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Abstract.

Let G be a real non-compact reductive Lie group and L a compact sub-
group. Take a maximal compact subgroup K of G containing L , and
suppose that G/L 1is Riemannian via a bi-invariant metric and that there
is a spin structure. Then there is the Dirac-operator D over G/L , on
spinors with values in a unitary vector bundle. D 1is a first order,

G-invariant, elliptic, essentially self-adjoint differential operator.

It has been shown by R. Parthasarathy fhat with G semi-simple,
rank K = rank G , 'discrete-seriesf representations of G can be
realized geometrically on the kernel of D (i.e. the L2-solutions .
of Df =0). Following this, we are interested in how the kernel of D
decémposes into irreducible representations of G , when L 1is any
compact subgroup. In future work we expect to reduce this problem to

the compact case 1i.e. to considering the Dirac operator on K/L .

Therefore, in this Thesis, we consider the Dirac operator on a
compact, Riemannian, spin hompgeneous space K/L . And determine the
decomposition of the kernel into irreducible representations of K
We consider the tensor product of an induced representation and a finite-
dimensional representatiqn, and apply 'inducing in stages' to the Diréc

operator.
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Introduction.

(0.1) Let G be a real non-compact reductive Lie group, and K a
maximal compact subgroup containing a given compact subgroup L of G.
The reductive homogeneous space G/L becomes Riemannian via a bi-
invariant metric (,) and suppose there is a spin structure. Take

a G-invariant, metric connection y on the tangent bundle T(G/L) .
Then associated to the pair ((»)sy) » there is the Dirac operator D ,

st order G-invariant, elliptic, essentially self-adjoint differential

a 1
operator. In its coordingte free form, D operates on spinors with values
in a unitary vector bundle. Thus G acts on the space of L2-solut16ns
of the homogeneous Dirac equation Df =0 . The kernel of D, ker D,

becomes a unitary G-module.

One very.important previous app]icatioh of the Dirac operator, in
representation theory, has been in the construction of unitary represent-
ations of G . It was found with G semi-simple and rank K = rank G R
that the 'discrete series' representations of G could be realized

geometrically on Ker D . See [281, [29], [301, [31].

(0.2) We are interested in how Ker D decomposes into irreducible
unitary representatibns of G when L 1is any compact subgroup of G .

This problem has previously not appeared in the Titerature.



The Dirac operator on G/K , having been already solved, we might
expect to be able to reduce the problem to considering the Dirac operator
on K/L . The compact case is a substantial problem within itself, and
this will be the work undertaken in this Thesis. Details are given in

Chapter 2, §1. The non-compact case will be considered in future work.

As far as I know, previous pub]icafion; on this question consist
only of: (i) the vanishing theorem of A . Lichnerowicz (see [26])
for the 'scalar Dirac operator', and (ii) the method first used by
R. Parthasarathy in [281, which can be applied to the case of a compact
symmetric pair of equal rank. This is noted in Chapter 4. See also the
article of S. He]Qason in [19], for‘results on general invariant

differential operators and eigenspace representations.

(0.3) Thus, let (K,L) , with L a subgroup of K, be a compact,
Riemannian, spin pair. See Chapter 2, §1. Let (V,r) be a unitary
representation of L . Associated to ((,),y) there is the 'twisted'
Dirac operator D = DV . Take V = VAO-pL a simple L-module of 'highest
weight' AO-pL (pL is 1 the sum of +ve roots for L , see Chapter 2,

§3). Consider 'y the Levi-Civita or reductive connection.

For a symmetric pair, the formula for the square 02 takes its
simplest form. Finding Ker D becomes equivalent to determining the
primary K-submodules, in the Lz—space, belonging to a certain

infinitesimal class. See Chapter 4. In Chapter 4, (3.2) we note that



the technique previously used in [28]1, [31] can be applied to the case

of a compact equal rank symmetric pair. This essentially involves a
'curvature vanishing argument' and then an application of Bott's Index
Theorem. One can also obtain an elliptic complex from the Dirac operator
on symmetric space, and use cohomology. See EéO]. In (3.3) we deal

with the case of unequal rank. This requires a knowledge of the
structure theory of an unequal rank symmetric pair. Some properties

that we need are worked out in (2.3).

(0.4) In Chapter 1, §2 we give a formula for the square 02 (which
holds for any reductive, ﬁiemannian, spin pair (G,H)) due to John .
H. Rawnsley. This formula is a generalization, in geometric terms, of
that given by R. Parthasarathy in [28] for a symmetric pair. We use

this formula extensively.

Consider a general compact pair (K,L) . Here the situation is a
good deal more complicated. There is apparent]y'no direct generalization
of the methods we use for a symmetric pair. And seemingly no natural
cohomology. We need to develop new techniques. These are described
at the head of Chapters 5-9. An important technique, dealt with in
.Chapter 5, §1 is to tensdr,an,induced representation with a finite
dimensional represenfation. Then in §4 we consider L'= H a maximal
~ torus of K. [Initially our 'curvature vanishing argument' only gives
information when the parameter A is 'sufficiently non-singular'. In

Chapter 9, we develop a technique for 'shifting the parameter’.



This is similar to the situation which arose in [ 311 for the Dirac
operator on G/K, G a non-compact semi-simple Lie group, K a maximal
compact subgroup, rank K = rank G . However there is a difference. In
[31] the existence of the 'discrete series' is not assumed at the outset,
but is constructed geometrically. For a sufficiently non-singular
parameter, the Dirac operator is used to give information about the
discrete series characters. Then it was found necessary to apply
G. Zuckerman's tensor product technique [23j to shift the parameter.
Previously things were done in reverse order, the existence of the discrete
series, proved by Harish-Chandra, being used to get the geometric realization.
Here, in the éompact case we are of course assuming the representation theory
of a compact, connected Lie group. The characters of the irreducibles are
given by the H. Weyl formula. There is a geometrical construction for
them due to Borel and Weil. We are thus ab]e to gain information by

'shifting the Dirac operator'. Refer to Chapter 9.

Our method for handling (K,L) 1is independent of any cohomo]ogy or
use of the Borel-Weil Theorem. Therefore Theorem 4, Chapter 5, (4.2),
gives us an alternative construction of the‘irreduéib1e representations

of a compact, connected Lie group.

Having dealt with the case of an abelian pair in Chapter 7, we apply
a technique of inducing in stages to the Dirac operator, developed in

Chapter 6, and tackle the general case in Chapter 8.

Qur main result is Theorem 8, Chapter 10. It is seen that Ker D is
either zero or primary as a unitary K-module. This result is obtained
Qithout any deep structure theory of the homogeneous épace K/L . However

to compute 'the multiplicity' one needs structural information on the

pair (K,L) .
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CHAPTER 0.

In this chapter, which is essentially introductory, I will introduce
our notation and collect together the necessary background material,
which will be referred to and used later. References for further

details and prdofs are given within each section.

A1l the facts set down here, in this chapter, are known apart from

where mentioned in §2,

51, Representations of Lie Groups. Induced Vector Bundles.

(1.1) Refer to [71, [12], [161, [191, [20].
Let G be a (real, smooth) Lie group. The Lie algebra of G (i.e.

the left invariant vector fields) will be denoted by g .

By a representation of G , we shall mean a pair (W,n) where W

is a real or complex Hilbert space and n:G — SGL(W) is a homomorphism
into the general linear grbup of W , such that the mapping
GxW

>W , (g,w) > n(g)w 1is continuous. We -also say that W -

is a G-module with G actingon W by g.w = n(g)w,g e G,Ww e W .
If W 1is finite dimensional, 1 1is then continuous and therefore
analytic. For W real, complex I _is called orthogonal, unitary if

T is into O(W), U(W) the orthogonal, unitary group of W respectively.

For a representation ¢:g —> ga(W) , of g, (i.e.. ¢ is linear

and ¢[E,n] = [¢(E)>d(n)] Esn € g where [ 1 is the Lie bracket.of
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g , g4(W) respectively) we also say that W is a g-module with g

actingon W by gw=9¢EW,Eeg ,wel.

I can be differentiated to give a representation of g , dm,

called the differential of T (if W is finite-dimensional) viz

din(g)w = %{ I(exp tg)wlt=0 s Ee€gd,wel,

> G 1s the exponential mapping of G .)

(exp: g
* *
There is the contragredient representation (W ,1 ) of G .
Also given another representation (w],n]) of G, there is the direct

sum representation (W@w],ngn]) » and the tensor product representation

(w&w],n&n1) of G . And also of g . (See [121, [16] ).

For each x € G Tlet AX:G
]

> G be the inner automorphism
Ax(g) = Xgx_ The derived automorphism of g 1is denoted

AdG(x) or Ad(x) : g

>g . Ad: G

> GL(g) is a homomorphism,
called the adjoint representation of G . The differential ad =: d Ad

is called the adjoint representation of g . We have

dg

ad £(n) = [&nl €,m € g ; also Ad(expg) = e? , X exp gx-] = exp(Ad(x)&)

> eB js the exponential mapping of GL(g)) .

for £eg,xeG. (B

Let G be connected. G, g is said to be reductive if it has a
finite dimensional completely reducible representation with discrete
kernel, kernel zero respectively. Let H be a closed subgroup of G .

H,h dis said to be reductive in G , g if AdGIH , adglh is completely
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reducible respectively. G 1is said to be semi-simple if {e} is the
only connected, soluble, normal subgroup (e 1is the identity element
of G ); equivalently if g 1is semi-simple. Every semi-simple G is
equal to its derived group, and the center of G is discrete. G is
said to be simple if {e} is the only connected normal subgroup. If
G 1is also simply-connected, G is semi-simple iff (if and only if)

G is the direct product of simple groups. .(See [121, [19].)

N.B. There is a one-to-one correspondence between the connected
Lie subgroupsof G and the subalgebras of g ; which sends a connected

normal subgroup of G to an ideal of g . (See [7].)

(1.2) Let G be a Lie group and H a closed subgroup. The quotient
G/H = {gH;g € G} . A1l such manifold structures, and mappings between
them will be taken to be smooth (ie. Cm) here. G acts on G/H by
L :G/H
g /

> G/H , Lo(g'H) = gg'H , g < 6 , making G/H into a homo-
geneous space (see [ 121 ). At x=gH e G/H , the Zsotropy (or

stability) subgroup GX = gHg-] . The tangent map (see [ 19 7 )

Lg* : T(G/H)

isomorphism from TX(G/H) (the tangent space at x) to Tg x(G/H)’

> T(G/H) (the tangent bundle of G/H) is a Tlinear

geG, xeGH. H acts on TX (G/H) Xg = eH (the identity coset),
0 :

by h > L This is called the Zsotropy representation of H .

h* *
Let X(G/H) denote the Lie algebra of vector fields on G/H (i.e.

the spacé of sections of the tangent bundle with the 'usual' bracket,
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see [191 ). G acts on X(G/H) by g.X where
(9.X)(x) = Lg* X(L 4(x)) » g €G, X e X(G/H) . There is a

homomorphism of Lie algebras g > X(G/H)
€ > E, £ € g where
¥(0f = 9 flexp-t f & C(G/M
«E(x) - dt (exp- Ex)|t=0 ’ € ( / )

(the (smooth) maps G/H

>R (the real numbers) N.B. each
X € X(G/H) 1is a derivation of C(G/H) as an R-algebra). g.% =(Adgt T,
for geG, £ € g. For fixed x = gH € G/H , the linear map

g

> X(G/H)

2 > - g(x) , is surjective with kernel Adg h = 9, (the Lie

algebra of G, ).

(1.3) ‘Refer to [16].
There is the principal H-bundle H ——> G H > G/H . Let (V,x)

be a representation of H . On GxV we define the equivalence relation

(g,v) n (g',v') if g' =gh, v' =x(h) 'v for some h e H . Take
‘ GXHV = {[g,v] ; g € G, v e V} the set of equivalence classes. Put

(!)ﬁ =1 GxHV » sometimes we will write just V , and define

Py:V > G/H , PV[g,v] = gH . Then (!)ﬁ can be made into a

v
G-vector bundle over G/H (see [161,[18]), which we will call the Znduced

(gg'vl , ge G .
: Pg]{x} , X ¢ G/H

vector bundle by (V,x) . G acts on V by glg'v]

There is a linear isomorphism between each fibre !x
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and V given by gPV tV——V s x= gH ; gPv(v) = [gv]

* *
For the contragredient representation (V ,k ) , there is the

* *
G-equivalence (of vector bundles) (y_)ﬁ = (!)ﬁ (* denotes dual).

Also if (V],K]) is a representation of H , there are the G-equivalences

Vev., = Veyv, , vav. = vVay

—1 —_—1 ~1

Let r(y)ﬁ denote the space of sections of V , i.e.

maps f:G/H of = id

>V with Py y - MWriting f(gH) = [g,F(g)1 ,

g e G, we see that T'(V) can be identified with the maps %:G

> V
satisfying %(gh) = K(h)—] %(g) »9e€G,heH. G actson T(V) by
g.f where (g.f)(x) = g.f(g-]x) s or equivalently g.f =: g.f so
(g.%)(g') = %(g-]g') », 9ge€G, fer(V) . Sowe get a representation

r(),}) of G.

a>v

Note that an H-map V 1 induces a vector bundle map

a

hA > r(!q) 3

v 2 !J , alg,v] =[g,a(v)] and so also a linear map r(Vv)

we denote these also by a.

Note that if « 1is orthogonal, unitary and <,> 1is the inner
product on V , we get <>, on ‘yx by <[g,u],[g,v]>X = <u,v>, X = gH ;
thus giving V a real or complex Riemannian structure respectively. The

metric <,> is G-invariant i.e. <g-.,g*> = <-,>

gx X

(1.4) Let C(G,V) be the smooth maps G

>V . G acts on C(G,V)
by Ly f where (Lgf)(g') = f(g 'g') and also by Ryf » where
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(Rgf)(g') = f(g'9) » g6, f e C(G,V) . Sowe get the anti-
representations L, R of G on C(G,V) . The differentials are dL ,

_d _ _d
dR where dL(g)gf = I f(exp tig)lt=0, dR(E)gf = It f(g.expt€)|t=0 ,

then - dL(AdgE)gf

fer(V)s, dr(z)

dR(e)g f o geG,Ecg, feC(6Y) . Also if

= - de()f(g) sz eh, get.

—h>

g

§2. Invariant Connections on Induced Vector Bundles.

Two points should be brought to notice concerning the results that I
state and prove in this section. Ffrst]y invariant connections have been
studied before on principal bundles (see [9]). Here we study the
situation on an induced vector bundle. A lot of this material is probab]y
well-known, but we cannot find a reference. Secondly, I appreciate the
help of Dr. John H. Rawnsley in formulating the material of this section.
Especially the statement of Proposition 1 was communicated to me by him.

The proof given is my own.

(2.1) Let G be a Lie group and H a closed subgroup. Take a represent-

ation (V,k) of H , and form (!)g (see §1. (1.3)). Let v bea

connection on (y)ﬁ . So Vy r(V) > T(V) s a linear operator
for each X e X(G/H) (see §1. (1.2)), satisfying (i) VaXf = avxf “
(i) VX(af) = aVXf + (X.a)f (the Leibniz ru]e), and
(iii) Vysy =y * Yy s X,Y € X(G/H) , a ¢ C(G/H) ,
f er(v) .
Put oP(G/H,V) = r(ApT*(G/H) 8 V) , the V-valued p-forms p e W (the .

whole numbers), he}e * denotes the dual bundle, and AP denotes the
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pth exterior power. (See [6] .) Now .APT*(G/H) v = Hom(ApT(G/H),y)

as G-vector bundles, (for constructions on vector bundles see [161),

so we can identify

aP(G/H,Y) = Hom (APX(G/H),T(¥)) by if

gea’( ), get B(XqseensX )(X) = B(X) (X (X)Aueenn. (X)) s

P

Xi e X(G/H) , x € G/H , (here A denotes exterior multiplication)

(see [61).

> ' (G/H,V)
£,XeX(G/H),f € T(V) .

Then we can view V as a linear map Vv :T(V)

by (VF)(X) = 7,

There is a map

> aP (G/H,V),g € G

*
Ly 2P (G/H,V)
peW,

called the pull-back defined by

* =
L X’ooo., =
(LgB)(Xpaeen X)) = g

.(BoLg)(Lg*X],..;..,L X )

. * _ =1 .

i.e. (LgB)(x)(X](x),....,Xp(x)) =g .(BoLg)(x)(Lg*X](x),....,Lg*Xp(x)) .
We say that v is G-Zmvariant if invariant by the left translations

i.e. L;‘(v(g.f)) =vf,geG, fer(V). (2.1.1)

We will use the notation of §1.°
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(2.2) Let G/H be reductive (i.e. H reductive in G see §1 (1.1)),
sowe have g = h 8m a vector space direct sum for some

subspace m , with m Ad H-invariant. Thus [hml cm .

Lemma 1.

(1) By the pair (m,Ad) , a representation of H , we can identify

(@)ﬁ = T(G/H) as G-vector bundles.

(ii) Under (i), (see the proof), we have g(gH) = [g,%(g)] where
1

£E) ,9eG,Eeg, and P:g

g(g) = - P(Adg" >m 1is the projection.

Proof.

(i) We define a linear bijection m —— Tx (G/H),x0=eH, (the identity cost) by
0 .

g —— - E(xg) » £ em . Now(Adhg)“(xy) = (h.E)(xy) = L, E(xg)s h e M,
(see §1 (1.2)). So (m,Ad) and the isotrbpy representation of H are

equivalent. Then the x,-fibre map [e,£] > - E(x » £ em, gives
0 0 .

rise to a G-vector bundle 1sdmorphism. (See [16].)

(i1) From (i), §(e) =-Pg, £eg . Then ';“(9) = (g .7:;“) (e)

= (9'1 .E)A(e) =(Adg']£§(e) = - P(Adg']g) ) 0
Let ( , ) be an inner prbduct on m w.r.t (with respect to) which

(m,Ad) is orthogonal. Transporting this onto each fibre of m , we thus

make G/H into a Riemannian homogemeous space (i.e. T(G/H) becomes real

Riemannian).
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N.B. In future we use the identification in Lemma 1 (i) without comment.

Therefore X(G/H) = r(g)ﬁ .
We also identify m* = m as orthogonal H-modules via ( , ) .

And thus identify m* =m as G-vector bundles (see §1 (1.3)).

Lemma 2.

> T(m*AV) (=T (nAV))

(i) As a linear map r(!)ﬁ
the G-invariance condition (2.1.1) for Vv is equivalent to

g.vf = v(g.f) , ge G, fer(V).

i.e. g.fo = vg.ngf » X eT(m).

(i1) (7 F)(x) = g'(vg-l.xg-1‘f)(x0) L X = gH 5 (7,6)(q) = (g:1xgt]f)“<e) .

Proof.

There are G-vector bundle isomorphisms Hom(m,V) = Hom(m,V) = m*&QV .

Then under these,

(9.9F) ()X(x) = 9. (vF) (g™ x)g. (g 1X) (g 7"x) = g.(vF(g7 %) (g1 X) G %)) .

* i .
The condition L _](vf) = (g.f) becomes
g

g.(vf(g']x)g-1.(X(x))) = V(g.f)(x)X(x) . So this is equivalent to

g.(vf) = v(g.f) and g.(v -1 f) = vx(g.f)
g. X 0
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Proposition 1.

A G-invariant connection V on (!)g is determined by a linear

map v: > End V (the endomorphisms of V) satisfying

(1) v(g) =de(g) , £ eh

(i1) v(Adhg) = x(h)oy(E)ox(h) ™' , he H, Ecg .

Then V,gf=€.f—A(£) f,eeg,fer(V) (2.2.1)

where ,Aﬁg

> End V is given by A g > End !x for each

Xx € G/H, with Ay (g)e,v] = [e,y(g)vl, veV, Xg = eH , and
0
A (8) = goh, (Adg™'g)og™ , x = gH , g e
0

i.e. (2.2.1) does define a G-invariant connection, and everyone such
is of this form. (N.B. here ¢g.f = dﬁ(g)f‘, see §1, (1.3). By the
Leibniz rule and §1, (1.2.1), it is sufficient to know Vy for X=¢,

£Ee€g.)

Proof.

Any two connections on V differ by an End V-valued 1-form on

G/H (see [91) i.e.

V-'V=8cgq (G/HEndV),

s0 (v3F)(x) = (‘7pf)(x) = 8, (B(x))F(x) s € e g
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. v
Define Bx:g > End !x , by sx(g) = -sx(g(x)) . So B, = 0 on

9y (see §1 (1.2)). Here 'v 1is a fixed invariant connection. The

1 -1

invariance condition Lemma2(ii) for v becomes 8 (&) = hog, (Adh™'g)oh™ " ,
0 0

1 -1

heH;B(g) = gosxo(Adg' E)og , geG.

Define a_:g >EndV, , by a, [e,v] = [e,dk(Q(g))v] and

1 -1

then o (£) = goa, (Adg” '£)og” . This is well-defined since
0 ‘

de(Adhg) = k(h)ode(z)ok(h)™' , z e h and Ad h commutes with
Q=1-P,heH. Take

(7)) = (£ ) - a,(€)

(Adge. (g.F)) (') = --gf g.f(exp t Adgzg‘)l t=0

- G Fle teg™'9")|4eg = (9-(5-P(a").

So 'V is G-invariant.

For £ =Adgz € gy s T € h , we have
(g.%)(g) = di(z) %(g) 3 then (v, f)(x) =0, £ eg, andwe see that
(2.2.1) (and 'v ) 1is well-defined.

Now defining y = dcoQ + 8 and A =o +8, , we have (i), (ii)

X
and (2.2.1) . Also we see that (2.2.]) does define an invariant

connection.
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Corollary.

. " = A‘ ! f
(7, f) (9) = dL(e)gf - v(AdG™E)F(9)sgeq, ce, ter(y)

Proof.

From (2.2.1) at x, , (ng)f(e) = dL(e),F - v(E)F(e) .

Then (v,f)"(g) = (97'V,f)"(e) = (V 1,97 1) (e) = .....
¥ ¢ g ¢

(2.3) See s1, (1.3). Under the H-isomorphism V —————>V* via <,>
(the inner product on V , see §1, (1.1)) there is the dual G-invariant

* * *
connection v on V , by y . Here Vv 1is a G-invariant connection

on V.

A1so given a G-invariant connection ,v on !J s by Y] s there
is the direct sum G-invariant connection V@ on V@V] » by YQ s
where v?(f+f]) = fo + 5vxf] H y@ =Yty . And there is the tensor
product G-invariant connection VQ on VQV] , by y@ s Where
TR(FRF,) = T, faf + £ 8 v f 5 yf = v@1 18y . X e X(G/H),

f € r(y_)s f] € I'(_\_I_l) .
Let (V,«) be orthogonal or unitary according as V' is real or

complex, so V becomes real or complex Riemannian with metric <,>

(see §1. (1.3)). For f,f] e T(V) , define (f,f]) e C(G/H) , by



Chapter 0. ' -13 -

(F.F)(x) = <F(x),F7(X)>, 3 and (£,F;) = ()0 4 < C(G) .

A connection Vv 1is sajd to be metriec if

X(f,fy) = (v f,f £,9,f:), .3,
(f.F7) = (v f.f) + (F.9yF4) ReX(GH) 18, € (V) - (2.3.1)

Lemma 3.

A G-invariant connection v is metric iff vy:g > 50 (V) (u(V))

(the skew-symmetric (skéw-hermitian)-endomorphisms w.r.t <,>)

(iff A: > £0(V) (w(¥))

Proof.
This follows from Proposition 1. If v' 1is metric, then v s

metric iff B e @'(G/H,40(V)) . As the metric on V 1is G-invariant,
B(ff]) = (e.F.f)) + (f6.f)) s Eeg - | (2.3.2)

Note that (f,f;)(x) = (gf]f,gT]f])(xO), x=gH, geG, so
B(x)(F.F7) = (9776)“(xg) (g7 Fug7]
sufficient to check (2.3.1) at the identity coset x, =eH . But
> 'A-o(l‘l_)( . In

]) . Thus by Lemma 2 (ii), it is

from (2.3.2) we see that v is metric iff A:

particular 'v is metric.
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(2.4) Refer to (2.1) for notation.

The curvature 2-form R(,) » in Q2(G/H,End V) , of v fis

R(X,Y) = vy vy1 - VIXY

where [VX VY] = VXVY - VYVX 3 and [XY] 1s the bracket of @ vector

fields, X,Y e X(G/H).

Let .v be a connection on T(G/H) . The torsion 2-form T(,) ,

in Q2(G/H,T(G/H)) , is

T(X,Y) = IVXY - 'VYX - [XY] Y
X,Y € X{G/H).

Let G/H be reductive (see (2.2)) and suppose that v, ,v are

G-invariant. Then it is sufficient to compute R(,) , T(,) at

X = eH . (the identity coset).

Lemma 4.

(1) (REGVF(x) = .RgTXgTNgTT ) (x5) (RILY)F)A(9) = (R(g7X,g7 ¥)gT ) (e’

1

(1) T(Y)(x) = g. T(g71X,077¥) (xg)s T(X,¥)"(g) = T(a7'X,g7'¥)"(e)

x=gH,geG,feI‘(!),X=?;J,Y=rr\1l,5,n€g~

Proof.

Follows from g.(R(X,Y)f) = R(9.X,9.Y)g.f,q.T(X,Y) = T(g.X,g.Y?
and f(x) = f(gxg) = g.(g._]f)(xo) .

a
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Define R(,) » in AZg* @ r(End V) , by

R(Esn) = R(E.n)"(e) (i.e. R(gsn)f = (R(F,M)F)"(e),f € T(V));

also T( , ) in A2g*@m , by T(g.n) = T(E.X)(e) » Eun € g

Lemma 5.
R(gan) = dL(QCE.nT), + [y(€)sv(n)] - ¥(PLE,n]) and
T(gsn) = -PLEsnT + v, (E)Pn - v, (n)PE, En e g

where v, ,v 1is given by vy, y, vrespectively (see Proposition 1) .-

>m is the projection, Q = 1-P .)

(P:g

Proof.

We have

(VE(V¢f))“(e) = (dL(g)dL(n)-v(n)dL(E)-v(g)dL(n) + ¥(£)v(n))F(e)
n

Therefore ([v,7.1f)"(e) = (dLT&n] + [y(g)v(n)1)F(e) .
_ En

Now (v.f)*(e) =0,z e h = gXO . So
z .

(V[En]&f)‘(é) = (dL((1-Q)EanJ) + y(PLEnD))F(e) . Thus get R(E,n) .
TE3(e) = (d(e)d - dm¥ - v, (0% + v, (MF - tent™)(e) .

Thus get T(&,n) .-
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Now let G/H be reductive, Riemannian (see (2.2)).

Definition.

v givenby vy , with y=0 on m, is called the reductive
connection oOn (!)g . For (V,k) orthogonal or unitary, it is metric.

In particular the reductive connection on m is metric.

There is a unique connection v on T(G/H) = (m)g » which is
metric and torsion-free (i.e. T(,) = 0) called the Levi-Civita
connection. Thus o7 must be given by Y o with YO(E) = 3Poadg ,

Eem ., (See Proposition 1 and Lemma 3.)

(2.5) Let G/H be reductive, Riemannian (see (2.2)), with a G-invariant
connection ,v , by ¥y, , on T(G/H) = (@)%{. Let (V,x) be a represent-

ation of H and Vv, by y , a G-invariant connection on (!)g .

We define an inner product (,) on X(G/H) = r(m) » by
C(XY) = (R(e),T(e)) s X,Y € X(G/H) .
Let {E-} ‘be an orthonormal (w.r.t(,)) basis for m. Put X;.= %i e X(G/H),
then (X o X ) 855+ .
Take the compos1tion

F(V) —Y— p(T 8Y) —%—> (T 8T &V)

(here T =T(G/H) , and * denotes the dual).
For f, e Hom(X(6/H), T(V)) , we have VF; e Hom (82X (G/H), V) ,

given by
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(Vf])(X,Y) = vx(f](Y)) - f](!vXY) .
So with f] = vf ,

(V2F) (X,Y)

vayf - V'VXYf Py
XsY e X(G/H),f e T (V) .

The Laplacian A of V 1is given by

A= -tr v2 ¢ (V) > T(V)
i.e. A= - z(v§ -V X )
S XL

1

A is G-invariant (i.e. A(g.f) = g.af).

We may identify vf with a map (see (2.2))

~

(vf) : G

> Hom(g,V)

where  (vF) (9)(€) = (v .F)"(9). , -
-g.£ geG, £eg, fer(V).

(Hom(g,V) 1is the space of linear maps g > V . Hom(g,V) = g* @ V).

Note that (Vf)A(g)(C) =0, z¢eh

Proposition 2.

(1) () (9)(e) = R(e)g T+ ¥(e)F(e)
] geb,8eg
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> Hom(8%,V) ,

(ii) Considering sz as a map (v?f)A : G

we have (Af)h = -tr (vzf)A s then

-(aF)" = LR(QRE; 4y (8,2~ (dR(y, (5,)8 M+ (v, ()8 )T 5 £ e T (V) .
1

Proof.

(i) This follows from the corollary to Proposition 1. Recall that

g.% = (Adgz)” and - dL(Adge), = dR(§)g > 9cG,Eeqg .
(ii) We could proceed by:
(vF) (9) (Ean) = (9F, () (9)(6) - F,((,7%) (£))(9)

f] a section of Hom(m,V) = Hom (m,V) 3 then put f] = vf , and take

the trace.

However, consider (Af)ﬁ(e) .

(v5F) (e) = (dL(e) - v(e))PF(e) for X =¥, Eeg

Now
ﬂvxx = §(!Vxx’xj)xj . We have
v _d o __d :
dL(g)g £ = g (exp-te)| g = - gg P(Ad(expte)e) | (g

- PEE,E] =
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So
(T6:X5) = = ((T3X)  (e),E4) = =(v (6)PE.E5) and
(Vlvxxf)h(e) = - ?(Y1(E)Pg,gj)(dL(gj)% - Y(Ej)%(e))

]

- (dL(v; (E)PE) - ¥(v(E)PE))F(e)

Now put & = Ei » sum over i , and use the G-invariance of A
g

(2.6) Let G/H be reductive, and (V,K),(V],K]) representations of H .
Take a G-invariant connection v on V andan  H-map m@V 2 Vi -

By composing
a

Py —— £y —— 1)y

we get a left G-invariant 1St order differential operator D = aovV ,
with symbol map a . (See [30].) (Here G-invariant means g.Df = Dg.f.)

If a(g):V -~ V] is a linear isomorphism for each & #0, D 1is elliptic.

§3. Induced Representations. (Refer to [161, [181.)

We use the notation of (1.3). Recall that we may identify r(!)ﬁ
with the maps f:G

>V satisfying. f(gh) = K(h)']f(g) >
geG,heH; and G acts by g.f = ;(g)f where
(9-F)(g') = F(g 'g') » g6, Fer(y).

Make the space Pé(!)g » of compactly supported sections, into a

pre-Hilbert space by setting
<fiafy> = IG <f1(9),f,(9)> dg

(where <vy,v,> is the inner product on V , and dg is the Haar
measure on G.) The separable Hilbert space Lz(l)ﬁ s Square-integrable

) N n
sections, is the completion. (PC(!)g,n) extends to (Lz(!)ﬁ,n) called
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the <nduced representation of G by (V,«) . This is unitary if «

is unitary.

Let KKy 'be unitary, then

L2 e v8 = L2w)d o L3(v,)S and
LZ(V 8 V])ﬁ = Lz(y)g 8 LZ(!J)ﬁ as unitary G-modules.

If we regard the complex numbers € as the 1-dim trivial unitary
H-module with <a,b> =ab , a,b € ( ; and we take H = {e} ; then
Lz(g)%e} is just L2(G) » the square integrable, complex-valued
functions on G , with the left regular representation L of G.

Also have the right regular representation R of G . These are unitary.

See (1.4).

(3.2) The Peter-Weyl theorem and Frobenius reciprocity.

| Let G be compact. Sq H 1is also compact. A representation of
a compact Lie group G 1is unitarizable and completely reducible. Also an
.irreducible representation of G s finite-dimensional (in fact 1-dim
for G abelian). Let G denote the (countable) set of quiva]ence
classes of irreducible unitary representations of G . Let for each
v € é s (Uv,Hv) be a representative. Take an inner product on V such

that « 1is unitary (see (3.1)) and suppose that V is finite-dimensional.
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Let rv(!)ﬁ be the subspace of r(!)ﬁ that transforms under G
according to Hv .

e e s . G
Define injection 1, Uv 8 HomH(Uv,V) ——> Fv(!)H

by 1, (vBb)(g) = b(m (9)7'v) ,
vel,beHm(,)

(the space of H-maps U —>V .)
2,u\G _ G . .
Then L (!)H = I, 8 Pv(!)H (an orthogonal direct sum), 1, s

vel
onto and

=z ﬁv (a unitary direct sum)
\Y]

where i (g) =: ﬁ(g)1v,g e G

(;bnv(g)ﬂl) . (See (1.3).)

We shall refer to rv(!) as the v-primary G-submodule in Lz(y) of
multiplicity, the number of 'copies' of Uv there-in 1i.e.

. o 2 . 2
dimg HomH(Uv,V).ﬂ— 1H(Uv,V) = 1G(L (!),Uv) =: d1maHomG(L (V),u. ) .

\Y

(3.3) Bott's Index Theorem.

See [241, [161].
Let G be compact. Let ZI&] be the Grothendieck ring of

virtual (finite-dim) G-modules (under &, 8 the direct sum, tensor
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product). There is the canonical map U > [U] from the finite-
dim G-modules to Z[a] . '{[Uv];v € é} forms a free basis over Z .
For G-modules U], U2 there is the intertwining number dima HomG(U],UZ) .
Note that by Schur's Lemma, this is & for U, =U ,U,=U ,
VqV AY A\
172 1 2
VisVy € G . This extends to a symmetric bilinear form on Z[G] .

1 2

If 1:H->G 1is the inclusion map, then by restriction there is a map

* ~ ~ o N

1 @ Z[G] > Z[H] . Define the formal group Z [G] as the possibly

infinite formal sums = av[Uv] s A, eZ . So Z[G] is the subset of
\%

finite elements. And define the formal map

1, : ZOH] > Z"[G] as the extension to Z[H]

*
of V——m— E d1'm(I HomH(1 [Uv],[V]) [Uv]

Take G-invariant D (as in (2.6)) which is elliptic. By invariance
D preserves rv( ) » Vv . Then the kernel and cokernel of D
(Ker D, Coker D) are finite dimensional. Define the Zndex of D to

be the element of Z[é] .

Index D = [Ker D] - [Coker D] .

Then Index D = 1,(CV] - [V;]) € Z[G]

This is a direct consequence of (3.2).
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§4. The Representation Theory of a Compact Lie Group.

The notation and material of this section will be continually used
later. It is taken, for a large part, from [161]. See also [12],

[20] . We refer to these references for more details and proofs.

(4.1) Let K be a compact Lie group. The Lie algebra k of K is
reductive (see (1.1) )so k. =2z & k] ,
where k] = [kk] the derived algebra (an ideal) of k , and 2z is

the center of k . k, is semi-simple. Let B(,) be the Killing-form

1
of K (i.e. of k) . It is negative semi-definite. The restriction

of B(,) to k] X k] is the Killing form of k] s which is negative
definite. The connected subgroup K] of K, with Lie algebra k] is
compact. Let H be a maximal torus (i.e.- a maximal, compact, connected,
abelian subgroup) of K . h dis a maximal abelian subalgebra of £

H contains the center Z of K . The dimension of h , dim h , is

called the rank of K, written rank K ..

An irreducible unitary representation of H 1is 1-dimensional, and
so determines and is determined by a character of H 1i.e. a continuous
homomorphism X:H - S] (the complex numbers of modulus 1). These form

a group under the multiplication of characters. Thus we regard H

(sée (3.2)) as the group of unitary characters

" ~ *
of H. We can identify H with a lattice A , by H+Agc V-1 h -
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(here * denotes the real dual) X - A where Xx(exp ¢) = eA(C) s
zeh. zch and h=2z8 h] with h] c k1 and h] is a Cartan

subalgebra of k] .

Let R = R(K,H) be the root system of the pair (K,H) (i.e. (k,h)) .
With k. the complexification of k , we have the Cartan decomposition

Ry =h, © I 8 k* where k% 1is the root space corresponding to o € R .
aeR '

Note that o(z) =0, 7 € z, a € R . As usual, there is the isometry

(h; 3<s>) > (h1 sB(,)) (here * denotes the complex dual) A > Ly
¢ e

where A(z) = B(CA’C) for each ¢ eyh] , and <A,u> = B(CA’CQ) .

Introduce the 'real form'. hUR = SpaqR{ca;a e R} of h]c , on which

the roots take real values. Put hﬁR ={z e hyp 5 a(z) #0, Yo e R} .
(Y means 'for all'.) A root o is either strictly positive or strictly
negative on a connected component C’I of hﬁR . Let R" be the set
of roots which are strictly +ve on (a fixed) C' . With respect to
(w.r.t) this order, we get the fundamental system of simple roots

'{a],...,ag‘}' where ¢ = rank ky; the semi-simple rank of K . Under the
*
le

with norm ||.]| . For each

. . * : '
isometry, hHR is the real form h]R = SpaqR{a,a € R} of h
*

R
a e R, let (a,0) be the subspace orthogonal to o 1i.e.

<,> 1is a real inner : product on h

. *
(a,0) = {1 €-h%R s<A,a> = 0} . The complement of U (a,0) in h1R

aeR

is an open set. A connected component of this set is called a Weyl
chamber of R (or of (K,H)) . These correspond to the inverse images of the

connected components of hﬁR . In particular C' is mapped (by the
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' . *
isometry) onto C = {} € hUR 3y <Asa> 20, Yo € R+} » the fundamental
Weyl chamber.

Let W(k,h) be the Weyl group of (k,h) . Net NK(H) be the

V Wy, which

normalizer of H in K, i.e. N(H) = {k e K3kHk™
contains H as a normal subgroup. The factor group NK(H)/H = W(K,H)
is a finite group, called the Weyl group of (K,H) . We can identify
this with the group of endomorphisms of h , {Adk;k € NK(H)} . Then

W(K,H) = H(k,h) .

k] is 'the' 'compact real form' of &k The Killing form of

le °
h]e is the complex bilinear extension of B(,) on h] x k] . Also
(»); where (z,n); = - B(zsn) » Zon € Ry, 1is a Hermitian inner
product on k]c . (- denotes conjugation w.r.t h]) . Then as

Ad(h) £* = k* , h e H, and dimk* =1, a e R, . we see that
' adz

Ad(h) e = x (h)e sheH,eeck®, X e H,aeR. As Ad(expc) = e
t ek , we have Xa +aeh. So Regar. Z is the set of h e¢H

lhy o A BT =R,

such that xa(h) =1, Yo e R. We have hﬂR

we can choose a 'Weyl basis' '{ea;a e R} where e € L%, B(ea,eB) = 65

and T = - e 5 (here & is the Kronecker delta and e =¢_ ) .

If X+ (so A is the differential of X e ﬁ) we shall say
that A 1ifts to X . Define Iy = {r e hsexp ¢ = e} the unit lattice
of H (or K) (e ds the identity element of K) . Then 1A Tifts to
a character of H 1if and only if (iff) A(PH) c2r V/-1Z . @ is the
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integers, = is the real number pi).

Let Z, be the connected subgroup of K corresponding to z .
Z, is closed in K. Then K=ZgK; , and K is Lie isomorphic

with Z, x K/F where F = {(z7,2);z ¢ Z; n K;} , a finite normal

0
subgroup of Z0 X K1 (here X denotes the direct product).

(4.2) Let ¢:kh +ga(U) be a representatioﬁ of k , a reductive Lie
algebra, on a complex finite-dimensional vector space U . ¢ extends

to kc and to u(k) , so also to u(ke) . u(k) s the universal
enveloping algebra of k . A vector (0#) ue U such that

¢(z)u = A(g)u, ¥z € b some X e h: » is called a weight vector with
wveight A (of ¢) . For a given A € h: » the weight space v (possibly
0) 1is the space spanned by the weight vectors with weight A . HWrite

m, for dim UX and call it the multiplicity of X as a weight of ¢ .

A
Denote I (the lattice of integral fbrms) ,- for the subgroup of
(z © h]]R)* consisting of all A such that %:—Lz‘-&’%i e Z . Say that

A e 1 is dominant if <i,a> 2 0, Vo e R (i.e. if x Ties in the

fundamental Weyl chamber). Denote this set Id .

Definition.

let A eI . We say that A 1is singular if <d,0> =0 some o eR,

and non-singular if <i,a> # 0 , Yo € R . Also say that A 1is sufficiently
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non-singular (s.n.s.) if <ix,a>>a , Yo e R, where ae¢R, a>0

and a is 'sufficiently' positive.

We shall assume that a parameter A , defined on a real form of

hc has been extended (complex linearly) to the whole of hc .

Theorem.

(i) ¢ 1is completely reducible iff ¢(z) consists of semi-simple

endomorphisms. ¢ b is completely reducible.
1

(i1) If ¢ 1is completely reducible, U 1is spanned by weight vectors;

there are only finifely many weights.
(iii) The weights are integral (i.e. 1lie in I).
(iv) The set of weights is invariant under W(k,h) .

(v) mo=m, s ¥we Wkyh).

We say that a weight A is extreme if A+a is not a weight Vae RY .

(vi) If ¢ s irreducible, then there exists exactly one extreme weight A;
it is dominant (belongs to Id) and of multiplicity 1. A1l other

weights of ¢ are of the form A - nia; » N e W (the whole
‘ i

numbers). A is called the highest weight of ¢ .

(vii) If ¢ is irreducible, there is a homomorphism X:z(k) +~ C (the

¢
complex numbers) such that ¢(z) = ¢X(z)]l, ¥z € z(k) (the center

of u(k)) . This follows from Schur's lemma. X 1is called the

¢
infinitesimal character of ¢ . It determines ¢ up to equivalence.
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Theorem of highest weight (E. Cartan)

The map from the set of equivalence classes of irreducible
representations of hm to Id » which assigns to an irreducible

representation its highest weight is a bijection.

Let m:K »GL(U) , U as before, be a representation of K .
As mentioned before, see (3.2) s, I 1is unitarizable and completely
reducible. So we fix a complex inner product <,> on U w.r.t.
which 1 is unitary. We refer to a weight of the differential dn
(see  (1.1) ) also as a weight of m. So e.g. the roots R is
the set of weights of the adjoint representation Ad of K, on kc
The weights of dnm 1ift to (i.e. are differentials of) unitary
characters of H . In fact considering HIH (i.e. 1 restricted to
H) we can choose a basis ‘{ui} (i=1s...0n) of U ‘such that
n(h)u; = X;(h)upsh e HoXg e H . With X -2z en  (see (4.1) )
dn(z)u; = 4;(z)yy (i = 1,..5n) . So Ay (i=1,...,n) are the, not

necessarily distinct weights of dm .

Conversely, given a completely reducible representation ‘¢ of k

such that the weights of ¢ 1ift to H (in fact sufficient that the

~

highest weights of the irreducible components of ¢ 1lift to H , by
Theorem on p.27 (yi); then there {is a unique representation 1 of

K such that dom=¢ .

The weight spaces of T are orthogonal w.r.t «<,>
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Theorem (Cartan, Weyl)

‘The map from K into An Id » Wwhich assigns to an irreducible
representation its highest weight is a bijection. (Recall: K is the
set of equivalence classes of irreducible unitary representations of K.)
Moreover this correspondence is obtained as follows: Let v e A n Id .

Let v, = v|, (i.e. v restricted to z ), vy = “Ih] . v lifts

to a character of Z0 s X0 say. And the ifreducib]e representation of
k]‘ with highest weight vy o (U,¢]) say, lifts to (U,n]) a
representation of K with dn] = ¢] . Recall that K = Z0 x K]/F .

Now define m(z,k) = X4(2) H](k) s zeZy, kek . Then (U,I) e K.
with highest weight v . Note that A cT.

Remark.

Let (U,n) be an irreducible representation of K. From thé Peter-
Weyl theorem (in the form [161, (2.8) ) - and Schur's lemma,
one can show that an inner product on U w.r.t which I is unitary,
is unique up to real positive constant multiples. As a consequence;
if K is simple, as AdK is then dirreducible, minus the Killing form
is the unique (up to +ve multipies) inner product on k w.r.t which
Ad is orthogonal. In general K] = KoXuoauo XKm a direct product of

closed, simple, normal subgroups. We get B(’)’k.Xk. = 3 BK.(,),(j=2,...
J J J

for some not necessarily equal a; e R, a; > 0 ; where BK.(’) is the
J

Killing form of Kj".

M) s
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By taking an inner product on z., we get a real inner product
(, ) on k satisfying: (z,k]) =0 and ( , ) restricted to k] X h]

'iS"B(s)-

Take an orthonormal (w.r.t (,)) basis of k and define

gf in z(k) . @, is called the Casimir element of K .

Q,=-1%
K i K
let o =3 L o . For (UV,HV) e K s v-p being the highest weight,
aeR 4
, 2
we have dn () = |]v|l2 - lell

(4.3) Take the pairs (k,(,)).(h,(,)) with (, ) as given (4.2) and the
Clifford algebras C1iff (k) , C1iff (k) , w.r.t (1, ) , (see sd4).

We have the lift Also we assume
Spin(h) ‘ Spin(k)
g ZZ covering ” v
HZ——— S0(h) . " K———50(k)
Ad Ad :

j.e. We assume that there is such a homomorphism o, with vop = Ad .
(See (5.3).) |

This is equivalent to requiring that o lifts to (i.e. pe A) .

s

p e A for example if K is simply connected.
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For ue A, wewrite e? for the corresponding unitary character

of H.

Let (U,I) be a unitary representation of K . The character XU
of U ( which determines I up to equivalence) 1is defined by

XU(x) = trace 1(x), x € K 3 and has the properties:

+X, 5 X =X .X Xiwe(X) = X, (x ) = X(x) (where -
U] U2 U]QU2 U] U2 u* u

X =X

' *
here denotes the complex conjugate), x e K. U 1is the contragradient

K-module to U .

Lemma.
Let (U,m),(H,17) e K .

(1) Let f,f] be a matrix element of I, respectively, then

<f,f]> =0 if U and W are not eduiva]ent. (For <,> see (3.1).)

(i1) Let UyslpsVysVy € U and take the matrix elements
f'] (k) = <n(k)u1 QV'I> ? fz(k) = <H(k-)U2,V2> Y k € K ; then
<f],f2> =-% <u],u2><v];vz> where n =dim U .

(iidi) XXy = 0, if U and W are not equivalent

1, if U and W are equivalent.

These are called the Schur orthogonality nelations.
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The character is of course a class function on K (i.e. constant
on the conjugacy classes). By the Schur orthogonality relations and
the Peter-Weyl theorem, the characters of the irreducible representations
of K form a complete orthonormal set of c1ass functions in LZ(K)
(see (3.1)).
Every conjugacy class in K intersects. H , and hence the character
of a representation is determined by its restriction to H .

*
XUIH =X 4 » 1t denotes restriction.

v (V)

Define for w e AA() = & det(w)e™ e ZLH]
. W(K,H)

(See (3.3).)

We have A(p) =e® T (1 -e™) . Llet (U,L) e K, v-p being the
' aeR

highest weight, then

Weyl's character formula.

U ) and

A(p)xle = A(v) (here X =X
: v

Weyl's degree formula.

<v,a>

The dimension of U , d(v) = I
v aeR’ <p,a>
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(4.4) Ad maps K into GL(k;) with kernel Z . Thus K/Z is Lie
isomorphic to AdK a subgroup of GL(n, R) < GL(n,C), n = dim k] R

with Lie algebra k] . Let K ,Hm denote the connected subgroup of

GL(n,C) with Lie algebra k, , h respectively. Also have the

le le
closed subgroup B = H¢N+ s the Borel subgroup (a maximal soluble
subgroup) of K; with Borel subalgebra b =k, 8 a§R+ 8 k* of Ry -

Let (U,x) be a finite dimensional unitary representation of H .

Then « extends to a ho]omerphic representation ofl Hm s which

we denote by ¢ . Extend ¥ trivie]ly to B by E(hn) = E(h) for
heHgsneN . Then KXo =:U (see [161),

becomes a holomorphic vector bundle (with a complex Riemannian structure)
over the complex flag manifold Ka/B . KG/B is diffeomorphic to K/H-

and gives the latter a complex structure. KE acts holomorphically.

Put T(K/H)m = T(K/H) & € (here € 1is the trivial complex line
bundle over K/H . We have T(K/H)(E = T(K/H) @ ?(K/H) a direct sum
of the holomorphic and anti-holomorphic tangent bundles. The Riemannian

structure on K/H determined by ( , ) (see [161) °

- extends to a complex Riemannian structure on .T(K/H)(I and therefore

th

— *
also to one on A" T(K/H) (the r exterior power of the dual of

the anti-holomorphic tangent bundle). There is the 3 operator and its
* — - \ — * _*
formal adjoint 3 . F:r(¥ & aF(/H)T) > (¥ @ AT (K/H) 52 20 =32 .

* *__

This is Km-invariant. The complex Laplacian O =33 + 3 3

O is elliptic. The cohomology space Ht(U) = Ker O (O at the £t

1ink of the chain complex). This is a finite-dimensional Ka-modu1e.
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H°(U) is the space of holomorphic sections of Q,

Borel-Weil-Bott Theorem.

Let Eu be the 1-dimensional unitary H-module with weight

(i) If wt is singular, then Ht(Eu) -0, Vt

(ii) If utp is non-singu]ar; then Ht(Eﬁ) =0, t#n(w) and
H"(‘”)(Eu) is the simple K-module with highest weight
w(utp)-p 3 here w 1is the uhique element in W(K,H) such that
w(utp) 1lies in the fundamental Weyl chamber, and n(w) is

the index of w i.e. nofaeR';wa<0} (no { } means 'the

number of elements').
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§5. The Clifford Algebra, Spinors, and the Dirac Operator.

We refer to [21.

(5.1) Let m be a real vector space with an inner product ( , ) .

With respect to the pair (m,(,)) we take the Clifford algebra, Cliff(m),
which is the quotient algebra (over R) of the tensor algebra of

m, T(m) , modulo the two sided ideal generated by the elements

EQcg+ (£,6)1, & em. By the natural map m - T(m) + Cliff(m) ,

we regard m c Cliff(m) . Cliff(m) is (real) associative, with a

unity 1, of dimension Zdim ", (See [2] p.40 for a basis.)
Cliff(m) s Zz.graded Cliff(m) = C+(m) ® C (m) , a direct sum of

vector spaces where C+(m) , C'(m) 1is spanned by the even, odd products

respectively (see [2] D.37 )3 (by an even product we
mean an element of the form Eqeenns Eop » By em s etc.). C+(m) is a
subalgebra. There is an anti-automorphism .c¢ - ¢t on C1iff (m) which
is given by Eqeveesl > (-1)k Epoenes &y for Ejem . Note that

En + ng = -2(g,n)1 for &, em; 1in Cliff(m) .

For m even dimensional C]iff(m) is a simp]é algebra (i.e. no
non-trivial two-sided ideals); for m odd dimensional C+(m) is a simple
algebra. Llet :Cliff(m) - End(C1iff(m)) be the left regular representation
(i.e. 2(a)b = ab). This is faithful (i.e. Ker & = 0). In fact Cliff(m)
is a semi-simple algebra (i.e. 2 1is completely reducible, or otherwise

said that Cliff(m) 1is completely reducible as a left Cliff(m)-module).
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Definition.
For m even dimensional take a minimal left ideal S in Cliff(m) .
For m odd dimensional take a minimal left ideal S in C+(m) .

In each case we call S the space of spinors. Thus for m even, odd
dimensional any simple Cliff(m) , C+(m)—modu1e is equivalent to S
respectively. For m even dimensional S = stes asa C+(m)-modu1e
where S+,S' are inequivalent simple C+(m)-modu1es. Call these the
spaces of %-spinors. .Let c:m-> End S denote Clifford multiplication,
j.e. c(E)s =E.s, Eemy,seS.,

1

Define the spin group Spin(m) =‘{seC+(m);sst = 1,sms ' < m} .

There is the double covering y:Spin(m) + SO(m) (the special orthogonal

1

group of (m,(,)) where y(s)t =sgs ' , s e Spin(m), £ em . Spin(m)

is simply-connected for dimm 2 3 ., By restricting the left regular
representation 2 we get Spin(m)-—ﬁ—q-End S . Call this the spin
representation. For m even dim we also get Spin(m)-—:i—» End S* .
Call these the %-spin representations. S+,S- are simple inequivalent

Spin(m)-modules. For m odd dim, S is a simple Spin(m)-module.

As associative algebra becomes a Lie algebra under the comnutétor
[. 1 (i.e. ‘[AB] = AB-BA) . For Cliff(m) we denote this by [ 1
(i.e. DXyl = Xy-yX, X,y € Cliff(m)) . Now [Cg.n] gl = -4(n,z)e + 4(g,2)n
En,z em . s0(m) , the Lie algebra of SO(m) , is embedded as a Lie

suba]gebra of Cliff(m) as Span{[a,nlc 3 Esn o€ m} o where
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Z(z) = : [Zg],, Z ¢ Span { 1}
= dp(Z)(z) » ¢ em.
(See [281.)

dy being the differential of ¢ , (see (1.1)).
Take an orthonormal (w.r.t (,)) basis ‘{gi} for m .,

As Z =-330Zc.] €. , Z e Span{ } we get dy(T) = - %z T(&,)&, , (5.1.2)

T € s0(m) , and composing with the Teft regular representation,

c(T(n)) = - [(2od)(T)sc(n)] » T e s0(m)y nem (5.1.3)

(here [ 1 denotes the commutator). Moreover, the differential of
the spin representation, de¢ , is just the restriction of & to so(m) ,

which is the Lie algebra of Spin{m) . (See [281.)

(5.2) The complexification of C1iff(m) is C]iff(mc) with the complex
Tinear extension of ( , ) on m, s which we denote also by ( , ) .
Also we shall not distinguish, in notation, between S for (my(,)) or
for (mc,(,)) .

Construction of the space of spinors (m even dimensional):

_ (see [21)

Choose fixed maximal fota]]y isotropic (w.r.t(,)) subspaces

(of dimension over € , % dim m) my s, of Mg such that



Chapter 0. - 38 -

m, = m ® My Let C1, C2 be the subalgebra of C]iff(mc) generated

12 M

by m, m, respectively. Then CysC, s isomorphic to "m
the exterior algebra of My My respectively. Let e € Knmz » (2m=dim m)
of dimension 1. Then we may take S = Cliff(m)e = Cie . Let

C? = C] n Ci(me) » then the spaces of }-spinors st = Ci(mc)e = C?(me)é .

(N.B. e2 =0 so here e 1is not an idempotent.)

For m of odd dimension: see [2] p.106.

(5.3) We use the notation of §2. Suppose that G/H 1is reductive,

Riemannian.

Definition.
We shall say that G/H 1is G-spin if for the pair (m,Ad) ,
(i) det Ad(h) =1, he H and (ii) Ad:H

> S0(m) Tifts to a

homomorphism otH > Spin(m) via v, d.e. there is the
commutative diagram '
Spin(m)

¥

H ——————> S0(m)

We get a representation of H , (S,0) , with o = 205 . Also

+ A
L2 0p .

. . + * . +
if m is even dimensional, we get (S7,0”) with o
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Recall that vy(s)t = sgs-] . With s = p(h-]) R

c(£)a(h) = o(h)c(Adh™ 1) , heH, £em. (5.3.1)

Now dyods = ad . Taking Z = d3(E), E e h in (5.1.1) , we
get ad g(n) = [&n] = [dg(g)nlc s nem, Then

N\

do(g) = -3 zleg,lg, , £ e h, and
1

do(g) = -} Z c[ggi]c(gi) = (gody)(ade) , £ e h . (5.3.2)
i

(5.4) The Dirac operator.

Suppose that G/H s reductive, Riemannian and is G-spin.

Take a representation (V,r) of H , and take a G-invariant connection

v

(see (2.4)), Vv, on(!)g . Choose a G-invariant connection VS on

the bundle of spinors (3)% (the induced bundle via (S,0) . We shall

see how to do this in Chapter 1 (1.1). Take the tensor product

connection VSQV

masayv—_. sav, givenby £8s8v

on 'SBV . There is the bilinear map

>c(g)sfv,Eem,seS,veV .

Then associated to the pair ((,) , vs) » there is the 15t order,

Sav

elliptic differential operator D, = (c@1) o v (see 2.6), with

symbol map c81 . We shall refer to DV as the twisted, by V , Dirac

operator of the conmection VSQV .

If m is even dimensional, by taking a G-invariant connection VS

on‘the bundle of }-spinors (§t)ﬁ we get the elliptic, 3-Dirac operator
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cf1

with symbol maprn@Si@V > st gV , respectively. With

wn <+

v~ the direct sum connection, DV is the direct sum of DG and Dg

For V the 1-dim trivial H-module, these will be called scalar

Dirac operators.

Here G/H 1is a 'complete Riemannian manifold'.

The Laplacian A (in Chapter 0, (2.5)) is essentially self-adjoint.

Also D, and Ds are essentially self-adjoint (see [27]). In
particular Ker DV = Ker Ds .

(5.5) Remark.

If H 1is simply-connected, then certainly G/H is spin.
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CHAPTER 1.

" We use the notation of Chapter 0, §1, 2 and 5. Let G/H be

reductive, Riemannian and G-spin, with a G-invariant, metric connection
G

H .
We shall see that v Tifts to a unique metric connection on the bundle

vV, by vy, on T(G/H) = (m) See Chapter 0 (1.3), (2.2) and (2.3).
of spinors (§)ﬁ . A formula Has been given in [28] for the square of the
Dirac operator on symmetric space. In'§2 we give a generalization in
differential geometric terms, of this formula, which is due to Dr. John H.
Rawnsley. . I am also grateful to him for suggesting Proposition 3 to me.

See Chapter 0, 5§5.

§1. Invariant Metric Connections on the Bundle of Spinors.

(1.1) Define a linear map tr : Cliff(m) ———> R by
tr(x) 1is 'the (real) coefficient of 1 in x'.

Then we get a real inner product ( , )C on Cliff(m) , by
(x¥)e = tr x%y , Xy e C1iff(n) .

(See Chapter 0, §5.) This induces an inner product ( )S_on S .

Lemma 6.

(i)  C(m) , C"(m) are orthogonal w.r.t ( , )e -
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(ii) The spin representation is orthogonal w.r.t ( , )S .
(iii) o is orthogonal w.r.t ( , )S .

(iv) Clifford multiplication is skew symmetric 1i.e. c:

> 50(S)
(w.r.t (, k') .

Proof .
(1) s clear;
(i1) (sx,sy) = tr((SX)tsy) = tr(xt(stS)y) = tr xty = (X,¥) » s € Spin{(m) ;

(i1i) is a consequence of (ii) ;

(iv) (c(E)xsy) = tr((x)Fy) = -tr xP(&y) = -(x,c(E)y), E em

Proposition 3.

A G-invariant, metric connection v, by y, on T(G/H) = (m)ﬁ

lifts to a unique G-invariant metric conneétion VS , by YS , on

()% where y>(£) = (2odv)y(£) , Ec g .

(See §5 (5.1), (5.3).)

Proof.

For €eh, v (£) = (tody)(ade) = do(E) . Also

vS(Adhg) = (20dy) (Adnoy(£) o Adn™")

- 3 £ c(Mdhy(e)Adh'Ey) c(E;)
1
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1 -1

- 1 zo(h) c(y(g)Adh™ £, )o(h)
1

1

c(&i)

o(h){- 4 T c(y(e)AdnTg,) c(Adhle,)3a(h)]
petrte

s(My(g)s(h)™} for heH,ceg.

So by Proposition 1, (Chapter 0, (2.2)), ‘YS does define an invariant

connection, which is metric since ys(g) e 50(S) (w.r.t (, )S) s £ eg .

Now suppose that Vv 1lifts to VS . Let ,v be the reductive connection

I

on m . This certainly 1ifts to 'V , the reductive connection on S .

(See Chapter 0 (2.4).)

We have
V- V= e (6/H),40(m)
v - v=8ecal(6/H,40(5)) (See Chapter 0 (2.1), (2.3).)

Recall that m 8 S —S— > S, induces the vector bundle map

mfS—=——>5S, and so also T(m) & I(5) ——> I(S) (1.1.1)

X8&s

> E(X)s .

(Sée Chapter 0 (1.3), (5;4).)

By the Leibniz rule

vR(c(Y)s) = c(vy¥)s + ¢(Y)vys
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and vy (c(Y)s) = c(,9yY)s + c(Y)'va

X,Y e T(m) , s er(S) .

Taking the difference

B(X) c(Y)s

"

c(a(X)Y) + c(Y)B(X)s

i.e. [B(X) c(Y)]

c(a(X)Y)

[(%ody)(a(X)),c(Y)1  (by Chapter 0 (5.1.3)).

From the fact that left and right Clifford multiplication generate
all of s0(S) , from the commutation relation [A BC] = [ABIC + BLAC] ,
and from the fact that 4¢(S) is a real simple Lie algebra (so has zero

center), we get that

B(X) = (todp)a(X),X € T(m) .
Now see Proposition 1. N ‘ 0
Corollary.

c(y(g)n) = EYSY(f‘;),c(n)J Eeg,nem, (1.1.2)

Proof.

This follows from the Proposition and Chapter 0, (5.1.3). 0O
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Lemma 7.

In the statement of Proposition 3 the curvature 2-form RS

S

(s)

of V7 1is given by RS(,) = (fody) R(,) where R(,) 1is the curvature

2-form of V . (See Chapter 0 (2.4))

"Proof.

This follows from Chapter 0, (5.1.2) and Lemma 5. 0

§2. A Formula for the Square of the Dirac Operator.

(2.1) See Chapter 0, (2.5), (5.4).

The scalar Dirac operator is

D : r(é)g.’ > r(§)ﬁ
D=Zc(X)Vy (See (1.1.1).)
i i
with D? = 45-3 % c(X,)e(X.)VS 0y v v#3 T c(X.)c(X.) RO(X. X.) .
isj 1 J T(Xi’xj) i, 1 J T, J

And the twisted Dirac operator is

-n - 6 G
D =D, : ;(SQV)H > T(SAY),
D=2 c(X)Vy"

i UM

with
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Sav

2 _ SAvV_ SQav
D" = & g_z.c(xi)c(xj)vT(x_’X.) + %AZ.C(Xi)c(Xj)R (Xi’Xj) . (2.1.1)
: 1,J 17 J 1s] ,
v,
Here for (V,.x,) @a representation of H , A is the Laplacian of
v, Vi
V., (with connection Vv, by v') 3 R (, ) is the curvature of
vV,
vV 3 T(, ) is the torsionof V.
V,av v, - v
Note that R =R 81+18&R and
v, Vi
Ay &1+1&Av-zzvx.&vx .

i i i

The above formulae are independent of the orthonormal (w.r.t.(,))

" basis {Ei} of m .

(2.1.1) is obtained using the Clifford bundle relation

c(Xi)c(Xj) + c(Xj)c(Xi) = -Zdij

and the formulae for the torsion, curvature and the Laplacian as given
in Chapter 0, (2.4), (2.5). See also Lemma 7.

Note that for VvV  the Levi-Cijvita connection there are no 15t

order terms in D2

(2.2) Proposition 4.

@) o) = 2c(5) V) (&)

i 1
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(1) %) = @) - 1 7 e(g)e(e) 70 (T(g,E,)) +
-1,
+33 c()e(E)RN (£,E,)F, £ e TSR

1,] :

And see Proposition 2 (Chapter 0 (2.5)) for (Vf)A,(Af)A

Proof,

By Lemma 1 (Chapter 0, (2.2)) and (1.1.1),
(0F) (&) = = T (g, (B) (e)
i i
and

200" 1oy = ASAVL Ty Sav "
(D f) (e) - (A f) (e) éT‘ch(g.l) (EJ)(VT(E_l ’gJ)f) (e) +

+3 3 e(e)cl R (g8 ))f ) -

15J

T(E,n) s given in Lemma 5 (Chapter 0, (2.4)) and

R(E,n) = dR(QCE,n]), + [y'(E),¥"(n)1-y'(PLE,N]) , Em e g .
Note that
TR - SOERLER, = 2G5 0E

T(Eén)f\’ » Emeg.
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Now use the invariance of D 1i.e., g.Df = Dg.f, ge G . 0

Note: The formula for the square of the Dirac operator, in the
form (ii), for the special case of (G,H) a 'symmetric pair' with
v the Levi-Civita connection (here the same as the reductive connection)

was first given in [28]. See Chapter 4 (3.1.1) for the precise formula.
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CHAPTER 2.

In this chapter, in §1, we introduce our main task. Subsequent
chapters will set about solving this problem. Sections 2,3 of this
chapter and chapter 3 will give some structure theory of a compact

Riemannian homogeneous space which is spin.

The notation and material of Chapters 0, 1 will be referred to

and used.

§1, 'The Problem'.

(1.1) Let (K,L) be a pair of Lie groups, with L a closed subgroup
of K. Wewrite L <K. Let K be compact, so L 1is also compact.

Further let K and L be connected.

As the adjoint representation of L on k (the Lie algebra of K)

is completely reducible, we can write

k=28p with [L,p] cp

for some subspace p . (with p Ad L-invariant), Thus K/L 1is a
reductive homogeneous space (see Chapter 0, (2.2)). In fact we will
always take p to be the orthogonal complement of £ in k w.r.t.
the inner product ( , ) . (( , ) as given in Chapter 0, (3.2),)
Recall that AdK is orthogonal w.r.t. ( , ) » SO adK is skew-

symmetric.
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Via ( , ) K/L becomes Riemannian (see Chapter 0, (2.2)).

With respect to the pair (p,(,)) » take the Ciifford algebra
Cliff(p) ,» and the‘space of spinors S, with metric ( , )S
(See Chapter 0, §5 Chapter 1, §1.)

(1.2) To recapitulate: we have the pair (K,L) of compact Lie groups
with L < K. K/L becomes a reductive, Riemannian homogeneous space

via (., ) .

The isotropy representation of L (see Chapter 0 (1.2), (2.2))
is orthogonal w.r.t. ( , ). We suppose that K/L 1is K-spin (see

Chapter 0, (5.3)). We take a K-invariant metric
> 50(p) » on T(K/L) = (p)
(by the pair (p,Ad)) . Then Vv T1ifts to a unique metric connection

\7S R determined by yszh

connection Vv, determined by +y:k

> w(S) , on the bundle of spinors

() . (See Chapter 0 (2.2), (2.3); Chapter 1,51.)

Take a finite dimensional unitary representation (V,t) of L .
Associated to the pair ((,),y) we form the twisted, by V., Dirac
operator D, , with symbol map p QS &YV e S &V (see Chapter0,(5.4

. , K K
ie. Dy :T(SAV)) ———— r(SAV)

Dy = (cal)ov V|

Where VS@V js the tensor product connection of VS on S and

the reductive connection v on (!)E .
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D, is a left K-invariant, ]St order, elliptic, essentially

)
self-adjoint differential operator.

Hence the kernel of DV » Ker DV » is a finite-dimensional
unitary K-module. A K-submodule of L2(§QX)E . We wish to determine

how this decomposes into simple K-modules.

In fact (for y either the Levi-Civita or the reductive connection)
we will determine explicitly, the so]ution'space, as a unitary represent-

ation of K, of the homogeneous Dirac equation va =0 .

As for (V],r]) a representation of L , we have

DV@V] = DV 8 DV] (a dire;t sum), it is sufficient to consider V

a. simple L-module.

(1.3) Remark.

We note the vanishing theorem of A.'Lichnerowicz (see [261),
that for the scalar Dirac operator D] with y the Levi-Civita

connection, Ker D] = 0 ie. there are no harmonic spinors.

Also we note the papers [281, [31] for a method of solving the case

of (K,L) an equal rank symmetric pair. See Chapter 4, (3.2).

It is our aim to solve the general case.
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§2. Structural Preliminaries on a Compact Pair.

(2.1) We shall use previous notation.

Let (K,L) be a compact pair of Lie groups with L < K .
Let H, be a maximal torus of 'L . Fix a maximal torus H of K
with Hy < H. Clearly H < ZK(HO) (the centralizer of HO' in K)
f.e. Zy(Hy) = {keKskhk™ =h,¥h Ky} » with Lie algebra

{g e h3legl =0, Yz ¢ ho} (the centralizer of ho in R).

zh(ho)
Z (Hy) = Hy s Zy(H) = H . As (L,plcp, z,(hy) = z5(hy) @ zp(ho )
where zp(ho) is the centralizer of ho in p . But as ho is

maximal abelian in £ , zz(ho) = ho . Thus we have

h = ho ® h1 v(anAorthogona1 direct sum w.r.t. (,))

with h] maximal abelian in Zp(ho) .

* i o
For A eh , write A =1, » X = A,
0 1

(Here * denotes the real dual, and Alh means A restricted to ho etc.)
0

(2.2) Let Hy be the connected subgroun of H with Lie algebra

h] . So H=H H/Hy is Lie isomorphic to H,/HynH,

OH] . ‘
In fact Ha (HpH )/F where F = {(h"",h)sh e Hy 0 Hy)

Let A, HO have lattice A,A, respectively (see Chapter 0, (4.1)).

H7H

0
~Let A have lattice ,A .

is isomorphic to the subgroup A ='{Xeﬁ;x(h) = 1,Yh e HO} of A .
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There are homomorphisms ﬁ _— AO by restriction
A————>A0

The kernel of the ubper, lower map is A , ,A respectively so

Q/A = HO s MM = AO . (This is Pontrjagin duality see g33] .)

Given X e H. , there exists x ¢ H with X|, =X, . Equivalently,
0 0 HO 0

given AO € AO there exists A e A w1th A= AO .

§3. Root Systems. The Weights of the Isotropy Representation and

the Spin Representation.

(3.1) Let (K,L) be as in s2.

Let ’RL be the root system of (L,HO) . There is the isotropy

representation of_ L

Ad : L ——— S0(p) (w.r.f.(;))
with complexified differential

ad : £ ————> 40(pg)

Denote the set of weights (w.r.t. HO) by Q. Q¢ Ag 0 IL .

I, s the lattive of integral forms for '(L,HO) .

L

For the case rank L = rank K see Chapter 3. Here we consider rank L < rank K,
Take cgmp]exification km = Zm ® pg
Let R be the root system of (K,H) (see Chapter 0 §4 for notation.)

For o € R write e, = &, +n, with £, < K@ > n, € Pg



Chapter 2. - 54 -

We divide the roots R into 3 disjoint subsets R0 . R] , and R2 .

=
1]

o= {oeRsn =0 (i.e. B%g 2y for a e Ry)

Ry ='{aeR;€a,na # 0}
R2 =‘{aeR;§a =0} (i.e. IZOL_C_}OG for oceRz) .
For R3 < R we denote 53 = {30 € R3}
Lemma 8.
(i) OLERJ. iff -ozeR;i (j=0,1,2), § e Q iff -6 ¢ Q.
(ii)  For a e Ry uRy » g #0 . For acRy, a=0.
If a,BeRO,a#B, then %#g.
(ii1) R = 50 u 5] » Q={0}v R] u 52 .
{g 30 € Ry U R} s a set of root vectors for (L,Hy) » which
with ho ,» spans Za over € .
Angsa e Ry UR,} s a set of weight vectors for (pg,ad) ,
which with h] spans pp over C.
Proof.
(i) From E; =-¢%, aeR (recall that - denotes conjugation
w.r.t. k) weget T = -£%, n, = -n® , a e R. (Here
£ =&, n= ny) - Thus aeRy iff -acRy . 8¢ Q iff

S e Q now follows from (iii).)
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(i) If o e€RyUR; and g =0, then £ « Z£<ho)m . But

zﬁ(ho) = ho . Note that (ho;ga) =0, YaeR.
- Let ¢ € k* s o € R0 . For ¢z € h] we have [zel = a(g)e « Km .
But also [zel € Pe - So [zel=0 and o(z) =0 . Asa

consequence ¢ # 8 for a,B € R0 with o # B

(iii) Let & be a RL-root vector or a Q-weight vector with root or

weight 6 , € ¢ hE

Now £=¢,+ I acec forsome ¢, €h and a €€ , notall zero.
1 acR v 1 C o
=5t 2 a g, or gt 2 an, according as & € KG or Pg -
Then §6(Z)€ = aiR a, a(;)ea , for T € ho ]

If §(t) =0, and a #0, then a(g) =0 . If &(z) #0,
and a, #0, then Z, =0 and §(z) =a(z) . So & =g for
a, # 0.

Clearly h] Ties in the O-weight space.

Also for ¢ e by o(z).e, =[zE T+ [gn ] so

[Cga] = a(g) Ea s [Cna] = a(c)na ,a € R . 0
(3.2) Recall that for o e R, T, € /-1 h is determined by

-a(z) = (z58) s L e /-1 h

(Here we also denote by (,) , the complex linear extension of (,)).

Recall that (&,p) =0 .



Chapter 2. - 56 -

Write T, = c% + cé » Wwith C%.e V-1 ho . Cg e V-1 h1 )

Then -g(z) = (c%,c) » 5 ev/-1hy; and -a(z) = (cg;,c) st e V-1 hy .
Note that g =0 iff £ =0 and o =0 iff ¢v=0.
g a
*
More generally for X e Y-1h , recall that T, € Y-1h s

determined by -x(g) = (g,,2) , C ¢ Y-1h . Urite z, =g, +Iy with

A A

FA € /-]ho ,‘c% e/ —1h1 . Then -A(z) = (c&,c), z e¢31h0 ; and
X(z) = (;&,;) . ¢ e/-lhy . Recall that <,> is defined by
<A,u> = -(;A,;u),x,u € /-1h* . So defining <A,u>, = —(c&,cg),<l,u>' =

= -(CB\\"C?“') We get <,> = <’>' + <’>|

By Remark 1 in Chapter 0, (4.2),<,> s a real +ve multiple
of the Killing-form of L on each connected component of the Coxeter-
Dynkin diagram of (L,HO) (i.e. of (k&,hbm) » ' -denotes the derived

algebra).

2<)\0 30_1>|

In particular if Ag € IL s e Z for o eRyu R] .

<o ,a>y 0

(3.3)‘ Consider the'comp]exified isotropy representation of L , (pm}Ad).

The O—wéight snace is Zp(ho)m . And for § eQ, &8 #0, the

s-weight space is aa 9 = 8 k* , where

: : aeRZ’G .
RG = {a € R; ¢ = s} , R],d = R1 n RG s R2,6 = R2 n R6 ;
and & = = cn,, (see Lemma 8).

U.GR-I ,6
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Recall the complex inner product. (,)1 on the derived algebra

of kg3 (£.n)7 = (&0) 5 Esn € kyp » (the derived algebra).

For a E,R]’ (ga,gu) and (na,na) are real negative. For

a € R.I » B € R2 s (na,eB) = (ea,eB) =0.

i]
it

Define Q1 {§ eQ; § #0 , & ¢ some o ¢ R1}

Clearly § ¢ Q] iff -6 € Q] . For ¢ € Q] , put Mg = dim aL‘S

Also for 6 e€Q , 6§ #0, put oMy = no(R2 6) (i.e. the number of

roots in R, 6)’ For 6§ e Q , let m_, be the multiplicity of the

S

weight § . Then for 8§ ¢ Q , with § ¢ Q] , Wwe have me = qMg + oM

And forse Q@ , with 8§ #0 , § £ Q] , we have mg = oM

8

Take a® 0 a %, s ¢ Q - As - = E; for a e Ry , one sees

that Ms = 1M - a® is totally isotropic w.r.t (,) . .we can

choose an orthonormal (w.r.t(,).) basis {nj 5] (j=1,....,]m6) for

560 5 i

where n* = - 7.

Jsby - _JJ
) % Js8

(n.i’sﬂn Py § € Q-l

For each 6§ € Q] , fix a subset Ré of R consisting of" 1Ms

o with g =6 . We can arrange so that R[ = -R',

Put R' = U Ry
GGQ]

roots



Chapter 2. - 58 -

H 1is a maximal torus of ZK(HO) . The root system of (ZK(HO),H)
is R0 = {a ¢ R2 ;g = 0} , with root vectors {sa;a € RO} . Put

R20 = R2 - Ry - h] together with these root vectors span the

O-weight space - Zp(ho)m over (€ .

Choose compatible orders on RL » R . So get the systems of +ve

roots RE,R+ . Here compatible means that if a ¢ RL and B € R such

that g=a, then B € RY . Such always exists (see [101).

3 5 8 . Alsoput R'T =R R, Ry =Ry R .

20
BeRE

Put PL

+

And ‘Q? = Q0 R

(3.4) Using a weight space decomposition for the isotropy representation,
we shall now construct the space of spinors S in C]iff(pm) (w.r.t(,))s
and thus for K/L spin, determine the weights of the spin representation

(S,0) of L, and their multiplicities.

For 6 ¢ Q] » put

-,6 .96
2 .nj’s = (nj,(s = nJ ) + /—](nj,G + nJ ) € p

and for a ¢ R20 s

2 iy = (g,me") * /-1(s *e%) e p
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{in,

J’6,..nm} (6 € Qs § = 1,.....,.m6 ;o€ RZO) is an

orthonormal set, which with Zp(ho) s spans p over R.

If F( , ) 1is bilinear on p x p one has

4F(.na,.n8) 2/—]F(ea,eB)-2F(ea,es)-2F(ea,EB)-Z/-lF(ea,eB) , a8 € R

"And similarly for F(n; ., nd 28y

(3.5) Construction of the space of spinors: (See Chapter 0, (5.2)).

We have the orthogonal weight space decomposition

Pg = P 9 Zp(ho)a U P,

where p,=t 0a6 1 @r
- + +.
8¢Q; aeRzo

Furthermore. PP, are maximal totally isétropic (w.r.t.(,)) subspaces

20 °
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of P, & p_. Let C_ be the subalgebra of C]iff(p+ 8p),
(w.r.t(,)) » generated by P, . Take e e A™ p; ,» Where
2m = no(R' U Ryp) » this is 1-dimensional. Take the space of

spinors S in C]iff(zp(ho)m) s (w.r.t (,)) , then

(3.6) We now suppose that K/L 1is K-spin.

Consider the differential of (S,o) . A short computation using

Chapter 0, (5.3.2)

gives  do(t) = (0'40p0)(5)3 T s(e)elnd*)c(n; )

GEQT ’

-%Z OL(C)C (Ea)C'(ea) ’ CEhO ’
aeR+
20

(recall that c:p > u(S) denotes Clifford multiplication)

where p' =3 I o 'pzo =3z o
+
o€ R20

Proposition 5.

The weights of. (S,0) , w.r.t ho » .are given by

+ +
(p'+p20) - (|A[+[B]) » restricted to h, , where A g R, B¢ Ryg

or -(p'+p20) + [A‘l +|B'] , where A',B' is the complement of A,B

.in R'+,RZO respectively.
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- The multiplicity of the weight o'+p,g - (|A]+]B]) is dim S, times the number of
pairs (AysBy)s Ap = R, By s Ryy with [Aj] + [Bq] = [A] + [B]

restricted to ho .

Proof.

This follows from the above construétion.
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CHAPTER 3.

We use the notation of Chapter O, §4 and Chapter 2. In this
chapter we take a compact, spin pair (K,L) of equal rank, and con-
sider the twisted spinors s* @V as an L-module where V is simple.
In 51 we determine for a 'sufficiently non-singular parameter', the
decomposition of s BV into simple L-modules. In §2 we show that

a simple K-module lying in a certain infinitesimal class, occurs with

2 K

multiplicity at most 1 in the induced :module (s a ), .

§1. Equal Rank Twisted Spinors.

(1.1) Take the pair (K,L) with rank L = rank K .

So H, =H . Here p 1is even dimensional. RL is a closed subsystem

0
of R, (closed subsystem means that R < R, and if a,8 ¢ R with
o+B € R, then otB € RL) and {e jo € RL} is 'the' set of root
vectors for (L,H) . Also W(L,H) < W(K,H) i.e. the Weyl group of

(L,H) 1is a subgroup of the Weyl group of (K,H) .

Define W' = {w ¢ W(K,H);wa > R:} . Then W' is a set of coset
representatives for W(K,H)/W(L,H) . (See [211, [281].)

The set of weights of the complexified isotropy representation of
L is Q= R-RL , so each is of multiplicity 1. The set of weight
vectors is {e s ¢ R-R} . For ae R-R , define

2€ia - (Ea'ea)+/'1(€a+€a) ep . Then v{E.a;a € R-RL} is an orthonormal
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(w.r.t(,)) basis for p . We have the weight space decomposition:

rg =p. &p,

where Py = z ® k* . Furthermore pes P are maximal totally
aeR-R

isotropic (w.r.t(,)) subspaces of P -

Let C, be the subalgebra of Cliff (pc) s (w.r.t(,)) , generated
by pi . Take e e A" p+ where 2m = dim K/L , then the space of
spinors S =C_e . Also we have the spaces of %-spinors s* (see Ch.0, §5).

For F(,) bilinear on pxp ,

4F (8,,814)=2/-1F (g, 5e

B)-ZF(sa,eB)-zF(s“,sB)-z/-1F(e“,eB), 0,8 € R-R .

We suppose now that K/L 1is spin. Recall the spin representation of
L, (S,0) , and the ispin representations of L,(Si,ci) . (See
Chapter 0, (5.3)). o = o 8 g- . Then the differential of (S,0) ,

is given by

do(z) = (o) = 35 a(2)c(e®)cle,)s € < he
+ o+
a€R -RL
Here L = 1 a.
+
ueRL
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We see that the weights of S as an L-module are

+

(P-y) - |A]  where Ac R+—RL

= -(p-pL) + |AY A' the complement of A 1in R+-RE .

(Al denotes the sum of the roots in A .) |
The multiplicity of the weight (p-pL)-IAI is the number of B¢ R+-RE
such that  |B| = |A]

The weights of S¥, ™ as an L-module are

+

(p-pL)-IAl where A ¢ R+-RL and no(A) is even, odd resp.

The multiplicity is the number of B < R™-R" , with |B| = |A| and
L

no(B) even, odd resp.

Lemma 9.

(i) The difference of the characters of the L-modules s¥,s™ on H

is given by
p-p - ~
X,-x. =e " om, . (1-e) in ZA
- "sl ~aeR™-R)
= A(pp ) (the quotient of the Weyl denominators)
LYWL

(see Chapter 0 (4.3)).
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* - %
(ii) Consider the contragreédient L-modules (S+) »(S) . We have
+, ¥ + + Y + o+ .
(S7) =S™ or S as L-modules according as ngo(R -R/) (= idim K/L)

— L
is even or odd respectively.
Proof.

These follow easily from the weights of st , S and their

multiplicities. See also [281, [31]. .

(1.2) For the construction of the following filters we follow [301, [251.

Take the Borel subalgebra b = hm ® =z + 8 % of zm » and the Borel
aeR
L

subgroup - B of LI with Lie algebra b . (See Chapter 0 (4.4).)

There is a filtration of S by B-submodules

(s means, here, B-submodule) where the B-module s9- 3 C.e,qeW
_ r<q

with C-r = Arp_, r eW (under the isomorphism C_ = Ap_) .

sd =5 for q zm, 2m = dim K/L . $° has weight Chl T (Recall

that we are assuming that K/L is spin, so p-p € A.) The quotient

79 = Sq/Sq'] . T9=0 for g>m, ST= = 8 79 as a B-module.
: - (-1)%11 ,
Clifford multiplication induces a map p 8 9 & 79,
There is the B-module short exact sequence
059195 2%pE 0 (1.2.1)
‘ = TP
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(for details see [30]). Here 'Eu denotes the 1-dim holomorphic
B-module with weight u e A (see Chapter 0 (4.4)).

Let Vu_p denote 'the' simple L-module of highest weight u-py -

L

Note that VA+p_ occurs with multiplicity 1 in S8 V- as an

2p PL

L
L-module. X e A n IE (see Chapter 0 (4.2)).

There is a fi]tration of SR V)\_p by L-submodules

L
0 1 q g+l
0 <S7(X) =S (A) = ...... < S X)) ST (X)) s ...l < S&VA_p
. L
0 +1 |
where S°(1) = va_2pL and $¥(x) = sY()+psT(r) , g e
PSq(A) denotes the image of the map p R Sq(x) _cal Sq+](x)

by Clifford multiplication. S9(a) = sV, for qzm. The
L

quotient TI(a) = Sq(A)/Sq-1(A) . 1) =0 for g>m, and

@V, = z.  @TYx) . There is an induced map
L (-1)%=41 - /
patd(n) —EL 19%1(0) . Tensoring (1.2.1) with E,_ on the
| L
right we get the B-module short exact sequence
0+ pE_ +sYaE  »T9RE_ »0 (1.2.2)

TP oL oL

(N.B. QE s right exact and E 1is flat.)
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q BN
T R EA'pL AMp_ B EA+p-2pL

th

as B-modules. For U a

B-module recall Ht(U) ,» the t cohomology space for the 3
complex, (see Chapter 0 (4.4)) 0 =<t < my s My = i dim L/H .

If

Ht(Tq Q EA- )=0, 0<ts m s D<qg<m (1.2.3)

PL

then the long L-exact sequence associated to (1.2.2) reduces to the

short L-exact.

0+ 59771 > s9a3 -19007 » 0 (1.2.4)

0,-9
(TRE,__ ) .

where the L-modules $%ra1 = HO(s%E,  ),1%(a1 = H
“PL pL

Now if V s an Lg-module then H“(UBV) = H°(U) @'V . So by the

Borel-Weil-Bott theorem we get a filtration by L-modules

0V = 5907 s..u s S90AD <. euus STOAD = SRV,

>\+p'2pL pL

4

The quotient Tq[A] = Sq[A]/Sq'][A] . In fact under condition (1.2.3)
sqa) =591, so T = Tq[A]‘, 0<qs<m. Also the condition ‘

<A+p-2pL-lA|, a>20 , VYo e Rt and each q-tuple A of distinct »
roots in R'-R| implies (12.3) . (See [303, [251.) " (1.2.5)

Recall the definition of A ‘'sufficiently non-singular' (s.n.s).
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See Chapter 0, (4.2). We shall assume here that 2 s.n.s. (1.2.5)

means that condition (1.25) is satisfied.

Proposition 6.

A s.n.s. (1.25).
The simple component L-modules of 19027 = HO(Tq@EA_p ) are those
L ,

with highest weights X+p-2p - |A] where A runs over all g-types

of distinct roots in R+-R: .

Proof.

A finite dimensional B-module U has a composition series

0 = Uo SUp <. <U =U where W, =U,/U;_; is a simple (1-dim)

i
B-module with weight Hy e A . Suppose My € If . Define the Euler

a

m
characteristic Xx(U) = z] (-1)t[Ht(U)] in ZrL] , the ring of
t=0

virtual representations of L (see Chapter 0 (3.3)). For a short

B-exact sequence 0 -+ U'~>U-~>U">0,

x(U) = X(U') + X(U") .

If HYU; ;) =0, t#0, then H'(U,) = HE(W,), t #0 . Then as
U, is simple, we have inductively, by B.W.B., that Hu)y =0, t#0.

Also x(U) = I x(W;) <ZIL]

o~

.

i=0
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Now put U = T98eE . Here W. has weight
A-pL 1

My =_>\+p-2pL - |A] and all g-tuples A of distinct roots in R+-Rt
occur. Here a = (g) . We have Xx(U) = [HO(U)] . Also
0
X(W,) = = MW.B. d
(W) = TH(E, )3 = [V, 3 by B.M.B

Note_that for any A-pL e A n Iﬁ ,» & simple component of

SR V}\__p » as an L-module, has highest weight of the form
L

a-p+|A| s Ac R+-RE . But these may not all occur.

Remark 3.
Let Uv, UV be simple K-modules with highest weights ViV
1

Then a simple component K-module of Uv f Uv » has highest weight
1

of the form Vv, with v, 2 weight of Uv . Furthermore if
1

va2 occurs 1in Uv g Uv] » then it occurs with multiplicity equa]

to the multiplicity of v, asa weight of Uv
1

§2. Induced Twisted Spinors.

(2.1) Take a compact spin pair (K,L) with rank L = rank K .

Notation will be as in §1. Consider the induced unitary K-modules

2 K 2,k K d
I =1L (savA_pL)L , Iy =L5(s7 8 vA_pL)L for AednlT] .

+ -
IA = IA 6 IA .
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Denote by Uv s the simple K-module with highest weight
veAhAn Id . Recall that A cT. Aiso here A ¢ IL as L and K
have equal rank. Note that as K/L 1is spin,p-pL e A . We assume
that p ¢ A, so also o €A

9 xta) = 1l 2110115

,X denotes the infinitesimal character of U . (I1-]1 is by (,)

For ue A, define inf(u) = {veanl

see Chapter 0, §4). inf(u) dis a finite set. Recall the intertwining

number iK(IA’Uv) (see Chapter 0 (3.2).)

Proposition 7.

(1) II—I; =0, A singular w.r.t R
=jj(w)Uw\_p,Anon-smgu]ar‘w.r.t R, inZ[K] ;
where  j = + 1 1if } dim K/L(= no(R*-R)) is even

= -] ] n " 9dd

and for .x non-singular w s the unique element of W(K,H) such

that wx 1lies in the fundamental Weyl chamber for R* (i.e. wx e Id).
N.B. wle W' . §(w) = det w = (1)) (see Chapter 0, (4.4)).

(2) (i) If A 1is singular w.r.t R, then for v € inf(x), iK(IA’Uv) = 0.
- (ii) If A 1is non-singular w.r.t R, then for v e inf(d),

v#wi-p we have 1 (I,U) =03 i (0 y=1,

K" v

. r=Jdd(w) -
1K(IA ,wa_p) 0.

WA=p
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Proof.

(1) Consider the extension to ZIL1 of the map V, - dimgHom, (U ,V1) =

= i(Uv,V]), V] a unitary L-module. Here Uv is an L-module by

s s . + R
restriction. Then 1(Uv,(S -S)QVA-pL) i(j(S -S )@Uv,VA_pL), by Lemma 9

0, " A singular

fl

0, X non-singular, v # wi-p

Ji(w) X non-singular, v = wi-p
(by Weyl's character formula).
Now see Chapter O (3.2). (See [31] for the non-compact case.)
(2) Recall that iK(Ii,Uv) = iL(Uv’StQVA-pL) . Suppose that

iK(IA’Uv) # 0 . As noted before, a simple component L-module of

+

SR Vr-0 has highest weight of the form x-p + [A] , A ¢ R+-RL

L
Choose W e W(K,H) such that wx is dominant w.r.t R* . The set

of weights of Uv is invariant under W(K,H) . ‘We see (from a theorem
in Chapter 0 (4.2)) that if %K(IA,UV) # 0, then v must be of the
form v = wx-p+lAlw +'s . Here the sum of distinct roots in R’ ,

Al » s given by w(-p*|A]) = -p+[A] (see Ch.5,(2.2)) and s is

a sum of roots in R*
. 2 2 .
Then for v e inf(x),[[wa+[A] +s[|” = [[A[|" 1.e.
2 .
2<nn, [A] #s> + [T1A], + s||” = 0 we require |A[, =0, s=0. So ‘
we get v = wr-p . But then A must be non-singular, and w is unique.

W

As o occurs with mult 1 as a weight of Up » A=A _; (see Ch.5,(2.2) ).
Now A-w']p = w'](wx-p), so occurs with mult 1 as a weight of wa_p‘

We deduce that'iK(IA,UwA_p) =0 or 1. But (1), excludes 0 . O
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CHAPTER 4.

2

§1. The Curvature Term in D

Take a pair (K,L) as in Chapter 2, §1. We consider the curvature

term in D2 (see Chapter 1, (2.2)).

(1.7) Let {gj} s {;t} be an orthonormal (w.r.t(,)) basis of p , £

respectively. Recall that

ROV £,n) = dR(QLE.NT) + [¥°(E)sy°(n)] - vo(PLEsn])

Es,ne k. P:k+p s the orthogonal projection, Q = 1-P .

And RO(£,n) = (20dw)R(Esn) » with

R(E,n) = -ad Q[Esn] + [Y(E)QY(n)] -.Y(Ptg’n]) s

Rv(g’n) = dR(QEE,n]) s E,n € k .

The term

-%;z.c(gi)c(ngzodw)ad(Q[gi,gjj) -g.z_c(gi)c(sj)dc(QESiajJ)‘

T15J 1,3
= -21do(z,)? = 2do(9)) (1.1.1)
' :

Q is the Casimir element for L (w.r.t(,)) .

N.B Qeg.1 = 1ct, ¢,, with cf, = ([£.£.1,z,)

(N.B. . QLegEyd = 2645 o iy = (L&i85d8) o

and - 2ct g‘ = [g.£.] since [z,£.]=1:% a,E; , Wwith
an ; ij=i tcj- . t°j i i

t
ai = ([CtEj],Ei) = cij )'
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The term

v -1
3 1,fjc(ai)c(aj)ﬁ R(g5:85) = jftC[CtEJ]C(gi) @ dR(z,)

2 3do(zy) @ R(zy)

-2 i do(:t) 2 dr(;t) .

Now d(o8t)(z) 2

(do(z) @ T + 1 8 de(z))

do(z)? @ 1 + 2do(z) @ de(z) + 1 8 de(z)loz € £ .
Put ¢ = P and sum over t to get
-szo(;t)ﬁdr(;t) = -dc(QL)-dT(QL) + d(o@T)(QL) . (1.1.2)
t

Thus

: iz.c(Ei)C(sj)@Rv(ai,aj) = -do(® )-dr(e ) + d(oB7)(2)) . (1.1.3)
»J
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§2. Symmetric Pairs.

‘We use the notation and results of Chapter 2.

(2.1) Let (K,L) be a symmetric pair of compact type. (See Chapter
2, (1.1).)

So K 1is compact, semi-simple and there is a pair (k,8') where
8' is an involutive (i.e. 8' # 1, 6'2 = 1) automorphism of k such
that k=£ & p is the decomposition into the +1 , -1 eigenspaces
of 6' . The Killing form of k is negative definite on £ . Let
(kys6) be the non—compacf dual of (k,8') . So we have the Cartan
decomposition k, =4 @ /-1p with involution 6 . We denote the

complex linear extension of o to k, , alsoby e . (See [10].)
C ,

(2.2) Consider rank L = rank K .

We use Chapter 3. Let K/L be spin. From Lemma 9 (i) ’the
fact that we can write w e W(K,H) uniquely as w=ww' , with
W, EVW(L,H) s W' e W' 3 Weyl's character formula; and the fact that,
here, S¥, S (See Chapter 0, (5.3)) do not have weights in common;

one sees that

st= 3 @V
well'
det(w)=%1

WD’QL
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is the decomposition of s* into simple L -modules. (Vu is the
simple L-module of highest weight wu.) In particular, do(QL) on
S , is the constant |lp||2-llpL|[2 (where []+|] = <*,*>, see

Chapter 2, (3.2)). See [28 ] for the proof.

(2.3) Consider rank L < rank K.

See Chapter 2, §2,3 . h 1is a e4stab1e Cartan subalgebra of &,
i.e. 6h ch . There is the fact that h] is maximal abelian in . p
iff k, has one conjugacy class of.Cartan subalgebras;
iff rank K = rank L + rank K/L (i.é. K/L has split rank. This
includes the case of split rank 1 . The rank of K/L , or split rank
of k, , 1is the dimension of a maximal abelian subalgebra of p .

See [101.)

Remark 4.

ky 1s a real semi-simple Lie algebra. ThevCartan subalgebras
of Rk, fall into a finite number of conjugacy c1as$es under the adjoint
group (see [191 ). Given any Cartan subalgebra, there is a conjugate,
a , which is e-stable i.e. eaca . Write a = aq ® aq with

aogz,a]_c;/-jp

The 'usual' classification of symmetrfc pairs (as given for example
in [101 ) makes use of the conjugacy class with a, maximal abelian
in /-1p . However, in the present work, when dealing with aspects of

representation theory of the compact pair (K,L),'it is necessary to use
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the conjugacy class with % maximal abelian in £ (the funda-
mental Cartan subalgebras). These two ‘extreme' classes coincide

iff k, has precisely one conjugacy class of Cartan subalgebras.

Therefore, using a fundamental Cartan subalgebra h (see above),
we need to work out some properties of the root system R, and the

'restricted' root systems RL’ Q .

(2.4) We define an involution on R , o = o » & € R where
ae(;) =a(6z) sz eh .
Lemma 10.
' ‘ 8
(1) g = %e , o= -5 , k% =k for aeR.

(ii) o

0 iff a=a° for aeR.

(111) Ry u Ry = {a e Rsu = o®} , Ry = {a  Rsa # o)

Ry s the root system of (ZL(HI)’HO) s Ry u R, s the root system

2.
of (Z.(H;),H) . (Where Z (H;) is the centralizer of H, in L etc.).

(iv) ¢#0, YaeR.

(v) K/L has split rank iff R, = ¢

Proof.

(i) If e« k%, £ e h then [z,8¢] = 6[6z,e] = a(8z)6e

The other two parts, and (ii), (iii) are easy to see.
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iv) See Lemma 8 (ii), Chapter 2, (3.1). If a eR then

.( 2 s
"
0]

-= 0 so a#0 . |
(V) let aeR,. Then [zel =afc)e =0, for cehy ,eekcpg.

So if h] is maximal in p , we must have R2 = ¢ , Conversely,
suppose R2 =¢ . Thenas o #0 for o e R] s Wwe have zp(h]) = h],

(where zp(h]) is the centralizer of hy in p).
N.B. [?;Ea] = a(C)na s [Cna] = a(?;)F,a s T € h'l s O € R] .

Corollary to (iv).

As noted before, H < Z In fact here H =Z,(H

| k(o) -
This is equivalent to (iv). So there is a unique maximal torus H
of K containing H0 .

Proposition 8.

Consider the isotropy representation of L , (PG,Ad) .
(i) h]@ is the O0-weight space.
(i) For 6 eQ,aecl wehave as e Q iff a =0, 3, £1 22,

(iii) For 8§ e€Q, 8 # 0 we have mg = 1 1i.e. the non-zero weights

all have mu]tip]icify 1.
(iv)  K/L has split rank iff mgy = rank K/L .

(Here my = dim h] , the multiplicity of the weight 0 .)
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Proof.

(i) By Lemma 8 (iii) and Lemma 10 (iv), we have zp( 0

(ii) For 6,e £ Q we see that 2<e,8>, Z .

<§,8>,
This is because Q ¢ I (the lattice of integral forms of L) ,

and 3 = 0 for a € R2 .
(ii1) Let a,8 € Ry with o #8 and g =8 . Let L:eh] .

Now

((2de)?e,.8%) = (g 5 (ade) ")

i.e. (a-8)() (a+8)(2) (£,E°) = 0 . OF course &’f-'é

So if o # -8, we get (ga,gs) =0 , a contradiction (as root

vectors have multiplicity 1). Therefore @ =-§ andso g = o

Note that for 6§ e Q , § # 0 one has oMy = 0 or 1 (as @ =0

for a ¢ R2) . Thus for 6 e Q with 6 #0, 6§ ¢ Q,, we have ms = 1.
Let 6 € Q] . By the above, and (2.4.2), one has Mg = 1.
Therefore mg = lor2 . Now § = g some o e R] . ‘{C%,Ea,ﬁa} \is a

complex simple Lie algebra of type A] . Suppose 28 ¢ Q . Consider
C

the trace of ad — §> ~on the space spanned over € , by

Cn_, h.@ and the s-weight space. As 28 ¢ Q , we see that this space

is A]-invariant. By A] representation theory, the trace is zero. But

the trace is also equal to ']+m6 . Therefore my = 1.
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Suppose that ¢ € Q], with 26 e Q . Now 28 £ Q] , Otherwise
26 = B some B e R] and then B =2¢ , a contradiction. So one
must have 28 = g for a unique B € R2 . And M
is non-zero, then from (2.4.4) o-8 € Ry . But (a-8) = -8, thus

=1. If [gae_B]

we must have o+a’ = 8 . Then [gae_B] e On_, . Consider the trace
T .
Q
Y .
of ad on the span over € of Qe , n_ hig » the

<Q,0>,

S-weight space and (e We see that this space is A]-invariant.

B
Thus the trace is zero. But it is also equal to -1+m6 . Therefore
ms = 1.
(iv) This follows from (i) and (2.3). O

~ In the notation of Chapter 2, (3.3) we see that R' 1is such
that R, = R O R" where R" =R' =:{a%a eR'} . (0 denotes
a disjoint union). (2.4.1)

Proposition 9.

(1) RO=¢,Ryy=R,. For acR, aa® fR,

>B,O

(i1) The restriction map R, OR' G R, UR' OR

2

,o:,o—-——->%
is a bijection.

Ro

[ad)

n

(iii) R_ =Ry O R' 5 Q={0} &R
{ea(aeRO),na(aeR')} ,‘{na(aeR'), ea(aeRZ)} are 'the' root vectors,

non-zero weight vectors respectively.
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Proof.
(i) Clear, by Lemma 10.
8

(ii) Let a,8 € R . We have -8, = (ea,s

B) = (ga,gs) + (ﬂa,?B) .

~ For a eRy, B¢ R' , (ea,EB) = (ea,eB) =0.
For a e Ry, (ga,aa) and (na,n“) are real -ve .
"~ Also if o eR', B¢ R2 s (ﬁa,eB) = (ea,ss) =0
" From these remarks and the fact that roots and non-zero weights

have multiplicity one, we get o # 8 for a,B ¢ Rg U R'" v R2, with o # B.

(i1i) Follows from Lemma (iii), and (id). 0

Note that for o € R , 2£a =g, *0¢, 2na = e,~0e 3

=] - -
Eg=c& sng=- n, where be, =C,e g - (2.4:1)
o o o o o

OI—J

Fof a € R] s (Ea,ga) =-1= (na,na) . |
Also for o € R, 2;% = ca+eca > 2€8 =L, = Cu-eca 4 (;. 413)
a _ o -
2[;a£ 1= c%, 2[nan ]l = CQ

And for o,8 ¢ R, wWith a+tB £0 , a® + 8% 0 ,

N €a+s teNg&g where [easB] = NaB€a+B s (2. 4.4.)

2t £,]
a’B o8 va aeB a 18

2lt n, 1 =N n .+ c N n
a B oB atB o GGB a9+8

Propositions 8 , 9 give for a symmetric pair (K,L) ,. the
weights of the isotropy representation, (Pm,Ad) of L, and their
multiplicities. And, for K/L spin, Propositions 5 , 9 give those

of the spin representation (S,0) of L .
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(2.5) Take an orthonormal (w.r.t(,)) basis '{Ct} for hy .
Note that {e,(acRy), v2E (aeR') , {”,/26"} are dual w.r.t -(,) .

Then the Casimir element for L (w.r.t(,)) is

[
1]

-3 ci + 2 5e*+2 ¢ ¢¢&°
t a€R0 @ acRt ¢

2 | 5 |
= - i Ct + I (Ca+2€asa),+ z (Cv + 4Eaga) ’

aeRg aeR'+

(N.B. in the universal enveloping algebra u(km), En-n€ = [End ,E,n ¢ km) .

And QL acts on a simple L-module of highest weight Mg by the constant

<u0,u0>. + I <U03a>l + I <uOsa>|

aeRg aeR'F
- < s . _ 2 2
= uo,uo 1+ 2<“0’pL>? = IIUO+PL||| - |Ilel' s
— 1
PL " RO™,
(where |[-[]i = <*,*> ).
(2.6) Lemma 11.
' '
(i) 4 o - ecas acR, If a+ae £ R then 2<q,0>, = <a,a>,<a,0>, = <o,a>
o ‘ : ‘
for a e,R-I .
" :
(ii) e = 0.

Proof.

(i) For o R, (e;a,;) = (;u,bc) = (;ae,;) , Yo € h , and of course

(,) restricted to hxh , is non-degenerate.
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For o € R] s 2<a’a>7 = <q,0> + <a,ae> . But, by Proposition
(i) » <a,ae> =0 .

(ii)v For aeRy, g = [é ea] € /-]h s SO ¢2 =0 . For ace Ri .
2p(cm) =p(g,)e(t g) 5 soif a is simple, o s simple and
p(Ca) = }<o,0> = égae,ae> = p(c e) . Thus p(cg) =0, for ac R] .
Note that as, here, k is semi?simple, {C%},'{cg} (e € R) spans

V-1 V-1 7 over R, respectively. ' | 0

0 b
Note that for «,8 € R, 2<a,8>] = <q,B> + <ae,e>
And for p e I (the Tattice of integral forms),

<Usa>| |

2<u 20> . <y,a> -, 8
<0 ,0> = 1 <40 +3 < 0> > With o R-I s ata £ R .
’

The Weyl group W(K,H), W(L,HO) is generated by the reflections

Wo(u) =u - 32%:%; a ,uel ,aeR;
2<uo,oc>-I , .
W%(“O) o lereral BRI I, »geR respectively.

For each Wy € W(L H ) there is a unique w e W(K,H) such that
X =, (here W means w restr1cted to K ) This is because |

=H (see [22]).

z (HO)

K

(2.7) H] is the identity component of the centér of ZK(H]) .
Therefore, hére, H] is closed in K . In fact H = Hy x“H] s a
direct product"(see [1071 ). (ZK(H]),ZL(H])H1) is an equal
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rank symmetric pair. (ZK(H]),H) has root system RO U R2‘,

(ZL(H])H],H) has root system RO (see Lemma 10).

Let K/L be spin. Consider the spin representation (S,o)
of L (see Chapter 0, (5.3)). There is the fact that the Casimir

operator dc(QL) (w.r.t (,)) is constant on S (see [281).

Since from Propositions 5,9 S contains the simple L-module of
highest weight p'+p2 = p-p restricted to ho s we see that this

constant s |[p]|% - |l [1% .

(2.7.1)
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(2.8)7Examp1es.

Refer to [101.

(i) Take the symmetric space SO0(6)/S0(5) . This is also type AII,
SU(4)/SP(2) .

Z] 22 ,
p = H Z] e su(2) , 22 € 40(2,0)
Zé -2} '
ho 4
SP(2) = ; Z.I e su(2) , 22 e 40(2,0)
—Zé 2}

So K/L has split rank 1. Au(4)m = 8£(4,0) type A3
Ap(Z)m = sp(2,0) type C2 = B, .

Take a Cartan subalgebra in 4p(2) consisting of
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CO=1 b ;. a,b €IR .
-a

And a Cartan subalgebra h in su(4) ,

a

g =i b 0 s a,b,c elR, athb+c+d =0 .
c
0 d
g CO + C]
where
. b . .
1 c = 31 b-d 0 + }i(a+c) -1
0 d 0 -(a-c) 0

-(b-d)

The roots R are given by aij(c) = ai-aj , the difference of the

ith and ™ diagonal entries.

a?z(l) = %i{(a;c)-(b-d)} - j(a+c)
= i(d-c) S0 “?2 = a3 -
ag3(z) = 3il(b-d)+(a-c)} + i(a+c)

i(a-d) 50 oang = oy
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Ry = {£ app Tagy, £ ays, £agd, R ={fap,, $a,3}.

Now 212 = Ra3» %23 = %14 -

a4] = + o

ag3 gy O3p T agy Fogy 5o and ggs = gay + 28,

one sees that {a43,a3],u]2} s {%3],%]2} determine a compatible
ordering R+, RE .

+ - |+ . u+ -
Ro = fogpoegp} » R = foggoagpd o R = Hayghayy)

+ " L
and R = {aay0a0800832? - P = Blagptegy)

Consider RL—chains g+ ty, -t'<ts<st", a,B € R0 u R' .

The reflection wa(g) =8~ I where the Cartan integer Ay = t-t" .

! [3 l 3 . ®
For %43 with 055 € RO u R' , we shall write (ij) .

Warlgy2) = %92 + 231 = %32 -

‘-f
"
o

B+t (12)-(31) ¢ R_

L]
—
™
Q

(12) (31) (12)+(31) = (32) ot
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Wap(R32) = %32 = 837 = %12

B+ tg  (32)-(31) = (41)+(13) = (43) = (12)

(32) (31) (12)-(31) = (12)+(13) £ R, . to= ]
(32)+(31) £ R, £ =0
WaR') =R
Wao(R12) = %12 = %42 = %14 7 R32 -
g+ta  (12)-(42) = (12)+(28) = (14)
(12) (42) (14)-(42) £ R | t' =1
(12)+(42) £ R, =0
Wao(R30) = R327%42 = %34 = "2
g4ty (32)-(42) = (34)
(32) (42) (34)-(42) £ R, g o=
(32)+(42) £ R E =0
W42(£') = _"‘)ll
Wi2(t12) = tr2oM2(832) = %2 -
g+ ta  (32)-(12) = (31)
(32) (12) (31)-(12) = (31)+(34) £ R, =1

)
)
(32)+(12) = (41)+(12) = (42)
(42)+(12) £ R t" =1
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Wap(R2) = 8120 W3plR3p) = %35 -

B+ ty (12)-(32) = (13)

(12) (32) (13)-(32) # R, th =1
(12)+(32) = (43)+(32) = (42) agy = 0
(42)+(32) ¢ R_ t" =1

Wige') = 3(-apotagy) = pluaro, Wao(p') = 3(a15ma3,) = p'-a4,

Thus in this example the Weyl group W(L,HO) acting on p' ,
exhausts the weights of S . Hence each weight has multiplicity 1 ,

and S is simple, as an SP(2)-module, of highest weight Rl .

(ii) Take the symmetric space of type AI, SU(3)/SO(3) .

The non-compact dual is SL(3,R)/SO(3) .
p consists of the symmetric, pure imaginary matrices of
trace zero. 4u(3) has rank 2 , 40(3) has rank 1 .

~ A Cartan subalgebra h of 4u(3) is

ia b 0
-b ia - 0 s a,beR,
0 0 -2ia

which contains the Cartan subalgebra hy of 40(3)
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ia b 0

-b 1ia 0

0 0 -2ia
4

su(3) = 8£(3,C) type A

o -

-89 -

80 (

3)

0

= 50(3,L) type A

+ jaj 0

1

s£(3,R) has 2 conjugacy classes of Cartan subalgebras.

id €
Consider o8

1 i
i -]
0 O

The commutator [c]

and

With

we have [cosa]

o O o

and [ci&a] =

With

m

o O o

ibga s [Cona]

1bna

Biana s [;]na] = Biagav'.

-3 +{ 0
0 1

-i
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we have [cos_B]

1]

-ib £ o 5 [egn_g1 = - ibn_

{]
and [C]E_B] = 3ia n_g » L5 n_B]= 3ia £
Also take
0 0 0 0 0 1 0 1
0 0j=-10 0 il +10
2 21 0 -1 -1 0 i 0
EB EB nB
and
0 0 0 0 1 0 1
0 0 of = - 0 -i +{ 0 0 =i
2 -2i O -1 i 0 1 =i 0
E-a E‘"or. n-a

One sees that R = {xa,*8,x(a+8)} where
a(z) = i(3a+b) , B(z) = i(-3a+b)

with corresponding root vectors, as given. So o+8(%) = 2ib .
Also o = B . We take RF = {a,B,a+B} . Here R0 =¢ and

R; = {a,B} , RZ = {a+8} , Rt = {g} . Note that Q {s not reduced

as 2% € Q.
P'+pz = %(a+(a+6)).. £'+22 = 3/2y

The weights of (S,0) are 3/2g, 3g. -1a, -3/23 3 each occurring
n,
with multiplicity 1 . Hence S 1is simple, as an SO0(3)-module of

highest weight 3/2% .

(N.B. SO(n) has fundamental group ZZ s SO is not simply
n
connected. SO(n) , the simply connected covering group, is Spin(n) .

SU(n) and SP(n) are simply connected.)
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§3. The Case of a Symmetric Pair of Compact Type.

Refer to s2.

(311) Let (K,L) be a compact, symmetric, spin pair (i.e. (K,L)
is a compact symmetric pair (see [ 101), and K/L is K-spin (see

Chapter 0, (5.3)).

Let g determine the Levi-Civita éonnection,on T(K/L) (see
Chapter 0, (2.4)). For a symmetric pair, this is the same as the
reductive connection for: [ppl c£ , therefore Yo = 0 on p

See Chapter 2, §1. Take the twisted, by V , Dirac operator D = DV

associated to (( , )’YO) .

It is in this situation, that the square of the Dirac operator
takes its simplest form. In fact by Chapter 0, (2.5); Chapter 1,
(2.1), and (1.1) of this chapter, we have the expression in terms of

Casimir operators (w.r.t(,)) :

o
1]

dR(nK)-dR(QL)%ch(QL)-do(QL)-dT(QL)+d(o@r)(QL)

-
(1]
o
1]

dR(2y)+do(g )-dr(® ) , as was obtained in [ 28 1. (3.1.1)

(One see that dR(QK) = dL(Q , see Chapter 0, (1.4).)

k)
Let (K,L) be of compact type (see §2). As was stated, do(QL)

is a constant on S . Take V = VA -0, ° the simple L-module of
: 0 "L

highest weight Ag=eL - It is the purpose of this section to determine

the kernel of D, Ker D, as a K-module.
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. d
Let Uv be the simple K-module of highest weight v e A n 1

It is seen that finding Ker D 1is equivalent to determining the

v-primary K-submodules in the induced module L2(SQVA -5 )E

0 "L

with

v belonging to a certain infinitesimal class. (Refer to Chapter O,

(3.2).)

In (3.2) we consider rank L = rank K . The arguments used in
(3.2) are similar to those used in [ 281, [31 1 (for the pair (G,M)
where G is non-compact semi-simple and M a maximal compact sub-

group. This is a symmetric pair.)

In (3.3) we consider rank L < rank K . This is harder.

(3.2) Consider rank L = rank K .

The arguments used here will be similar to those in [ 281, [31 1.

By (2.2), the formula for the square becomes

2

0% = aR(e) - (IA-1lol1D) . (3.2.1)

(Here Hy =H, Ag = X .)
Recall the %-Dirac operators D* (see Chapter 0, (5.4)).

Theorem 1.

If x 1is singular w.r.t R, then Ker D =20.

If A dis non-singular w.r.t R, then Ker p* = UWA-p » Ker D" =0
(or +,- interchaﬁged, see Proposition 7 Chapter 3, (2.1)); here w
js the unique element of the Weyl group W(K,H) with wix dominant w.r.t Rt .

/
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Proof.

From (3.2.1) ‘Ker D is the direct sum of the v-primary
" 1

. 2 . 2 2
K-submodules in L (S@VA-pL)L with  x() = [Ia[]%=]]e]] (X

being the infinitesimal character of UV . The result now follows

directly from Proposition 7. 0
(3.3) Consider rank L < rank K .
By (2.5), and (2.7.1) the formula for the square becomes
becomes
2 2 2
02 = dr(e)-(1 1ol 1% - [1o11%) | (3.3.1)

For X e A, A non-singular let w denote the unique element
in W(K,H) with wx dominant w.r.t R (see Chapter 0, (4.2) for

'singular', 'non-singular').

Theorem.2.

Ker D 1is the v-primary K-submodule, of multiplicity

[m0/2] K
L

L2 K . L
2 s rv(S@VAO_pL) in L (SQVAO'QL)L ; where v = 2A-p with

(Recall that m, = dim h] .)

0

Proof.

| , | 2 2
Define for wg e Ag n I » influg) = {v e A n T3 X(2y) = Hugl 1 =11e] 172 .
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This is a finite set (vX is the infinitesimal character of Uv ).
From ( ), Ker D 1is the direct sum of the v-primary K-submodules

in L3(__) . with v e inf(ay) .

Refer to Chapter 0, (3.2). Suppose that Uv s V€ 1nf(xo) ,
contains a simple L-submodule of highest weight of the form

. + +
mg = Agp ¥ |Al + [B] with AcR'™, B<c Ry (see Chpater 3, (1.3)).

Since the weights of Uv as an L-module are just the restrictions
to ho of the weights of Uv as a K-module, there is a weight of
0 l - ) \ f\l
U, with p = ug - Define the parameter A , by ) = g X o= ﬁ-|A|‘;

so u = A-p+|A[+|B| . Recall that 5 =0 .

The set of weights of Uv are of course invariant under W(K,H) .
Choose w € W(K,H) with wx dominant w.r.t R . We have
wp = wx-p+|C|w s C=AuB (see Chapter 5, (2.2)). Also v =wu +s ,
s a sum of +ve roots. Then l|v+p||2 = ||wa+|C] + s||2 . So if

||v+p||2 = IIAOI|? ,» wWe require <i,A>' + 2<wr, [C], + s> + |||C|w+s||2 = 0.

Therefore X = 0 » and s =0, }Clw =0 . Hence 2 is non-singular, .

w=1 and v =2, Therefore Mo = Ao-g

VoL . : + ’
As A =0=p , ny s dominant w.r.t R . ' Now Mg =‘-(£-pL)+‘AO-pL

i.e. the sum of the Towest weight of S and the highest weight of

vl I It follows that the simple L-module of highest weight Mg
0™PL C
m0/2]

occurs with multiplicity 2 in S8V, i . Hence the result.

0"L

(see Chapter O, (3té.)‘ 0
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Remark 5.

Since for a symmetric pair of compact type, H =Hy x H, a
direct product, one can always satisfy the condition X e A,

I\" - ]
A=hgs A= 0. And X is unique.
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CHAPTER 5.

In this chapter and subsequent chapters we will embark upon a
series of steps, which will eventually lead to the answer to the Problem
for any compact pair (K,L). (See Chapter 2, §1.) These steps are

indicated at the head of each chapter.

For L not the identity subgroup {e} , and V a simple L-module
of highest weight AgmPL the procedure involves first establishing
the result for Ao 'sufficiently non-singular'. This will occupy

chapters 5 - 8 . Chapter 9 then extends this to all parameters Ao

We shall use the notation and material of previous chapters, often

without comment.

The procedure will be independent of the method used in Chapter 4 §3

for the special case of a symmetric pair of compact type.

Step 1.
In this chapter, we deal with the case of L = {e} the identity
subgroup (see §3), and the ca§e of L =H a maximal torus of K (see

§4).

In §1 we develop our technique of tensoring an induced represent-
ation with a finite-dimensional representation. And we study the

st

behaviour of a connection, and a 1°~ order differential operator of

type 'symbol mapping composed with a connection' with respect to this

construction.
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§1. The Tensor Product of an Induced Representation and a

Finite-dimensional Representation.

(1.1) Let (K,L) be a pair of Lie groups with L a closed subgroup
of K. Let (U,x) be a finite dimensional unitary representation

of L, and (W,n1) a finite-dimensional unitary representation of K.

There is the 'product K-bundle' K/LXW over K/L , where
(xsw) > x and K acts by k{x,w) = (k.x,n(k)w) , k € K, x ¢ K/L,

Wel.

Regard (W,1) as a representation of L by restriction. Define

a Kk-bundle map (W)X = Kkx >K/LXH by

[k,wl

>(kLon(kW)y k wel .

This is a K-equivalence of vector bundles. Thus there is a

K-equivalence (ggﬂ)f = (Q)E f K/LXW.

Define r(uaH)\ —2—s r(u)< 2w

by (ef)(k) = (18n(k))f(k) , k ¢ K, f e I(URW) . (171.1)

(N.B. Here we are omitting A . 1 is the identity operator.)
(o) (ke) = (<(2)"" & m(K))F(K) = (x(2)) B 1)(eF)(K)» kK € K , 2 'L .

Note that o '(f 8 w)(k) = f(k) & n(k) 'w

Mso  (of)(KTky) = (1 0 m(k Tk )F(K Tk
| ©= (1 (k) ek (Ky)
50 s(koF) = (1RT(K))k.(ef) .
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Hence ¢ 1is a K-equivalence, and it extends to a unitary

equivalence Lz(ggy)ﬁ LA L2(U)K

UL e .

(1.2) We have ((dR(g)@1)ef)(k)

(dR(g)k g 1)¢f

[=NFaR
purs

(ef) (k expte) |y g

Io.

tmn(kexptg)f(k exptg)lt=o

[aX

(1@m(k))(dRr(g), f+du(g)f(k))

(e(dR(g)+dn(g))f) (k) keK,fer (URN)
E;ek . ;

Thus  (dR(£)81)e = o(dR(g)+dn(g)), € < k . (1.2.7)

u

Let v- be a K-invariant, metric connection on U, determined

by yU:k +u(U) . Then we get such a connection TTVU on UBW by ¢

i.e.
@(“va) = (W @ 1)ef . | (1.2.2)
Now (v(£)a1)(#f) (k) = (v(£)an(k))F(k)
= (8(x(£)A1)F)(K) .

Thus TTVU is determined by yU:k +lL(U@W).

where y' = y'81 + 18 an . (1.2.3)
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(1.3) Let K/L be reductiveso k=26p, [L,plcp . Viaan

inner product (,) on p , K/L becomes Riemannian. Suppose

pau-2

ential operator D : P(Q)E - P(Q)E
D

aovV (see Chapter 0, (2.6)).

o
i

I a(z;)(6R(g )y (54)

SO

where '{gi} is an orthonormal (w.r.t (,)) basis for p

K
L

K

By ¢ , we get “D:r(ggy) -> r(ggﬂ)L where ¢ D = (D1)¢

U

Thus L= (af1)o -7 So D ‘has symbol map a 8 1 and

D = z(a(g;) & 1)(dR(g;) + 1TYU(’é]-))

il
1

(1.4) Let K/L be K-spin. Take (U,c) = (S&V,ofit) , W

(see Chapter 2, §1 for notation). Take the twisted Dirac operator

DV associated to ((,),y) .

By (1.3), associated to the triple ((,),y,I) there is the

>U s an . .L-map. Then we get the 1St order differ-

(1.3.1)

(1.3.2)

twisted, by V , Dirac operator 1TDv of the connection determined

by 8181 + 1818d1 on (Savaw)S .

Therefore TTDV » and DV@W are related by
aDy - Dygy = I cl&y)@adn(e;)

as operators on r(S@V@W)E .

(1.4.1)

(1.4.2)



Chapter 5. - 100 -

(1.5) Let (K,L) be a compact pair. We use the notation of (1.1).
For £ek , (dR(E)2 8 1)8 = o(dR(g) + dn(g))® . Let {n;} be an
orthonormal basis of k (w.r.t (,) see Chapter 0, (4.2)). Putting

£ =n, and summing over i , we get
(dR(QK) R 1)e = ¢(d(RQn))(9K) ~ (1.5.1)

2 is the Casimir operator of K . It is easily seen that

dr(y) = dL(e) . So edl(ey) = d(Len)(ay)e . (1.5.2)

§2. The Spin Representation of a Compact, Connected Lie Group.

(2.1) Let K be a compact connected Lie group and H a maximal torus
of K. Wehave k =h & p an orthogonal direct sum w.r.t(,) . Here

P 1is even dimensional.

W.r.t the pairs (k,(,)), (hs(5)) » (ps(5)) we have
Cliff (k) = Cliff (h) @ C1iff (p) a direct sum

as associative algebras. Take a minimal left ideal SpsS 1n C]iff(hc) >
C]iff(Pm) respectively, then S] = SOS is a minimal left ideal in

= 2[2/2] where g2 = rank K

C]iff(hm) . The dimension of Sg» dim S
(C2/2] denotes therintegral part of [2/2]; i.e. ‘the greatest
integer < £/2). Also dim S =2" , m= % dim K/H = 3 dim p = no of

+ve roots. dim Sy = (dim S5)(dim S) .
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By composing the left regular representation of C]iff(hm) with
the 1ift of the adjoint representation of K to Spin (k) , we get
the spin representation (S],o]) of K (see Chapter 0, (4.3).
Recall that we are assuming that p e A ). Similarly we get the spin
representation (So,co) of H. K/H 1is K-spin so we also have the
spin representation (S,oc) of H . Unitarise these as in Chapter 1,

§1.

S1 =S5 8S as unitary H-modules (see Chapter 6, (1.2)){
By Chapter 0, (5.3) we see that SO is trivial as an H-module. Also.

the differential of o 1s given by
dog(n) = -} 2 clnan;Ic(ng) = (2odyy)(adn)s n ek . (2.1.1)
1

where {n;} 1is an orthonormal (w.r.t(,)) basis of k .

(2.2) We shall say that a finite-dimensional unitary K-module U is
primary if it is the direct sum of a number of copies of a simple

K-module U . Then the multiplicity is the intertwining number

1(u,uv)'.

Proposition 10.

S] is primary as a K-module, the simple K-module of highest weight

e U occurring with multiplicity oL8/21
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Proof.

By Chapter 3 (1.1), the weights of (S,0) are the p-|A| ,
where A < R . p-|A| occurs as a weight with multiplicity equal to
the number of B < R* with |[B| = |A] . These are also the weights

of (S],o]) as a representation of K , the multiplicity as a weight

of 91 being 2[2/2]

times the multiplicity as a weight of o .
In particular the 'highest' weight p occurs with multiplicity 2[2/21.
By Weyl's degree formula, Up has dimension 2" = dim S s M = no of +ve

roots. Hence the assertion. O

Hence we see that the weights of Up and their multiplicities,

are just those of (S,0) . (See also [211.)

For w e W(K,H) (the Weyl group), define A =R’ by A =wR n R
(here R™ denotes the set of -ve roots i.e. -R') . So
wp = p-IAwl . Note that as p occurs with mult 1 as a weight of vUp R
AcRT, |A] = |Aw| implies that A = A . The set of weights of Up
are, of course, invariant under W(K,H) . For we W(KH) ,Ac R+v1et

the sum of distinct roots in RY |Al, » be given by

w(o-=|Al) = o-[Al, . So we have |A], =wlA| +|A .

§3. The Case of the Identity Subgroup.

(3.1) Recall Chapter 2, §1. Set L = {e} the identity subgroup (the

0-dimensional Lie"group with {0} Lie algebra).
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There is the adjoint representation (kR,Ad) of K . The tangent

bundle of K, T(K) = KXk the product bundle

(B){e)

it

which is Riemannian via (,) .

Note that any linear map y]:k + s0(k) determines a K-invariant
metric connection on T(K) , since (i), (ii) of Proposition 1 (Chapter O,

(2.2)) are trivially satisfied. We define a family of connections by

Y1,(6) =aadg, £ ekj;ack. (3.1.1)

Y1a lifts to a unique K-invariant, metric connection on

(§1)fe} = KxS] (product bundle), determined by

>

Y, :k—»u(S])

5

Y, (8) = (2odyy)y,(€) =adoy(s) » EcksacR.  (3.1.2)
(See Proposition 3 Chapter 1 (1.1) and §2.)

The curvature R]( ») » and the torsion T](,) (see Chapter 0,

(2.4)) of Y1 are given by:

R (£4n) = a’lad €,ad n] - a adlgn]

n

i.e. Ry(€sn) = a(a-1) adlenl , Esn € k (3.1.3)
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-and T](E,n) -[g,n]l + a ad &(n) - a ad n(g)

(2a-1)enl , E,n e kb, (3.1.4)

Therefore Ma gives a flat connection (i.e. R](,) =0) iff

a=0 or 1.

a =0 gives the reductive connection
a =3 " " Levi-Civita "
3 5
The curvature R "(,) of Yy is given by
3
R(,) = (odi)R ()
S] g
o) R "(g,n) = a(a-])dc](tgn]) , E,nek (3.1.5)

These are trivial if K 1is abelian.

(3.2) The formula for D? .

| 2 K
Note that for a complex vector space V; , T(XJ)ﬁe},L (!]){e}
is just the smooth functions f:K » V] , square-integrable functions

fiK - V] respectively.

The Laplacian on (S,8V)F , associated to ((,).v;,) (with the
reductive connection on V ; here V s any complex vector space)
44 is given by

S 2

Ay = -§(dR(ni) + Ya](ni))

(See Chapter 0, (2.5).)
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Also associated to ((,),Y]a) » there is the Dirac operator D, .

] K K
D] : F(S1&V){e} +T(51&V){e}
3
D] = ? c(ni)(dR(ni) t Y, ("1)) .

Now the Laplacian

)

_ 2
A= ?(dR(ni)+2adc](ni)dR(ni)+a dog (ny)

So this has an expression in terms of Casimir operators of K i.e.

[
|

- dR(QK)+a(-dR(QK)+d(R&o1)(QK)—dc](QK))+a2dc](QK)

(1-a)dR(QK)+ad(RQo])(QK)+a(a-1)dc](QK) ,a eR .,

Consider the formula in Proposition 4 (Chapter 1 (2.2)) for Df .

The 'torsion term' is

- 3(2a-1) ifj§(ni)c(nj)dR([ninj]) + adc]([ninj]))
= (2a-])(-2)(zdc](ni)dR(ni) + algdc](ni)z),
i 1

= (2a-1)(-dR(QK)+d(R90])(QK)-dc](QK)+2ado](QK))

= (2a-1)(-dR(2y)+d(Rloy ) (9, )+(2a-1)doy ()

(3.2.1)
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The 'curvature term' is

3 a(a-])ifjc(ni)c(nj)dc]([ninj])
= - a(a--])(-Z)Z.dc](n]-)2

= -2a(a-1)d0](9
i

Q-

Hence DY = (2-3a)dR(2,)*(3a-1)d(Res, ) (2, )+(3a(a-1)+1)do;(2,) + a <R .

k)
If K=H 1is abelian, this reduces to DS = dR(QH) .

For the reductive connection a = 0 and

2

Dy = 2dR(2y) - d(R8s;)(2y) + doy(@

J -

For the Levi-Civita connection a =% and

2

ZD.I

dR(QK) + d(R&o]) + 3 do](QK) .

(3.3) Take V=1 1i.e. T1-dimensional.

Theorem 3.

(1) If ‘K = H {is abelian, Ker D0 is the trivial primary H-submodule

. 2 H  qs s s . _ ,Ldimh/2]
in L (Eg)-{e} . Thg multiplicity is dim S, = 2 .

(2) If K is non-abelian: Ker D] =0 for a=13%3; and for

. 2 K
a=0, Ker D] is the trivial primary K-submodule in L (El){e} )

the multiplicity being dim Sy = 2[2/2? 2 = rank K .

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)
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Proof.

) dR(QH) = dL(QH) is constant on the wu-primary H-submodule in
.L2(H) , W e A the constant being ||u||2 . Hence the assertion for

K abelian.

(2) dR{ay)
2 d - . 2 2
L°(K) , v e AnI%; the constant being |[v+o|[“-[|p|]® . (See

dL(nK) is constant on the v-primary K-submodule in

(Chapter 0, (3.1), (3.2), (4.2).)

Now by Proposition 10 , do,(@,) fis the constant 3|1ol1% on S -
Thus as a Casimir operator is positive, essentially séif-adjoint we' get

the assertion for a =131 . See (3.2.5).

Consider a =0 . There is a unitary equivalence.

2 v
L (il-)fe} — 2 5] f '-2.(1){'(9_} (See (1.1). Note

that LE(D)F,, is just LP(K) .) Take S, 8 r, (K, and the

v'-primary K-submodule therein, P

1

K - . .
rv.gil){e} = 5 @ v,Pv (a finite orthogonal direct sum).

Q']v.Pv is preserved by Df (see (1.5)). 1In fact on this space,

as v' is of the form v' = v-p+|A| some A 5_R+ » Wwe have, by (3.2.4),

2 2 2
0% = 2(] [+ [12-11e11%) = (lwsol1%=11o] %) + 3l1e]1% .

‘ | 2
Then D% - ||v-pl]2 = 2(2<v,|A]> + |[[All]7) . Thus on Ker D; , we
must have A = ¢ . (the empty set) v =p . Therefore v' =0,

But these conditions are also sufficient for Ker D] . Hence assertion.

a
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§d. The Case of a Maximal Torus.

Recall Chapter 2,81. Let K be non-abelian and L = H a maximal
torus of K . Associated to the pair ((,),y) we have the twisted

Dirac operator D = DV .

The formula for D2 given by Proposition Chapter 1 (2.2) and
Chapter 4 (1.1), Tooks complicated for a general pair (K,L) . There is
a first order term in the Laplacian for vy . the Levi-Civita connection;
and for y the reductive connection there is a first order 'torsion
term'. Although for a symmetric pair, it turns out that dc(QL) is
a constant on S (see Chapter 4, (2.7)), this is certainly not true

for general (K,L) .

Example.

Take (K,H) where K =S0(5) . This has rank 2 . The direct

cos8 sing

product of 2 copies of (—sine 050

) sy 06¢elR and 1, 1is a maximal

torus H . K is simple and km is of type Bz‘. The 2 simple roots
of 82 are not of equal length. In fact we can take simple roots a,8

. . v 2
with ||B||2 = 2Ha||2 . With y=0a or 8, IID-YIIZ = ||p||2-2<p,Y>+||Yll =

2
= ||p||2 + ll%li- . Thus ||p-B||2 # ||p-a||2 . It follows from this
and Chapter 3, (1.1), that do(®,) is not a constant.

To obtain Ker D, we could at once attempt a 'highest weight

argument', along the Tlines of that which we use in the last part of the
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proof of Theorem 4 , for the reductive connection. (See.(4.3).)
The idea being to try and compute the infinitesimal character
on 2 , vX(QK) , for Uv a simple K-module occurring in Ker D .

This came straight from 02 for a symmetric pair (see Chapter 4, §3).

However, the following method, for (K,H) , shows that the sum
of 02 and an anti-commutator of D , 1is expressible entirely in
terms of Casimir operators. This more naturally extends the work
of §3 and gives more precise information along the way, which will be

also important in Chapter 9.

(4.1) Recall §1,2,3. Regard og as the restriction of the trivial

representation of K on SO . Then there is a unitary equivalence

2 K %0
L(s,8V),, >S5, 8 Lz(i@!)ﬁ |

S] @V =358 (S8V) as a unitary H-module.

Consider D¢ o . As o fis trivial ¢61(DVQ1

)84 = D
0 v 0 S,8v

0

DSOQV = ? c(gj)(dR(aj) + YS(Ej)) >

where ‘{Ej} is an orthonormal (w.r.t(,)) basis of p

Dvﬂl is the direct sum of 2[2/2] copies of D =D, . We denote

K
Ds qv also by D . We intend to compute D2 on r(S]&V)H .

o _ —
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Take '{Ct} an orthonormal (w.r.t(,)) basis of " and
{ni} = {Ct,Ej}

Reductive connection: Y =0 on p . With a =0 (see (3.1), (3.2))

1 0

D, =Dy +D  on T(s,AV)5 , (4.1.1)

where Dy is the trivial extension (see Ch.6,(2.2)) to K of the

Dirac operator with the reductive connection on T(H) = (ﬁ)?e} over H .

i.e.

o
[

0° i C(Ct)dR(Ct)

-ic(ct)d(c&r)(ct) on T(s,av)

K
H

K
(N.B. D, preserves T(S,8V), as c(z) e HomH(S],S])., zeh.)

2 _ 2 2
Then D] = DO + [DOD]+ + D
where [DOD]+ = D,D+DD, (i.e. L 1, s the anti-commutator).
Now 02 = A, = <ZdR(zt )2 = dR(Q,) = d(ofT)(Q,) on I‘(S&V)K
0 0 t H H —'H

t
K -
Hence on T(S@V), ,

2
D~ + [D0

Levi Civita eonnection: Yy = vy, (see Chapter 0 (2.4)). Take a =1}

(3.1), (3.2)) . Forany aeR,

S

v, (6) = - 1a sclendc(n;)

- 1

2avg(€) - 4a Ic(QUeg;d)c(s
J

i -

pJ+= 2dR(QK)-d(RQo])(QK)+dc](QK)-d(c&r)(ﬂH) . (4.1.2)

(see
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- z elg., . .
la Ay c(EJ)c EJ;t]C(Et)_ Eep

(Here, of course, Yg is the 1ift of Yo to (§)E .)

S
Also Ya](i) =ado(g) ,Eech

Now -&_z_c(;i)c(QEsist)c(a.) § T c(gg)e(E)c(QresE0)

1,J J 1’\]
= i c(zy)do(zy) »
and -} tz' c(gj)ctgjctlc(ct) =-3z C(Ct)C[CtEj]C(Ej)
’\] t’\]
=3 c(ct)dc(ct) .
t
Thus Zc(n )YS‘(n ) = 3a £ c(g,)do(z,)+2a £ c(£.)v (E.)
AL UEIL R T LS
So, with a =14,
; A
D; =Dy + D on T(S,8V);, (4.1.3)
where Dy = i c(ct)(dR(ct)'+ 3/2dc(;t)).

i.e. D0 is the trivial extension to K of the Dirac operator with
the connection 3/2do on (S]QV)?e} over H. D, preserves r(S]ﬁV)ﬁ .

2
Now Dy = 4y = - i (dR(z,) + 3/2do(zy))

dR(QH) + 3 zdo(ct)d(c&r)(ct) + 9/4do(QH)
t
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2D

i}

0 2d(0&r)(QH)+3(dc(QH)fd(GQT)(QH)+dT(QH)-2d0(QH))

+ 9/2dc(QH)

3/2dc(nH)-d(o&r)(9H) + 3dr(QH) . (4.1.4)

-2D

2 o2
Therefore 2(D +[DOD]+) = ZD]

2
0

= dR(0y)+d(RAG7 ) (2, ) +3do (2, )-3/2do (R, )+d (o8T) (2,,)-3dx () . (4.1.5)

(4.2) There is a unitary equiVa]ence

2 K ? 2,.,K
LE(5,8V)y ———— 5, 8 LE(V)) -

Take V = EA s A e A, the simple 1-dim unitary H-module with

A

character e Let A be non-singular. (See Chapter 0, (4.2).)

Then take the unique w e W(K,H) such that wA s dominant w.r.t R .

Let (Uv,Hv) € E , Vv being the highest weight. Take (a non-zero)

S] &?PQEQEl)ﬁ and the v-prjmary ‘K-submodule therein, vPv.

By assumption, A is a weight of U, , so v' =wits , s asum of
(not necessarily distinct) roots in R* (see Chapter 0 (4.2)). Also
v = v'-p+|A| some Ac RY . (See Remark 3 Chapter 3 (1.3).)

let feolp, S
v v K

————

K s )
rv(slaEA)H (K denotes K-submodule).
Write = fy +....4f, , with

: ) .
fi e rv(soas_p+|A1|a By AjsR 5 the |A
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being distinct. Where if B c R’ , S-p+|B| is the -p+|B| weight

space in S as an H-module.

s

Then v = Wk-p+|Ai|w +s s; asumof +ve roots i =1,...,r

.i ]

(see (2.2)). We have |A.| + s; = Al +s, ¥i . (4.2.1)

ilw
(0) Levi-Civita commection:
2005400901, )¢ =1(] [wa+|Al4s] 12 [o112)+(| [wators] 12| o] | 2)s3/2] [o] ]2
A5+ 2 DopelAg 123721 o1, 11P)s,
= 2<whA,|A|+2s>f + ? 2<wA,|Ai|w>fi
+ (I1Al+s] 2] [oss] | - z||p||2>f-%§||p-|Ai|lffi L (4.2.2)

(1) Reductive conmection:

2 2 2 :
(D%4LDGDI)F = (| fwnt A | ts 1= o 12)E 0L Tine A +s] 12| [o]17)
1
2 2 2 '
- (lwsors]|%-F1o1 121431 o123z a-ps a |11 2,
1
2 2 2
= I2<wh,s >F +H{2<ud, [A]> + [[|A]+s||%=[o+s||“+2[[o || }f
i
(AL + s 12 - e- A TS,
3 ilw 7 >4 i i

pts = p'IAl+|Ai|w+si

= n2an,sofo(2an, [Al+ [[ALs]22] o |12 |o-|A] | |2)f
1

2
+ 1 ('2<D'IA|s|Ai|w+Si> - |lp'|A1l[| )fi . (4.2.3)
3 .
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K
(4.3) MNow T(Sq8E,)}

=3 &0 JPyr (@ finite orthogonal direct sum).
1

(See Chapter 0 (3.1), (3.2).) Note that this is finite-dimensional.

Writing f € rv( ) as f = f1+ ..... +ft

we see from (4.2) that we can make the inner product

2
<(D +[Doqg)f,f> >a <f,f> for any real number a , a > 0

by taking A s.n.s (i.e. A sufficiently non-singular. See Chapter O

(4.2)), provided we are not in the situation:

(0) t=1,s=0,A=9.5 s,=0-= [Asl, = Vi

(1y t=1, S; =0, ¥ ,A=9.

So s = [A], = IAjlw and |A;| = |Aj|', ¥i,j . - (4.2.4)
Recall the %-Dirac operators p* = D; , D = Dg . (See Chapter 0

(5.4), N.B. vy gives a connection on §f s S ).

Theorem 4,

Let X2 e A .

Take «y either the Levi-Civita or the reductive connection.

If » 1ds singular w.r.t R, Ker D=0.
If A 1is non-singular w.r.t R , Ker ot = wa;p s Ker D" =0 . (Here

ji(w) is even. If odd interchange +,- . See Proposition 7, Chapter 3 (2.1).)

Proof.

We shall, here, prove this for A s.n.s. This restriction will

be remdved in Chapter 9.
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Take f e T (5 RE )H , T = £l +....+ft (see above). Suppose

feKrD. As D is symmetric, <DD0f,f> = <Dof,Df> =0 .
So <(D2+[D0D]+)f,f> =0 . We deduce from that, for either

connection, t=1 and (i) A=¢ , s = |Blw' some B ¢ R

g K
(1) fer (e85 ,1p 8 Ey)y

So, in particular, Uv i Ker D implies that v is of the form

v = _w)\-p+|B|w , Bc RY .

In the case (0) we already have |B|W =0, and therefore
B=A (see (2.2)).

"

Suppose Uv & b > Ker D, (0#) b e HomH(Uv,S&EA)

(See Chapter 0 (3.2).)

. ' K
With veU ,veb——>ferl (SBE ),

where f(k) = b(Hv(k)']v) s keK.

By condition (ii), b € HomH(Uv, S |&Ex) . Fix v to be 'the'

-p+|B
weight vector with weight w-]v = A-p+|B| . This weight has multiplicity 1.
Let e be the identity element of K . We must have f(e) =b(v) #0

(otherwise b =0).

Now dR(g),f = -dL(g),f

S flex te)] g = -q¢ O (exp e V)] t=0

-b(nv(g)v) , E ek .
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Since, by condition (ii), dR(sa)ef =0, Yo eR it follows that

dR(g)ef =0, V¥ep
In the case (1) , D° = dR(QK)+4§yg(gj)dR(gj)+dc(QH)-dr(QH)
Then 0 = (0%F)(e) = (| fwa+lB] [1%-I1o 1%+ lo-18]11%-1[2]12)f(e)
0= 1%

2<wA-p,|B[w> + 2|||B|w

As X was taken to be non-singular, this implies that IB[w =0 .

Hence, for either connection, we have shown that a simple
K-module occurring in Ker D must have highest weight v = wx-p .

This is our vanishing theorem.

We now have to show that UwA-p does occur in the kernel. For
this we compute the index of D" . (See Chapter 0, (3.3).) As D is

essentially self-adjoint, the adjoint of bt is D, thus for A e A,

Index DY = Ker DY - Ker D™ in Z[K]

=0 , A singular

= UwA-p » A non-singular by Bott's index theorem

and Proposition 7. Hence the assertion of the Theorem.
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CHAPTER 6.

Step 2. In this chapter we deal with the case of (K,L) with
rank L = rank K . (See §4.)

Here, we extend Chapter 5, §4 to the case of equal rank. This
'Step' can in fact be removed, and we can still get from Step 1 to 3.

However §2,3 of this chapter are essential.

In §2,3 we develop our technique of 'inducing in stages' and apply
it to the Dirac operator. The notion of the 'trivial extension' and

the 'pull-back' of the Dirac operator is introduced.

§1. Spin Triples.

(1.1) Let (M,K,L) be a triple of Lie groups with L a closed sub-
group of K and K a closed subgroup of M . Write L < K=<M,
y .

We have K/L > M/L >M/K |
where 1 1is the inclusion and # 1is the projection- (i.e. #mL) =mK,
me M)‘. We suppose that theée homogeneous spaces -are reductive. Let

=k ®p; and k=28p with p, AdK-invariant, and p Ad L-invariant.
We suppose that there is an inner product (,) on P ® Py, such that
Pspy are orthogonal and ‘(p,AdL) . (p]’AdK) are orthogonal (w.r.t( ,)) .
Then T(K/L) = (R)X . T(M/K) = (o)} » T(ML) = (F9p)] 3 and these

become Riemannian.

Take the pairs (08p5(5))s (ps(s)) » (py>(s)) . Then
Cliff(popy) = Cliff(p) & Cliff(pq) a direct sum as associative a]gebras.
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Let SL, Sy be the space of spinors in C]iff(pa) , C]iff(p]a)
respectively. Then S = S; Sy s the space of spinors in Cliff(1p;)q .

(1.2) We suppose that the above reductive homogeneous spaces are spin.

Then we get the unitary spin representations (SL,cL), (S,o) of L

and (SK,cK) of K . Refer to Chapter 0 and Chapter 1 §1. Recall
that c(g)o, (1) = o (8)c(Ade™'g) , € < P
c(5)o(2) = o(2)c(Adie) , & e pBpy L L e L

1

and  c(€)oy(k) = oy (k)c(Adk™'E) , & e by, K e K.

Then one sees that o = o a o as unitary. representations.
Let ‘{ct} ,'{Ej} be an orthonormal (w.r.t(,)) basis for p,K
respectively. Set '{ni} = {ct,sj} . Then

do, (2) = -} i c(fzz Dc(z,) » z et
do, (€) = -3 ? c(EaajJ)c(sj) s Eck
and do(z) = do (2) 81 +18do(z) , el .

§2. Inducing in Stages.

(2.1) Let (U,x) be a finite-dimensional unitary representation of L .

There is the induced K,M-vector bundle (Q)E s (y)f over K/L , M/L
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respectively. There is an M-equivalence of vector bundles

O

1]
—
—~

[

~—
—

~—
~

Following the notion of inducing in stages for representations of

finite groups, we define

r(g)f —_— P(P(Q)E)ﬁ (inducing‘in stages)

£ ¥ . (2.1.1)
where f(m)(k) = f(mk) ,

meM , keK , fer(V) .

So f(m) = f(m)(e) .

1

e have F(mk)(k;) = f(mkk;) = (kTF(m)(k;)

and  (m.£)"(m)(K) = (m.F) (m k) ='f(m']m]k) = (m.f)(m) (k) .

n, _-I n ‘. f\, n
So f(mk) =k ".f(m), (m.f)* =m.f, meM, k € K.
Thus ~ is an M—equiva]ence, It extends to a unitary

2 —2— 2Pk

equivalence L L

(2.2) Let 7 » by YU:k +u(U) , be a K-invariant, metric connection

on (Q)E . Extend YU trivially to m i.e. yU =0 on py . Then

YU:m + U(U) determines an M-invariant, metric connection (also denote

U

by 7°) on (U] .
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Let (U],K]) be also a finite-dim unitary representation of L .

Let D:P(E)E'* P(E)E , D=2V be the 15% order K-invariant differ-

ential operator with symbol map QU -2 U] . Extend a trivially to.

P@p] i.e. ag) =0, & ¢ p1- Then

M M |
Dt @ > T, Dy = aor (2.2.1)
i.e D, =Z a(z, )(dR(z,) + YU(C )) is a 15t order
€. 0=7 %"t t t

M-invariant differential operator, which we will call the trivial extension
of D to M/L . Note that if L < K (i.e. L 1s a proper subgroup
of K) Dy is non-elliptic (even if D is elliptic).

We can view this another way:
define the differential operator DI:P(E)T -> P(H)T by . - ,
o (0 F)¥(m) = D(F(m) ,meM . (2.2.2)
So (D1f)(m) = D(?(m))(e) . (e is the identity element of M .)

Pkoposition 11,

Let D be elliptic, then

Dy =Dy
Ker D, > L2(Ker D)ﬂ is a unitary equivalence.
Proof.
For £ ep .,

(&) 5 (m) (exptE) | e (6N (€)F(m)

(a(£) (dR(E)+V(£))F(m)) (e)

a(£)gf (m expte)|pg *+ "

(a(e) (R(2) U (£))F) (m), meMt, Fer (V)]
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So Dy=D

1 0°

By the 'regularity theorem' for elliptic operators, Ker D is
a closed subspace of LZ(Q)E » and so, by invariance, it is a unitary
n
K-submodule. We see that f e Ker DO iff f(m) e Ker D, Vme M,

where f e r(g)r .

§3. Inducing in Stages and the Dirac Operator.

(3.1) Let (V,t) be a finite-dimensional unitary representation of L .

There are the unitary equivalences

: Lo
2 M 2 K KM
L%(3, 85 V) —— L2(L (5,85, 4V) )K — K0 (Sy aL%(s LA Dy

(2 F)(m) (k) = oy (K)F(m)(K),meM, keK, fer(r(_)) (3.1.1)

(See Chapter 5 (1.1), and (2.1).)

M

For ¢ ¢ Py s fe I‘(__)L

@Rz}, ) (K) = S5 oy (m expte) | (k)
= cK(k) ——f(m exptek) |t -0

Now (dR(E)f)&(m)(k)

"

dR(&) i F

e ol
ct

f(mk exptg) |t 0

f(m exptAd(k)gk)It=0
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Thus (dR(g)m¢K¥)(k) = oK(k)(dR(Adk-]g)f)&(m)(k) ,meM, kek.

(e VR v y 3.1.2)
Therefore I c(£;)dR(£.) o, F = 8, I c(&)(dR(g.)ff(m), mem.  (3.1.
j J J'm j J J

Take an M-invariant metric connection determined by Y on

T(M/K) = (p1)ﬁ . As we know, Yk 1ifts to a unique connection

S

determined by vy K

M
on ‘iﬁ)K over M/K .

Then
S

Be(c)r “(&,)o (k)£ (mk)

Sy o
§C(€j)v (Ej)(QKf)(m)(k)'
J

S

Ic(E.)o, (k)Y
P

K

(Adk-]Ej)f(mk)

Sk
o)  cleg)v Kz p)raw

s N |
%ﬁc@ﬁyﬁ%wmnm- (3.1.3)

Associated to ((,),YK) there is the twisted, by LZ(SL&V)E s Dira;

—————

operator DK .

On r(SK&SL&V)T there is the operator

S
m=§cwymm%>+y9%n. BN EA R

For fer( ), wreite ~(f) =f and Dy f = (D;f)7 , then

n
we have ¢KD] = DK?KN (3.1.5)

We refer to D; as the pull-back of D, to M/L .
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(3.2) Take a K-invariant, metric connection Y on T(K/L) = (E)E .
S
YL 1ifts to a unique connection ¥y L on (§L)E over K/L .

Associated to ((,),YL) there is the twisted, by SK Q@ VvV, Dirac

operator DL . Also associated to ((,),yL,cK) there is the twisted,

by V , Dirac operator o DL (see Chapter 5 (1.4)). And there are
K

the trivial extensions to M/L (see (2.2)).

Let vy determine an M-invariant, metric connection on

S

T(M/L) = (p@p])ﬁ . v Tlifts to a unique connection ¥y~ on (§)T‘

over M/L . Associated to ((,),Y) there is the twisted, by V ,
Dirac operator D = DV . - We intend to express D as the sum of

trivial extensions of DL > 5 DL 3 and the pull-back of D

K K~

(3.3) Consider y =1v,, the Levi-Civita connection.
Yo = 3 Poad , P the orthogonal projection onto p @p]

And v (n) = -} Z c(3Plnn;d)c(ny), n € pBpy . Write P = pOsp!
i

where PO, P] is the orthogonal projection onto PPy respectively;

and n = n0+n] ’ no € p,n] € p1 .

Now

-aic(gpotno.;tJ)c(ct)-%gc(étnoajl)c<aj)

Yg(no)

S
Yo (%) + 3 do(n))
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And
o(n') = Ae(iin td)e(eg)bme (1 PO )In'e e () -
: J
-&tfjc(sj)c(%tsjctl)c(ct) = -%tfjc(ct)c(%tctajl)c(sj)
= 5§°(Ct)d°K(‘t)
0 ] 0
-ijfkc(sk)c(éP Cee M)eley) = %jfkc(ak)c(sj)c(iP EMIN)
= é i C(Ct)ch(Ct) .
Thus
S,y _ S, S
§C(ni)Y0(ni) "I c(zdvpley) + § c(&5)vp(s;)

S .
=2 c(5)(rg (5) + doglzy)) 2 c(cy)doy(z,)

Kie) (3.3.1)
_+ § C(EJ')YO (EJ) ( v

S S
where Yo » YOK is the 1ift of the Levi-Civita connection YoL® Yok

on T(K/L), T(M/K) to (§L)E R (SK)ﬂ respectively.

(3.4) Consider y the reductive connection: y =0 on p @ Py -

? ¢(ny)dR(n;)= i c(z )dR(z,) + § C(sj)dR(aj)
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i.e. we express D = D0 + D] where D0 is the trivial extension

of DL with YL ‘the reductive connection; and D] is the pull-back

of Dy with vy, the reductive connection (see (3.1)). (3.4.1)

Consider v = Yo » the Levi-Civita connection:

S,
re(zy) (dR(zy)+vg (2, ) +doy (2,))

zc(ng) (R(n;)+vg(n;))
1

-+

(5 (0R(5y sy ()42, JOR (e

S
re(e)) (R(55)0g (7)) (b (3.9)).

+

i.e. we express D = D0 + D] where D0 = D2+§D3-§D4 with D2,D3
thé trivial extension of' o DL with YL the Levi-Civita connection,
K

reductive connection respectively; and D4 is the trivial extension of
DL with Y. the reductive connection. And D] is the pull-back of
D, with v, the Levi-Civita connection. - (3.4.2)

2 2

(3.5) D" = Dg + [DOD]]+ +0y where [ 1 is the anti-comutator.

DO,D] are essentially self-adjoint. (This is because D ‘and D] are.

(See Chapter 0, (5.4)).)

If M is compact, so therefore K and L are also compact, we
take (, ) on m as given in Chapter 0, (4.2). Recall Chapter 2, §1.
It is seen that we can carry out the constructions of (1.1). For (1.1)

M could be a reductive Lie group and K,L compact. Suppose this ﬁs so:
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(i) rank L < rank K = rank M,

. + +.0\M N
There are the }-Dirac operators D].P(SL&SKQV)L > P(SL&SK&V)L .
L . _ + ,\M
QKD] = DKQKN . Define D, = D0 + D] on I‘(SLQSKQV)L .

E S +
sends S, 8S, into SLQSK .

2 - :
D.,D7 preserve SL&SK s [DOD] L85y

0°71 ]+

(ii) rank L = rank K < rank M .,

. £ ot M i M
There are the 3-Dirac operators DO:r(SLQSK&V)L - r(SL&SK&V)
ot oot . _ + M
D = D + 3D3-3D, . Define D =Dy +D; on T(SBSMEV) .
+ ’ + . ¥

DS,D] preserve SL&V s [DOD]]+ sends L&SK into SL@ SK .
Lemma 12,

. _ +

(i) krDi-lerDon mrD1

. _ +

(i) Ker ,D = Ker Dy n Ker D1 .
Proof.

. + 2 +

(i) On r(SL&SK&V), <DD f,f> = <Dof,f> + <D]D]f,f>

(1) On T(ST8S,8V), <D,Df,f> = <D Dif,f> + <D2f,f>

M L IEN <E 5T 070" 1

And DO,D] are essentially self-adjoint.

N.B. It doesn't necessarily follow that Ker D = Ker D, & Ker D_

or Ker D 8 Ker D .

L -
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§4, The Case of an Equal Rank Pair.

(4.1) In Chapter 2, §1 take the compact pair (K,L) with rank L = rank K.

(K non-abelian.)

Take a maximal torus H of L (see Chapter 3). We have the triple

(K,LH) . L/H>KH=KL . S=5,8S . Recall §1,2,3.

Take V=E ,ren (a 1-dim unitary H-module). If A is
non-singular w.r.t R, we take w € W(K,H) the unique element such
that wA is dominant w.r.t RY . Let Uv be the simple K-module of

highest weight v .

Let A € A, be non-singular and dominant w.r.t RE . (See Remark
Chapter 0, (4.2).) Then by Proposition 7 (Chapter 3(2.1)), and Theorem 4

(Chapter 5, (4.3)), the simple L-module V)\_p of highest weight
: L

. e s . 2 . +
~X-p| occurs with multiplicity 1 in L (SHQEA)h and is Ker ONTRE

with YH the Levi-Civita or reductive connection. (N.B. here DAH
is the twisted, by EA , Dirac operator associated to ((,),YH) over

L/H .) Ker D;H‘= 0 (or +,- interchanged).

Let Vh be the up-primary L-submodule in LZ(SH@EA)h

So V,_ =V . let D

Ao T A-p| ey be the twisted, by VL » Dirac

operator associated to ((’)’YL) over K/L . There is the countable
direct sun D =18 DL . Define D, =, D . There are the i-Dirac

+ H ! ' -pL
operators Dy, .
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Theorem 5.

Take Y. the Levi-Civita or the reductive connection. Then,
if A dis singular w.r.t R , Ker D}\L =0 . If X is non-singular
+ - .
w.r.t R, Kel".D}\L = wa_p s Ker_D)\L =0 (or +,~ interchanged

see Proposition 7).

Proof.

The weights of S 8E as an H-module are the A-(p-p ) + [A] ,
A <R'-R" . A simple component L-module of S,8V,_  has highest
: L

+

weight of the form A-p+[A| , A =R -RE . For A s.n.s these all

occur (see Chapter 3 (1.2)).
As in (3.3), write D = Dy * D] .

By Theorem 4, we have

> - . . -
Ker Dy | ¢L](SLQKer.DAH) (with equality for A s.n.s).

( f means L-submodule. See (3.1) for ¢ .)
In facf Ker D" 2 Q-](S gker DY ) , Ker D, = 0 . (With equality for 2
' H L "L ‘L H' 2 H ) '
s.n.s.). And by Chapter 5 (1.3),

-1
QL (SL f Ker DAH)

Ker D, =
o H
In fact
pf = o 1(s @Ker D',) , Ker D =0 .
Ker o H ©L VL CAHT o H
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Here Yy is either connection. Thus for Y either connection,

by Proposition 11 , (2.2), we get

(Ker DO)N i @E]LZ(SL&Ker DAH)E
+w 2 =12 + K > 4
In fact (Ker Do)m k 8 L (S f@kKer DAH)L » (here g Means K-submodu]e)f

N2 -1
Now by (3.1) (Ker D1) K oL (Ker DAL).’

- < < '
Thus @L](Ker DAL) K (Ker Dy N Ker D])N K (Ker D)™

] ) . . .
In fact @L](Ker.DAL) K (Ker DO n Ker D])N = (Ker +D)m (by Lemnma 12).

2 ot
Hence Kelr"D}\L =L (SLQKer D

K
AH)

LN @L(Ker D)m (or + changed to - ).

The result now follows on appealing once again to Theorem 4, and

Proposition 7. - : 0
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CHAPTER 7.

Step 3. The Case of an abelian pair (H,HO) .

Step 4. The Case of (K,L) with L = H0 an abelian subgroup.

§1. The Case of an Abelian Pair.

(1.1) In Chapter 2, §1 take K=H , L = Hoy where H is abelian.

Here ( , ) 1is a fixed inner product on h . h= ho Q h] is
orthogonal. We will use the notatidn‘of Chapter 2, §2 and (3.2).
Here we will write 5A,p>_= <d,p> +_<%,ﬁ> s AsH € /—1h* and
AN = TAlZ + X2 for w=a . (fe. qup> = <Aaw,
<%,ﬁ> = <A,p>' 1in the notation of Chapter 2, (3.2).)

The adjoint representation of H or HO is trivial. (H,HO)

is a]ways a spin pair, and the spin representations of H,H0 are

H
trivial. Take y to be the Levi-Civita connection on T(H/HO) = (ﬁJ)HO .

Here vy =0 on h] , so this is the same as the reductive connection.

Take V=E , A, e A, (a 1-dim unitary H -mod&]e). Associated
g 0~ "0 0

to ((,),y) there is the twisted Dirac operator D =D, .

On T(S8E )H R Dzr= A (the Laplacian)
Soag -
= dR(gH)-dR(QHO) .
Therefore D% = R (ay)-dr(@y ) - - (1.1.1)
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Theorem 6,

Consider the condition (0) A e A, 2

>
. H
>

Then, if (0) cannot be satisfied Ker D

1]
o

if (0) can be satisfied Ker D is the A-primary

H-submodule T, (S8E, )i . the multiplicity is dim s = 204iM Ay/20
: -0 0
. 2 H
in L7(S8E. ) .
20" Ho
Proof.
On the A-primary H-submodule, with A =1, , p? = ||'>\(||2
Hence on the kernel of D , ,? =0 . 0
§2. The Case of an Abelian Subgroup.
(2.1) In Chapter 2, §1 take (K,L) with K non-abelian and L = Hy

an abelian subgroup.

Take a maximal torus H of K with HO < H . We use the
notation of Chapter 2, §2,3. See also §1. Refer also to the notation

and material of Chapter 6, §1,2,3.
There is the triple .(K,H,Ho) .
H/Ho > K/H0 + K/H

S =S f SH as a unitary Ho-modu1e. W.r.t the pair (ho,(,)) take
. 0
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C]iff(ho) and the space of spinors Sg in C]iff(hom) . The

are trivial.

unitary spin representations (So,co),(SHo,oHo) of H0

Take V =E, 4 Ay e Ay (a 1-dim, unitary H,-module).
Fag 70 <%0 0
Associated to ((,),y) there is the twisted Dirac operator D = DV

(see Chapter 2, §1).

We shall say that AO is non-singular if when writing
L, =%t %y b€ /—1h0, S /-]h] we have Ao(go) #0, Ya ¢ R . |
Ay non-singular means geometrically, that o does not lie on one
of the walls of the open cones detekmined by the finite set
{ggia € R} . (See Chapter 0, (4.1),(4.2).) Also we say that 1
is s.n.s (sufficiently non-singular) if |AO(;0)| is sufficiently
+ve Yo e R . So geometrically, AO s.n.s, means that XO does not

1ie close to the walls of the open cones.

Again for A e A , if A s non-singular we take w e W(K,H)
the unique element such that wx is dominant w.r.t RY .

2 2 2

Write as before D = Do * D] » s0 D" =Dy + DD, + by -

0

(2.2) Theorem 7.

Let y be the reductive or Levi-Cevita connection. Then

Ker D = Ker DO n Ker D] .

Hence, let A ¢ A, A non-singular w.r.t R and consider the

conditions

>
]
t
o~
=
©

() =29 %= (0)" . (03 =22
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In the following, condition (1), (0) refers to y the reductive, Levi-

Civita connection respectively.

If (1) or (0) cannot be satisfied for any 2
Ker D =0 .

» then respectively

If (1) or (0) can be satisfied, then of course A is unique and, respectivel

. _ . e K
Ker D is the wi-p primary K-submodule PWA-p(S&EAO)HO s the
[dim h]/2] 2 K
multiplicity is dim S 2 ,» in L (S@EA )H
0 : 00

Proof.

We prove .this here for A, s.n.s. This restriction will be

removed in Chapter 9.

Take an orthonormal basis '{ct} for h such that '{ct}(t=1, ...... )
'{;t}(t=20+1, ...... ,2) lies in 'ho,h] respectively. g, = dim ho ,
% =dim h .
*o g
Define Fy = E c(ct)ch(ct) s F= _z -c(ct)ch(;t) (2.2.1)
t=1 t-10+1
on SOS . FO,F preserve theAweight spaces of SO,& SHO f SH as an
H-module (here Sg & Sy s regarded as a trivial H-module).
0

Recall Chapter 6, §3.

12 H K ) |
()7L (SHQPA(SHOQEAO)HO)H LAeh, A= (2.2.2)

is preserved by Do and Dy , so also by D . We consider operators

on this Hilbert space (i.e. on their domains).
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(1) reductive connection:

An easy computétion using [ch(;),c(g)] = clzgel,z € h,g ¢ Py
(see Chapter 1,§1) gives [DO+F,D]]+ =0 . So (D+F)2 = (D0+F)2 + D% .

4V .
Also F2 = doy(ay)-doy(2, ) » and (D.+F)% = [[x[|% . Suppose Ker D # 0.
H'"H HYH, 0
Take non-zero f € Ker D . Then, as D 1is essentially self-adjoint

2

<> = | |X]|2<F, 0> + <FOEE (2.2.3)

(See Chapter 0, (3.1) for <,>.) DO,D] are essentially self-adjoint,

F s sé]f-adjoint. Hence if Ker D #0 , we require

[[%I]z < max {||3—|K||l2} =: 2%, where a20 and a is independent
AgR+ ‘
of A. So |[X||=a. (2.2.4)
On r(SOQS&EA )ﬁ » consider DS aE . This is the direct
-0 0 0 AO
sum of dim S0 copies of D (see Chapter 5, (4.1)). We also denote
2 - 02 - 2 2.2.5
N by D . Then D° - [FyD,1, =Dy - [Fg+F,D;3, + D] . (2.2.5)
Ao .
If f : Ker D , <[FOD]]+f,f> = -<[FOD0]+f,f> =0 .
Now |2z )] = [a(zg) + Alz))]

v

el - ] e R

If A =i, and Ay iss.ns, as [IX]| < a, then A can be made

s.n.s. We then see from (2.2.5) and Chapter 5 (4.2), (4.3), that if
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v is the highest weight of a simple K-module occurring in Ker D ,

then (i) v =_wA-p+]B|w , some BcRY, and

)K

L) - | H
(i) if f e Ker D, then <I>H?“ € rv(s-p+|B|QPA(SHOQE>\O)HO H

Suppose U 8b —— 0 ker D)m

H( » (0 #)b ¢ HomH(Uv’S-p+|B|&rA( ))

(see proof of Theorem 4 Chapter 5, (4.3)). .Let v be 'the' weight
-1
€ rv( ),f](k) = b(nv(k) v).
Then f1(e) # 0 and dR(E)ef] =0, V£e Py - Let f be such that
f] = @H? . Then f(e) = f](e)(e) #0 . For e h.l

vector with weight Wl = A-p+|B| . Let f

a—t

dR(z)f = -d(t),F = -(X-5+[B])(2)F(e) , and vy(z) = doy(z) for

Yo the Levi-Civita connection on T(K/Ho) .

Also for £ e p; , (dR(g)fi)(h) = %{ fylexp t2) |y 4(h)

d
.OH(h)Hf f(exp tgh)!t=o ,

so (dR(g).fy)(e) = dR(g)f .
Thus, from

2 2 |
0 = QRBIHCE | voleg)R(5 Do (65 R(s;))wdalay )-delay )

L 0

0

we obtain
0 = (0%6)(e)=(llwnelB, 171 lo 1 +an (= B () ¥-B¢ 81 (2,

+ 1-1BI11Z - 11xg112)FCe)
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[en)
i

2 v 12
2<wr-p,|B| >+2<0,[B| >+|[o-|B] |l -11e-18111

o112 + 113-2G-18) 112 + 11181, 117

2 vy G2 g n 2
2<wn-p,|B| >+2||1B] ||%#[[2(5-B])-X]|"-|[5-1B]]]° .
Now, by (2.2.3), |IX|| = |Ie-IB|I] . so

2618311 = 20 13-1B11 1Y = 1131311

Hence, we require |B|w =0, therefore B =A _1 (see Chapter 5, (2.2)).
W

(0) Levi-Civita connection:

In Chapter 6, (3.4), for the triple (K,H,HO) » Wwe have yy =0
0
on h], for either connection so 02 = D3 . Also D4 + F = D2 .

S S
DO-QF D2 . Now, using the fact that [ch(;),y H(‘c;)] =y H[cg] s

reh, te¢ Py (see Proposition 1 Chapter 0, (2.2)) we get
2 2. n2 2 vy 2
[D,,D;1, =0 . Thus (D-3F)" = DDy . Now D; = [IX]]®, so

2 _ vo2 2 : :
<D, f> = =] |X[|<f,f> + 3<FF,F> , f e Ker D . (2.2.6)
. v '
Hence, if Ker D # 0, we require ||A]] = 3a .
2 _ D2
From D~ + 3LFD,1, = Do*#lFy+F,Dyd, + Dy s (2.2.7)

we see that if v 1is the highést weight of a simple K-module occurring

in Ker-D, then v = wi-p .
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Take in LE(SAr, (S, 8E, )0 )X . the wr-p primary K-submodule. (2.2.8)
0 *o'Mo

The multiplicity, by Proposition 7 , 1is that of the A-primary

H-submodule in L%(s, 8E, ) i.e. dimS, . By Theorem 4
o *o'Mo 0

this K-submodule 1ies in Ker DH . Hence, for both connections we

have shown that Ker D = Ker D0 n Ker D] .

: +H K -1
Now take fer . (S _y QT (S, 8E ), ) and ¢, f
WA=p -w]p A HO_)\OHOH H

We have (8/0(k)eT _; (S 1 8S, 8E M | wek,
A=W P -W p 0 00

(1) reductive connection:
(071 F)e(Ker)™ ifF (o716 (K) € Ker Oy, » ¥k « K (by Proposition 1)
iff (A-w-]p)& =0 (by Theorem 6)
(0) Levi-Civita connection:
(QQ]f)e(KerDO)‘ iff (@ilf)(k) e Ker D, ; Vk € K ,

where we also denote DO’= D, +3%F (see Chapter 6, (3.4)).
. Oy H0 , |

M >

D, = dR(z,) + 3/2doy,(z.))
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2
Then D2=- % (dR(z.) + 3/2do,(z.))% (see Chapter 5, (4.1.4))
0 t=2.+1 t Yt
=i v
2
2 05 = 2dR(9,))-3.22do, (z, )dR(z,) + 9/2do,(5,,)

t

3/2 dGH(QH ) + d(c&t)(QHO) - 3dT(QHO)

0 N

H

H b4

And on Sy & r(SH 8 E\ ) .

0 0

4a,0%07 1= 6(1@dL(QH)-dT(QHO))-2(d(cH@L)(QH)-¢Hd(oH@T)(QHO)¢;1)

+ 0, 3(doy (ay) - daH(nHo))¢;‘ :

H

Therefore, on T (S _4 &S
1 1 H
p 0'0

A=W p =W 0

| | | :
402 =6 [1}]12 - 2| [Fw o[ 12 + 3w o] |2
. . n, . Ny
=4 [IX12 + 4 oo + W Tol]?
R
= 12X +w o2 L
Thus op'f e (Ker D) ifF (2atw 1p)" = 0 .

To finish the proof, we now have to show that (2.2.8) is actually the

2

wA-p primary K-submodule in L“(S8E )ﬁ under @H& . This we will do

Ao Hg

for all parameters Ag -

; H (K
Consider, therefore, rwx-p(sH&ru(SHOQ EAO)HO)H v (2.2.9)

with wed, p-= Ag . Suppose this space is non-zero.
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We have |IA||2 = llullz +a, forsom aeR,az0; so
X2 = 118112 +a . Thus if |I%]]°

a =03 and then by Proposition 7, u

||%||2 » Wwe must have equality,

[\

W,X some w, € W(K,H) .

So suppose that II?IH2 < H'>\\'||2 . The following method will be
utilized further in Chapter 9. Tensor (2.2.9) with Uv , the simple
K-module of highest weight v . Let v e Uv be 'the' weight vector of

weight w_]v . Take f e Pwk—p( ) and f&t] = ¢'](f&v) » Where
! .

t, (k) = Hv(k)' v, ke K (see Chapter 5, (1.1.1)). Put 3 =bit; ,
where b] is the orthogonal projection of r(Uv)ﬁ onto the induced
line bundle sections, r(gx)ﬁ . Taking f to be a- A—w'1p weight

. . K
vector, fﬁt]] lies in rwA-p+v(sH f Eu f Ew']v)H (recall that EH >

v e A is the 1-dim unitary H-module with character " ). Then

¥

N||2 + 2<N,w v

we have ||A+w—]v]|2 < |]p+w']v||2 so |[[x
< [15112 + 2<?;,w‘°f\,||, | (2.2.10)
| . e . A

It II'ﬁ'Il2 < ||'>\\'|{2 , then 2<X,w vs <2<, lvs
But taking v =wh , we get ‘21|%||2 <2<, <2||3\'|I2 (by the

Cauchy-Schwarz inequality. This is a contradiction. Thus it must be

\ \ ‘ N
that |[¥112 2 [[X112 . From (2.2.10) we also get & =7 .

Hence the result follows.
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(2.3) Consider the condition (0) 1in Theorem 6.

Take XO € ﬁo . Now H = HOHl where H] is the connected
subgroup of H with (abelian) Lie algebra h] . Satisfying (0) is

equivalent to finding

X e H with XIH = Xg»X
, 0

o = 1 (the trivial character) (2.3.1)
1 .

In (2.3.1) X fis clearly unique if it exists. In fact it is easily
seen that to satisfy (2.3.1),it is necessary and sufficient that

XOlHOnH] =1

(for then with h = hgh,, h e H, hy e Hy, hy e H; 5 define x(h) = Xg(hg))-

(2.4) Examples.

Any compact, connected abelian Lie group of dimension n , is
isomorphic to the n-torus i.e. the direct product of n copies of S',

the complex numbers of modules 1, neN.

The unitary character group §' , has lattice Z . The finite
cyclic group of order n , <e12"/n> has (finite) lattice IZn (the
congruence classes modulo n). (N.B. this finite group is of course

not connected.) i = v/-1.

The characters of S' are given by Xl(e) = g't® s 6¢el0,27]

i2n/n th

where 2 €Z . And the characters of <e

roots of unity e12kn/n s k=0,1,....,0-1 .

> are given by the n
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(i) Take H=1S"'xS' (the 2-torus). H has lattice Z 07Z .

The characters of H are given by (2,m) where

Xn(®59) = %, ()%, (9)

= (R0 mO) o [0,201 5 Am e .

In what follows for subspaces hO’h] bf h , we shall fix

an inner product <,> on h w.r.t which hO and h] are orthogonal.
Take Hy ='{(e1e,eie); 8 € [0,2n]} the diagonal subgroup.

And H, = (e, M)y o 10,2071, neN .

We write the elements of H as (6,¢) . So (61,¢])(92,¢2) = (e]+92,¢]+¢2).

Now (n8,0) = ((n+1)8,(n+t1)6)(-6,-(n+1)8) 5 (0,n$) = (=¢,=¢)(¢,(n+1)e) .
So H = Hyf, .

Also (8,8) = (¢,(n+1)¢) dimplies that o6 = ¢, no = 2kn , k € Z .

Therefore H0 n H] = < 21.21)>

e , the 'diagona]"finite cyclic subgroup

of order n . (N.B. (21T 2my 2“ o ( +1) 0).

The characters of H0 are the restrictions of those of H , therefore
are given by (2,8) i.e. x,(0) =e'*, L eZ .
(2],2]) is a restriction of (2,m) iff e+m =224 .
(252) is trivial on Hy o Hy iff 22 = 0(n) (i.e. n ‘divides into 22).

(2,m) is trivial on H; iff g+m(n+l) =0 .
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If n=3, 2 =2 we cannot satisfy (2.3.1) as 4 # 0(3) .

A~

Take (n,n) in Hy . For (2.3.1) we require

2+m = 2n 2n+mn = 0
g+m(n+l) = 0 n(m2) =0 so m= -2, =2(n+l) .

~

In general starting with (2],21) in HO s for (2.3.1) we

require n|22] , then

L4+m = 22] mn = -2%1
2% 2%
g4m(n+l) = 0

We get the required (&,m) in H .

For example starting with (n2,n2) in H m=-2n, & = 2n(n+l) .

0°

(ii) Of course if H = Hg x H1 a direct product, then

A

H, x H] and one can always satisfy (2.3.1). For example

H = Hy

=S' xS'" with H

e
|

0= S' x {e} , H] = {e} x S' .
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CHAPTER 8.

Step 5. The case of any pair (K,L) .

§1. The General Case.

(1.1) In Chapter 2, §1 take any pair‘ (K,L) .

Take a maximal torus HO of L, and a maximal torus H of
K with H0 < H . (We use the notation of Chapter 2, §2,3.) Recall

Chapter 6, 1,2,3. There is the trfp]e (K,L,HO) .

L/H0 > K/HO -+ K/L .

S=5,85 .
: H0 L

In Chapter 6, 83 take V = EA s A
0

Ho-modu1e). Let AO be non-singular and dominant w.r.t RE . See

o€ AO (a 1-dim unitary

Remark 1 Chapter 0, (4.2). Then by Proposition 7 Chapter 3, (2.1),

and Theorem 4 Chapter 5, (4.3), the simpie L-module VAO-pL of

highest weight AO-pL occurs with multiplicity 1 -in

2 L . + . P
L°(S, @ E. ) and is Ker D ; with v the Levi-Civita or
: HO A HO | AOHO H0
reductive connection. N.B. here D is the twisted, by Ex s
Aot 0
Dirac operator associated to (( ,),yHO) over L/Hg . Ker-D;0H0 =0,

(or +,- interchanged).
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. . 2 L
Let VL be the HgTprimary L-submodule in L (SH f EA )H

0 0 00

So V, _ =V, _ . Let _ D be the twisted, by V , Dirac
YL oL Mg b Mo

operator associated to ((,),YL) over K/L . There is the countable

direct sum D, = £ & D, . Define D = D
L Mg Mo L _ }\OL )\O-pL L

For X € A, X non-singular w.r.t R, take w e W( ,H) the unique

element such that wx 1is dominant w.r.t RY .

Theorem 8.

Let X e A, X non-singular w.r.t R and consider the

‘s v -1 v o -1\~
conditions (1) A = Ag s X = (w o) (0) A = Ay s 2% = -(w 'p)
If (1), (0) cannot be satisfied, for any A , then for 1 the

reductive, Levi-Civita connection respectively, Ker DA L= 0
’ 0~

If (1), (0) can be satisfied, of course X is uniqué, then for v,

the reductive, Levi-Civita connection respectively; Ker D, , is the
0

. K . 2 K
wi-p primary K-submodule _rwk_p(SLQ VAO'pL)L in L (SL@VAO-DL)L 7
Proof.
This is similar to that of Theorem 5 Chapter 6, (4.1).
A simple component L-module in S 8V has highest weight of

Ao™PL
. . .  th
the form AgtHgTPL where uy s a weight of SL ; and occurs wi

multiplicity at most that of oy - (See Remark 3 Chapter 3, (1.3),
“and also Chapter 2, (3.6).)
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As in Chapter 6, (3.4) write D = D0 + D] . By Theorem 4

we have
+ =2 -1 + -
Ker D o (S, & Ker D ) s Ker D, =0
HO L "L VL AOHO HO
( i' means L-submodule). And, by Chapter 5, (1.3),
+ -1 + -
Ker_ D, =& '(S,Q Ker D ), Ker _ D, =0,
o H0 L ‘7L AOHO ’ o HO
Here Yy is either connection. Thus, for YL either connection,
0

by Proposition 11 Chapter 6, (2.2), we get

~ -1 ,2
o L (SL f Ker D

2 + K
(Ker D.) )
0 K AOHO L

( i means K-submodule). Now by Chapter 6, (3.1),

' oz =]
(Ker D]) oL (Ker'DAOL) .

Thus

, | . . .
o (Ker DAOL) i (Ker Dy n Ker D, )y = (Ker+D)q'

by Lemma 12)

2 + K
Hence, Ker D, | =L°(S, & Ker Dy )

o- Tt Rt

>,

n ¢L(Ker D

(or + changed to - . N.B. here Dy.D, “are different than those
for the triple (K,H,HO) in Chapter 7, (2.1)).

C(1.1.7)

The result now follows on appealing to Theorem 7  Chapter 7, (2.2).

O
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(1.2) See Theorem 8. Consider the wi-p primary K-submodule

K

r (SL ] Vx )L . We wnat to compute the multiplicity (see

WA=p 07PL

Chapter 0, (3.2)). For (K,L) of equal rank we already know that the
multiplicity is 1 . And for L = HO » a closed abelian subgroup of
K, itis Z', r = 3l[dim H-dim Hyl . Also for (K,L) a symmetric

pair of unequal rank, the multiplicity in 2",

We intend to take up the general case in later work.
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CHAPTER 9.
Step 6. A 'Zuckerman technique'.

In this chapter we complete the proofs of Theorems.4,7. See
Chapter 5, (4.3) and Chapter 6 (2.2). This involves considering any
parameter AO which is not necessarily 'sufficiently non-singular'.
Thus we complete the 'Problem' for y the Levi-Civita or reductive

connection.

The technique developed in this chapter involves twisting a twisted
Dirac operator with a simple module. Our work of Chapter 5, §1 is

crucial here.

We shall name our technique after G. Zuckerman. He has considered
the tensor product of a discrete series representation(for a non-compact
semi-simple Lie group G), and a finite-dimensiona]lrepresentation.

(See [231 .) His results on the infinitesimal characters of the
composition factors of this tensor'product, turned out to be important
in dealing with the Dirac operator of the pair (G,M) , M a maximal

compact‘subgroup of G . See [311].

In §1 of this chapter, we compute a difference of two squares of
twisted Dirac operators. - §2 looks at twisting by an irreducible

representation. §3 combines §1,2.

§1. A Difference Formula.

(1.1) Let (K,L) be a pair of Lie groups with L a closed subgroup

of K. Let (U,c<) be a finite-dimensional unitary representation
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of L, and (W,I) a finite-dimensional unitary representation of K .

Refer to Chapter 5, §1.

There is a unitary equivalence

¢
ot —I— 2 aw

(@nf)(k) = (1an(k))f(k), k e K, f e T(UBW) .

Let K/L be reductive, and Riamannian via (5 ) (see Chapter 5, (1.3)).
Take a K-invariant, metric connection on T(K/L) = (B)E » determined
by +y:k - 40(p) and a K-invariant, metric connection v on (Q)E_
determined by yU:k -+ u(U) (see chapter 0, §2).
Associated to ((,),Y,YU) there is the Laplacian AU on (U)E
(see Chapter 0, (2.5)). There is also the Laplacian AUQW on
(ggﬂ)E (where we take the reductive connection on (y)f).
Associated to ((,),Y,YU,H) there is the Laplacian IIAU on
(g@ﬂ)E (where we take the tensor product connection YU@ 1+18&dn
on URW ). |

We have

U U
o b = (a7 8 1)e, (1.1.1)

By Proposition 2  the difference of the Laplacians

‘ 2
aY - VB - 2p dn(eg)eR(g;) - T dnley)

J J
- u dn JEL)
2§ v (55)8dn(g;) + § (v(g4)%5)

I
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where '{Ej} is an orthonormal basis of p .

(1.2) Let (K,L) be K-spin. See Chapter 5, (1.4) for notation.

We want to consider the difference of squares DSQW - HDS of Dirac

operators. Refer to Chapter 1, (2.2).

The difference of the 'torsion terms' is

- . .) 8 dn(T(e.,8.)) .
b cls)es5) @ dn(Te,u6 )

The difference of curvatures

RS&V SQVEW
I

(g,n)-R (€,n) = [dn(g),dn(n)] - d1(PLg,nl)

dn(QCg,nl) .

Q,P is the projection onto £,p respectively. RSQV(

il 9) is the
Sav

curvature 2-form of HV

So the difference of the 'curvature terms' is

3 1):J_C(E;].)c(aj) 8 dH(QEEiEj]) .

(1.3) Let (K,L) be a compact pair as in Chapter 2, §1.

Take an orthonormal (w.r.t(,)) basis {g.} of £ . Set

‘{ni} ='{ct,Ej} an orthonormal basis of k .
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Then

AT - A = =2 gdn(ni)dR(ni) - )_:dn(ni)2

1 . 1

+ 2 zdn(z,)dR(z,) + zdn(;t)2 +z.0.t
t | t

(z.o.t denotes a sum of zeroth order terms)

-dR(QK)-dH(QK) + d(R&n)(QK) + dH(QK)

' 2
2 idK(Ct)QdH(Et) - Zidn(;t) -dH(QL) +z.0.t

- dR(2,) + d(RAN) () -dx (@ )+d(k8T) (2 ) + z.0.t.

Hence

>
1

>
1]

dR(QK)-d(K&n)(QL)-(d(R&n)(QK)-dK(QL)) - z.0.t. (1.3.1)

With (U,k) = (SAV,ofrt) ,

-3 1_fJ_C(f:i)<:(a‘;j)&dH(QDsiajJ) -2ido(ct)@dn(ct)

-dc(QL)-dH(QL)+d(oQH)(QL) .

And

- 2zdo(z,)8d(<8n) (z,) = ~da (@ )-d(rn) (e )+d(o88n) (o ) .
t
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Hence we obtain

2

DZgy - 10 = (dR(ay)-d(xam) (2, ))-(d(RAL) (o) -dx (2, ))
S
+ 2 Ty~ (&,)8dn(g,)-z18dn(y(£.)E.) . (1.3.2)
jYJ Jj YJJ

(QK,QL is the Casimir element of K,L w.r.t( , ) respectively.)

§2. Twisting by an Irreducible Representation.

(2.1) Take a pair (K,Ho) with K a compact, non-abelian connected
Lie group and HO a closed, connected abelian subgroup. Take H a
maximal torus of K with HO < H . We shall use the notation of

Chapter 2, §2 and Chapter 7.

There are the orthogonal decompositions k = h @ Py h = ho 6 h] .

Take an orthonormal basis '{at},{aj} of h],p] respectively,

Let (W,I) be a finite-dimensional unitary representation of K.
Refer to Chapter 5, (1.4). There are the twisted Dirac operators

D D, and D

[ Vaw

on r(saV)® & rank , dr(g) = drR(£)81 + 18AR(E) , £ € k .
= Hy T THg

Therefore on T(SAV) & I'(W) ,
Dygw = i(C(Ct)ﬂl)(dR(;t)+Y5(ct))&1 +c(z,) 8 dR(zy)

+‘§(c(£j)&1)(dR(£j) + vs(ej))&1 * cg5)adR(g5) .
J
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Thus

Dygu = DT + Ze(cyJAR(zy) + §c(aj)&dR(gj) , (2.1.1)
Recall that c(z)c(g) + c(E)c(T) = ~2(T,&),C,E € h] 8 py -

Therefore

2

Dyau

2
@81+:zD . . .)D .
Dy &1 g ye(&;)8dR(E5) + c(£;)D AdR(E )

z g
R

+

&dR(;t)dR(gj) + c(&,

§)e(eg )RR ()R (z,)

j)

2
tz]&dR(;t) + iij(gi)C(gj) & dR(Ei)dR(gj) . (?.1.2)

We will take '{aj} = {g }(a € R) where
2 £, = (ga-a“) + /'1(Ea+€a) , o € R (seé Chapter 3, (1.1)).

(2.2) Now take W = Uu the simple K-module of highest weight wu .

Take an orthonormal basis ’{vq} of weight vectors of W .
(Recall that the weight spaces are orthogonal w.r.t 'the' inner product

<,> on W.) Let vq have weight Mg -

. K - ' _ -1
Define ty P(U)HO , for each q , by tq(k) = (k) Vg? B e K.
' K K .
Decompose t_=:x t i ¢ Here (Qv is the
eco po' q S og With t e r{( vp)HO ( E)Ho

induced, complex line bundle via u, e Ay . We will write Cv_=E
) p- "0 P Tu,

so as to agree with the previous notation.
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. Define, for each p, b_e Hom,(W,Ov. ) by b (v.) =6 v .

efine, for each p b € H( vp) y p( q) 0q'p
This gives rise to a linear map on T(W) , which we also denote bp s
by bpt, t € T(W) where (bpt)(k) = bpt(k), ke K. bp is the

orthogonal projection of T (W) onto F(EXR). (See Chapter 0, (3.1)

for the inner product <,> on sections of an induced bundle.) bp

commutes with DV@W for each p .

’ There are the matrix elements Mpq of T where Mpq(k) = <I(k) v_,v >.
Recall the Schur orthogonality relations (see Chapter 0, (4.3)). It

is seen that tpq(k) = Mpq(E),k e K. ( - denotes the comp1ex

conjugate.)

1

We have tgrty> = 1 tg” = AT for each p,q , where (2.2.1)

] t ]
“*pq’ “pq”

d(u) is the dimension of Up as given by Weyl's degree formula.

For £ ek, dR(5), M = S=m(K)T(exp V).V

k 'pq q
= <H(k)dm(g)vp vy s ke K. (2.2.2)
For ek, (dR(E)dR(ﬁ)Mpq)(k) - dR(&)kde(n)Mpq)
- % (dR(nv)Mquk exp £)| 1.

9 9
5T 55 Mpg(k &P & exp sn)| 4 g

<H(k)dn(5)dn(n)vp,vq> L kek, (2.2.3)

for each p,q.

. = M .
So for ¢t eh , dR(z,')Mpq up(C) 0
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Recall that for a € R, dn(ea)vp is zero or a up+a weight

vector. Hence from (2.2.2), (2.2.3)and the orthogonality relations,

IK(dR(Ea)Mpq)(k)Mpq(k)dk =0, VYaoeR., (2.2.4)

And for d,B e R

JK(dR(Ea)dR(EB)M )(k)Mpq(k)dk 0,8 # a

Pq

ﬁd]u i5-]*up(cm) , 8 =-a: (2.2.5)

(See Chapter 3, (1.1). Recall that z, = [aaeaJ .)

Also
[(dR(;)zM ) (kM (k)dk =EPE—)— s T ch . (2.2.6)
K Pq Pq d(u)

And

2 1 ' A
- I dR dk = dn(Q,)-dn(Q,))v_,v_>
| (@R 0 (0dc = gy <(aniag)-ana) gy,
1 2 2 1112
= + - - .
aiy el 1=l 1= g [
. for each p,q . (2.2.7)
Fix an element w 1in the Weyl group W(K,H) . Arrange so that

Vi is 'the' weight vector of weight w-]u . Then with p =1, (2.2.7)

becomes gfﬁ%%% for each q .
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K

(2.3) Let f e T(SAV),

. Note that fQt = é'](f&v ) for each q .
0 . q n q

/o
We have 2R+<°(5a)°(5a)f’f>(“” Hhuz,)
o€

=- 3 % o<c(et)e(e P> 3 B (g )<f >

+ +
aeR aeR

As
a ol
c(g,)e(e”) +cle)e(e)) =0,z =-z ,ackR,
we get 5 o= I . For a e R, c(¢ )2 =-1.
- + o
a €R aeR
. . 2 .

We intend to take the inner product <DV@wf&tpq,f&tpq§ in (2.1.2).
(2.4) Consider H0 =H .,

. _ . K

Write f =f, +..... +f, with f, e r(S‘D+IAi|& V)y -

Where as previously S’D+|B| , BcRY, s the -p+|B| weight space

in the spin H-module S . (See Chapter 5, §2.)

Then
Ye(e%ve (1) /0 - - :
azR«:(ga)C(g )f9f> T v/ hlp(?;a) = <Up’29><f’f> §2<up’lA1 l><f-i’f1'>
= ? 2<up,p-|A%|>

Where for B ¢ R+’, B' 1is the complement of B in R
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Now for B cR', <w-]u,p-|B'l> = <u,p-|B'|W> . And from

w(e-[B[) = e-|B|, » w(e-[B'[) = o-[B'| ~we get 0 =20-([B] + [B']) .
Then 2<u,p-|B'|W> + 2<u,p> = 2<u,2p—lB'lw> = 2<p,|BIW>

It follows from the computations of (2.1)-(2.3), and the above,

that the inner product

2 1 2 1

<DV@w(mth)’f&t1q> o) <D\f,f> + Wy ,?2(“’“\1‘ lw><f1,fi> (2.4.1)

for each q .

(2.5) Consider any H0 .

There is the triple (K,H,HO) . See Chapter 6, (3.1) and
Chapter 7, (1.1), (2.1).

, ' H K
with of. « TS oy, 8 T(Sy 8 Vi -

Write f = f-l+.....+f
0

t 3

We obtain

n, .

1 2

e = Ty 2 : 2.5.
<DV@W(f&t]q)’th]q>— m)(<DVf’f>+”w ull- <f,f>+1§2<p,|A1.lw><f_i,f].>) (2.5.1)

for each q .

§3. A 'Zuckerman TechniqUe'.

Refer to §1,2.

(3.1) Take the pair (K,HO) as in (2.1).
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Take the twisted, by V , Dirac operator D = DV associated
to ((,)sy) (see Chapter 2, §1). At the moment +y 1is any invariant

metric connection.

(3.2) Consider HO =H.
There are the unitary equivalences

:
K Il 2
(

2 K 81 2, K
L7(S,8VAH); ——— L7(S;8V), 8 W ———— S.8L°(V) ;8 W . (3.2.1)

(For Sy , see Chapter 5, (2.1).)

-1

For  &epyp,  <dm(E)t (k),too(k)> = Moo (k)<I(k)

T
pq Vg dnE)vy>

-M k)<m(k)dn vV _,V .
Pq( ) ( ) (E) p q>
This integrates to zero. Therefore, from (].3.2),

2

2
<Dljgy(fRE (). 7R > = <Dy

(f&tq),fﬁtpq> = <(Casimir terms)f&tq,f&tpq>,(3.&2)

f e P(§g!) .

Take V = E, s el (1-dimensional). Fix w e W(K,H) such
that wr is dominant w.r.t R' . w is unique if A s non-singular -

w.r.t R.

K .
Let f be a weight vector in T (S8E ), , the v-primary

K-submodule, with weight w-]v . Then flt, lies in
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K

To4 (SBE,8U )y > and  (18by)(fRty) = fAt,, Tlies in

K =
Tup(SBEBE ;) . (Recall that W=U_ .)
WU
Now v is of the form v = wi-p+|A{+s , with A ¢ R™  and

s a sum of +ve roots.
2 2 2 2 2 2
And (| lwasut|A[+s[[7=|[o [17)= ([ {wa+]A[+s || "= [ 1o ]17) = [wasu]|"+] 2] ]
=2 <M,|A|+S>

Therefore, from (1.3.2) we obtain

2 2 2
<Dygy(flty ), flt, ;> = <y (FBty),fat > + ) <u, |A]+s><f,f>. (3.2.3)

(3.3) Consider any H There is the triple (K,H,HO)'.

0 °

Take V = EAO (1-dimensional, Ag € Ay -

Let f e T_(SBE )K be a w-]v-weight vector such that
\V 'AO H0

~ H K 3
¢Hf € I‘V(SH f TA(SHOQ EAO)HO)H where A e A, A =2, .

. K =
Then f&t] €~Pv+u(S&Ex Q_Uu)HO . Recall W = Uu . And

0

K
fa t e Pv+u(S&EA fE -1 )H (see 3.2).
"0 w u 0

N

. 4"
- - 2 -1 -1 ?
Now | [ Tl 2= 10112 = w12+ HIALE = 2w + (W]
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Take y to be the reductive connection, so vy =0 on Py

Then we obtain,

v

2 = < p2 ] o -1
<Dvgw(f@t”)afﬁt”> = <].[Dv(f&t.l),f@t”>+ -d—(ﬂgzd\,w u>+

o,
+ Ilw-]u[|2+2<u,|A]+s>) <f,f>. (3.3.1

(3.4) Proposition 12.

Let HO =H, and y be any connection.

Then Ker D is a K-submodule of : @ T, (S 8 E E

)
B B A

-p+|B

(a finite direct sum), where B runs over R » and vp = wi=p+|B]| .

(See 3.2.)

(Of course if vg is not dominant for some B < R’ » then

certainly v, does not occur.)

Proof.

Suppose the kernel of D = Dy is non-zero on rv(S&EA)ﬁ . As

——————

Ker D is a K-module, we may find a (non-zero) weight vector f of
weight w™'v , with feT ( ). Then from (2.4.1) and (3.2.3), we

get

fl

I 2<u’IA{Iw><fi’fi> 2<u, |A[+s><f,f> . » (3.4.1) -

i

Now v is also of the form v wk-p+|Ai|W +S; 5, 5; asum of +ve
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roots, for each i . So |A,

1]w ts, = |Al+s , ¥i . Then (3.4.1)

with p =p dimplies that S; = 0, Vi . Hence the assertion.

(3.5) Let B<R™ . p-|B] is a weight of U, the simple K-module
of highest weight p . Therefore |lp-lB]|[2 < ||p||2 , which implies
that 2<o,[B[> > [[[B][|% .

(3.6) We now complete the proof of Theorem 4, Chapter 5, (4.2).

For y the Levi-Civita connection we see from (3.5) and
Chapter 5, (4.2.2) that for (non-zero) f € Ker D we must have s = 0,
A =¢ . Hence our 'vanishing' result for all A . So in fact this

connection does not require a 'Zuckerman' argument.

Consider X the reductive connection. The argument in the proof
of Proposition 12 , in (3.4), shows that s, = 0, Y¥i . Thus
from (3.9.2) , if f e Ker D we must have s =0, A= 4.

Hence our vanishing result for all A

(3.7) Refer to Chapter 5, (4.2). See (3.5), (3.9) and Chapter 5, (4.2.2).

Note that for y the Levi Civita connection <(D%+ID,D1,)f,f> 2 0
for all A . And for vy the reductive connection, if s; =0, Vi,

then <(D° + [D,D1,)f,f> 2 0 for all A .

We now complete the proof of Theorem 7 Chapter 7, (2.2).

Note that as Ker D is finite-dimensional, D, and D, are bounded
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(therefore continuous on Ker D) . In fact from (2.2.3), (2.2.6), which
hold for all AO s Wwe see that for either connection, D0 and D]

are bounded by a on Ker D .

Consider vy the Levi-Civita connection. By the remark at the
beginning of this number, we see immedia%e]y from Chapter 7 (2.2.7)

that Ker D = Ker D, n Ker D] for all A

0 0°

Consider y  the reductive connection. Suppose Ker D 1s non-

)ﬁ Then as Ker D 1is a K-module, we can find

Zero on Pv(SQEA .

0

an f as in (3.3), with f e Ker D . From (2.5.1) and (3.3.1),

get

Y
s2<u, |A, | ><F o F > = (2<X,w V> + 2<u, [A]+s>)<F,f> . (3.7.1)
-i .

Since v s also of the form v = wk-p+|Ai|w +s, .5, asumof

i
+ve roots Vi , we have IAilw ts, o= |A| + s, Vi . Thus taking
u =m(wr) +p , where the +ve dinteger m is chosen so that

. . n,

1

m||%||2,+,<%,w' p> 20 , we get from (3.7.1) that s, =0, ¥i

Hence, from Chapter 7 (2.2.5), Ker D = Ker DO n Ker D] for all Ag

This completes the broof of Theorem 71

(3.8) Take (K,H) . Refer to Chapter 5, (4.2), (4.3).

Here we consider y any connection, and any A .
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Suppose U, & b

K
> Pv(S_p+|B|@ Ey)y (see Chapter 0, (3.2)), (3.8.1)

+
(0 #) b Homy(Uy,S_, |8 Ey) » where v = wx-p+|Blw ., B<cR

w is chosen as in (3.2).
With veU,,v@b——r—>f
where (k) = b(I (k) 1v),k € K .
1

Fix v to be 'the' weight vector with weight W'V,

Then we have

Proposition 13,

f(e) #0 (e the identity element of K)
and dR(E)ef =0, Y&gep. ' (3.8.2)

Proof.

This follows by an argument used in the proof of Theorem 4,

Note that dR(E),f = -dL(§)f .
(3.9) Refer to Chapter 5, (4.1.2).
d(Rfo, ) (2,) = -z(dR(ct)+dc(ct))z-z(dR(gj)+dc.(gj))z .
t i
Then with f asin (3.8)

(d(R@c.)(nK)f)(e) = ((dr(QH)+dR(QK)-dR(QH)+dc.(QK)-dU(QH))f)(e)

d(Rfo, ) (2, )f (e) = (dR (@) +do. (2 )-do(@y)-d(ol1) (o, )+dr(a,))f(e) . (3.9.1)
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As each Casimir term on the right hand side acts by a constant,

holds Vk € K.

Therefore Chapter 5,(4.1.2) becomes

(D + [DGDI,)f = (dR(2y) + do(ay) - de(@y))T - (3.9.2)

And (4.1.5) becomes

2(0%+ [D DI,)f = (2dR(ay)+3/2do, (2, )-5/2ds(2,)-2de(a,))f . (3.9.3)

0 H

(3.10) Take (K,H) and the Dirac operator D = Dy with V = EA R

A er as in (3.1).

Suppose for (Uv,nv) e K » that UV b ~————> Ker D,
b e HomH(Uv,S.@ EA) . Then by Proposition 12, we have (3.8.1). Thus
taking f as in (3.8), f € Ker D, we get (3.8.2).
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CHAPTER 10.
§1. Conclusion.

(1.1) In Chaptér 2, §1 take any pair (K,L) . Take a maximal
torus H0 of L, and a maximal torus H of K with H0 < H.

There is the twisted Dirac operator D = D,, associated to ({ , ),v) .

v

Take V=V, _
-A07PL

For A€ s A non-singular take w 1in the Weyl group W(K,H) ,

the simple L-module of highest weight AO-pL .

the unique element such that w X is dominant w.r.t R .

We restate our main theorem. See Chapter 8.

Theorem 8,

Let X e A, XA non-singular w.r.t R and consider the conditions

oy L) g Ko=)

Y

(1) A =2y, X=(w

If (1), (0) cannot be satisfied for any A, then for y the reductive, Levi-Civita
connection respectively, Ker D =0 .,

If. (1), (0) can be satisfied, of course X 1is unique, then for vy
the reductive, Levi-Civita connection respectively;

‘ . ) . K. ,2 ‘ K
Ker D is the wx-p primary K-submodule wa-p(sgvxo—pL)L in L'(SQVAO'QL)L .

The multiplicity is given in Chapter 8, (1.2), for some cases.

It is seen that for y the Levi-Civita or reductive connection,

Ker D 1is either zero or primary as a K-module.
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Theorem 8 contains all previous theorems as corollaries.

Example.

(K,L) a symmetric pair. Here the Levi-Civita connection is the

reductive connection. Thus we require X = 0 . Therefore w =1 and

® =0 . As was noted before, we can always satisfy A =2, x=0.

The multiplicity is 2" where r = 3[dim H-dim HO] . See Theorem 2,
Chapter 4 (3.3)..

The special case of Theorem 8 with L = H (i.e. Theorem 4, Chapter 4,
(4.3)) gives us a geometric construction of all irreducible representations

of a compact, connected Lie group K.

In the case of equal rank i.e. rank L = rank K , we do not expect
Theorem 5 (Chapter 6, (4.1)) to depend on the connection vy . In fact
we already have enough information, in previous chapters, to prove this
~for L =H and A sufficiently non-singular. However, in the case of
unequal rank i.e. rank L < rank K, Theorem 8 does depend on y .

See for example Theorem 3, (Chapter 5, (3.2)).

We expect that the techniques we have introduced in previous chapters,
"can be used to deal with any connection vy . This will be pursued in

future work. We also want to consider applications of Theorem 8.

Also, more generally, to consider the pair (G,L) with G a

reductive Lie group and L a compact subgroup.
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