DaG + m is equal to the

operator associated with (b, j).

Proof. The form b is coercive since both a and m are coercive. Obviously b is continuous.

Let A be the operator associated with (b, j). It remains to prove that A = ΛH .

‘ΛH ⊂ A’. Let ϕ ∈ dom(ΛH) and set ψ = ΛHϕ. Then there exists a u0 ∈ BD(G) with

κ(u0) = ϕ and Λ u0 = (G ◦ κ∗)ψ. By definition there exists a u ∈ dom(DaG) such that

mu−DaGu = 0, u−u0 ∈ dom(G̊) and Λu0 = πBD(D)(aGu). Then (G◦κ∗)ψ = πBD(D)(aGu)

and j(u) = κπBD(G)u = κ(u0) = ϕ.

Next if v ∈ dom(G̊), then

b(u, v) = (aGu, G̊v)H1 + (mu, v)H0

= −(DaGu, v)H0 + (DaGu, v)H0 = 0 = (ψ, 0)H = (ψ, j(v))H .

If v ∈ BD(G), then Lemma 2.7 gives

(ψ, j(v))H = (κ∗ψ, v)BD(G) = (Gκ∗ψ,Gv)BD(D) = (πBD(D)(aGu), Gv)BD(D)

= (aGu,Gv)dom(D) = (aGu,Gv)H1 + (DaGu,DGv)H0

= (aGu,Gv)H1 + (mu, v)H0 = b(u, v).

Since dom(G) = BD(G)⊕ dom(G̊) it follows that b(u, v) = (ψ, j(v))H for all v ∈ dom(G).

So ϕ ∈ dom(A) and Aϕ = ψ.



‘A ⊂ ΛH ’. Let ϕ ∈ dom(A) and write ψ = Aϕ. Then there exists a u ∈ dom(G) such

that j(u) = ϕ and

(aGu,Gv)H1 + (mu, v)H0 = b(u, v) = (ψ, j(v))H (6)

for all v ∈ dom(G). If v ∈ dom(G̊), then

(aGu, G̊v)H1 + (mu, v)H0 = (ψ, j(v))H = 0.

So aGu ∈ dom((G̊)∗) = dom(D) and DaGu = −(G̊)∗aGu = mu. Moreover,

ΛπBD(G)u = πBD(D)(aGu) (7)

by the definition of Λ. Note that κ(πBD(G)u) = j(u) = ϕ.

Now let v ∈ BD(G). Then (6) gives

(κ∗ψ, v)BD(G) = (ψ, κ(v))H

= (aGu,Gv)H1 + (mu, v)H0

= (aGu,Gv)H1 + (DaGu,DGv)H0

= (aGu,Gv)dom(D)

= (πBD(D)(aGu), Gv)BD(D)

= (DπBD(G)(aGu), v)BD(G),

where we used Lemma 2.7 in the last step. So, κ∗ψ = DπBD(D)(aGu). Hence

(G ◦ κ∗)(ψ) = πBD(D)(aGu) = ΛπBD(G)u

by Lemma 2.7 and (7). Therefore ϕ ∈ dom(ΛH) and ΛHϕ = ψ.

We next show that the operator ΛH is invertible and determine its inverse.

Proposition 3.7. The operator ΛH is invertible and

Λ−1
H ψ = κ

(
πBD(G) 0

)( m −D̊
−G a−1

)−1(
1

−a−1G

)
κ∗ψ

for all ψ ∈ H.

Proof. Since the form b in Proposition 3.6 is coercive, it follows that the operator ΛH is

invertible. Let ϕ ∈ dom(ΛH) and write ψ = ΛHϕ. Then there exists a u0 ∈ BD(G) such

that κ(u0) = ϕ and Λ u0 = Gκ∗ψ. By Theorem 2.17 we obtain that

u0 = Λ−1Gκ∗ψ =
(
πBD(G) 0

)( m −D̊
−G a−1

)−1(
D

−a−1

)
Gκ∗ψ

=
(
πBD(G) 0

)( m −D̊
−G a−1

)−1(
I

−a−1G

)
κ∗ψ,

where we used Lemma 2.7 in the last step. Next apply κ to both sides. Since the inverse

matrix maps H0 ×H1 into dom(G)× dom(D) by Lemma 2.13(b), the proposition follows.



4 Resolvent convergence

In this section we consider a sequence of Dirichlet-to-Neumann operators and show resol-

vent convergence.

Throughout this section we adopt the notation and assumptions as in the beginning

of Section 2. Let H be a Hilbert space and κ ∈ L(BD(G), H) injective with dense range.

Further, we let mn, m ∈ L(H0) and an, a ∈ L(H1) for all n ∈ N. Let µ > 0 and assume

that Remn,Rem > µIH0 and Re an,Re a > µIH1 for all n ∈ N. Moreover, assume that

supn ‖an‖L(H1) <∞. Let Λ,Λ1,Λ2, . . . be the Dirichlet-to-Neumann operators from BD(G)

into BD(D) associated with −DaG + m,−Da1G + m1,−Da2G + m2, . . . as in Defini-

tion 2.16. Similarly, let ΛH ,Λ
(1)
H ,Λ

(2)
H , . . . be the Dirichlet-to-Neumann operators in H as

in Definition 3.3.

Throughout this section we suppose in addition that the inclusion dom(G) →֒ H0 is

compact.

The compactness assumption is valid in our model case, Example 2.3, if Ω has a con-

tinuous boundary or, equivalently, if Ω has the segment property.

We state two well-known consequences of the compactness assumption.

Lemma 4.1.

(a) There exists a c > 0 such that ‖u‖H0 6 c‖Gu‖H1 for all u ∈ dom(G) ∩ ker(G)⊥H0 .

(b) The space ran(G) is closed in H1.

Proof. ‘(a)’. Suppose not. Then there exists a sequence (un)n∈N in dom(G) ∩ ker(G)⊥H0

such that ‖un‖H0 = 1 and

‖un‖H0 > n‖Gun‖H1 (8)

for all n ∈ N. Then (un)n∈N is bounded in dom(G). We may assume without loss of

generality that there exists a u ∈ dom(G) such that lim un = u weakly in dom(G). Since

the inclusion dom(G) ⊂ H0 is compact we obtain that lim un = u in H0. Then u ∈
ker(G)⊥H0 since ker(G)⊥H0 is closed in H0. Moreover, ‖u‖H0 = 1 and in particular u 6= 0.

Alternatively, (8) implies that ‖Gu‖H1 6 lim infn→∞ ‖Gun‖H1 = 0. So u ∈ ker(G). Hence

u ∈ ker(G) ∩ ker(G)⊥H0 = {0} and u = 0. This is a contradiction.

‘(b)’. This is a consequence of Statement (a) and the closedness of G.

We provide ran(G) with the induced norm of H1. Throughout the remainder of this

section we denote by ι : ran(G) →֒ H1 the embedding map. Note that ι∗ is the orthogonal

projection from H1 onto ran(G). The main result of this section is the following theorem.

Theorem 4.2. Suppose that limmn = m in the weak operator topology on L(H0) and

limn→∞(ι∗anι)
−1 = (ι∗aι)−1 in the weak operator topology on L(ran(G)). Then

lim(Λ
(n)
H )−1 = Λ−1

H

in the weak operator topology on L(H). Moreover, if in addition the map κ is compact,

then the convergence is uniform in L(H).



For the proof of Theorem 4.2 we need some preliminary results. The first one contains

an identity for Λ involving ran(G).

Lemma 4.3.

(a) Let q ∈ H1. Then q ∈ dom(D̊) if and only if ι∗q ∈ dom(D̊). In that case D̊q = D̊ι∗q.

(b) The operator D̊ι : ran(G) ∩ dom(D̊) → H0 is a closed and densely defined operator

in ran(G). Moreover, (D̊ι)∗ = −ι∗G.
(c) The operator D̊ι is injective.

(d) The inclusion dom(D̊ι) ⊂ H1 is compact.

(e) The operator

(
m −D̊ι

−ι∗G (ι∗aι)−1

)
: dom(G)×

(
ran(G)∩ dom(D̊)

)
→ H0 × ran(G) is

invertible.

(f) The operator

(
m −D̊ι

−ι∗G (ι∗aι)−1

)−1

is bounded from H0 × ran(G) into dom(G) ×

dom(D̊).

(g) If q0 ∈ BD(D), then

Λ−1 q0 =
(
πBD(G) 0

)( m −D̊ι
−ι∗G (ι∗aι)−1

)−1(
D

−(ι∗aι)−1ι∗

)
q0.

Proof. ‘(a)’. First q − ι∗q ∈ (ran(G))⊥H1 = ker(G∗) = ker(D̊) ⊂ dom(D̊). This shows the

equivalence. Since D̊(q − ι∗q) = 0, the last statement follows.

‘(b)’. Let q ∈ ran(G). Since dom(D̊) is dense in H1 there exists a sequence (qn)n∈N
in dom(D̊) such that lim qn = q in H1. Then ι∗qn ∈ ran(G) ∩ dom(D̊) for all n ∈ N by

Statement (a) and lim ι∗qn = ι∗q = q in H1. So ran(G) ∩ dom(D̊) is dense in ran(G).

Because ran(G) is closed in H1 and D̊ is a closed operator one deduces easily that the

operator D̊ι is closed. It remains to show that (D̊ι)∗ = −ι∗G.
Let u ∈ dom((D̊ι)∗). Write q = (D̊ι)∗u. Note that q ∈ ran(G). Let q′ ∈ dom(D̊). Then

Statement (a) implies that

(u, D̊q′)H0 = (u, D̊ι∗q′)H0 = (u, (D̊ι)ι∗q′)H0 = ((D̊ι)∗u, ι∗q′)ran(G) = (q, ι∗q′)ran(G) = (q, q′)H1 .

So u ∈ dom((D̊)∗) = dom(G) and Gu = −(D̊)∗u = −q. Therefore, −ι∗Gu = q = (D̊ι)∗u.

This implies that (D̊ι)∗ ⊂ −ι∗G. The converse inclusion is easier and is left to the reader.

‘(c)’. Let q ∈ ran(G)∩dom(D̊) and suppose that D̊ιq = 0. There exists a u ∈ dom(G)∩
(kerG)⊥H0 such that q = Gu. Then ‖Gu‖2H1

= −(q, (D̊)∗u)H1 = −(D̊ιq, u)H0 = 0. So

u ∈ kerG and u = 0.

‘(d)’. Let q, q1, q2, . . . ∈ dom(D̊ι) and suppose that lim qn = q weakly in dom(D̊ι). For

all n ∈ N there exists a unique un ∈ dom(G) ∩ ker(G)⊥H0 such that qn = Gun. Since

lim qn = q weakly in H1, the sequence (qn)n∈N is bounded in H1. Hence the sequence

(un)n∈N is bounded in H0 by Lemma 4.1(a). Passing to a subsequence if necessary, there

exists a u ∈ H0 such that lim un = u weakly in H0. Since G is a weakly closed operator, one



deduces that u ∈ dom(G) and Gu = q. Then lim un = u weakly in dom(G), so lim un = u

strongly in H0 by the compactness assumption. Note that G∗ = −D̊. So

lim
n→∞

‖qn‖2H1
= lim

n→∞
(qn, Gun)H1 = lim

n→∞
(−D̊qn, un)H0 = (−D̊q, u)H0 = (q, Gu)H0 = ‖q‖2H1

.

Hence lim qn = q in H1.

‘(e)’ and ‘(f)’. This is as in the proof of Lemma 2.13(a) and (b).

‘(g)’. Let q0 ∈ BD(D). By Proposition 2.15 there exists a unique u ∈ dom(DaG) such

that mu − DaGu = 0 and aGu − q0 ∈ dom(D̊). Then Λ−1q0 = πBD(G)u. Write q = aGu.

Then q − q0 ∈ dom(D̊), so D̊(q − q0) = D̊ι∗(q − q0) = (D̊ι)ι∗(q − q0) by Statement (a).

Therefore

Dq0 = mu− D̊(q − q0) = mu− (D̊ι)ι∗(q − q0). (9)

Also ι∗q = ι∗aGu = (ι∗aι)ι∗Gu. Hence (ι∗aι)−1ι∗q = ι∗Gu and −ι∗Gu+(ι∗aι)−1ι∗(q−q0) =
−(ι∗aι)−1ι∗q0. Together with (9) this gives

(
m −D̊ι

−ι∗G (ι∗aι)−1

)(
u

ι∗(q − q0)

)
=

(
D

−(ι∗aι)−1ι∗

)
q0.

Finally use Statement (e).

Next we need a sequential version of Lemma 2.12.

Lemma 4.4. Let H̃ be a Hilbert space, M ∈ L(H̃) and A a skew-adjoint operator in H̃.

Further let (Mn)n∈N be a sequence in L(H̃) and suppose that limMn = M in the weak

operator topology on L(H̃). Assume that the inclusion dom(A) ⊂ H̃ is compact and that

there exists a λ > 0 such that ReMn > λIH̃ for all n ∈ N. Let (xn)n∈N be a sequence in H̃

which converges weakly to x ∈ H̃. Then M + A is invertible and limn→∞(Mn + A)−1xn =

(M + A)−1x weakly in dom(A).

Proof. Obviously ReM > λIH̃ , so M + A is invertible by Lemma 2.12. Consider zn =

(Mn+A)
−1xn for all n ∈ N. Then ‖zn‖dom(A) 6

1+λ+‖Mn‖
λ

‖xn‖H̃ for all n ∈ N by Lemma 2.12.

So the sequence (zn)n∈N is bounded in dom(A). Passing to a subsequence, we may as-

sume without loss of generality that there exists a z ∈ dom(A) such that lim zn = z

weakly in dom(A). Then lim zn = z in H̃ by the compactness assumption. Consequently,

limMnzn = Mz weakly in H̃. Now Mnzn + Azn = xn for all n ∈ N. Take the limit

n→ ∞ and notice that both sides converge weakly in H̃ . It follows that Mz +Az = x, so

z = (M + A)−1x. Now the lemma follows by a standard subsequence argument.

We need one more convergence result for the proof of Theorem 4.2. This result is also

of independent interest.

Proposition 4.5. Suppose that limmn = m in the weak operator topology on L(H0) and

lim(ι∗anι)
−1 = (ι∗aι)−1 in the weak operator topology on L(ran(G)). Let q, q1, q2, . . . ∈

BD(D) and assume that lim qn = q in BD(D). Then

lim
n→∞

Λ−1
n qn = Λ−1q

weakly in BD(G).



Proof. Choose H̃ = H0 × ran(G) and let A =

(
0 −D̊ι

−ι∗G 0

)
with dom(A) = dom(G)×

(
ran(G) ∩ dom(D̊)

)
. Then A is skew-adjoint in H̃ by Lemma 4.3(b). Moreover, the

inclusion dom(A) ⊂ H̃ is compact by Lemma 4.3(d) and the compactness assumption.

Further let

M =

(
m 0

0 (ι∗aι)−1

)
and Mn =

(
mn 0

0 (ι∗anι)
−1

)

for all n ∈ N. Then limMn =M in the weak operator topology on L(H̃). Since

Re(ι∗anι)
−1

> ‖ι∗anι‖−2
L(ran(G)) Re(ι

∗anι) > ‖an‖−2
L(H1)

Re(ι∗anι)

for all n ∈ N and supn ‖an‖L(H1) < ∞, it follows that there exists a λ > 0 such that

ReMn > λI for all n ∈ N. We use Lemma 4.3(g) for Λ−1 and Λ−1
n . Obviously

lim(Dqn,−(ι∗anι)
−1ι∗qn) = (Dq,−(ι∗aι)−1ι∗q)

weakly in H̃. Hence

lim
n→∞

(
mn −D̊ι
−ι∗G (ι∗anι)

−1

)−1(
D

−(ι∗anι)
−1ι∗

)
qn =

(
m −D̊ι

−ι∗G (ι∗aι)−1

)−1(
D

−(ι∗aι)−1ι∗

)
q

weakly in dom(A) by Lemma 4.4. Consequently limΛ−1
n qn = Λ−1q weakly in BD(G) by

Lemma 4.3(g).

Now we are able to prove the main theorem of this section.

Proof of Theorem 4.2. Let ψ ∈ H . Then limΛ−1
n Gκ∗ψ = Λ−1Gκ∗ψ weakly in BD(G)

by Proposition 4.5. Hence

lim
n→∞

(Λ
(n)
H )−1ψ = lim

n→∞
κΛ−1

n Gκ∗ψ = κΛ−1Gκ∗ψ = Λ−1
H ψ

weakly in H . This proves the first statement in Theorem 4.2.

Now suppose that κ is compact. Suppose lim(Λ
(n)
H )−1 = Λ−1

H in L(H) is false. Passing

to a subsequence if necessary, there exist δ > 0 and ψ1, ψ2, . . . ∈ H such that

‖(Λ(n)
H )−1ψn − Λ−1

H ψn‖H > δ‖ψn‖H (10)

for all n ∈ N. Without loss of generality we may assume that ‖ψn‖H = 1 for all n ∈ N.

Passing again to a subsequence if necessary, there exists a ψ ∈ H such that limψn = ψ

weakly in H . Then limκ∗ψn = κ∗ψ in BD(G) since κ is compact. Therefore limGκ∗ψn =

Gκ∗ψ in BD(D). Hence limΛ−1
n Gκ∗ψn = Λ−1Gκ∗ψ weakly in BD(G) by Proposition 4.5.

Using again that κ is compact it follows that lim(Λ
(n)
H )−1ψn = (ΛH)

−1ψ in H . Similarly

lim(ΛH)
−1ψn = (ΛH)

−1ψ in H . So lim ‖(Λ(n)
H )−1ψn − Λ−1

H ψn‖H = 0. This contradicts (10)

for large n.



5 The non-coercive case

In this section, we drop the coerciveness condition on m. As a result the Dirichlet-to-

Neumann operator can become multi-valued, that is, it is a graph and no longer an oper-

ator. The Dirichlet-to-Neumann graph associated with the Schrödinger operator −∆+m

has been studied in [AEKS] and [BE1].

Throughout this section we adopt the notation and assumptions as in the beginning of

Section 2. Further we fix an element m ∈ L(H0) and a coercive a ∈ L(H1). We emphasise

that we do not require that m is coercive. The definition of the Dirichlet-to-Neumann

graph, however, remains the same as in the single-valued case in Definition 2.16.

Definition 5.1. Set

Λ = {(πBD(G)u, πBD(D)aGu) ∈ BD(G)× BD(D) : u ∈ dom(DaG) and mu−DaGu = 0}.

We call Λ the Dirichlet-to-Neumann graph associated with −DaG +m.

We briefly recall some definitions in the area of (linear) graphs. Let H,K be Hilbert

spaces. Then a graph A is a vector subspace of H × K. The domain, multi-valued

part and inverse of A are defined by

dom(A) = {h ∈ H : there exists a k ∈ K such that (h, k) ∈ A},

mul(A) = {k ∈ K : (0, k) ∈ A} and

A−1 = {(k, h) ∈ K ×H : (h, k) ∈ A}.

We say that A is single-valued or an operator if mul(A) = {0}. The next lemma is

trivial.

Lemma 5.2.

(a) mul(Λ) = {πBD(D)aGu : u ∈ ker(m−DaG̊)}.
(b) If ker(m−DaG̊) = {0}, then Λ is single-valued.

As in Proposition 3.6 define the sesquilinear form b : dom(G)× dom(G) → C by

b(u, v) = (aGu,Gv)H1 + (mu, v)H0.

We also need the Dirichlet-version of b defined by b̊ = b|dom(G̊)×dom(G̊). Then b and b̊ are

continuous. Hence there exist T ∈ L(dom(G)) and T̊ ∈ L(dom(G̊)) such that b(u, v) =

(Tu, v)dom(G) for all u, v ∈ dom(G) and b̊(u, v) = (T̊ u, v)dom(G̊) for all u, v ∈ dom(G̊). Note

that ker(T̊ ) = ker(m−DaG̊), since (G̊)∗ = −D.

With a condition on ran(T̊ ) we can characterise the domain of the Dirichlet-to-Neumann

graph Λ.

Proposition 5.3. Suppose that ran(T̊ ) is closed in dom(G̊). Then

dom(Λ) = {u0 ∈ BD(G) : (Gu0, πBD(D)a
∗Gv)BD(D) = 0 for all v ∈ ker(m∗ −Da∗G̊)}.



Proof. ‘⊂’. Let u0 ∈ dom(Λ). Then there exists a u ∈ dom(G) such that mu−DaGu = 0

and u0 = πBD(G)u. Let v ∈ dom(G̊). Then (mu, v)H0 = (DaGu, v)H0 = −(aGu, G̊v)H1 and

(T̊ (u− u0), v)dom(G̊) = b̊(u− u0, v) = (aG(u− u0), G̊v)H1 + (m(u− u0), v)H0

= −(aGu0, G̊v)H1 − (mu0, v)H0.

Note that T̊ (u− u0) ∈ ran(T̊ ) = (ker((T̊ )∗))⊥dom(G̊) since ran(T̊ ) is closed.

Now let v ∈ ker(m∗ −Da∗G̊) = ker((T̊ )∗). Then

0 = −(T̊ (u− u0), v)dom(G̊) = (aGu0, G̊v)H1 + (mu0, v)H0

= (Gu0, a
∗G̊v)H1 + (u0, m

∗v)H0

= (Gu0, a
∗G̊v)H1 + (DGu0, Da

∗G̊v)H0

= (Gu0, a
∗G̊v)dom(D) = (Gu0, πBD(D)a

∗G̊v)BD(D)

as required.

‘⊃’. The proof is similar and for this inclusion it is essential that ran(T̊ ) is closed.

Corollary 5.4. Suppose that ran(T̊ ) is closed in dom(G̊). Then

dom(Λ) = {u0 ∈ BD(G) :
(
Φ(πBD(D)a

∗Gv)
)
(u0) = 0 for all v ∈ ker(m∗ −Da∗G̊)},

where Φ: BD(D) → BD(G)′ is the natural unitary map as in Proposition 2.8.

We emphasise that boundary regularity is not needed in Corollary 5.4.

The next lemma gives an easy to verify condition which implies that T̊ has closed range.

Lemma 5.5. If the inclusion τ : dom(G̊) → H0 is compact, then T̊ has closed range.

Proof. There exist µ, ω > 0 such that µ‖u‖2
dom(G̊)

6 Re b̊(u)+ω‖τu‖2H0
for all u ∈ dom(G̊).

Then µ‖u‖2
dom(G̊)

6 Re(T̊ u, u)dom(G̊) + ω(τ ∗τu, u)dom(G̊) = Re((T̊ + ωτ ∗τ)u, u)dom(G̊) for all

u ∈ dom(G̊). So T̊ + ωτ ∗τ is injective and has closed range. Similarly (T̊ )∗ + ωτ ∗τ is

injective. So T̊ + ωτ ∗τ is invertible. Since ωτ ∗τ is compact, the operator T̊ is Fredholm.

In particular, the range of T̊ is closed.

Note that the operator τ is compact in the situation of Example 2.3.

Example 5.6. Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary Γ. Let G and D

be as in Example 2.3. If u0 ∈ BD(G), v ∈ H0 and Φ: BD(D) → BD(G)′ is the natural

unitary map as in Proposition 2.8, then it follows from Example 2.10 and Proposition 2.9(b)

that

(
Φ(πBD(D)a

∗Gv)
)
(u0) = 〈(νπBD(D)a

∗Gv),Tru0〉(TrH1(Ω))′×TrH1(Ω)

= 〈(νa∗Gv),Tru0〉(TrH1(Ω))′×TrH1(Ω)

= 〈(∂a∗ν v),Tr u0〉H−1/2(∂Ω),H1/2(∂Ω),



where ∂a
∗

ν is the co-normal derivative. So Corollary 5.4 gives

dom(Λ) = {u0 ∈ BD(G) : 〈(∂a∗ν v),Tru0〉H−1/2(∂Ω),H1/2(∂Ω) = 0 for all v ∈ ker(m∗ −Da∗G̊)},

in agreement with [McL] Proposition 4.10.

Next we turn to the Neumann-to-Dirichlet graph.

Proposition 5.7. Assume that ran(T ) is closed in dom(G). Then

dom(Λ−1) = {q0 ∈ BD(D) : (Dq0, πBD(G)v)BD(G) = 0 for all v ∈ ker(m∗ − D̊a∗G)}.

Before we prove the latter proposition, we need a lemma.

Lemma 5.8. Let q0 ∈ BD(D). Let f0 ∈ dom(G) be such that

(f0, v)dom(G) = (Dq0, πBD(G)v)BD(G)

for all v ∈ dom(G). Let u ∈ dom(G). Then the following statements are equivalent.

(i) Tu = f0.

(ii) u ∈ dom(DaG), mu−DaGu = 0 and q0 = πBD(D)aGu.

Proof. ‘(i)⇒(ii)’. Let v ∈ dom(G). Then

(mu, v)H0 + (aGu,Gv)H1 = b(u, v) = (Tu, v)dom(G) = (f0, v)dom(G) = (Dq0, πBD(G)v)BD(G).

Hence (mu, v)H0 + (aGu, G̊v)H1 = 0 for all v ∈ dom(G̊). So aGu ∈ dom((G̊)∗) = dom(D)

and DaGu =−(G̊)∗aGu =mu. In particular, u ∈ dom(DaG). Alternatively, if v ∈ BD(G),

then

(Dq0, v)BD(G) = (Dq0, πBD(G)v)BD(G) = (mu, v)H0 + (aGu,Gv)H1

= (DaGu,DGv)H0 + (aGu,Gv)H1 = (aGu,Gv)dom(D)

= (πBD(D)aGu,Gv)BD(D) = (DπBD(D)aGu, v)BD(G)

by Lemma 2.7. So q0 = πBD(D)aGu.

‘(ii)⇒(i)’. Let v ∈ dom(G̊). Since (G̊)∗ = −D one deduces that

(Tu, v)dom(G) = b(u, v) = (aGu, G̊v)H1 + (mu, v)H0

= −(DaGu, v)H0 + (mu, v)H0 = 0 = (Dq0, πBD(G)v)BD(G) = (f0, v)dom(G).

Alternatively, if v ∈ BD(G), then

(Tu, v)dom(G) = b(u, v) = (aGu,Gv)H1 + (mu, v)H0

= (aGu,Gv)H1 + (DaGu,DGv)H0

= (aGu,Gv)dom(D) = (πBD(D)aGu,Gv)BD(D) = (q0, Gv)BD(D)

= (Dq0, v)BD(G) = (f0, v)dom(G).

So by linearity (Tu, v)dom(G) = (f0, v)dom(G) for all v ∈ dom(G) and Tu = f0.



Proof of Proposition 5.7. Let q0 ∈ BD(D). Let f0 ∈ dom(G) be as in Lemma 5.8.

Then it follows from Lemma 5.8 that q0 ∈ dom(Λ−1) if and only if f0 ∈ ran(T ). But

ran(T ) = (ker(T ∗))⊥dom(G) since ran(T ) is closed in dom(G). Now ker(T ∗) = ker(m∗−D̊a∗G)
because G∗ = −D̊. Hence f0 ∈ ran(T ) if and only if (Dq0, πBD(G)v)BD(G) = 0 for all

v ∈ ker(m∗ − D̊a∗G).

As in Lemma 5.5 one has the following sufficient condition for the closedness of ran(T ).

Lemma 5.9. If the inclusion dom(G) ⊂ H0 is compact, then ran(T ) is closed in dom(G).

In our model case Example 2.3, the inclusion dom(G) ⊂ H0 is compact if Ω has a

continuous boundary.

We conclude with a variant of the Dirichlet-to-Neumann graph involving an interme-

diate space as in Section 3. Throughout the remainder of this section let H be a Hilbert

space and κ ∈ L(BD(G), H) injective with dense range. Define

ΛH = {(ϕ, ψ) ∈ H ×H : there exists a u0 ∈ BD(G) such that

κ(u0) = ϕ and (u0, Gκ
∗ψ) ∈ Λ}.

We call ΛH the Dirichlet-to-Neumann graph in H associated with −DaG +m. It

follows from Lemma 5.2 that ΛH is single-valued if ker(m−DaG̊) = {0}.
The graph ΛH can be described with a form.

Proposition 5.10. Define j : dom(G) → H by j = κ ◦ πBD(G). Then

ΛH = {(ϕ, ψ) ∈ H ×H : there exists a u ∈ dom(G) such that

j(u) = ϕ and b(u, v) = (ψ, j(v))dom(G) for all v ∈ dom(G)}.

Proof. This follows as in the proof of Proposition 3.6.

Corollary 5.11. If ker(−DaG̊ + m) = {0} and the inclusion dom(G) ⊂ H0 is compact,

then ΛH is an m-sectorial operator.

Proof. Let j = κ ◦ πBD(G) : dom(G) → H and let V (b) = {u ∈ dom(G) : b(u, v) =

0 for all v ∈ ker j}. Then V (b) ∩ ker j = ker(−DaG̊ + m) = {0}. Then the statement

follows from [ACSVV] Theorem 8.11 and Proposition 5.10.

Even if the inclusion dom(G) ⊂ H0 is compact, then in general ΛH is not an m-sectorial

graph. A counterexample has been given in [BE2] Example 3.7.

6 Resolvent convergence, non-coercive case

In this section we consider resolvent convergence of a sequence of Dirichlet-to-Neumann

operators without the coercivity condition on m. Throughout this section, we adopt the

notation and assumptions as in the beginning of Section 2. Let H be a Hilbert space and

let κ ∈ L(BD(G), H) be one-to-one with dense range. Set j = κ ◦ πBD(G) : dom(G) → H .



We need a stronger version of convergence for the leading coefficients, which we next

introduce. Let a, a1, a2, . . . ∈ L(H1) be coercive. We say that (an)n∈N converges to

a independent of the boundary conditions if for every strictly increasing sequence

(nk)k∈N in N, all f, f1, f2, . . . ∈ H0 and all u, u1, u2, . . . ∈ dom(G) with




lim
k→∞

fk = f weakly in H0,

lim
k→∞

uk = u weakly in dom(G), and

uk ∈ dom(Dank
G) and −Dank

Guk = fk for all k ∈ N

(11)

it follows that lim
k→∞

ank
Guk = aGu weakly in H1.

Note that D is weakly closed and limk→∞D(ank
Guk) = limk→∞−fk = −f weakly in

H0. So aGu ∈ dom(D) and −DaGu = f . In particular u ∈ dom(DaG).

Example 6.1. In this example we show that in the classical situation, convergence of

the coefficients independent of the boundary conditions is implied by the already studied

notion of H-convergence, see [Tar] and [MT].

Let Ω ⊂ Rd be open and bounded. Further, let H0, H1, G and D be as in Example 2.3.

We identify an element of L∞(Ω,Cd×d) with an element of L(H1) in the natural way.

Let a, a1, a2, . . . ∈ L∞(Ω,Cd×d). Suppose that Re an > µI for all n ∈ N, Re a > µI and

supn ‖an‖L(H1) < ∞. Further suppose that (an)n∈N is H-convergent to a. Then (an)n∈N
converges to a independent of the boundary conditions.

Indeed, let f, f1, f2, . . . ∈ L2(Ω), u, u1, u2, . . . ∈ H1(Ω) and (nk)k∈N satisfy (11). Then

every subsequence (ank
)k∈N is H-convergent to a by the discussion after Definition 6.4 in

[Tar]. So without loss of generality we may assume that nk = k for all k ∈ N. As (uk)k∈N
converges to u weakly in H1(Ω) it also converges weakly in H1

loc(Ω). The inclusion H
1
0 (Ω) ⊂

L2(Ω) is compact since Ω is bounded. Hence also the inclusion L2(Ω)⊂ (H1
0 (Ω))

′ =H−1(Ω)

is compact. Therefore (fk)k∈N converges strongly to f in H−1(Ω) ⊂ H−1
loc (Ω). Then the

criteria of Lemma 10.3 in [Tar] are fulfilled and we obtain that (akGuk)k∈N converges weakly

to aGu in L2,loc(Ω)
d. Since the sequence (akGuk)k∈N in L2(Ω)

d is bounded in L2(Ω)
d, there

exists a q ∈ L2(Ω)
d and a subsequence of (akGuk)k∈N that weakly converges to q in L2(Ω)

d.

By uniqueness of limits in L2,loc(Ω)
d, we must have that q = aGu. So the subsequence

converges to aGu in L2(Ω)
d. Using the standard subsequence argument we deduce that

(akGuk)k∈N converges weakly to aGu in L2(Ω)
d = H1.

The condition (an)n∈N converges to a independent of the boundary conditions, which we

use in this section, is stronger than the condition used for the convergence in Theorem 4.2.

Proposition 6.2. Let a, a1, a2, . . . ∈ L(H1) and µ > 0. Suppose that Re an > µI for all

n ∈ N and Re a > µI. Suppose that (an)n∈N converges to a independent of the boundary

conditions. Further assume that the inclusion dom(G) ⊂ H0 is compact. Let ι : ran(G) →֒
H1 be the embedding map. Then limn→∞(ι∗anι)

−1 = (ι∗aι)−1 in the weak operator topology

on L(ran(G)).

Proof. Let q ∈ ranG ∩ dom D̊. Let n ∈ N. Write rn = (ι∗anι)
−1q. Then rn ∈ ranG and

‖rn‖H1 6 µ−1‖q‖H1. There exists a un ∈ domG ∩ (kerG)⊥H0 such that Gun = rn. Then



the sequence (un)n∈N is bounded in domG by Lemma 4.1(a). Passing to a subsequence if

necessary, there exists a u ∈ domG such that lim un = u weakly in domG. Let n ∈ N. Then

q = ι∗anιrn = ι∗anGun. Since q ∈ dom D̊ it follows from Lemma 4.3(a) that anGun ∈ dom D̊

and D̊anGun = D̊ι∗anGun = D̊q. Because (an)n∈N converges to a independent of the

boundary conditions, we obtain that lim anGun = aGu weakly in H1. Since the operator

D̊ is closed, we obtain that aGu ∈ dom D̊ and D̊aGu = D̊q. Using again Lemma 4.3(a)

one deduces that ι∗aGu ∈ dom D̊ and D̊ι∗aGu = D̊q. Hence (D̊ι)ι∗aιGu = (D̊ι)q. Since

D̊ι is injective by Lemma 4.3(c), it follows that ι∗aιGu = q. So Gu = (ι∗aι)−1q. Then

lim(ι∗anι)
−1q = lim rn = limGun = Gu = (ι∗aι)−1q

weakly in ranG.

Finally, since sup ‖(ι∗anι)−1‖L(ranG) < ∞ and ranG ∩ dom D̊ is dense in ranG by

Lemma 4.3(b), one concludes that lim(ι∗anι)
−1 = (ι∗aι)−1 in the weak operator topology

on L(ran(G)).

Remark 6.3. The above proposition is also valid if ι is replaced by the embedding of a

closed subspace of ranG which contains ran G̊. This is the motivation for the terminology

(an)n∈N converges to a independent of the boundary conditions.

The main theorem of this section is as follows.

Theorem 6.4. Let a, a1, a2, . . . ∈ L(H1), m,m1, m2, . . . ∈ L(H0) and µ > 0. Suppose

that Re an > µI for all n ∈ N, Re a > µI and supn ‖an‖L(H1) < ∞. Suppose that (an)n∈N
converges to a independent of the boundary conditions and limmn =m in the weak operator

topology on L(H0). Assume that ker(mn−DanG̊) = {0} for all n ∈ N and ker(m−DaG̊) =
{0}. Further assume that the inclusion dom(G) ⊂ H0 is compact.

For all n ∈ N let Λ
(n)
H and ΛH be the Dirichlet-to-Neumann operators in H associated

with −DanG+mn and −DaG +m, respectively. Then one has the following.

(a) The sequence (Λ
(n)
H )n∈N of operators is uniformly sectorial.

(b) limn→∞(λI+Λ
(n)
H )−1 = (λI+ΛH)

−1 in the weak operator topology for all large λ > 0.

(c) If κ is compact, then

lim
n→∞

(λI + Λ
(n)
H )−1 = (λI + ΛH)

−1

uniformly in L(H) for all large λ > 0.

The proof requires a lot of preparation. Adopt the notation and assumptions of Theo-

rem 6.4. For all n ∈ N define bn : dom(G)× dom(G) → C by

bn(u, v) = (anGu,Gv)H1 + (mnu, v)H0

and define V (bn) = {u ∈ dom(G) : bn(u, v) = 0 for all v ∈ ker j}. Define similarly b and

V (b).



Lemma 6.5. For all ε > 0 there exists an ω > 0 such that

‖u‖2H0
6 ε‖u‖2dom(G) + ω‖j(u)‖2H

for all n ∈ N and u ∈ V (bn).

Proof. Let n ∈ N. Since ker(mn−DanG̊) = {0}, the restriction j|V (bn) is injective. Because

also the inclusion dom(G) ⊂ H0 is compact, it follows that for all ε > 0 there exists an

ω > 0 such that

‖u‖2H0
6 ε‖u‖2dom(G) + ω‖j(u)‖2H

for all u ∈ V (bn). We next show that one can choose ω uniformly in n.

Suppose the lemma is false. Then without loss of generality and passing to a subse-

quence if necessary there exist ε > 0 and for all n ∈ N there exists a un ∈ V (bn) such

that

‖un‖2H0
> ε‖un‖2dom(G) + n‖j(un)‖2H .

Without loss of generality we may assume that ‖un‖H0 = 1 for all n ∈ N. Then ε‖un‖2dom(G) 6

1 for all n ∈ N, so the sequence (un)n∈N is bounded in dom(G). Passing to a subsequence

if necessary there exists a u ∈ dom(G) such that lim un = u weakly in dom(G). Since the

inclusion dom(G)⊂ H0 is compact it follows that u = lim un in H0. In particular ‖u‖H0 = 1

and u 6= 0. Also j(u) = lim j(un) = 0 in H , so u ∈ ker j = dom(G̊).

If n ∈ N, then (anGun, G̊v)H1 = −(mnun, v)H0 for all v ∈ dom(G̊) = ker j, since

un ∈ V (bn). Therefore anGun ∈ dom((G̊)∗) = dom(D) and −DanGun = −mnun. Next

limmnun = mu weakly in H0. Since (an)n∈N converges to a independent of the boundary

conditions one deduces that aGu ∈ dom(D) and −DaGu = −mu. Then u ∈ ker(m −
DaG̊) = {0}. So u = 0. This is a contradiction.

Lemma 6.6. There exist µ̃, ω > 0 such that

µ̃‖u‖2dom(G) 6 Re bn(u) + ω‖j(u)‖2H
for all n ∈ N and u ∈ V (bn).

Proof. Let ω̃ = µ+ supn ‖mn‖L(H0). Then

µ‖u‖2dom(G) 6 Re(anGu,Gu)H1 + µ‖u‖2H0
6 Re bn(u) + ω̃‖u‖2H0

for all n ∈ N and u ∈ dom(G).

Choose ε = µ
2ω̃

and let ω > 0 be as in Lemma 6.5. Let n ∈ N and u ∈ V (bn). Then

µ‖u‖2dom(G) 6 Re bn(u) + ω̃‖u‖2H0

6 Re bn(u) + ω̃
( µ
2ω̃

‖u‖2dom(G) + ω‖j(u)‖2H
)

= Re bn(u) +
µ

2
‖u‖2dom(G) + ωω̃‖j(u)‖2H.

So
µ

2
‖u‖2dom(G) 6 Re bn(u) + ωω̃‖j(u)‖2H

and the lemma follows.



Now we are able to prove Theorem 6.4.

Proof of Theorem 6.4. Let µ̃, ω > 0 be as in Lemma 6.6.

‘(a)’. Set c = supn∈N(‖an‖L(H1) + ‖mn‖L(H0)). Let n ∈ N and ϕ ∈ dom(Λ
(n)
H ). There

exists a u ∈ dom(G) such that j(u) = ϕ and bn(u, v) = (Λ
(n)
H ϕ, j(v))H for all v ∈ dom(G).

Then u ∈ V (bn) and ((Λ
(n)
H + ωI)ϕ, ϕ)H = bn(u) + ω‖j(u)‖2H, so Re((Λ

(n)
H + ωI)ϕ, ϕ)H >

µ̃‖u‖2dom(G). Therefore

| Im((Λ
(n)
H + ωI)ϕ, ϕ)H| = | Im bn(u)| 6 c‖u‖2dom(G) 6

c

µ̃
Re((Λ

(n)
H + ωI)ϕ, ϕ)H.

Hence the operators Λ
(n)
H are sectorial with vertex −ω and semi-angle arctan c

µ̃
, uniformly

in n.

‘(b)’. In order not to repeat part of the proof in Statement (c) we first prove something

more general. Let λ > ω. Let ψ, ψ1, ψ2, . . . ∈ H and suppose that limψn = ψ weakly in H .

We shall prove that lim(λI + Λ
(n)
H )−1ψn = (λI + ΛH)

−1ψ weakly in H .

Let n ∈ N. Set ϕn = (λI +Λ
(n)
H )−1ψn. There exists a un ∈ V (bn) such that j(un) = ϕn

and

bn(un, v) + λ(j(un), j(v))H = (ψn, j(v))H (12)

for all v ∈ dom(G). Choose v = un. Then Lemma 6.6 gives

µ̃‖un‖2dom(G) 6 Re bn(un)+λ‖j(un)‖2H = Re(ψn, j(un))H 6 ‖ψn‖H ‖j‖L(dom(G),H) ‖un‖dom(G).

So ‖un‖dom(G) 6 µ̃−1‖ψn‖H ‖j‖L(dom(G),H). Since the sequence (ψn)n∈N is bounded in H , the

sequence (un)n∈N is bounded in dom(G). Passing to a subsequence if necessary, there exists

a u ∈ dom(G) such that lim un = u weakly in dom(G). Since the inclusion dom(G) ⊂ H0 is

compact one deduces that lim un = u in H0. Then limmnun =mu weakly in H0. Moreover,

limϕn = lim j(un) = j(u) weakly in H . Next we show that j(u) = (λI + ΛH)
−1ψ.

Let n ∈ N. If v ∈ ker j = dom(G̊), then bn(un, v) = 0, so (anGun, G̊v)H1 =−(mnun, v)H0.

Hence anGun ∈ dom((G̊)∗) = dom(D) and −DanGun = −mnun. In particular, un ∈
dom(DanG). Moreover, lim un = u weakly in dom(G) and limmnun = mu weakly in H0.

Since (an)n∈N converges to a independent of the boundary conditions, one deduces that

lim anGun = aGu weakly in H1.

Let v ∈ dom(G). If n ∈ N, then (12) gives

(anGun, Gv)H1 + (mnun, v)H0 + λ(j(un), j(v))H = (ψn, j(v))H.

Taking the limit n→ ∞ one establishes

(aGu,Gv)H1 + (mu, v)H0 + λ(j(u), j(v))H = (ψ, j(v))H.

So b(u, v)+λ(j(u), j(v))H = (ψ, j(v))H. Therefore j(u) ∈ dom(ΛH) and (λI+ΛH)j(u) = ψ.

With the usual subsequence argument we proved that lim(λI +Λ
(n)
H )−1ψn = (λI +ΛH)

−1ψ

weakly in H . Now Statement (b) follows by choosing ψn = ψ for all n ∈ N.



‘(c)’. Finally suppose that κ is compact. Then also j is compact. Let λ > ω. Suppose

lim(λI + Λ
(n)
H )−1 = (λI + ΛH)

−1 in L(H) is false. Passing to a subsequence if necessary,

there exist δ > 0 and ψ1, ψ2, . . . ∈ H such that

‖(λI + Λ
(n)
H )−1ψn − (λI + ΛH)

−1ψn‖H > δ‖ψn‖H

for all n ∈ N. Without loss of generality we may assume that ‖ψn‖H = 1 for all n ∈ N.

Passing again to a subsequence if necessary, there exists a ψ ∈ H such that limψn = ψ

weakly in H . Let un ∈ V (bn) and u ∈ dom(G) be as in Part (b) for all n ∈ N. Then

lim un = u weakly in dom(G), so

lim
n→∞

(λI + Λ
(n)
H )−1ψn = lim

n→∞
j(un) = j(u) = (λI + ΛH)

−1ψ

in H by the compactness of j. Similarly limn→∞(λI +Λ
(n)
H )−1ψ = (λI +ΛH)

−1ψ in H . So

lim
n→∞

‖(λI + Λ
(n)
H )−1ψn − (λI + ΛH)

−1ψn‖H = 0.

This is a contradiction.

Note that the limit Dirichlet-to-Neumann graph ΛH is an operator in Theorem 6.4. In

[AEKS] Theorem 5.11 a different condition on the an is used to obtain resolvent convergence

for symmetric operators/graphs, but possibly multi-valued limit graph ΛH. Since we do

not wish to require symmetry in Theorem 6.4 and we need that the limit graph ΛH is m-

sectorial, we require conveniently that all graphs are single-valued. See also the discussion

at the end of Section 5.

7 More examples

The first example is from linearized elasticity.

Example 7.1. Let Ω ⊂ Rd be open. Set

L2,sym(Ω) = {S ∈ L2(Ω)
d×d : ST = S a.e.}.

Choose H0 = L2(Ω)
d and H1 = L2,sym(Ω). Define Ĝ : C∞

c (Ω)d → L2,sym(Ω) by

(Ĝu)kl =
1

2

(
∂kul + ∂luk

)
.

Further define D̂ : C∞
c (Ω)d×d ∩ L2,sym(Ω) → L2(Ω)

d by

(D̂q)k =

d∑

l=1

∂lqkl.

Then dom(Ĝ) is dense in H0 and dom(D̂) is dense in H1. Moreover, using integration by

parts one deduces that (2) is valid. Then one can apply Example 2.2.



Korn’s first inequality implies that ‖∂kul‖L2(Ω) 6
√
2‖Ĝu‖H1 for all u ∈ C∞

c (Ω)d and

k, l ∈ {1, . . . , d}. So dom(G̊)⊂H1
0 (Ω). In particular the inclusion dom(G̊) ⊂H0 is compact

if Ω is bounded.

Under some regularity conditions on the boundary of Ω, Korn’s second inequality states

that there exists a c > 0 such that ‖∂kul‖L2(Ω) 6 c‖u‖dom(G) for all u ∈ dom(G) and

k, l ∈ {1, . . . , d}. For example, if Ω is bounded with a Lipschitz boundary, then Korn’s

second inequality is valid. For an easy proof see [Nit] Section 3. If Korn’s second inequality

is valid, then dom(G) ⊂ H1(Ω)d. Consequently, if Korn’s second inequality is valid and Ω

has a continuous boundary, then the inclusion H1(Ω) ⊂ L2(Ω) is compact and hence the

inclusion dom(G) ⊂ H0 is compact. We point out that Korn’s second inequality is not a

necessary condition for the inclusion dom(G) ⊂ H0 to be compact, see [Wec] Theorem 1.

In particular, suppose Ω is bounded with a Lipschitz boundary and write Γ = ∂Ω.

Let σ ∈ (−∞, 1
2
] and set H = Hσ(Γ)d. Then Tr u ∈ H for all u ∈ dom(G). Moreover,

Tr |BD(G) : BD(G)→H is injective and has dense range. So one can consider as in Section 3

a Dirichlet-to-Neumann operator in H . Note that Tr |BD(G) is compact if σ < 1
2
.

The second example is from electro-magneto statics.

Example 7.2. Let Ω ⊂ R
3 be open. Using integration by parts one deduces that

(curl u, v)L2(Ω)3 = (u, curl v)L2(Ω)3

for all u, v ∈ C∞
c (Ω)3. Therefore let H0 = H1 = L2(Ω)

3 and define Ĝ = D̂ : C∞
c (Ω)3 →

L2(Ω)
3 by Ĝu = D̂u = i curl u. Then (2) is satisfied. Using the construction in Example 2.2

one obtains a new example.
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