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Abstract. 

Let G be a real non-compact reductive Lie group and L a compact sub­

group. Take a maximal compact subgroup K of G containing L, and 

suppose that GIL is Riemannian via a bi-invariant metric and that there 

is a spin structure. Then there is the Dirac operator 0 over GIL , on ' 

spinors with values in a unitary vector bundle. 0 is a first order, 

G-invariant, elliptic, essentially self-adjoint differential operator. 

It has been shown by R. Parthasarathy that with G semi-simple, 

rank K = rank G, 'discrete-series' representations of G can be 

realized geometrically on, the kernel of 0 (i.e. the L2-solutions 

of Of = 0). Following this, we are interested in how the kernel of 0 

decomposes into irreducible representations of G, when L is any 

compact subgroup. In future work we expect to reduce this problem to 

the compact case i.e. to considering the Dirac operator on K/L 

Therefore, in this Thesis, we consider the Dirac operator on a 

compact, Riemannian, spin homogeneous space K/L. And determine the 

decomposition of the kernel into irreducible representations of K • 

We consider the tensor product of an induced representation and a finite-
, 

dimensional representation, and apply 'inducing in stages' to the Dirac 

operator. 
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Introduction. 

(0.1) Let G. be a real non-compact reductive Lie group, and K a 

maximal compact subgroup containing a given compact subgroup L of G. 

The reductive homogeneous space GIL becomes Riemannian via a bi­

invariant metric (,) and suppose there is a spin structure. Take 

a G-invariant, metric connection y on the tangent bundle T(G/L) . 

Then associated to the pair ((,),y), there is the Dirac operator D , 
st a 1 order G-invariant, elliptic, essentially self-adjoint differential 

operator. In its coordinate free form, D operates on spinors with values 
2 . 

in a unitary vector bundle. Thus G acts on the space of L -solutions 

of the homogeneous Dirac equation Df = O. The kernel of D, ker D , 

becomes a unitary G-modu1e. 

One very important previous application of the Dirac operator, in 

representation theory, has been in the construction of unitary represent­

ations of G. It was found with G semi-simple and rank K = rank G , 

that the 'discrete series' representations of G could be realized 

geometrically on Ker D. See [28J, [29J, [30J, [31J. 

(0.2) We are interested in how Ker D decomposes into irreducible 

unitary representations of G when L is any compact subgroup of G. 

This problem has previously not appeared in the literature. 



The Dirac operator on G/K, having been already solved, we might 

expect to be able to reduce the problem to considering the Dirac operator 

on K/L. The compact case is a substantial problem within itself, and 

this will be the work undertaken in this Thesis. Details are given in 

Chapter 2, §l. The non-compact case will be considered in future work. 

As far as I know, previous publications on this question consist 

only of: (i) the vanishing theorem of A. Lichnerowicz (see [26J) 

for the 'scalar Dirac operator ' , and (ii) the method first used by 

R. Parthasarathy in [28J, which can be applied to the case of a compact 

symmetric pair of equal rank. This is noted in Chapter 4. See also the 

article of S. Helgason in [19J, for results on general invariant 

differential operators and eigenspace representations. 

(0.3) Thus, let (K,L) , with L a subgroup of K, be a compact, 

Riemannian, spin pair. See Chapter 2, §l. Let (V,T) be a unitary 

representation of L. Associated to ((,),y) there is the 'twisted ' 

Dirac operator D = DV. Take V = VA _ a simple L-module of 'highest 
o PL 

weight ' AO-PL (PL is i the sum of +ve roots for L, see Chapter 2, 

§3). Consider 'y the Levi-Civita or reductive connection. 

2 For a symmetric pair, the formula for the square D takes its 

simplest form. Finding Ker D becomes equivalent to determining the 

primary K-submodules, in ,the L2-space, belonging to a certain 

infinitesimal class. See Chapter 4. In Chapter 4, (3.2) we note that 



the technique previously used in [28J, [31J can be applied to the case 

of a compact equal rank symmetric pair. This essentially involves a 

'curvature vanishing argument' and then an application of Bott's Index 

Theorem. One can also obtain an elliptic complex from the Dirac operator 

on symmetric space, and use cohomology. See [30J. In (3.3) we deal 

with the case of unequal rank. This requires a knowledge of the 

structure theory of an unequal rank symmetric pair. Some properties 

that we need are worked out in (2.3). 

(0.4) In Chapter 1, §2 we give a formula for the square D2 (which 

holds for any reductive, Riemannian, spin pair (G,H)) due to John 

H. Rawnsley. This formula is a generalization, in geometric terms, of 

that given by R. Parthasarathy in [28J for a symmetric pair. We use 

this formula extensively. 

Consider a general compact pair (K,L). Here the situation is a 

good deal more complicated. There is apparently no direct generalization 

of the methods we use for a symmetric pair. And seemingly no natural 

cohomology. We need to develop new techniques. These are described 

at the head of Chapters 5-9. An important technique, dealt with in 

Chapter 5, §l is to tensor an,induced representation with a finite 

dimensional representation. Then in §4 we consider L = H a maximal 

torus of K. Initially our 'curvature vanishing argument' only gives 

information when the parameter A is 'sufficiently non-singular'. In 

Chapter 9, we develop a technique for 'shifting the parameter'. 



This is similar to the situation which arose in [31] for the Dirac 

operator on G/K, G a non-compact semi-simple Lie group, K a maximal 

compact subgroup, rank K = rank G. However there is a difference. In 

[31J the existence of the 'discrete series' is not assumed at the outset, 

but is constructed geometrically. For a sufficiently non-singular 

parameter, the Dirac operator is used to give information about the 

discrete series characters. Then it was found necessary to apply 

G. Zuckerman's tensor product technique [23] to shift the parameter. 

Previously things were done in reverse order, the existence of the discrete 

series, proved by Harish-Chandra, being used to get the geometric realization. 

Here, in the compact case we are of course assuming the representation theory 

of a compact, connected Lie group. The characters of the irreducibles are 

given by the H. Weyl formula. There is a geometrical construction for 

them due to Borel and Weil. We are thus able to gain information by 

'shifting the Dirac operator'. Refer to Chapter 9 . 

. Our method for handling (K,L) is independent of any cohomology or 

use of the Borel-Weil Theorem. Therefore Theorem 4, Chapter 5, (4.2), 

gives us an alternative construction of the irreducible representations 

of a compact, connected Lie group. 

Having dealt with the case of an abelian pair in Chapter 7, we apply 

a technique of inducing in stages to the Dirac operator, developed in 

Chapter 6, and tackle the general case in Chapter 8. 

Our main result is Theorem 8, Chapter 10. It is seen that Ker D is 

either zero or primary as a unitary K-modu1e. This result is obta·ined 

without any deep structure theory of the homogeneous space K/L. However 

to compute 'the multiplicity' one needs structural information on the 

pa i r (K,L). 
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CHAPTER O. 

In this chapter, which is essentially introductory, I will introduce 

our notation and collect together the necessary background material, 

which will be referred to and used later. References for further 

details and proofs are given within each section. 

All the facts set down here, in this chapter, are known apart from 

where mentioned in §2. 

§l. Representations of Lie Groups. Induced Vector Bundles. 

(1.1) Refer to [7J, [12J, [16J, [19J, [20J. 

Let G be a (real, smooth) Lie group. The Lie algebra of G (i.e. 

the left invariant vector fields) will be denoted by 9 • 

By a representation of G, we shall mean a pai r (W,n) where W 

is a real or complex Hilbert space and n:G -->GL(W) is a homomorphism 

into the general linear group of W, such that the mapping 

GxW -> W , (g,w) --> n(g)w is continuous. We ·also say that W 

is a G4noduZe with G acting on W by g.w = n(g)w,g € G,w € W • 

If W is finite dimensional, n is then continuous and therefore 

analytic. For W real, complex n is called orthogonaZ, unitary if 

n is into OeW), U(W) the orthogonal, unitary group of W respectively. 

For a representation 4>:g -> gR.(W) , of g, (i .e. 4> is linear 

and Hl;;,nJ = [4>(~) ,4>(n)J ~,n € 9 where [ J is the Lie bracket of 
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9 , gi(W) respectively) we also say that W is a g-moduZe with 9 

acting on W by ~.w = ~(~)w , ~ € 9 , W € W . 

rr can be differentiated to give a representation of g, drr, 

called the differential of rr (if H ;s finite-dimensional) viz 

drr(~)w = ~ rr(exp t~)wlt=o ' ~ € 9 , W € W . 

(exp: g--> G is the exponential mapping of G.) 

* * There is the contragredient representation (W,rr) of G . 

Also given another representation (W1,rr1) of G, there is the direct 

swn representation (WmW1,rrmrr1), and the tensor product representation 

(W~W1,rr~rr1) of G. And also of g. (See [12J, [16J ). 

For each x € G let Ax:G --> G be the inner automorphism 

Ax(g) = xgx- l • The derived automorphism of 9 is denoted 

AdG (x) or Ad(x) : 9 --> g. Ad: G ----..,> GL (g) is a homomorphi sm, 

called the adjoint representation of G. The differential ad =: d Ad 

is called the adjoint representation of g. We have 

ad ~(n) = [~nJ ~,n € g; also Ad(exp~) = ead~ , x exp ~x-l = exp(Ad(x)~) 

for ~ € 9 , X € G. (B > eB is the exponential mapping of GL(g)) . 

Let G be connected. G, 9 is said to be reductive if it has a 

finite dimensional completely reducible representation with discrete 

kernel, kernel zero respectively. Let H be a closed subgroup of G . 

H,h is said to be reductive in G, 9 if AdGIH ' adgl h is completely 
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reducible respectively. G is said to be semi-simple if . {e} is the 

only connected, soluble, normal subgroup (e is the identity element 

of G); equivalently if 9 is semi-simple. Every semi-simple G is 

equal to its derived group, and the center of G is discrete. G is 

said to be simple if . {e} is the only connected normal subgroup. If 

G is also simply-connected, G is semi-simple iff (if and only if) 

G is the direct product of simple groups .. (See [12J, [19J.) 

N.B. There is a one-to-one correspondence between the connected 

Lie subgroupsof G and the subalgebras of g; which sends a connected 

normal subgroup of G to an ideal of g. (See [7J.) 

(1.2) Let G be a Lie group and H a closed subgroup. The quotient 

G/H = {gH;g € G}. All such manifold structures, and mappings between 
00 

them will be taken to be smooth (ie. C) here. G acts on G/H by 

Lg:G/H ----> G/H , Lg(g'H) = gg'H , 9 € G, making G/H into a homo­

geneous space (see [12 J ). At x = gH € G/H, the isotropy (or 
-1 stability) subgroup Gx = gHg • The tangent map (see [ 19 ] ) 

Lg* : T(G/H) > T(G/H) (the tangent bundle of G/H) is a linear 

isomorphism from Tx(G/H) (the tangent space at x) to Tg.x(G/H), '. 

9 € G , X € G/H • H acts on T (G/H) , xo = eH (the identity coset), 
xo 

by h > Lh*. This is called the isotropy representation of H. 

Let X(G/H) denote the Lie algebra of vector fields on G/H (i.e. 

the space of sections of the tangent bundle with the 'usual ' bracket, 
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see [19J). G acts on X(G/H) by g.X where 

(g.X)(x) = Lg* X(L _lex)) , 9 € G X € X(G/H) . There is a 
9 

homomorphism of Lie algebras 9 ---> X(G/H) 

'" ~ ---> 1;, I; € 9 where 

~(x)f = ~t f(exp-tl;x)lt=o ' f € C(G/H) 

(the (smooth) maps G/H --> IR (the real numbers) N.B. each 

X € X(G/H) is a derivation of C(G/H) '" '" as an IR-algebra). g.~ =(Adgl;), 

for 9 € G, ~ € g. For fixed x = gH € G/H, the linear map 

9 --:> X(G/H) 

'" ~ ---> - ~(x), is surjective with kernel Adg h = gx (the Lie 

algebra of Gx )' 

(1.3) Refer to [16J. 

There is the principal H-bundle H \ > G /=I > G/H. Let (V,K) 

be a representation of H. On GxV we define the equivalence relation 
-1 . 

(g,v) '" (gl,VI) if gl = gh, Vi = K(h) v for some h € H. Take 

GXHV =. {[g,vJ ; 9 € G, v € V} the set of equivalence classes. Put 

(~)~ =: GxHV, sometimes we will write just ~, and define 

Pv:l > G/H, PV[g,vJ = gH. Then (~)~ can be made into a 

G-vector bundle over G/H (see [16J,[18J), which we will call the induced 

vector bundle by (V,K). G acts on l by g[glvJ = [gglvJ , 9 € G . 

There is a linear isomorphism between each fibre ~x =: Pvl{X} , x € G/H 
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and V given by lv: V --> :ix ' x = gH ; lv(V) = [gv] 

* * For the contragredient representation 

G-equivalence (of vector bundles) (v*)G ~ - H 

(V ,K ) , there is the 

(V)G* (* 
-H denotes dual). 

Also if (Vl,Kl ) is a representation of H, there are the G-equivalences 

Let r(~)~ denote the space of sections of ~, i.e. 
" maps f:G/H -->:i with PVof = idV . Writing f(gH) = [g,f(g)] 
" 9 € G, we see that r(~) can be identified with the maps f:G --> V 

" -1 "-
satisfying f(gh) = K(h) f(g) , 9 € G , h € H. G acts on r(~) by 

. -1 "- " 
g.f where (g.f)(x) = g.f(g x); or equivalently g.f =: g.f so 

(g.f)(g') = f(g-lg') , 9 € G , f € r(V). So we get a representation 

(r (~) ,II) of G . 

Note that an H-map V _a_> Vl induces a vector bundle map 

:i _a_> ~l ' a[g,v] =[g,a(v)] and so also a linear map r(~) _a_> r(~l) 

we denote these also by a. 

Note that if K is orthogonal, unitary and <,> is the inner 

product on V, we get <,> on V by <[g,u],[g,v]> = <u,v>, X = gH x -x x 
thus giving V a real or complex Riemannian struature respectively. The 

metric <,> is G-invariant i.e. <g. g.> = < .. > 'gx 'x· 

(1.4) Let C(G,V) be the smooth maps G --> V. G acts on C(G,V) 

by Lg f where (Lgf)(g') = f(g-lg') and also by Rgf, where 
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(Rgf)(gl) = f(glg) , 9 E G , f E C(G,V) • So we get the anti­

representations L, R of G on C(G,V). The differentials are dL, 

dR where dL(;)gf = ~ f(exp-t;g)lt=o' dR(;)gf = ~ f(g expt;)lt=o ' 

then - dL(Adg;)gf = dR(;)g f , 9 E G , ; E 9 , f E C(G,V) . Also if 

G A A 

f E r(V)H ' dR(~) f = - dK(~)f(g) , ~ E h, 9 E G . 
- 9 

§2. Invariant Connections on Induced Vector Bundles. 

Two points should be brought to notice concerning the results that I 

state and prove in this section. Firstly invariant connections have been 

studied before on principal bundles (see [9J). Here we study the 

situation on an induced vector bundle. A lot of this material is probably 

well-known, but we cannot find a reference. Secondly, I appreciate the 

help of Dr. John H. Rawns1ey in formulating the material of this section. 

Especially the statement of Proposition 1 was communicated to me by him. 

The proof given is my own. 

(2.1) Let G be a Lie group and H a closed subgroup. Take a represent­

ation (V,K) of H, and form (I)~ (see §l. (1.3)). Let V be a 

connection on (I)~. SO vX: reI) --> reI) is a linear operator 

for each X E X(G/H) (see §l. (1.2)), satisfying (i) VaXf = aVXf 

(ii) VX(af) = aVXf + (X.a)f (the Leibniz rule), and 

(iii) vX+y = Vx + vY ' X,y E X(G/H) , a E C(G/H) , 

f Er(I) • 

Put QP(G/H,I) = r(APT*(G/H) ~ I), the I-valued p-forms PEW (the 

whole numbers), he~e * denotes the dual bundle, and AP denotes the 
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pth exterior power. (See [6J .) 

as G-vector bundles, (for constructions on vector bundles see [16J), 

so we can identify 

13 € ~l( ), get 13(Xl , .••. ,Xp)(x) = 13(X)(~l(x)" .••..• "Xp(x)) , 

X. € X(G/H) , x € G/H, (here " denotes exterior multiplication) 
1 

(see [6J). 

Then we can view V as a linear map V :r(~) > n'(G/H,~) 

by (Vf)(X) = VXf,X€X(G/H),f € r(~) . 

There is a map 

L; nP(G/H,~) ---:> nP(G/H,~),g € G 
P € IW , 

called the puZZ-back defined by 

i.e. 

We say that V is G-invariant if invariant by the left translations 

i.e. * Lg(V(g.f)) = vf , 9 € G f € r(~) • (2.1.1) 

We will use the notation of §l. 
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(2.2) Let G/H be reductive (i.e. H reductive in G see §1 (1.1)), 

so we have 9 = h @ m a vector space direct sum for some 

subspace m ,with m Ad H-invariant. Thus [h,mJ ~ m 

Lemma 1. 

(i) By the pair (m,Ad) , a representation of H , we can identify 

(~)~ = T(G/H) as G-vector bundles. 

" 
'" '" (ii) Under (i), (see the proof), we have ~(gH) = [g,~(g)J where 

~(g) = - P(Adg-1~) , 9 E G , ~ E g, and P:g > m is the projection. 

Proof. 

(i) We define a linear bijection m > T (G/H),xO=eH, (the identityco~)by xo . 
'" '" '" '" ~ > - ~(xO) , ~ Em. rtw CAdh~) (xO) = (h.t;)(xO) = Lh*~(xO)' h E H , 

(see §l (1.2)). So (m,Ad) and the isotropy representation of Hare 

equivalent. Then the xO-fibre map [e,O '" > - ~ (xO ' ~ Em, gives 

rise to a G-vector bundle isomorphism. (See [16J.) 
A " " 

(ii) From (i) , '" '" -1 '" (e) t;(e) = - Pt;, ~ E 9 • Then t;(g) = (g .t;) 

o 
Let ( ,) be an in~er product on m w.r.t (with respect to) which 

(m,Ad) is orthogonal. Transporting this onto each fibre of ~, we thus 

make G/H into a Riemannian homogeneous space (i.e. T(G/H) becomes real 

Riemannian) . 
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N.B. In future we use the identification in Lemma 1 (i) without comment. 

Therefore X(G/H) ~ r(m)~ • 

We also identify m* ~ m as orthogonal H-modules via (,). 

And thus identify m* ~ m as G-vector bundles (see §l (1.3)). 

Lemma 2. 

(i) As a linear map r('o~ --> r(m*6tV)~(~r(m6tV)) 

the G-invariance condition (2.1.1) for v is equivalent to 

g.Vf = v(g.f) , 9 € G , f € r(~) . 

x =.gH 

Proof. 

There are G-vector bundle isomorphisms Hom(~,~) ~ Hom(m,V) ~ m*6tV • 

Then under these, 

* The condition L _l(Vf) = (g.f) becomes 
9 

g.(Vf(g-l x)g-l.(X(x))) = v(g.f)(x)X(x). So this is equivalent to 

g.(Vf) = v(g.f) and g.(v -1 f) = VX(g·f) • 
g. X 0 
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Proposition l. 

A G-invariant connection V on (~)~ is determined by a linear 

map y: > End V (the endomorphisms of V) satisfying 

(i) y(~) = dK(~) , ~ € h 

(ii) y(Adh~) = K(h)oy(~)oK(h)-l , h € H , ~ € 9 • 

Then V~ f = ~.f - A(~) f , ~ € 9 , f € r~) (2.2.1) 

where. A:g --.> End ~ is given by Ax: g --> End ~x for each 

X € G/H, with A (~)[e,v] = [e,y(~)v], v € V , xo = eH, and 
xo 

Ax(~) = "goA (Adg-l~)og-l , x = gH , g € G 
xo 

i.e. (2.2.1) does define a G-invariant connection, and everyone such 

is of this form. tV (N.B. here ~.f = dII(~)f , see §1, (1.3). By the 

Leibniz rule and §1, (1.2.1), it is sufficient to know 

~ € g.) 

Proof. 

Any two connections on V differ by an End ~-valued 1-form on 

G/H (see [ 9]) i.e. 

V - IV = a € nl (G/H,End~) , 
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'" Define 8x:9 > End ~x' by 8x(~) = -8x(~(x)) . So 8x = 0 on 

gx (see §l (1.2). Here I? is a fixed invariant connection. The 
-1 -1 invariance condition Lemma2(ii) for? becomes 8x (~) = ho8x (Adh ~)oh , 

o 0 

Define ax:g --:> End ~x ' by a [e,v] = [e,dK(Q(~))v] and xo 
-1 -1 then ax(~) = goax (Adg ~)og • This is well-defined since 

o 
dK(Adh~) = K(h)odK(~)oK(h)-l , ~ € h and Ad h commutes with 

Q = l-P , h € H. Take 

A d A . • 

(Adg~.(g.f») (gl) = - CIt g.f(exp t Adg~g')! t=O 

d A -1 A 

= - CIt f(exp t~g gl)!t=O = (g.(~.f»)(g'). 

So . I? is G-invariant. 

For ~ = Adg ~ € gx ' ~ € h , we have 
A A 

(~.f)(g) = dK(~) f(g) ; then (?~f)(x) = 0 , ~ € gx and we see that 
~ 

(2.2.1) (and~?) is well-defined. 

Now defining y = dKoQ + 8 and Ax = ax + 8x ' we have (i), (ii) 

and (2.2.1). Also we see that (2.2.) does define an invariant 

connection. 
o 
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Corollary. 

Proof. 

" A 

From (2.2.1) at xO ' (v~f)A(e) = dL(~)ef - y(~}f(e} . 
~ 

Then 

o 

* (2.3) See §1, (1.3). Under the H-isomorphism V -~> V via <,> 

(the inner product on V, see §1, (1.1)) there is the duat G-invariant 

* * * connection V on V by y . Here V is a G-invariant connection 

on V. 

Also given a G-invariant connection .1 V on ~l ' by Y1 ' there 

is the direct sum G-invariant connection v@· on V@V1 ' by y@ 
@ @ 

where VX(f+fl ) = VXf + ~VXf1 ; y = y + Yl • 

product G-invariant connection V~ on V~Vl 

And there is the tensor 
. 0 , by y ,where 

~ ~ 
VX(f~f1) = VXf~fl + f ~ ~VXfl Y = y0l + l~Yl • X € X(G/H}, 

f € r (~), f 1 € r (V 1) • 

Let (V,K) be orthogonal or unitary according as V is real or 

complex, so V becomes real or complex Riemannian with metric <,> 

(see §1. (1.3)). For f,f1 € r(Y) , define (f,f1) € C(G/H} , by 
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A A 

A connection V is said to be metria if 

(2.3.1 ) 

Lemma 3. 

A G-invariant connection V is metric iff y:g ----> .6o(V)(u(V)) 

(the skew-symmetric (skel'J-hermitian)··endomorphisms w.r.t <,» 

(iff A: --> ~oCy) (u(.y.)) 

Proof. 

This follows from Proposition 1. If Vi is metric, then V is 

metric iff B € nl (G/H,.6o('y')). As the metric on .Y. is G-invariant, 

(2.3.2) 

-1 -1 Note that (f,fl)(x) = (g. f,g. fl)(xO)' x = gH, 9 € G, so 

IV -1 IV -1 -1 .. 
~(x)(f,fl) = (g. ~) (xO)(g. f,g. f l ). Thus by Lemma 2 (11), it is 

sufficient to check (2.3.1) at the identity coset Xo = eH. But 

from (2.3.2) we see that V is metric iff A: > .6o(..'{J. In 

particular IV is metric. 
o 
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(2.4) Refer to (2.1) for notation. 

The cupvature 2-form R(,) , in n2(G/H,End~) , of ~ is 

where [~X ~Y] = ~X~Y - ~Y~X' and [XV] is the bracket of vector 

fields, X,Y € X(G/H). 

Let I~ be a connection on T(G/H). The torsion 2-form T(,) , 

in n2(G/H,T(G/H)) , is 

T(X,Y) = I~XY - I~YX - [XV] , 
X,Y € X(G/H). 

Let G/H be reductive (see (2.2}) and suppose that ~, I~ are 

G-invariant. Then it is sufficient to compute R(,) , T(,} at 

xo = eH . (the identity coset). 

Lemma 4. 

-1 -1 -1 . 
= (R(g. X,g. Y)g. f}A(e 

'" '" x = gH, 9 €G , f € r(~) , X = ~, Y = n, ~,n € 9 • 

Proof. 

Follows from g.(R(X,Y)f) = R(g.X,g.Y)g.f,g.T(X,Y) = T(g.X,g.Y) 
-1 and f(x) = f(gxO) = g.(g. f)(xO}· 

o 
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Define R(,), in A
2g* ~ r(End!), by 

Lemma 5. 

R(~,n) = dL(Q[~,nJ)e + [y(~),y(n)J - y(P[~,nJ) and 

T(~,n) = -P[~,nJ + YI (~)Pn - Y, (n)P~, ~,n € 9 

where v, IV is given by' Y, YI respectively (see Proposition 1) 

(P:g > m is the projection, Q = l-P .) 

Proof. 

We have 

" 
(V~(V~f»"(e) = (dL(~)dL(n)-y(n)dL(~)-y(~)dL(n) + y(~)y(n»f(e) . 

~ n 

" Therefore ([V~V~Jf)A(e) = (dL[~nJ + [Y(~)y(n)J)f(e) 
~ n 

Now (v f) " ( e) = 0 , 1; € h = 9 • So 
~ Xo 

" 
(V[~nJ~f)"(e) = (dL(l-Q)[~nJ) + y{P[~nJ»f(e). Thus get R(~,n) . 

Thus get T(~,n) .-
o 
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Now let G/H be reductive, Riemannian (see (2.2)). 

Defi ni ti on. 

v given by y, with y = 0 on m, is called the reductive 

connection on (~J~. For (V,K) orthogonal or unitary, it is metric. 

In particular the reductive connection on m is metric. 

There is a unique connection oV on T(G/H) = (~)~, which is 

metric and torsion-free (i.e. T(,) = 0) called the Levi-Civita 

connection. Thus oV must be given by YO ' with yO(~) = ~Poad~ 
; E: m. (See Propositi on 1 and LelT1Tla 3.) 

(2.5) Let G/H be reductive, Riemannian (see (2.2)), with a G-invariant 

connection ,V , by y, , on T(G/H) = (~)~ • Let (V,K) be a represent-
I 

ation of H and v , by y , a G-invariant connection on 

We define an inner product (,) on X(G/H) = r(~)~ , by 

. (X, Y 'j =, (X ( e ) , Y ( e ))" X, Y E: X ( G/ H) • 

G CO H • 

Let {;i} ,be an orthonormal (w.r.t(,)) basis for 

the n ,( X . , X .) = 0.. • 

IV 
m. Put Xi=;i E: X(G/H), 

: ' ,1. J 1 J ' 

Take the composition 

v * v * * r(Y) ---> reT 9'y) ---> reT 61T 6l,Y) 

(here T = T(G/H), and * denotes the dual). 

2 For fl E: Hom(X(G/H), r(!'J) , we have Vfl E: Hom(9 X(G/H),'y) , 

given by 
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So with fl = vf , 

The LapLacian ~ of 1 is given by 

i.e. 2 
~ = - L(V - V ) . X. .", Vx X. " . , , 

X,Y € X(G/H),f € r(1) . 

~ is G-invariant (i.e. ~(g.f) = g.~f). 

We may identify vf with a map (see (2.2)) 

A 

(vf) : G --:> Hom(g,V) 

A 

where (vf) (g)(~) = (~ ~f) (g) , 
-g.~ 9 € G, ~ € g, f € r(1) . 

(Hom(g,V) is the space of linear maps 9 --> V . Hom(g,V) lX g* 9 V). 
A 

Note that (vf) (g)(~) = 0 , ~ € h • 

Proposition 2. 

(i) 
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(ii) Considering V
2f as a map (v2f)"': G --> Hom(612g,V) , 

A 2 ... 
we have (~f) = -tr (v f) , then 

Proof. 

(i) This follows from the corollary to Proposition 1. Recall that 
tv tv 

g.~ = (Adg~) and - dL(Adg~) = dR(~) ,g € G , ~ € 9 . 
9 . 9 

(ii) We could proceed by: 

fl a section of Hom(m,V) = Hom(~,~); then put fl = vf, and take 

the trace. 

A 

However, consider (~f) (e) • 

tv· for X = ~ , ~ € 9 • 

Now 

I. vXX = L ( 1 vXX, X . ) X.. We ha ve 
I j . J J 

Ad'" d 
dL(~)e t = dt t(exp-t~)lt=O = - dt P(Ad(exPt~)~)lt=o 

= - P[~,~] = 0 . 
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So 
" 

(,VxX,Xj ) = - ((,VXX) (e)'~j) = -(Yl(~)P~'~j) and 

" "" (v v Xf) (e) = - E(Yl (~)P~,~,)(dL(~,)f - y(~,)f(e)) 
, X j J J J 

" = - (dL(Yl(~)P~) - Y(Yl(~)P~))f(e) . 

Now put ~ = ~i ' sum over i , and use the G-invariance of 8 . 
o 

(2.6) Let G/H be reductive, and (V,K),(Vl,Kl ) representations of H. 

Take a G-invariant connection V on V and an H - map m61V _a_ Vl . 

By compos i ng 

we get a left G-invariant 1st order differential operator 0 = aoV , 

with symboZ map a. (See [30J.) (Here G-invariant means g.Of = Og.f.) 

If. a(~):V + Vl is a linear isomorphism for each ~ F 0, 0 is eZZiptia. 

§3. Induced Representations. (Refer to [16J, [18J.) 

We use the notation of (1.3). Recall that we may identify r(~)~ 
with the maps f:G > V satisfying. f(gh) = K(h)-lf(g) , 

'" 9 € G , h € H; and G acts by g.f = n(g)f where 

(g.f)(g') = f(g-lg'), 9 € G , f € r(y) . 

G Make the space rc(~)H' of compactly supported sections, into a 

pre-Hilbert space by setting 

(where <vl ,v2> is the inner product on V, and dg is the Haar 

measure on G.) The separable Hilbert space L2(y)~, square-integrable 

'h 1 t' ((V)G "') t d t (L2(~)GH,n"') called sections, lS t e comp e lone rC _ H,n ex en s 0 
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the induced representation of G by (~,K) . This is unitary if K 

i s unitary. 

Let K,K l be unitary, then 

L2(V ID V )G = L2(V)G ID L2(V)G and 
--1 H - H -1 H 

L2(V ~ V )G = L2(V)G ~ L2(V )G as unitary G-modules. 
--1 H - H -1 H 

If we regard the complex numbers [ as the l-dim trivial unitary 

H-modul e with <a ,b> = aD , a ,b IS [, and we take H =" {e}; then 

L2(!)~e} is just L2(G) , the square integrable, complex-valued 

functions on G , with the Zeft reguZar representation L of G. 

Also have the right regular representation R of G. These are unitary. 

See (1.4). 

(3.2) The Peter-Weyl theorem and Frobenius reciprocity. 

Let G be compact. So H is also compact. A representation of 

a compact Lie group G is unitarizable and completely reducible. Also an 

irreducible representation of G is finite-dimensional (in fact l-dim 
A 

for G abelian). Let G denote the (countable) set of equivalence 

classes of irreducible unitary representations of G. Let for each 
A 

V IS G , (U ,IT) be a representative. Take an inner product on V such v v 
that K is unitary (see (3.1)) and suppose that V is finite-dimensional. 
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Let rv(~)~ be the subspace of r(~)~ that transforms under G 

according to n • 
v 

by \ ( v~b )( g) = b (n (g ) -1 v) , 
v v 

(the space of H-maps Uv ->V .) 

Then L2(V)G = LA @ r (v)G (an orthogonal direct sum), -H G v-H 
\IE 

onto and 

where 

IT = L IT (a unitary direct sum) 
v v 

= (lin (g)~l) .v v (See (1.3).)' . 

We shall refer to r (V) as the v-primary G -submoduZ,e in L 2 (_V) of v-

muZ,tipZ,icity~ the number of Icopies l of U there-in i.e. . v 

dima HomH(Uv'V): = iH(Uv'V) = iG(L2(~),Uv) =: dimaHomG(L2(~),Uv) 

(3.3) Bottis Index Theorem. 

See [24], [16]. 
,. 

Let G be compact. Let ~[GJ be the Grothendieck ring of 

virtual (finite-dim) G-modules (under @, ~ the direct sum, tensor 

.' 
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product). There is the canonical map U ---> [UJ from the finite-
A A 

dim G-modu1es to ~[GJ •. {[U J;" € G} forms a free basis over ~ . 
" For G-modu1es U1, U2 there is the 

Note that by Schur's Lemma, this is 

intertwining number dim[ HomG(U1,U2) . 

o for U1 = U ,U2 = U , 
"1"2 "1 "2 

A A 

"1'''2 € G. This extends to a symmetric bilinear form on ll[GJ . 

If l:H ~ G is the inclusion map, then by restriction there is a map 
* A A CO"", 

1 : ~[GJ > ~[HJ. Define the formal group ~ [GJ as the possibly 
A 

infinite formal sums ~ a [U J ,a € ~. So ll[GJ is the subset of 
" "" v 

finite elements. And define the formal map 

1* : ~6iJ ---:> 7t"[GJ as the extension to l[j:l] 

* of V ---> E dim[ HomH( 1 [U) ,[VJ) [U) 

" 
Take G-invariant 0 (as in (2.6)) which is elliptic. By invariance 

D preserves r ( ) ,V" • Then the kernel and cokerne1 of 0 
" (Ker D, Coker D) are finite dimensional. Define the index of D to 

A 

be the element of ~[GJ , 

Index 0 = [Ker OJ - [Coker DJ . 

A 

Then Index D = t*([VJ- [V1J) € Z[GJ . 

This is a direct consequence of (3.2). 
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§4. The Representation Theory of a Compact Lie Group. 

The notation and material of this section will be continually used 

later. It is taken, for a large part, from [16J. See also [12J, 

[20J. We refer to these references for more details and proofs. 

(4.1) Let K be a compact Lie group. The Lie algebra ~ of K is 

reductive (see (1.1) )so ~ .. =zffilll 

where ~1 = [~~J the derived algebra (an ideal) of ~, and z is 

the center of ~. ~1 is semi-simple. Let B(,) be the Killing-form 

of K (i.e. of ~). It is negative semi-definite. The restriction 

of Be,) to ~l x ~l is the Killing form of ~l ' which is negative 

definite. The connected subgroup K1 of K, with Lie algebra ~l is 

compact. Let H be a maximal torus (i.e. a maximal, compact, connected, 

abelian subgroup) of K. h is a maximal abelian subalgebra of ~ . 

H contains the center Z of K. The dimension of h, dim h, is 

called the rank of K, written rank K .. 

An irreducible unitary representation of H is l-dimensional, and 

so determines and is determined by a character of H i.e. a continuous 

homomorphism x:H + Sl (the complex numbers of modulus 1). These form 
" a group under the multiplication of characters. Thus we regard H 

(see (3.2)) as the group of unitary characters 
A A * 

of H. We can identify H with a lattice A, by H + A E 1-1 h . 
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(here * denotes the real dual) X + A where x{exp~) = eA{~) , 

~ € h. z shand h = z m h1 with h1 s k1 and h1 is a Cartan 

suba1gebra of kl . 

Let R = R{K,H) be the root system of the pair (K,H) (i.e. (k,h)) 

With ke the complexification of k, we have the Cartan deaomposition 

k = h m ~ m ka where ka is the root spaae corresponding to a € R . 
e t aER 

Note that a(l.;) = 0, I.; € Z, a € R. As usual, there is the isometry 

* (hl ,<,» + (hl ,B(,)) (here * denotes the complex dual) A --> I.;A ' 
c e 

where . A(~) = B(~A'I.;) for each I.; € h1 ' and <A,~> = B(~A'~~) . 

Introduce the 'real form'· h1ffi = Spa~{~a;a € R} of h1e , on which 

the roots take real values. Put hlffi =. {~ E hlffi ; a(~) ,. 0, "fa € R} 

(V means 'for al1 1
.) A root a is either strictly positive or strictly 

negative on a connected component C' of hlffi • Let R+ be the set 

of roots which are strictly +ve on (a fixed) C· • With respect to 

(w.r.t) this order, we get the fundamental system of simple roots 

{al, .•. ,a t } where t = rank kl the semi-simpZe rank of K. Under the 
*. * 

isometry, h1ffi is the real form h1R = Spa~{a;a € R} of hlt 

* <,> is a real inner' product on h1ffi , with norm 11.11. For each 

a € R, let (a,O) be the subspace orthogonal to a i.e. 

* (a,O) = {A €h1R ;<A,a> = O} * • The complement of U (a,O) in h1R 
a€R 

is an open set. A connected component of this set is called a WeyZ 

chamber of R (or of (K,H)) . These correspond to the inverse images of the 

connected components of hlffi In particular C1 is mapped {by the 



Chapter O. - 25 -

* + isometry) onto C = {A € hlm <A,a> ~ 0 , Va € R }, the fundamental 

Weyl chamber. 

Let W(k,h) be the Weyl group of (k,h) • Net NK(H) be the 
. -1 normalizer of H in K, i.e. NK(H) = {k € K;kHk 5 H} , which 

contains H as a normal subgroup. The factor group NK(H)/H = W(K,H) 

is a finite group, called the Weyl group of (K,H) . We can identify 

this with the group of endomorphisms of h ~ {Adk;k € NK(H)} . Then 

W(K,H) = W(k,h) • 

kl is 'the ' Icompact real form ' of klt . The Killing form of 

kle is the complex bilinear extension of B(,) on kl x kl . Also 

(')1 where (~,n)l = - B(~,n) , ~,n € kle is a Hermitian inner 

product on klc • (- denotes conjugation w.r.t kl ) • Then as 

Ad (h) ka = ka , h € H, and di m ka = 1 , a € R , . we see that 

Ad(h) e: = X (h)e: , h € H , e: € ka , X € H, a € R. As Ad(exp~) = ead~ 
a a 

~ € k , we have So R 5 A • Z is the set of h € H 
1:"Ct -a such that Xa(h) = 1, Va € R. We have hllR = 1-1 hl . As Il = k. ' 

we can choose a'Weyl basis I . {e: ·a € R} where e:.€ ka, B(e: ,e: S) = oS 
a' a a a 

and e:
a 

= - e:a ; (here 0 is the Kronecker delta and e:a = e:_a ) . 

'" If X + A (so A is the differential of X € H) we shall say 

that A lifts to X • Define rH =' {~ € h;exp ~ = e} the unit lattice 

of H (or K) (e is the identity element of K). Then A lifts to 

a character of H if and only if (iff) A(rH) £ 2~ 1-1 ~ ~ is the 
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integers, ~ is the real number pi). 

Let Zo be the connected subgroup of K corresponding to z. 

Zo is closed in K. Then K = ZOKl ' and K is Lie isomorphic 
. -1 with Zo x Kl/F where F = {(z ,z);z € Zo n Kl } , a finite normal 

subgroup of Zo x Kl (here X denotes the direct product). 

(4.2) Let $:k + gt(U} be a representation of k, a reductive Lie 

algebra, on a complex finite-dimensional vector space U. • extends 

to k
t 

and to u(k) , so also to u(ke) • u(k) is the universal 

enveloping algebra of k ~ A vector (Of) u € U such that 

* $(Z;)u = A(Z;)U, Vz; € h some. A € he' is called a weight veotor with 

weight A (of $). For a given A € h;, the weight space U
A (possibly 

0) is the space spanned by the weight vectors with weight A Write 

rnA for dim UX and call it the muZtipZioity of A as a weight of $ . 

Denote r (the Zattioe of integraZ forms) , for the subgroup of 

* (z (D hllR ) consisting of all A such that 2<A ,0.> € 7l. Say that 
<0.,0.> 

A € r is dominant if <A,o.> ~ 0 , Vo. € R+ (i.e. if A lies in the 

fundamental Weyl chamber). Denote this set rd. 

Definition. 

Let A € r • We say that A is singuZar if <A,o.> = 0 some 0. € R , 

and non-singuZar if <A,o.> f 0 , Vo. € R. Also say that A is sUffioientZy 
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non-singutar (s.n.s.) if <A,a> > a, Va € R, where a € m, a > 0 

and a is 'sufficiently' positive. 

We shall assume that a parameter A , defined on a real form of 

he has been extended (complex linearly) to the whole of he. 

Theorem. 

(i) ~ is completely reducible iff ~(z) consists of semi-simple 

endomorphisms. ~Ikl is completely reducible. 

(ii) If ~ is completely reducible, U is spanned by weight vectors; 

there are only finitely many weights. 

(iii) The weights are integral (i.e. lie in 1). 

(iv) The set of weights is invariant under W(k,h) . 

(v) rnA = mWA ' V w € W(k,h) . 

We say that a weight. A is extreme if A+a 
. + 

is not a weight Va€ R • 

(vi) If ~ is irreducible, then there exists exactly one extreme weight A; 

it is dominant (belongs to 1d) and of multiplicity 1. All other 

weights of ~ are of the form A - r n.a. , n. € W (the whole 
ill 1 

numbers). A is called the highest weight of ~ • 

(vii) If ~ is irreducible, there is a homomorphism ~X:z(k) ~ [ (the 

complex numbers) such that ~(z) = <j>X(Z)1', VZ € z(k) (the center 

of . u(k» • This follows from Schur's lemma. ~X is called the 

infinitesimat character of ~. It determines ~ up to equivalence. 



Chapter O. - 28 -

Theorem of highest weight (E. Cartan) 

The map from the set of equivalence classes of irreducible 

representations of k.[ to Id , which assigns to an i.rreducible 

representation its highest weight is a bijection. 

Let n:K ~ GL(U) , U as before, be a representation of K. 

As mentioned before, see (3.2) , n is unitarizable and completely 

reducible. So we fix a complex inner product <,> on U w.r.t. 

which n is unitary. We refer to a weight of the differential dn 

(see (1.1) ) also as a weight of n. So e.g. the roots R is 

the set of weights of the adjoint representation Ad of K, on k.c . 

The weights of dn lift to (i .e. are differentials of) unitary 

characters of H. In fact considering nIH (i.e. n restricted to 

H) we can choose a basis' {Ui } (i = l, ... ,n) of U such that 
" n(h)u. = X.(h)u.,h E H,x. E H. With x. ~ ~. E A (see (4.1) ) 

1 1 1 1 1 1 

dn(r;)ui = ~i(r;)ui (i = l, ••. ,n). So ~i (i' = l, ••. ,n) are the, not 

necessarily distinct weights of dn . 

Conversely, given a completely reducible representation '~ of k. 
,. 

such that the weights of ~ lift to H (in fact sufficient that the 
,., 

highest weights of the irreducible components of ~ lift to H, by 

Theorem on p.27 (vi); then there is a unique representation n of 

K such that dn = ~ . 

The weight spaces of n are orthogonal .w.r.t <,> 
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Theorem (Cartan, Weyl) 
... 

The map from K into d AnI , which assigns to an irreducible 
A 

representation its highest weight is a bijection. (Recall: K is the 

set of equivalence classes of irreducible unitary representations of K.) 

Moreover this correspondence is obtained as follows: Let v € A n Id 

(i.e. v restricted to z) , vl = v1h • va lifts 
1 

to a character of Za' Xa say. And the irreducible representation of 

kl . wi th hi ghest wei ght vl ' (U ,<1>1) say, 1 ifts to (U ,rrl ) a 

representation of K with drrl = <1>1 • Recall that K = Za x Kl/F . 
A 

Now define rr(z,k) = Xa(Z) rrl(k) , z € Za ' k, € Kl . Then (U,rr) € K 

with highest weight v. Note that A.s r. 

Remark. 

Let (U,rr) be an irreducible representation of K. From the Peter-

Weyl theorem (in the form [16J, (2.8) ) and Schur1s lemma, 

one can show that an inner product on U w.r.t which rr is unitary, 

is unique up to real positive constant multiples. As a consequence; 

if K is simple, as Ad K is then irreducible, minus the Killing form 

is the unique (up to +ve multiples) inner product on k w.r.t which 

Ad is orthogonal. In general Kl = K2x ••••• xKm a direct product of 

closed, simple, normal subgroups. We get B(,)lk.xk. = aj BK.(,),(j=2, ... ,m) , 
J J J 

for some not necessarily equal a. € R, a. > a; where BK.(,) is the 
J J J 

Killing fonn of Kj . 
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By taking an inner product on z, we get a real inner product 

( , ) on k satisfying: (z,kl ) = 0 and (,) restricted to kl x kl 

is - B( , ) • 

Take an orthonormal (w.r.t (,)) basis of k and define 

nK = - 1: ~~ in z(k) • nK is called the Casimir eZement of K • 
i 1 

,. 
Let p = ~ 1: + a • For (U,IT) € K, v-p being the highest weight, 

a€R v v 

we have dIT)nK) = '11v 112 _ lip 112 • 

(4.3) Take the pairs (k,(,)),(h,(,)) with (,) as given (4.2) and the 

Clifford algebras Cliff (k) , Cliff (h) ,w.r.t (,), (see §4). 

We ha ve the 1 ift 

Spin(h) 

1 Z2 coveri n9 

H----+~ SO(h) 
Ad 

Also we assume 

i . e. 
'" ",' We assume that there is such a homomorphism p , with ~op = Ad • 

(See (5.3).) 
,. 

This is equivalent to requiring that p lifts to H (i.e. p € A) • 

P € A for example if K is simply connected. 
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For ~ E A, we write e~ for the corresponding unitary character 

of H. 

Let (U,n) be a unitary representation of K. The character Xu 

of U (which determines n up to equivalence) is defined by 

XU(x) = trace n(x), x E K; and has the properties: 

(where -

* here denotes the complex conjugate), x E K. U is the contragradient 

K-modul e to U. 

Lemma. 

" Let (U,n),(W,n1) E K • 

(i) Let f,f1 be a matrix element of n,n l respectively, then 

<f,fl > = 0 if U and Ware not equivalent. (For <,> see (3.1).) 

(i i) Let ul ,u2,vl,v2 E U and take the matrix elements 
, 

f 1 (k) = <n(k)ul'Yl> , f 2 (k) = <n(k.)u 2'Y2> , 'k € K then 

<fl ,f2> 1 where n = dim U • = n <u l ,u2><v l ,v2> 

(i i i) <XU,XW> = o , if U and W are not equivalent 

= 1 , if U and W are equivalent. 

These are called the Sc~ o~ogonatity ~elatiOn6. 
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The character is of course a class function on K (i.e. constant 

on the conjugacy classes). By the Schur orthogonality relations and 

the Peter-Weyl theorem, the characters of the irreducible representations 

of K form a complete orthonormal set of class functions in L2(K) 

(see (3.1)). 

Every conjugacy class in K intersects: H, and hence the character 

of a representation is determined by its restriction to H. 

* XUIH = X * , 
~ (U) 

\ denotes restriction. 

Define for ~ € A,A(~) = E 
: W " 

det(w)e ~ € ZZ[HJ 
W(K,H) 

(See (3.3).) 

" We have A{p) = eP IT +(1 - e-a
) • 

, a€R 
Let (U,IT) € K , v-p being the v v 

highest weight, then 

Weyl IS character formula. 

Weylls degree formula. 

The dimension of U v 

(here X = Xu ) 
v v 

<v,a> 
, d(v) = E +-­

a€R <p,a> 

and 
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(4.4) Ad maps K into GL(l<.l} with kernel Z. Thus K/Z is Ue 

isomorphic to AdK a subgroup of GL(n, ffi) S GL(n,[), n = dim 1<.1 ' 

with Lie algebra 1<.1 • Let K[,H[ denote the connected subgroup of 

GL(n,[) with Lie algebra I<.le' hle respectively. Also have the 
+ closed subgroup B = H[N , the Borel subgroup (a maximal soluble 

subgroup) of K[ with Borel subalgebra b = h[ m L + m I<.a of 1<.[ • 
aER 

Let (U,K) be a finite dimensional unitary representation of H . 

Then K extends to a holom?rphic representation of H[, which 

we denote by i. Extend ~ trivially to B by ~(hn) = ~(h) for 

h € H[ , n € N+. Then K[X~U = :~ (see [16J), 

becomes a holomorphic vector bundle (with a complex Riemannian structure) 

over the complex flag manifold Ka/B. Ka/B is diffeomorphic to K/H 

and gives the latter a complex structure. K[ acts holomorphically. 

Put T(K/H)[ = T(K/H) 9 [ (here [ is the trivial complex line 
-

bundle over K/H. We have T(K/H)[ = T(K/H) m T(K/H) a direct sum 

of the holomorphic and anti-holomorphic tangent bundles. The Riemannian 

structure on K/H determined by ( , ) (see [l6J) 

extends to a complex Riemannian structure on .T(K/~)[ and therefore 
r - * th also to one on A T(K/H) (the r exterior power of the dual of 

the anti-holomorphic tangent bundle). There is the a operator and its 
.. -* - ~ r- * ~ r+l- * -2 -*2 formal adJolnt a • a:r(~ 9 A T(K/H) ) -+- r(~ 9 A T(K/H) . a = 0 = a . 

. * * This is K[-invariant. The complex Laplacian 0 = aa + a a 
o is elliptic. The cohomology space Ht(U) = Ker 0 (0 at the tth 

link of the chain complex). This is a finite-dimensional Ka-module. 
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HO(U) is the space of holomorphic sections of 0'. 

Borel-Weil-Bott Theorem. 

Let E be the l-dimensional unitary H-module with weight 
1.1 

1.1 e: A • 

(i ) 

(i i ) 

If l.1+p 

If l.1+p 

Hn(w) (E ) 
1.1 

is 

is 

singular, then Ht(E) = 0, Vt 
1.1 

non-singular, then Ht(E') = 0 , t F n(w) and 
1.1 

is the simple K-module with highest weight 

w(l.1+p )-p ; here w is the unique element in W(K,H) such that 

w(l.1+p) lies in the fundamental Weyl chamber, and n(w) is 

the index of w i.e. , + no{a,e:R ;wa,<O} (no' { } means 'the 

number of elements ' ). 
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§5. The Clifford Algebra, Spinors, and the Dirac Operator. 

We refer to [2 J. 

(5.1) Let m be a real vector space with an inner product (, ) . 

With respect to the pair (m,(,)) we take the Clifford algebra, Cliff(m), 

which is the quotient algebra (over R) of the tensor algebra of 

m , T(m) , modulo the two sided ideal generated by the elements 

~ ~ ~ + (~,~)l , ~ € m. By the natural map m + T(m) + Cliff(m) , 

we regard m S Cliff(m). Cliff(m) is (real) associative, with a 

unity 1, of dimension 2dim m. (See [2J p.40 for a basis.) 

Cliff(m) is 7l2.graded Cliff(m) = C+(m) ~ C-(m) , a direct sum of 

vector spaces where C+(m) ,C-(m) is spanned by the even, odd products 

respectively (see [2J p.37 ); (by an even product we 
+ mean an element of the form ~1""'~2k' ~i € m , etc.). C (m) is a 

subalgebra. There is an anti-automorphismc + ct on Cliff (m) which 
k is given by ~l""'~k + (-1) ~k""'~l for ~i € m . Note that 

~n + n~ = -2(~,n)1 for ~,n € m; in Cliff(m) . 

For m even dimensional Cliff(m) is a simple algebra (i.e. no 

non-trivial two-sided ideals); for m odd dimensional C+(m) is a simple 

algebra. Let i:Cliff(m) + End(Cliff(m)) be the Zeft reguZar representation 

(i.e. i(a)b = ab). This is faithful (i.e. Ker i = 0). In fact Cliff(m) 

;s a semi-simple algebra (i.e. i is completely reducible, or otherwise 

said that Cliff(m) ;s completely reducible as a left Cliff(m)-module). 
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Defi ni ti on. 

For m even dimensional take a minimal left ideal S in Cliff(m) • 

For m odd dimensional take a minimal left ideal S in C+(m) . 

In each case we call S the space of spinors. Thus for m even, odd 

dimensional any simple Cliff(m) , C+(m)-module is equivalent to S 

respectively. For m even dimensional S = S+ ffi S- as a C+(m)-module 

where S+,S- are inequivalent simple C+(m)-modules. Call these the 

spaces of ~-spinors. Let C:m'~ End S denote Clifford multiplication, 

i.e. c(~)s = ~.s, ~ E m, s E S . 

Define the spin group Spin(m) = {sEC+{m);sst = l,sms- l S m} . 

There is the double covering $:Spin{m) ~ SO{m) (the special orthogonal 

group of (m,{,)) where $(s)~ = s~s-l , s E Spin{m), ~ Em. Spin{m) 

is simply-connected for dim m ~ 3. By restricting the left regular 

representation i we get Spin{m)~ End S. Call this the spin 
+ 

representation. 
R,- + For m even dim we also get Spin{m) -..;.;.-) End S- . 

Call these the ~-spin representations. + - . S,S are simple inequivalent 

Spin(m)-modules. For m odd dim, S is a simple Spin{m)-module. 

As associative algebra becomes a Lie algebra under the commutator 

[ ] (i.e. [AS] = AS-BA) • For Cliff{m) we denote this by [ Jc 
(i.e. [xy]c = xy-yx, x,y E Cliff{m)) . Now [[~,n]c~]c = -4(n,~)~ + 4{~,~)n 

~,n,~ Em. 6o(m), the Lie algebra of SO(m) , is embedded as a Lie 

subalgebra of Cliff(m) as Span{[~,n]c; ~,n E m}; where 
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Z(~} = : [Z~Jc' Z E Span' { } 

= dl/J (Z )( ~), ~ Em. 

(See [28J.) 

dljJ being the differential of l/J, (see (1.1)). 

Take an orthonormal (w.r.t (,)) basis' {~i} 

As Z = - i~[Z~iJc ~i ' Z E Span { } we get , 
for m . 

dl/J (T ) = - i L T ( ~ . ) ~. , 
. " , 

T € ~o(m) , and composing with the left regular representation, 

c(T(n}} = - [(~odl/J)(T),c(n)J, T E ~o(m), n E m 

(5.1.2) 

(5.1.3) 

(here [ J denotes the commutator). Moreover, the differential of ' 

the spin representation, d~, is just the restriction of ~ to '~o(m) , 

which is the Lie algebra of Spin(m). (See [28J.) 

(5.2) The complexification of Cliff(m) is Cliff(mc) with the complex 

linear extension of ( ,) on me' which we denote also by ( , ) . 

Also we shall not distinguish; in notation, between S for (m,(,)) or 

Construction of the space of spinors (m even dimensional): 

~_ (see [2J) 

Choose fixed maximal totally isotropic (w.r.t(,)) subspaces 

(of dimension over a , l dim m) m1,m2 of ma such that 
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me = ml @ m2 • Let Cl ' C2 be the subalgebra of Cliff(mc) generated 

by ml ,m2 respectively. Then Cl ,C2 is isomorphic to Aml ' Am2 

the exterior algebra of ml ,m2 respectively. Let e € Amm2 ' (2m=dim m) 

of dimension 1. Then we may take S = Cliff(m)e = Cle. Let 
+ + + + +. 

C1 = Cl n C-(me), then the spaces of ~-spinors S- = C-(me)e = C,(me)e . 

(N.B. e2 = 0 so here e is not an idempotent.) 

For m of odd dimension: see [2J p.106. 

(5.3) We use the notation of §2. Suppose that G/H is reductive, 

Riemannian. 

Defi niti on. 

We shall say that G/H is G-spin if for the pair (m,Ad) 

(i) det Ad(h) = 1 , h € Hand (ii) Ad:H --:> SO(m) lifts to a 

homomorphism ~:H ----~> Spin(m) via ~, i.e. there is the 

commutative diagram 

tV We get a representation of H, (S,o) , with 0 = £op • Also 

( + +) . h + + tV if m is even dimensional, we get S-,o- Wlt 0- = £-op • 
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Recall that ~(s)~ = s~s-l. With s = p{h- l ) , 

c{~)a{h) = a{h)c(Adh-l~) , h € H, ~ € m . (5.3.1) 

Now d~odp = ad. Taking Z = dp{~), ~ € h in (5.1.1), we 
tV 

get ad ~(n) = [~nJ = [dp{~)nJc ' n € m. Then 

da{~) = -! ~ C[~~iJc{~i) = (2od~){ad~) , ~ € h . 
i 

(5.4) The Dirac operator. 

(5.3.2) 

Suppose that G/H is reductive, Riemannian and is G-spin. 

Take a representation (V,T) of H, 
. V G 

{see (2. 4», 'I ,on C.YJ H . Choose a 

and take a G-invariant connection 

G-invariant connection 'IS on 

the bundZe of spinors (~)~ (the induced bundle via (S,a) . We shall 

see how to do this in Chapter 1 (l.l). Take the tensor product 

connection "SGV on 'SGV. There is the bilinear map 
cGl m G S G V -------> SGV, given by ~GsGv >c{~)sGv,~Em,sES,vEV . 

Then associated to the pair ({,), 'IS) , there i~ the 1st order, 

elliptic differential operator DV = (cGl) 0 "SGV (see 2.6), with 

symbol map cGl. We shall refer to DV as the twisted, by V, Dirao 

f h 
. S~V 

operator 0 t e oonneot~on 'I . 

S± 
If m is even dimensional, by taking a G-invariant connection 'I 

on the bundle of ~-spinors (~±)~ we get the elliptic, ~-Dirao operator 
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D~ with symbol map m~S±~V cGl + 
-~--> S- G V, respectively. With 

vS the direct sum connection, DV is the direct sum of D~ and DV . 

For V the l-dim trivial H-module, these will be called scalar 

Dirac operators. 

Here G/H is a 'complete Riemannian manifold ' . 

The Laplacian ~ (in Chapter 0, (2.5)) is essentially self-adjoint. 

Also DV and D~ are essentially self-adjoint (see [27]). In ' 

2 particular Ker DV = Ker DV . 

(5.5) Remark. 

If H is simply-connected, then certainly G/H is spin. 
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CHAPTER 1. 

We use the notation of Chapter 0, §l, 2 and 5. Let G/H be 

reductive, Riemannian and G-spin, with a G-invariant, metric connection 

v, by y, on T(G/H) = (~)~. See Chapter ° (1.3), (2.2) and (2.3). 

We shall see that v lifts to a unique metric connection on the bundle 

of spinors G 
(~)H' A formula has been given in [28J for the square of the 

Dirac operator on symmetric s.pace. In §2 we give a generalization in 

differential geometric terms, of this formula, which is due to Dr. John H. 

Rawns1ey .. I am also grateful to him for suggesting Proposition 3 to me. 

See Chapter 0, §5. 

§l. Invariant Metric Connections on the Bundle of Spinors. 

(1.1) Defi ne ali near map tr: Cl iff (m) ---:> R by 

tr(x) is Ithe (real) coefficient of 1 in Xl. 

Then we get a real inner product (,)C on C1iff(m), by 

t (x,y)C = tr x y, x,y € C1iff(m) • 

(See Chapter 0, §5.) This induces an inner product ( , )S on S. 

Lemma 6. 

(i) C+(m) , C-(m) are orthogonal w.r.t ( , )c • 
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(ii) The spin representation is orthogonal w.r.t (,)S. 

(iii) a is orthogonal w.r.t (,)S. 

(iv) Clifford multiplication is skew symmetric i.e. c: --> .6o(S) 

(w. r. t ( , )S) • 

Proof. 

(i) is clear; 

(ii) (sx,sy) = tr«sx)tSY) = tr(xt(sts)y) = tr xty = (x,y) ,s € Spin(m) 

(iii) is a consequence of (ii) ; 

(iv) (c(~)x,y) = tr«~x)ty) = -tr xt(~y) = -(x,c(~)y), ~ € m . 
o 

Proposition 3. 

A G-invariant, metric connection v, by y, on T(G/H) = (~)~ 
lifts to a unique G-invariant metric conne~tion vS ,by yS, on 

G S 
(~)H where y (~) = (tod$)Y(~) , ~ € 9 • 

(See §5 (5.1), (5.3).) 

Proof. 

yS(Adh~) = (tod~)(Adhoy(~) 0 Adh- l ) 

-1 = - i ~ c(Adhy(~)Adh ~i) c(~i) 
1 
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-1 -1 = - a La(h) c(y(~)Adh ~.)a(h) c(~.) . , , , 

= a(h)y(~)a(h)-l for h € H , ~ € 9 • 

So by Proposition 1, (Chapter 0, (2.2)), yS does define an invariant 

connection, which is metric since yS(~) € ~.o(S) (w.r.t ( , )s) , ~ € 9 • 

Now suppose that v lifts to vS . Let IV be the reductive connection 

on ~. This certainly lifts to lV, the reductive connection on S. 

{See Chapter a (2.4).) 

We have 

V -

(See Chapter a (2.1), (2.3).) 

c Recall that m 9 S ---:> S, induces the vector bundle map 

!!! 9 ,?, __ c __ > ,?" and so also r (m) 9 r (,?,) _c_> r (,?,) (L 1.1 ) 

X 9 s > c(X)s . 

( See C hap te r a (1. 3 ), ( 5 . 4 ) • ) 

By the Leibniz rule 
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I 

and VX(c(Y)s) = c(IVXY)s + C(y)IVXS 

X,Y € r(~) , s € r(~) . 

Taking the difference 

SeX) c(Y)s = c(a(X)Y) + c(Y)S(X)s 

i.e. [SeX) c(Y)J = c(a(X)Y) 

= [(R-odlji)(a(X)),c(Y)] (by Chapter 0 (5.1.3)). 

From the fact that left and right Clifford multiplication generate 

all of -60(S) , from the commutation relation [A BC] = [AB]C + BCACl , 

and from the fact that ~o(S) is a real simple Lie algebra (so has zero 

center), we get that 

SeX) = (lodlji)a(X),X € r(~) • 

Now see Proposition 1. o . 

Coro11art.. 

c( y ( ~) n) = [yS ( ~), c( n)] ~ € 9 , n € m • (1.1.2) 

Proof· 

This follows from the Proposition and Chapter 0, (5.1.3). 0 
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Lemma 7. 

In the statement of Proposition 3 the curvature 2-form RS(,) 

of vS is given by RS(,) = (JI,od1/J) R(,) where R(,) is the curvature 

2-form of V. (See Cha pter 0 (2.4 ).) 

'Proof. 

This follows from Chapter 0, (5.1.2) and Lemma 5. 

§2. A Formula for the Square of the Dirac Operator. 

(2.1) See Chapter 0, (2.5), (5.4). 

The scalar Dirac operator is 

D : r (~) ~ . > r (~) ~ 

S D = ~ c(Xi)V X. (See (1.1.l}.) 
1 1 

with 
2 sse,s 

D = ~ -i r c(X.)c(X,)VT(X X )+i r c(X.)c(X.) R (X. X.) . .. 1 J .,... 1 J 1, J 
1,J 1 J 1,J 

And the twisted Dirac operator is 

with 

D = DV : r(S6lV)~ ---> r(S~V)~ 

S6lV 
D = ~ C(Xi)VX. 

1 1 

o 
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2 S~V S~V S~V o = II -~.L:.c(Xi)c(XJ,)VT(X.,X.) + ~ L: c(X.)c(X.)R (X.,X.). (2.1.1) 
1,J 1 J i,j 1 J 1 J 

VI 
Here for (VI,K I) a representation of H ,ll is the Laplacian of 

VI V I 
II (with connection V , by yl); R (,) is the curvature of 

VI 
V ; T(,) is the torsion of V. 

VI~V VI V 
Note that R = R ~ 1 + 1 ~ Rand 

The above formulae are independent of the orthonormal (w.r.t.(,)) 

basis {~i} of m • 

(2.1.1) is obtained using the Clifford bundle relation 

c(X.)c(X.) + c(X.)c(X.) = -20 .. 1 J J 1 lJ 

and the formulae for the torsion, curvature and the Laplacian as given 

in Chapter 0, (2.4), (2.5). See also Lemma 7. 

Note that for V the Levi-Civita connection there are no 1
st 

order terms in 02 

(2.2) Proposition 4. 

(i) 
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SfilV A 

+ ~ ~ C(~.)c(~.)R (~.,~.)f, f E r(SfilV) • 
.. 1 J 1 J -
1 ,J . 

A A 

And see Proposition 2 (Chapter ° (2.5)) for (~f) ,(~f) 

Proof. 

By Lemma 1 (Chapter 0, (2.2)) and (1.1.1), 

(Df)A(e) = _ ~ C(~i)(~~~Vf)A(e) 
1 1 

and 

. SfilV A 

+ ~ ~ c(~.)c(~.)R (~.,~.)f(e). 
; ,j 1 J 1 J 

T(~,n) is given in Lemma 5 (Chapter 0, (2.4)) and 

R(~,n) = dR(Q[~,nJ)e + [y'(~),y'(n)J-y'(P[~,nJ) , ~,n E 9 . 

Note that 

IV = T(~,n) ,~,n E 9 . 
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Now use the invariance of D i.e., g.Df = Dg.f, g E G . 

Note: The formula for the square of the Dirac operator, in the 

form (ii), for the special case of (G,H) a 'symmetric pair' with 

o 

V the Levi-Civita connection (here the same as the reductive connection) 

was first given in [28J. See Chapter 4 (3.1.1) for the precise formula. 
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CHAPTER 2. 

In this chapter, in §1, we introduce our main task. Subsequent 

chapters will set about solving this problem. Sections 2,3 of this 

chapter and chapter 3 will give some structure theory of a compact 

Riemannian homogeneous space which is spin. 

The notation and material of Chapters 0, 1 will be referred to 

and used. 

§l. 'The Problem ' . 

(1.1) Let (K,L) be a pair of Lie groups, with L a closed subgroup 

of K. We write L ~ K. Let K be compact, so L is also compact. 

Further let K and L be connected. 

As the adjoint representation of L on ~ (the Lie algebra of K) 

is completely reducible, we can write 

~ = l m p with [l,pJ s p 

for some subspace p • (wi th. p Ad L-invariant). Thus K/L is a 

reductive homogeneous space (see Chapter 0, (2.2)). In fact we will 

always take p to be the orthogonal complement of l in k w.r.t. 

the inner product ( , ). ((,) as given in Chapter 0, (3.2).) 

Recall that AdK is orthogonal w.r.t. (,), so adK is skew­

synmetric. 
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Via (,) K/L becomes Riemannian (see Chapter 0, (2.2)). 

With respect to the pair (p,(,)}, take the q ifford algebra 

Cliff(p}, and the space of spinors S, with metric (,)S . 

(See Chapter 0, §5 Chapter 1, §l.) 

(1.2) To recapitulate: we have the pair (K,L) of compact Lie groups 

with L s K. K/L becomes a reductive, Riemannian homogeneous space 

via (,). 

The isotropy representation of L (see Chapter 0 (1.2), (2.2)) 

is orthogonal w.r.t. (,). We suppose that K/L is K-spin (see 

Chapter 0, (5.3)). We take a K-invariant metric 
K connection 'ii, determined by y:k. --" ~o(p) , on T(K/L) = Ce)L 

(by the pair (p,Ad)) . Then 'iI lifts to a unique metric connection 
S· S 

'iI , determined by y : k. --" u(S), on the bundle of spinors 
K 

(~\. (See Chapter 0 (2.2), (2.3); Chapter l,§l.) 

Take a finite dimensional unitary representation (V,T) of L. 

Associated to the pair ((,),y) we form the twisted, by V, Dirac 

operator DV' with symbol map p ~ S ~ V cGl > S G V (see ChapterO,(5.4 

i.e. DV : r(s~v)~ K 
----" r (S~V)L 

DV = (cGl)o'ilSGV 

, S~V S where 'iI is the tensor product connection of 'iI on Sand 
V K the reductive connection 'iI on (Y)L· 
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DV is a left K-invariant, 1st order, elliptic, essentially 

self-adjoint differential operator. 

Hence the kernel of DV ' Ker DV ' is a finite-dimensional 

uni tary K-module. A K-submodule of L2(S~V)K. We wish to determine -L 

how this decomposes into simple K-modules. 

In fact (for y either the Levi-Civita or the reductive connection) 

we will determine explicitly, the solution space, as a unitary represent­

ation of K, of the homogeneous Dirac equation DVf = 0 • 

As for (Vl,Ll) a representation of L , we have 

Dvmv = DV m DV (a direct sum), it is sufficient to consider V 
1 1 

a. simple L-module. 

(1.3) Remark. 

We note the vanishing theorem of A. Lichnerowicz (see [26J), 

that for the scalar Dirac operator 01 with y the Levi-Civita 

connecti on, Ker 01 = 0 ie. there are no harmonic spi nors. 

Also we note the papers [28J, [31J for a method of solving the case 

of (K,L) an equal rank symmetric pair. See Chapter 4, (3.2). 

It is our aim to solve the general case. 



, 
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§2. Structural Preliminaries on a Compact Pair. 

(2.1) We shall use previous notation. 

Let (K,L) be a compact pair of Lie groups with L ~ K . 

Let HO be a maximal torus of L . Fix a maximal torus H of K 

wi th HO ~ H . Clearly H ~ ZK(HO) (the centralizer of HO in K) 

i.e. . -1 with Lie algebra ZK(HO) = {kEK;khk =h,Vh E HO} , 

Zk(hO) = {~ E k;[~~] = 0 , V~ E hO} (the centralizer of hO in k). 

ZL(HO) = HO ' ZK(H) = H. As [t,p] £ P , zk(hO) = zt(hO) @ zp(hO ) , 

where zp(ho) is the centralizer of hO in p. But as hO is 

maximal abelian in t, zt(hO) = hO ' Thus we have 

h = hO @ hl (an orthogonal direct sum w.r.t. (,)) 

with hl maximal abelian in zp(hO) . 

* For . ~ E h , write. ~ = ~Ih ,~= ~Ih 
o 1 

(Here * denotes the real dual, and ~Ih means. ~ restricted to hO etc.) 
o 

(2.2) Let Hl be the connected subgroun of H ~ith Lie algebra 

hl • So H = HOH1' H/HO is Lie isomorphic to Hl/HOnHl . 
-1 In fact H ~ (HOxH1)/F where F = {(h ,h);h E HO n Hl } . 

Let R ,Ao have lattice A,AO respectively (see Chapter 0, (4.1)). 

H/HO is isomorp~;_c to the subgroup A = {XEH;X(h) = 1,Vh E HO} of R • 

Let A have latti ce ,A • 
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A 

There are homomorphisms H --~> HO by restriction 

The kernel of the upper, lower map is A, IA respectively so 

A A 

H/A~ HO ' AliA ~ AO' (This is Pontrjagin duality see [33J .) 

A 

there exists X E H with xl H = Xo . 
o 

given AO E AO there exists A E A with ~ = AO 

Equivalently, 

§3. Root Systems. The Weights of the Isotropy Representation and 

the Spin Representation. 

(3.1) Let (K,L) be as in §2. 

Let RL be the root system of (L,HO)' There is the isotropy 

representation of L 

Ad : L -----» SO (p ) (w. r. t. ( , ) ) 

with complexified differential 

Denote the set of weights (w.r.t. HO) by Q. Q s AO n lL . 

lL is the lattiveof integral forms for '(L,HO) . 

For the case rank L = rank K see Chapter 3. Here we consider rank L < rank K. 

Take complexification k~ = l[ @ p[ 

Let R be the root system of (K,H) (see Chapter 0 §4 for notation.) 
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We divide the roots R into 3 disjoint subsets RO' Rl ' and R2 . 

Lenma 8. 

Rl = {~ER;~,n f O} 
~ ~ 

(i) ~ E Rj iff -~ E Rj (j=O,1,2), 0 E Q iff -0 E Q. 

(i i ) '" For ~ E RO u Rl ' ~ f O. For ~ E RO ' ~ = 0 . 

If ~,S E RO ' ~ F S, then ~ f ~ . 

(iii) RL = ~O u ~l ' Q = {a} u ~l u ~2 . 

Proof. 

(i) 

. {~~;~ E RO u Rl } is a set of root vectors for (L,HO)' which 

wi th ho ' spans fo: over a: • 

{n .~ 
~' E Rl u R2} is a set of weight vectors for (Po:' ad) , 

which with hl spans Po: over a: • 

From ~ 
8 = -8 ,~E R (recall that -
~ 

denotes conjugation 

fa - ~ - ~ R w.r.t. ) we get ~~ = -; ,n~ = -n ,~E • 

r;~ =; , n~= n J . Thus ~ € R. iff -~ E R. 
~ -~ -~ J J 

(Here 

o E Q iff 

~ € Q now follows from (iii).) 
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(ii) If a € Ra U Rl and ~ = a, then ~a € Zl(ha)[ . But 

Zl(ha) = ha Note that (ha'~a) = a, Va € R . 

Let t: € k,a a € Ra' For r; € hl we have [r;t:J = a(r;)t: € l[ . 

But also [r;t:J € p[. So [r;EJ = a and a(s) = a . As a 

consequence ~ f ~ for a,S € Ra with a f S • 

(iii) Let ~ be a RL-root vector or a Q-weight vector with root or 

weight 0 , ~ t h[ 

Now ~ = r;l + Eat: for some sl € h[ and aa € [ ,not all zero . 
. a€R a a 

= r;l + E aa~a or r;l + E aana according as ~ € l[ or p[ . 
a a 

Then o(r;)~ = E a a(r;)t: , for r; € ha . 
aER a a 

If oCr;) = a, and aa fa, then a(r;) = a. If oCr;) fa, 

and aa fa, then r;l = a and oCr;) = a(r;). So 0 = ~ for 

aa fa. 

Clearly hl lies in the a-weight space. 

A 1 so for r; € ha ; a (r;).E = [r;~ ] + [r;n ] so a a a 
[r;~ ] = a(r;) ~ , [r;n ] = a(r;)n , a € R • a a a a 

(3.2) Recall that for a € R , r; € 1-1 h is determined by 
a 

(Here we also denote by 

Recall that (l,p) = a • 

r '" '-1 h , ... "" y 

(,), the complex linear extension of (,)). 

o 
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Write I; = I; + I;'\J with I;~ € 1-1 ha ' I;~ € 1-1 hl . 
a ~ a 

-~(I;) = (I;~,I;) € 1-1 ha and tV = (I;~, I; ) , I; € 1-1 hl Then , I; -a (I; ) 

Note that a = a iff = a and tV = a iff = a I;~ a I;tV . tV a 

* More generally for. X € I-lh recall that I;x € I-lh is 

determined by-X(I;) = (l;x,l;) , I; € I-lh. Write I;x = I;~ + 

I;~ € I-lha ' I;~ € 1 -lhl • Then -~(I;) = (I;rl;), I; € I-lha ; 
I;X with 

and 

tV 
( I;~ , I; ) €/-lhl Reca 11 that is defi ned by -X(I;) = , I; <,> 

* I <X,jl> = -(l;x,l;jl),X,jl € I-lh So defining <X,jl>1 = -(I;~,I;JC),<X,jl> 

- (I;~,I;~) we get I = <,> = <'>1 + <,> 

By Remark 1 in Chapter a, (4.2), < ,>. is a real +ve multi p 1 e 

of the Killing-form of L on each connected component of the Coxeter-

Dynkin diagram of (L,Ha) (i.e. of (,,~,hOa:)' 1 ·denotes the derived 

algebra) • 
2<XO ,a>. 

In parti cular if. Xa € lL ' € 7l.. for a € Ra u Rl • <a,a>. 

= 

(3.3) Consider the complexified isotropy representation of L , (po:,Ad). 

The a-weight space is zp(ha}a;. And for a € Q, a I a, the 

a-weight space is aa ffi I ffi "a, where 
a€R2,a 

R = {a € R· a = a} Rl , a = Rl n Ra ' R2,a = R2 n Ra , 
a ' tV 

and cS = I cn (see Ler.1ma 8). a 
aER1,cS 

- a 
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Recall the complex inner product ('}l on the derived algebra 

(the derived algebra). 

For a E R1, (~a,~a) and (na,na) are real negative. For 

a E Rl ' S E R2 ' (na , € S) = (€ a' € S) = 0 • 

Define Q1 = {o E Q; ° f 0 , ° = ~ some a E Rl } 

Clearly ° E Ql iff -0 E Ql . For ° E Ql ' put lmo = dim aO 

Also for ° E Q ° f 0, put 2mo = no(R2,0) (i.e. the number of 

roots in R2,0). For ° E Q, let mo be the multiplicity of the 

weight ° Then for ° E Q, with ° E Ql ' we have mo = lmo + 2mo . 

And for 0 E Q, with ° f 0 , ° I. Ql ' we have rno = 2mo . 

Take aO Q) a-a E Ql As a - for a E R1 ' ° . -n = n , one sees a 
that 1 mo = 1m -0 

aO is totally isotropic w.r.t (,) . l~e can 

choose an orthonormal (w.r.t(,).) basis {nj,o} (j=l , ... ·'lmo) for 

aO , 0 E Ql ; i . e. 

( j,o) = _o~ where ni,o,n 1 
j.o ~ Q 

n = - nj, ° ' u E 1 

For each ° E Ql ' fix a subset R~of R consisting of" ,mo roots 

a wi th ~ = ° . We can arrange so that 
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H is a maximal torus of ZK(HO)' The root system of (ZK(HO),H) 

a .. a . 
is R =. {a € R2 ; ~ = a} , wlth root vectors {Ea;a € R} . Put 

R20 = R2 - RO' hl together with these root vectors span the 

a-weight space· zp(ho)o: over 0:. 

Choose compatible orders on RL ' R. So get the systems of +ve 
+ + roots RL,R . Here compatible means that if a € RL and S € R such 

that ~ = a, then S € R+. Such always exists (see [lOJ). 

+ + + + S . Also put R' = R' n R ,R20 = R20 n R . 

(3.4) Using a weight space decomposition for the isotropy representation, 

we shall now construct the space of spinors S in Cliff(Po:) (w.r.t(,)); 

and thus for K/L spin, determine the weights of the spin representation 

(S,cr) of L, and their multiplicities. 

For 0 € Ql ' put 

and for a € R20 ' 
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Cnj,o" Ina} (0 € QI' j = l, ..•.. ,.mo ; a € R20 ) is an 

orthonormal set, which with zp(ho)' spans p over R 

If F( ,) is bilinear on p x p one has 

·1 01 
. And similarly for F(nj,o' nJ , ) 

(3.5) Construction of the space of spinors: (See Chapter 0, (5.2)). 

We have the orthogonal weight space decomposition 

where 

Furthermore p+,p_ are maximal totally isotropic (w.r.t.(,)) subspaces 
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of p+ m p_. Let C± be the subalgebra of Cliff(p+ m p_) , 
m (w.r.t(,)), generated by p± • Take e E A p+, where 

2m = no(R I U R20 ), this is l-dimensional. Take the space of 

(w.r.t (,)), then 

S = So C_ e 

(3.6) We now suppose that K/L is K-spin. 

Consider the differential of (S,cr). A short computation using 

Chapter 0, (5.3.2) 

(recall that c:p --> u(S) denotes Clifford multiplication) 

where pl=~L a, 

Proposition 5. 

R1+ a E 

The weights of (S,cr) , w.r.t hO ,are given by 

restricted to hO ' 

or -(p'+P20) + IA'I + IB'I 

.. in R'+,R;O respectively. 

h A I ,B I , were 

,+ + where A s R , B s R20 ' 

is the complement of A,B 
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The multiplicity of the weight P'+P20 - (/AI+IBI) is dim So times the number of 

pairs (A, ,B,), A, s R' +, B, s R~O with IA,I + IB,I = IAI + IBI 

restricted to hO . 

Proof. 

This follows from the above construction. 

o 
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CHAPTER 3. 

We use the notation of Chapter 0, §4 and Chapter 2. In this 

chapter we take a compact, spin pair (K,L) of equal rank, and con-

sider the twisted spinors + S- ~ V as an L-module where V is simple. 

In §l we determine for a 'sufficiently non-singular parameter ' , the 

decomposition of S± ~ V into simple L-modules. In §2 we show that 

a simple K-modu1e lying in a certain infinitesimal class, occurs with 

multiplicity at most 1 in the induced ;module L2(S± ~ V)~ . 

§1. Equal Rank Twisted Spinors. 

(1.1) Take the pair (K,L) with rank L = rank K . 

So HO = H. Here p is even dimensional. RL is a closed subsystem 

of R, (closed subsystem means that RL £ R, and if a,S € RL with 

a+S € R, then a+S € RL) and {Ea;a € RL} is 'the ' set of root 

vectors for (L,H). Also W(L,H) ~ W(K,H) i.e. the Weyl group of 

(L,H) is a subgroup of the Weyl group of (K,H) 

Define Wi =" {w € W(K,H);wR+ 2 Rt} Then WI is a set of coset 

representatives for W(K,H)/W(L,H). (See [21J, [28J.) 

The set of weights of the complexified isotropy representation of 

L is Q = R-RL , so each is of multiplicity 1. The set of weight 

vectors is " {£a;a € R-RL}. For a € R-RL ' define 

2~, = (£ _£a)+/_l(£ +£a) € p. Then {C,.)a € R-RL} is an orthonormal 
a a a ~ 
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(w.r.t(,)) basis for p. We have the weight space decomposition 

where P± = r ~ ka
• Furthermore r+, r_ are maximal totally 

+ + a E R -RL 

isotropic (w.r.t(,)) subspaces of p[ • 

Let C± be the subalgebra of Cliff (pc) , (w.r.t(,)) , generated 

by p± • 

spinors 

Take e E Am p+ where 2.m = dim K/L, then the space of 
+ S = C e . Also we have the spaces of ~-spinors S- (see Ch.O, §5). 

For F(,) bilinear on ~xp, 

We suppose now that K/L is spin. Recall the spin representation of 

L , (S,o) , and the ~spin representations of L,(S±,o±). (See 

Chapter 0, (5.3)). 0 = 0+ ~ 0-. Then the differential of (S,o), 

is given by 
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We see that the weights of S as an L-module are 

AI the complement of A 

(IAI denotes the sum of the roots in A .) 

The multiplicity of the weight (p-PL)-IAI 

such that· I BI = IAI 

is the number of B c R+ -R+ - L 

The weights of S+, S- as an L-module are 

+ + where As R -RL and no(A) is even, odd resp. 

The multiplicity is the number of B S R+-Rt, with IBI = IAI and 

no (B) even, odd resp. 

Lemna 9. 

+ -(i) The difference of the characters of the L-modules S ,S on H 

is given by 

P-P 
X - X I = e L IT (l-e -a) in 
.S+ ··S- H a€R+-R~ 

'" llCHJ 

- A(pJ (the quotient of the Weyl denominators) 
- AL1"PL) 

(see Chapter 0 (4.3)). 
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(ii) Consider the contragredient L-modules (s+)*,(S-)*. We have 
+* + +" . + + (S-) ~ S- or S as L-modules accordlng as no(R -RL) (= ~dim K/L) 

is even or odd respectively. 

Proof. 

+ -These follow easily from the weights of S , S and their 

multiplicities. See also [28J, [31J. 0 

(1.2) For the construction of the following filters we follow [30J, [25J. 

Take the Borel subalgebra b = h[ ID E + ID ka of l[, and the Borel 
aERL 

subgroup' B of Lt with Lie algebra b. (See Chapter 0 (4.4).) 

There is a filtration of S by B-submodules 

q < q+l ..... s S _ S s .... sS 

(s means, here, B-submodule) where the B-module sq = E C_re, q EM 
rsq 

with C_ r = Arp_, r E IW (under the isomorphism C_ ~ Ap_) . 

sq = S for q ~ m , 2m = dim K/L. SO has weight P-PL. (Recall 

that we are assuming that K/L is spin, so P-PL E A.) The quotient 

Tq = sq/sq-l • Tq = 0 for q > m, S± = E ID Tq as a B-module . 
. (-l)q=±l 

Clifford multiplication induces a map p ~ Tq ~ Tq+l . 

There is the B-module short exact sequence 

(1.2.1) 
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(for details see [30J). HereE denotes the l-dim holomorphic )l 
B-module with weight )l E A (see Chapter 0 (4.4)). 

Let V denote 'the' simple L-module of highest weight )l-PL . 
)l-PL 

Note that VA+
p

-
2p 

occurs with multiplicity 1 in S 9 VA_
p 

as an 
. L L 

d L-module. A E A n lL (see Chapter 0 (4.2)). 

There is a filtration of S 9 VA by L-submodules 
-PL 

q q+l 
~ ..•..• ~ S (A) ~ S (A) ~ ...... ~ S9V A -PL 

pSqP) denotes the image of the map p 9 Sq(A) _c_9_1_> Sq+l (A) 

by Clifford multiplication. Sq(A) = S9V for q ~ m. The A-P L 

quotient Tq(A) = sq(A)/sq-l(A). Tq(A) = 0 for q > m, and 

S± n V'_P -- ~q m Tq(,) . . d ~ A ~ W A There is an lnduce map 
L (-1) =±l 

Tensoring (1.2.1) with E on the 
A-PL 

right we get the B-module short exact sequence 

(1.2.2) 

(N.B. 9E is right exact and E is flat.) 
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B-module recall Ht(U) the tth cohomology space for the a 
complex, (see Chapter 0 (4.4)) 0 ~ t ~ ml ' ml = ~ dim L/H . 

If 

(1.2.3) 

then the long L-exact sequence associated to (1.2.2) reduces to the 

short L-exact. 

(1. 2.4) 

where the L-modu1es Sq[AJ = HO(Sq~EA_ ),Tq[AJ = HO(Tq~EA_ ) . 
PL . PL 

Now if V is an L[-module then Ht(U~V) ~ Ht(U) ~V. So by the 

Bore1-Weil-Bott theorem we get a filtration by L-modules 

The quotient Tq[AJ = sq[AJ/Sq-l [A]. In fact under condition (1.2.3) 

Sq(A) = Sq[AJ, so Tq(A) = Tq[A] , 0 ~ q ~ m. Also the condition 

<A+P-2PL -I A I, a>:::: 0., Va E: R~ and each q-tup 1 e A of di sti nct 

roots in R+-R~ implies (12.3). (See [30J, [25J.) (1.2.5) 

Recall the definition of A 'sufficiently non-singular' (s.n.s). 
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See Chapter 0, (4.2). We shall assume here that A s.n.s. (1.2.5) 

means that condition (1.2.5) is satisfied. 

Proposition 6. 

A s.n.s. (1.2.5). 

The simple component L-modules of TqU] = HO(Tq~E ) are those 
A-PL 

with highest weights A+p-2PL - IAI where A runs over all q-types 

of distinct roots in R+-Rt. 

Proof. 

A finite dimensional B-module U has a composition series 

o = Uo s Ul s ...... s Ua = U where Wi = U. /U. 1 1 1-
d 

~i € It B-module with weight ~i € A. Suppose 
m 

characteristic X(U) = rl (-l)tCHt(U)] in 
t=O 

is a simple (l-dim) 

Define the Euler 

the ring of 

virtual representations of L. (see Chapter 0 (3.3)). For a short 

B-exact sequence 0 + U' + U + UII + 0 , 

X(U) = X(U') + X(U II ) . 

t t t' If H (U i - l ) = 0 ,t ~ 0, then H (Ui ) ~ H (Wi)' t ~ O. Then as 
t Uo is simple, we have inductively, by B.W.B., that H (U) = 0 , t ~ 0 . 

a A 

Also x{U) = r X(Wi ) € ~CL] . 
i=O 
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Now put U = Tq ~ E" . Here Hi has weight 
-PL 

l1i = "+P-2PL - IAI and all q-tuples A of distinct roots in R+-Rt 

occur. Here a = (~) . We have X(U) = [HO(U)J . Also 

x (W i) = [HO (E ) ] = [V ] by B. W. B. 0 
l1i l1i 

d Note that for any "-PL E A n TL , a simple component of 

s ~ V,,_p 
L 

, as an L-module, has highest weight of the form 

,,-p+IAI , A c R+-R+. But these may not all occur. - L 

Remark 3. 

Let U ,U be simple K-modules with highest weights v,v
l 

• 
v v, 

Then a simple component K-module of U ~ U ,has highest weight 
v vl 

of the form v+v2 with v2 a weight of U . Furthermore if .v, 
U occurs in U ~ U 

v+v2 v v, 

to the multiplicity of v
2 

, then it occurs with multiplicity equal 

as a weight of U 
vl 

§2. Induced Twisted Spinors. 

(2.1) Take a compact spin pair (K,L) with rank L = rank K . 

Notation will be as in §l. Consider the induced unitary K-modules 

I, = L2(S~V,_p )LK , r± = L2(S± ~ V )K for" E A n rd . 
A A L" "-PL L L ---
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Denote by U , the simple K-module with highest weight 
\) 

\) € A n Id. Recall that A S I. Also here A S IL as Land K 

have equal rank. Note that as K/L is spin,p-PL € A. We assume 

that P € A, so also PL € A • 

d 2 2 For 11 € A, define inf(l1) = {\)€AnI ;\)x(nK) = 111111 -lip II } . 
( II . II is by (,) x denotes the infinitesimal character of U 

\) \) 

see Chapter 0, §4). inf(l1) is a finite set. Recall the intertwining 

number iK(IA,U) (see Chapter 0 (3.2).) 

Proposition 7. 

+ - . 
(1) IA-I A = 0, A singular w.r.t R 

" = jj(w)UWA_p' Anon-singular w.r.t R, inll[K] 

where j = + 1 if ~ dim K/L(= no(R+-Rt)) is even 

= -1 II II 
II odd 

and for. A non-singular w is the unique element of W(K,H) such 

that WA lies in the fundamental Weyl chamber for R+ (i.e. WA € Id). 

N.B. W- l€ WI . jew) = det w = (_l)n(w) (see Chapter 0, (4.4)). 

(2) (i) If A is singular w.r.t R, then for \) € inf(A), iK(IA,U) = O. 

(ii) If A is ~on-singular w.r.t R ~ then for \) € inf(A)·, 

\) f WA-P we have iK(IK,U) = 0 ; iK(I~j(w) ,UWA -
P

) = 1 , 

i (I-jj(w) U ) = 0 K A ' Wl-p • 
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Proof. 

" . (1) Consider the extension to ~[LJ of the map Vl + dim[HomL(U ,Vl ) = 

= i(Uv'Vl ), Vl a unitary L-module. Here Uv is an L-module by 

restriction. Then i(Uv,(S+-S)~VA_P) = i(j(S+-S-)~UV,VA_P ), by Lemma 9 
L L 

= 0, . A singular 

= 0, A non-singular, v F WA-P 

= jj(w) A non-singular, v = WA-P 

(by Weyl's character formula). 

Now see Chapter 0 (3.2). (See [31] for the. non-compact case.) 

(2) Recall that iK(I~tU) = iL(Uv,S±~VA_P ) . Suppose that 
L 

iK(IA,Uv) F o. As noted before, a simple component 

S ~ VA_
P 

has highest weight of the form A-P + IAI 
L 

L-module of 
+ + , A S. R - RL • 

Choose W E W(K,H) such that WA is dominant w.r.t R+. The set 

of weights of U is invariant under W(K,H) . We see (from a theorem 
v 

in Chapter 0 (4.2)) that if iK(IA,Uv) F 0, then v must be of the 

form v = wA-p+IAl w + s . Here the sum of distinct roots in R+, 

IAlw' is given by w(-p+IAj) = -p+IA[w (see Ch.5,(2.2)) and s is 

a sum of roots in R+. 

Then for v E inf(A),1 IWA+IA[w+sl [2 = I IA[ [2 i.e. 
2 2<WA,IAl w+s> + I I IAlw + sl I = 0 we require IAlw = 0, s = o. So 

we get v = WA-p. But then A must be non-singular, and W is unique. 

As p occurs with mult 1 as a weight of Up , A = A -1 (see Ch.5,(2.2) ). 

-1 -1) . h 1 1 W Now A-W P = W (WA-p , so occurs Wlt mu t as a weight of UWA -P . 

We deduce thatiK(IA,UWA_p) = 0 or 1. But (1), excludes 0 • 0 
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CHAPTER 4. 

§1. The Curvature Term in 02 . 

Take a pair (K,L) as in Chapter 2, §1. We consider the curvature 

term in 02 (see Chapter 1, (2.2)). 

(1.1) Let {~j}' {~t} be an orthonormal (w.r.t(,)) basis of p , ! 

respectively. Recall that 

s~v s s S R (~,n) = dR(Q[~,n]) + [y (~),y (n)] - y (P[~,n]) , 

~,n € k. P:k + p is the orthogonal projection, Q = 1-P 

And RS(~,n) = (tod$)R(~,n) , with 

R(~,n) = -ad Q[~,n] + [y(~),Y(n)] - Y(P[~,n]) , 

v . 
R (~,n) = dR(Q[~,nJ) , ~,n € k . 

The term 

-i L c(~l·)c(~·Xtod$)ad(Q[~.,~.J) = -i L c(~l·)c(~J.)dcr(Q[~l·~J·J) . . J 1 J . . 1,J 1,J 

Q
L 

is the Casimir element for L (w.r.t(,)). 

t 'th t ([ ] ) (N.B. Q[~.~.J = LC •• /;;t' Wl ciJ' = ~i~J' '~t ' 
1 J t 1 J 

- t and - LC • • ~. = [~t~·J, since [Z;t~'] = L a.~. with i lJ 1 J J ill 
t 

ai = ([~t~jJ'~i) = -cij ). 

(1.1.1) 
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The term 

Put ~ = ~t' and sum over t to get 

Thus 

= 2 Lda(~t) ~ dR(~t) 
t 

= -2 L da(~t) ~ dT(~t) . 
t 

(1.1.2) 

~ .L.C(~i)C(~j)~RV(~i'~j) = -da(~L)-dT(~L) + d(a~T)(~L) . (1.1.3) 
, ,J 
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§2. Symmetric Pairs. 

We use the notation and results of Chapter 2. 

(2.1) Let (K,L) be a symmetric pair of compact type. (See Chapter 

2, (1.1).) 

So K is compact, semi-simple and there is a pair (k,e') where 

a' is an involutive (i.e. a' ~ 1, a,2 = 1) automorphism of k such 

that k = l @ p is the decomposition into the +1 ,-1 eigenspaces 

of a'. The Killing form of k is negative definite on l Let 

(k*,a) be the non-compact dual of (k,a') . So we have the Cartan 

decomposition k* = l @ 1-1P with involution a. We denote the 

complex linear extension of a to k[, also by a. (See [lOJ.) 

(2.2) Consider rank L = rank K . 

We use Chapter 3. Let K/L be spin. From Lemma 9 (i); the 

fact that we can write w E W(K,H) uniquely as W,= w w' , with 

WI E W(L.H) , Wi E WI ; Weylls character formula; and the fact that, 
+ - ' here, S, S (See Chapter 0, (5.3)) do not have weights in common; 

one sees that 

S± Ii\ V = r 117 

WEW I wP-PL 
det(w)=±l 
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is the decomposition of S± into simple L -modules. (V is the , II 

simple L-module of highest weight ll.) In particular, dcr(nL) on 
2 2 S, is the constant Ilpll -llpLII (where 11·11 = <.,.>, see 

Chapter 2, (3.2)). See [28 J for the proof. 

(2.3) Consider rank L < rank K. 

See Chapter 2, §2,3. h is a e-stable Cartan subalgebra of k, 

i.e. eh s h . There is the fact that hl is maximal abelian in ,p 

iff k* has one conjugacy class of Cartan subalgebras; 

iff rank K = rank L + rank K/L (i .e. K/L has split rank. This 

i ncl udes the case of spl it rank 1 • The rank of K/L, or spl it rank 

of k*, ;s the dimension of a maximal abelian suba1gebra of p • 

See [10J.) 

Remark 4. 

k* is a real semi-simple Lie algebra. The Cartan subalgebras 

of k* fall into a finite number of conjugacy classes under the adjoint 

group (see [l~). Given any Cartan subalgebra, there is a conjugate, 

4, which is e-stable i.e. ea sa. Write 4 = 40 m 41 with 

40 s l , 41 s I-lp • 

The 'usual' classification of symmetric pairs (as given for'examp1e 

,in [lOJ) makes use of the conjugacy class with 41 maximal abelian 

; n I-lp However, in the present work, when dealing with aspects of 

representation theory of the compact pair (K,L), it is necessary to use 
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the conjugacy class with aO maximal abelian in l (the funda­

mental Cartan subalgebras). These two lextreme l classes coincide 

iff k* has precisely one conjugacy class of Cartan subalgebras. 

Therefore, using a fundamental Cartan subalgebra h (see above), 

we need to work out some properties of the root system R, and the 

'restricted ' root systems RL, Q . 

(2.4) a We define an involution on R, a + a ,a € R where 

Lemma '0. 

a 'V 'V8 
a 

(i ) ;C = ~ , a = -a aka = ka for a € R . 
(i i ) d. = 0 iff a for R a = a a € . 
(i i i) RO u R2 = {a € R;a 8 R, = {a 8 = a } , € R;a # a } 

~o is the root system of (ZL(Hl),HO) ; RO U R2 is the root system 

of (ZK(Hl),H). (Where ZL(Hl ) is the centralizer of Hl in L etc.). 

(iv) ~ # 0, Va € R . 

(v) K/L has split rank iff R2 = ~ 

Proof. 

The other two parts, and (ii), (iii) are easy to see. 



Chapter 4. - 77 -

(iv) See Lemma 8 (ii), Chapter 2, (3.1). If a € R2 , then 
IV 
a = a so a fa. 

IV 

So if hl is maximal in p, we must have R2 = ~. Conversely, 

suppose R2 = ~. Then as ~ f a for a € Rl ' we have zp(hl ) = hl , 

(where ~p(hl) is the centralizer of hl in p ). 

o 
Corollary to (iv). 

This is equivalent to (iv). So there is a unique maximal torus H 

of K containing Ha' 

Propos iti on 8. 

Consi der the isotropy representation of L , (po:,Ad) . 
(i) hlo: is the a-weight space. 

(i i) For a € Q , a € a: we have aa € Q iff a = a , ±~, ± 1 ±2 • 

(i i i) For a € Q , a "f a we have rna = 1 i.e. the non-zero weights 

all have multiplicity 1 . 
(iv) K/L has split rank iff rna = rank K/L . 

(Here rna = dim hl ' the multiplicity of the weight a .) 
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Proof. 

(i) By Lemma 8 (iii) and Lemma 10 (iv), we have zp(ho) = hl . 

(ii) For O,€ S Q we see that 2<€,0>, € ZZ . 

<0,0>, 

This is because Q s IL (the lattice of integral forms of L) , 
tV 

and a = 0 for a € R2 • 

(iii) Let a,S € R, with a f S and ~ = ~. Let ~ € hl . 

Now 

i.e. (a-S)(~) (a+S)(~) (~ ,~S) = O. Of course ci f S 
a 

So if ci f -6, we get (~,~S) = 0, a contradiction (as root 
a 

vectors have multiplicity 1). tV tV 8 Therefore a = -S and so S = a 

Note that for 0 € Q ,Of 0 one has . 2mo = 0 or 1 (as ci = 0 

for a € R2). Thus for 0 € Q with 0 f 0 , 0 i Q., we have mo = 1 . 

Let 0 € Ql • By the above, and (2.4.2), one has ,mo = 1 . 

Therefore mo = 1 or 2. Now 0 = fC some a € Rl •. {~~'~a,~a} is a 

complex simple Lie algebra of type Al . Suppose 20 i Q. Consider 
r 

the trace of ad .~ on the space spanned over ~, by <a,a>, 
~n_a h,~ and the o-weight space. As 20 'I. Q , we see that this space 

is Al-invariant. By Al representation theory, the trace is zero. But 

the trace is also equal to -l+mo Therefore mo = 1 . 
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Suppose that a € Ql' with 2a € Q. Now 2a t Q1 ' otherwise 

20 = ~ some S € R1 and then ~ = 2~, a contradiction. So one 

must have 20 = ~ for a unique S € R2 . And m20 = 1 . If [~aE_sJ 

is non-zero, then from (2.4.4) a-S € R1 . But (a-S)~ = -0, thus 
6 we must have a+a = S. Then [~aE_sJ € [n_a Consider the trace 

~a 
of ad __ 'V_ 

<a,a>, 
on the span over [ of ~[ , the 

a-weight space and [ES We see that this space is Al-invariant. 

Thus the trace is zero. But it is also equal to -l+ma Therefore 

rna = 1 • 

(iv) This follows from (i) and (2.3). 0 

In the notation of Chapter 2, (3.3) we see that R' is such 

that R1 = R' u RII where RII = R' 

a disjoint union). 

Propos i ti on 9. 

, 6 
= :{a ;a € R'} 

(i) For a € R , 6 a-a I. R ., 

(0 denotes 

(i i) The restriction map RO u R' u R2 --"""'> ~O u~' u ~2 ' 

is a bijection. 

(iii) RL = R ~ R' . Q = {OJ ~ R' u R 
'Va 'V ' 'V 'V2 

(2.4.1) 

{E (a€Ro),n (a€R')} ,{n (a€R'), E (a€R2)} are 'the' root vectors, a a a a 
non-zero weight vectors respectively. 
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Proof. 

(i) Clear, by Lemma 10. 

(ii) Let a,S E R • 

For aERO' (3 E R' , (e:a'~S) = (e:a,e:S) = 0 • 

For a E Rl , (~a,~a) and (na,na ) are real -ve. 

Also if a E R' , 13 e: R2 ' (na,e:S) = (e:a,e:S) = 0 '-, 

From these remarks and the fact that roots and non-zero weights 

have multiplicity one, we get ~ f ~ for a,S E RO U R' u R2, with a f S. 

(iii) Follows from Lemma ( iii), and ( i i) . D 

Note that for a e: R , 2~ = e: + ae: , 2n = e: -a e: a a a a a a 

~ a 
1 1 where ae: . (2..4:2..) = - ~ , n a = - - n , = C e: 
C a C a a a a a a a a a 

For a e: Rl , (~a,~a) = -! = (na,n
a

) . 
Also for a e: R ,2~ = ~ +a~ ,2~~ = ~ = ~ -a~ 

~ a a a a a a (2. 4-.3) 

And for a,S e: R , 
, a 

with a+S f 0 ,a + Sf 0 , 

2[~ ~aJ = N a~ +a + c N a ~ a ' where [e:Ne:aJ = Naae:a+a ; (Z,4·t) a ~ a~ a ~ a a 13 a +13 ~ ~ ~ ~ 

Propositions 8 ,9 give for a symmetric pair (K,L) the 

weights of the isotropy representation, (p[,Ad) of L, and their 

multiplicities. And, for K/L spin, Propositions 5 ,9 give those 

of the spin representation (S,o) of L • 
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(2.5) Take an orthonormal (w.r.t(,)) basis {~t} for hO · 

Note that {E:a(a€RO)' 12~a (a€RI) , {e;a,/2~a} are dual w.r.t -:-(,) . 

Then the Casimir element for L (w.r.t(,)) is 

= -

E ~2 + E. ~ ~a + 2 
t t a€R a o 

(N.B. in the universal enveloping algebra u(ka), ~n-n~ = [~nJ ,~,n € ka) 

And nL acts on a simple L-module of highest weight ~O by the constant 

(where /1·111 = <.,.> ). 

(2.6) LelTJl1a 11. 

(i) 
8 

~ e = 8'a' a€R. If a+a i R then 2<a,a>1 = <a,a>,<a,a>1 
I 

- <a,a> 
a 

fo'r a €: Rl 
(ii) ~ = 0 . 

Proof. 

(i ) For a € R, (8 ta ' 1;) 

() restricted to~ hxh , 

= (~a,~r;) = (I; 8,1;) , VI; € h , 
a 

is non-degenerate. 

and of course 
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(i) 

e For a E R1 ' 2<0. ,a>, = <a ,a> + <0.,0. > • 
e , <0.,0. > = 0 • 

But, by Proposition 

(i i) For a E R2 ' I; = [e: ~aJ E 1-1hO ' so 1;'" = O. For a E R1 ' a 0.\ a 
e 

2p(I;~) '= p(r;a)-P(I; e); so if a is simple, a is simple and 
a e e 

p (r;a) = ~<a ,a> = ~<a ,a > = p (I; e) Thus P(I;"') = 0, for a a 
Note that as, here, k is semi-simple, {r;}, {r;"'} (a E R) 

~ a 

1-1 0 ,1-" over IR , respectively. 

Note that for a,S E R , e 2<a,S>, = <a,S> + <a ,S> 

And for ~ E 1 (the lattice of integral forms), 

I 
<~,a> 

a E 

spans 

2<~ ,a> = ~ _<_~ _,0._>..;...' 
<0.,0.> <0.,0.>, + ~ 

I <0.,0.> 
, with a e 

Rl ' 0.+0. f. R 

The Weyl group W(K,H), W(L,HO) ;s generated by the reflections 

w (~) = ~ - 2<~,a> a , ~ E 1 , a E R 
a ~a a> 

2<~0 ,0.>1 
W (" ) = 11 - a 11 E 1 ~ E RL respectively. 
~ ~o ~o <a a,> '" ' ~o Lv 

For each Wo E,W(L,HO). there is a unique W E W(K,H) such that 

~ = Wo (here W means W restricted to ho). This is because 

ZK(HO) = H (see [22J). 

(2.7) Hl is the identity component of the center of ZK(H1) • 

Therefore, here, H1 is closed in K. In fact H = HO x H1 a 

direct product '(see [10J). (ZK(H1),ZL(H,)H1) is an equal 

o 
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rank symmetric pair. (ZK(H1),H) has root system RO u R2', 

(ZL(H1)H1,H) has root system RO (see Lemma 10). 

Let K/L be spin. Consider the spin representation (5,0) 

of L (see Chapter 0, (5.3)). There is the fact that the Casimir 

operator do(nL) (w.r.t (,)) is constant on 5 (see [28J). 

Since from Propositions 5,9 S contains the simple L-module of 

highest weight p l +P2 = P-PL restricted to hO ' we see that this 

constant is IIpI12 - IIPLII~ . (2.7.1) 
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(2.8) Examples. 

Refer to [l0J. 

(i) Take the symmetric space SO(6)/SO(5) . This is also type All, 

SU(4)/SP(2) . 

Zl € .6u.(2) , Z2 € .60(2,0:) 

SP(2) {c: 
The diagonal matrices in p form a maximal abelian subspace, 

l;l = ; a o 
-1 

o 1 

So K/L has split rank 1. .6u.(4)0: ~ .6t(4"O:) type A3 . 

Take a Cartan subalgebra in .6p(2) consisting of 
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o 
;. a ,b € IR . 

-a 

-b 

And a Cartan suba1gebra h in ~u(4) , 

a 
1; = i b 0 a,b,c €IR , a+b+c+d = 0 . 

c 
0 d 

I; = 1;0 + 1;1 

where 

a 
b 0 

i = ~i b-d 0 + ~i(a+c) 
c 

0 d o -(a-c) 
-(b-d) 

-1 

0 

The roots R are given by a .. (z;) = a.-a., the difference of the 
lJ 1 J 

. th d· th d . 1 t· 1 an J lagona en rles. 

a~2(1;) = ~i{(a-c)-(b-d)} - i(a+c) 
e = i(d-c) so a12 = a43 . 

a~3(z;) = ~i{(b-d)+(a-c)} + i(a+c) 
.. e 
= i(a-d) so a23 = a14 

0 
1 

-1 
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Now ~12 = ~43' ~23 = ~14 . As a42 = a43 + a31 + a12 ' , 

one sees that {a43,a31,a12}' {~31'~12} determine a compatible 

+ + ordering R, RL • 

Consl'der R chal'ns R + t -t l _< t _< til, "',D '" RO u R' • L- ~ ~, ~ ~ ~ 

The reflection wa(~) = ~ - aSa~ where the Cartan integer aSa = tl_tll . 

For a" with a" € RO u R' , we shall write (ij). 
"'1J lJ 

~ + t~ 

(12) (31) 

( 1 2 ) - (31) t RL 

(12)+(31) = (32) 

t l = a 

til = 1 
a =-1 Sa 
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~ + t~ (32)-(31) = (41)+(13) = (43) = (12) 

(32) (31) (12)-(31) = (12)+(13) I RL t l = 1 

(32)+(31) I RL 

~ + t~ (12)-(42) = (12)+(24) = (14) 

(12) (42) (14)-(42) t RL 

(12)+(42) t RL 

W42(~32) = ~32-~42 = ~34 = -~12 

~ + t~ ( 32 ) - ( 42) = (34) 

(32) (42) (34)-{42) t RL 

(32)+(42) i. RL" 

w (pI) = _pI 
42 tV tV 

w12(~12) = -~12,w12(~32) = ~32 . 

~ + t~ (32)-{12) = (31) 

(32) (12) (31)-(12) = (31)+(34) i. RL 

(32)+(12) = (41)+(12) = (42) 

(42)+(12) i. RL 

t l = 1 

til = 0 

tl = 1 

til = 0 

t l = 1 

til = 1 

a = 1 Sa. 

a Sa. = 1 

aSa. = 0 



• 
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~ + t~ 

(12) (32) 

- 88 -

(12)-(32) = (13) 

( 1 3) - ( 32) ¢ RL 

(12)+(32) = (43)+(32) = (42) 

( 42) + ( 32) ¢ RL 

t I = 1 

tl.1 = 1 

a = 0 Sa. 

Thus in this example the Weyl group W(L,HO) acting on ~I , 

exhausts the weights of S. Hence each weight has multiplicity 1 , . 

and S is simple, as an SP(2)-module, of highest weight pI • 
'V 

(ii) Take the symmetric space of type AI, SU(3)/SO(3) 

The non-compact dual is SL(3,R)/SO(3). 

p consists of the symmetric, pure imaginary matrices of 

trace zero. .6u.( 3) has rank 2, .60 (3) has rank 1 . 

A Cartan subalgebra h of .6u.(3) is 

(

ia 

-b 

o 
i: :) 
o -2ia 

a,b €1R, . 

which contains the Cartan subalgebra hO of .60(3) 

(-: : :) b € IR • 



Chapter 4. 

b 

ia 

o 
o 

o -2ia 

1; 

o 

= b -1 

o 

- 89 -

1 

o 

o 

o 
o 

o 

1 

+ ia 0 

o 

o 

1 

o 
o 

o -2 

1;1 E P 

~l(3,R) has 2 conjugacy classes of Cartan subalgebras. 

Consider E:_(a+S) = (-10i o~ ~o) 
The commutator [1;1 E:±(a+S)] = 0 

and 

Wi th 

0 0 2 0 0 1 o , 
0 0 2i = 0 0 i o i 

0 0 0 -i 0 i o 
E: ~a a 

we have [1;0~ ] = ib~ , [1;Ol1a] = ib11 a a a 

and [1;1~ ] = 3ia11 , [1;,11 ] = 3ia~ a a a a 

Wi th 
0 0 2 0 0 1 o o 1 

--
0 0 = 0 0 -i o -i 

0 0 0 i 

E:_S ~-S 
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we have [~O~-sJ = -ib ~-s ' [~On-8J = - ib n-S 

and [~l~-sJ = 3ia n-S ' [~l n_sJ = 3; a ~-s . 
Also take 

(~ 
0 

~) = - (~ 
0 

l) + (~ 
0 

l) 0 0 0 

2i o -1 -; ; 

ES ~S nS 

and 

(~ 
0 

~) = - (~ 
0 

-~) +(~ 
0 

-~) 0 0 0 

-2; o -1 i -i 
E ~-a. n-a. -a. 

One sees that R = {±a.,±S,±(a.+S)} where 

a.(~) = i(3a+b) , S(~) = i(-3a+b) 

with corresponding root vectors, as given. So a.+S(~) = 2ib • 
e + . 

Also a. = S. We take R = {a.,S,a.+S}. Here RO = ~ and 
+ . + + 

Rl = {a.,S} , R2 = {a.+S} , RL = {~} . Note that Q is not reduced 

as 2a. € Q . 
'" 

P'+P2 = i(a.+(a.+S)).. pl+p = 3/2a. • 
'" '" 2 ",. 

The weights of (5,0') are 3/2a., ~a., -ia., -3/2a. ;. each occurring 
'" '" '" '" '" with multipliCity 1. Hence S is simple, as an SO(3)-module of 

highest weight 3/2~. 

(N.B. SO(n) has fundamental group ll2' so is not simply 
1\1 

connected. SO(n) , the simply connected covering group, is Spin(n) • 

SU(n) and SP(n) are simply connected.) 
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§3. The Case of a Symmetric Pair of Compact Type. 

Refer to §2. 

(3.l) Let (K,L) be a compact, symmetric, spin pair {i .e. (K,L) 

is a compact symmetric pair (see [10J), and K/L is K-spin (see 

Chapter 0, (5.3)). 

Let YO determine the Levi-Civita connection on T{K/L) (see 

Chapter 0, (2.4)). For a symmetric pair, this is the same as the 

reductive connection for: [pPJ s l, therefore YO = 0 on P 

See Chapter 2, §l. Take the twisted, by V, Dirac operator D = DV 

associated to {(, ),yO) . 

It is in this situation, that the square of the Dirac operator 

takes its simplest form. In fact by Chapter 0, (2.5); Chapter 1, 

(2.1), and (1.1) of this chapter, we have the expression in terms of 

Casimir operators {w.r.t(,}} 

i.e. 2 D = dR(nK}+dcr(nL)-d.(nL} , as was obtained in [ 28 J. (3.1.1) 

{One see that dR{nK} = dL{nK} , see Chapter 0, (1.4}.) 

Let (K,L) b~ of compact type (see §2). As was stated, dcr(nL) 

is a constant on S. Take V = VA ,the simple L-module of 
O-PL 

It is the purpose of this section to determine 

the kernel of D, Ker D, as a K-module. 
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Let U be the simple K-module of highest weight v E A n rd . 
v 

It is seen that finding 

v-primary K-submodules 

Ker D is equivalent to determining the 

in the induced module L2(S~V, _ )LK with 
AO PL 

v belonging to a certain infinitesimal class. (Refer to Chapter 0, 

(3.2).) 

In (3.2) we consider rank L = rank K. The arguments used in 

(3.2) are similar to those used in [ 28J, [31 J (for the pair (G,M) 

where G is non-compact semi-simple and M a maximal compact sub­

group. This is a symmetric pair.) 

In (3.3) we consider rank L < rank K. This is harder. 

(3.2) Consider rank L = rank K . 

The arguments used here will be similar to those in [ 28J, [31 J. 

By (2.2), the formula for the square becomes 

(3.2.1) 

(Here HO = H , AO = A .) 

Recall the !-Dirac operators D± (see Chapter 0, (5.4)). 

Theorem 1. 

If A is singular w.r.t R, then Ker D = 0 

If A is non-singular w.r.t R, then Ker D+ = U , Ker D- = 0 
WA-P 

(or +,- interchanged, see Proposition 7 Chapter 3, (2.1)); here w 

is the unique element of the Weyl group ~~(K,H) with wI. dominant w.r.t R+ • 
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Proof. 

From (3.2.1) Ker D is the direct sum of the v-primary 

K-submodules in L2(S6aVA_P)~ with vx(nK) = IIA112_llp112 (vX 
L 

being the infinitesimal character of U 
v 

directly from Proposition 7. 

(3.3) Consider rank L < rank K . 

. The result now follows 

By (2.5), and (2.7.1) the formula for the square becomes 

becomes 

o 

(3.3.1 ) 

For A E A, A non-singular let w denote the unique element 

+ in W(K,H) with WA dominant w.r.t R (see Chapter 0, (4.2) for 

'singular', 'non-singular'). 

Theorem.2. 

Ker D is the v-primary K-submodule, of mUltiplicity 

[mO/2J K 2 K 
2 , r (S6aV, _ )L in L (S~V, -p)L where v = A-P with 

v AO PL AO L 

'" . 

A E A , A = AO ' A = 0 '" . 

Proof. 

(Reca 11 that mO = dim hl .) 

Define for J.lO E AO n TL , inf(J.lO) = {v E A n T;vXU~K) = IIJ.loll;-llpI1
2
} . 
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This is a finite set ( X 
v 

is the infinitesimal character of U ). v 

From ( ), Ker D is the direct sum of the v-primary K-submodules 

in L2(_) , with v E infP..O) 

Refer to Chapter 0, (3.2). Suppose that Uv ' v E inf(~O) 

contains a simple L-submodule of highest weight of the form 

~O = ~O-~ + I~I + I~I with A s R'+, B s R~ (see Chpater 3, (1.3)). 

Since the weights of U as an L-module a"re just the restrictions 
v 

to hO of the weights of U as a K-module, there is a weight of 
v 

IV IV IV 
U with JC = ~O . Define the parameter ~ by ~ = ~O ' X = ~-IAI v 

~ = ~-p+IAI+IBI Recall that IV so . P = 0 . 

The set of weights of U are of course invariant under W(K,H) . v 

Choose w E W(K,H) with w~ dominant w.r.t R+. We have 

w~ = w~-p+IClw' C = AuB (see Chapter 5, (2.2). Also v = w~ + s , 

s a sum of +ve roots. Then Ilv+pl1 2 = Ilw~+ICI + s112. So if w 

. , 

Ilv+p 112 = 11~011~ , we require <~,~>I + 2<w~, ICl w + s> + IIIClw+s 112 = O. 

Therefore 'K = 0, and s = 0, ICl w = O. Hence ~ is non-singular, 

w = 1 "and ,Y ,= ~-P. Therefore ~O\ = ~o-R. . 
IV IV + 

As ""A = 0 = p , ~O is dominant w.r.t R • Now ~O = -(R.-PL)+"~O-PL 

i.e. the sum of the lowest weight of S and the highest weight of 

V~O-PL' It follows that the simple L-module of highest weight ~O 
[mO/2J 

occurs with multiplicity 2 in S ~ V ". Hence the result. 
" ~O-PL 

(See Chapter 0, (3.2.) o 
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Remark 5. 

Since for a symmetric pair of compact type, H = HO x H, a 

direct product, one can always satisfy the condition A € A , 
'V 

~ = AO ' A = O. And. A is unique. 
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CHAPTER 5. 

In this chapter and subsequent chapters we will embark upon a 

series of steps, which will eventually lead to the answer to the Problem 

for any compact pair (K,L). (See Chapter 2, §1.) These steps are 

indicated at the head of each chapter. 

For L not the identity subgroup {e}, and V a simple L-module 

of highest weight AO-PL' the procedure involves first establishing 

the result for AO ' sufficient1y non-singular ' . This will occupy 

chapters 5 - 8. Chapter 9 then extends this to all parameters AO. 

We shall use the notation and material of previous chapters, often 

without comment. 

The procedure will be independent of the method used in Chapter 4 §3 

for the special case of a symmetric pair of compact type. 

Step 1. 

In this chapter, we deal with the case of L =' {e} the identity 

subgroup (see §3), and the case of L = H a maximal torus of K (see 

§4). 

In §l we develop our technique of tensoring an induced represent­

ation with a finite-dimensional representation. And we study the 

behaviour of a connection, and a 1st order differential operator of 

type 'symbol mapping composed with a connection I with respect to this 

construction. 
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§l. The Tensor Product of an Induced Representation and a 

Finite-dimensional Representation. 

(1.1) Let (K,L) be a pair of Lie groups with L a closed subgroup 

of K . Let (U,K) be a finite dimensional unitary representation 

of L , and (W,rr) a finite-dimensional unitary representation of 

There is the 'product K-bundle' K/LXW over K/L, where 

(x,w) -+ x and K acts by k(x,w) = (k.x,rr(k)w) , k € K, x € K/L, 

W € W . 

K. 

Regard (W,rr) as a representation of L by restriction. Define 

a K-bundle map K (!i\ = KX L W -->K/LXVJ by 

This is a K-equivalence of vector bundles. Thus there is a 

K-equivalence (U~W)~ = (Q)~ ~ K/LXW. 

Define r(u~w)~ __ <I>_> r(Q)~ ~ W 

by (<I>f)(k) = (l~rr(k))f(k) , k € K , f € r(U~W) . (1.1.1) 

(N.B. Here we are omitting A. 1 is the identity operator.) 

(<I>f)(kl) = (~(1)-1 ~ rr(k))f(k) = (K(l)-l ~l)(<I>f)(k), k € K , 1 €"L • 

Note that <I>-l(f ~ w)(k) = f(k) ~ rr(k)-lw • 

Also (<I>f)(k-1k1) = (1 ~ rr(k-'k1))f(k-1k1) . 

= (1 ~ rr(k)-1)<I>(k.f)(k1) 

so <I>(k.f) = (1 ~ rr(k))k.(<I>f) • 
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Hence ~ is a K-equiva1ence, and it extends to a unitary 

(1.2) We have ({dR{~)~l)~f)(k) = (dR(~)k ~ l)~f 

d 
= dt (~f)(k exPt~)lt=o 

d 
= dt1~rr(kexpt;)f(k exPt~)lt=o 

= (1 ~rr (k) )( dR (~\ f+drr ( ~) f (k) ) 

= (~(dR(~)+drr(~))f)(k),k€K,fc:r{U@W) 

~€k. • 

Thus (dR(~)~l)~ = ~(dR(~)+drr(~)), ~ € k. • (1.2.1) 

Let vU be a K-invariant, metric connection on ~, determined 

by yU:k. + u.(U). Then we get such a connection vU on U@W by ~ 
7T 

i.e. 

(1.2.2) 

Now (yU(~)@l)(~f){k) = (y(~)~rr(k))f(k) 

= (~{y{~)@l)f)(k) • 

Thus 
. . U . 

vU is determined by y :k. + u. (U@W) 
7T 

(1.2.3) 
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(1.3) Let K/L be reductive so k = l ffi P , [l,pJ 5 P . Via an 

inner product (,) on p, K/L becomes Riemannian. Suppose 

p g U _a_> U is an . : .. ,L-map. Then we get the 1st order differ­

ential operator D: r(Q)~ + r(Q)~ 
(see Chapter 0, (2.6)). 

so U D = E a(~.)(dR(~.)+y (~.)) 
. 1 1 1 
1 

where . {~i} is an orthonormal (w.r.t (,)) basis for p . 

By ~, we get TID:r(UgW)~ + r(ugw)~ where ~ TID = (Dgl)~ . 

Thus D = (ag1)o VU . So D has symbol map a gland TI TI TI 

(1.4) Let K/L be K-spin. Take (U,K) = (S~V,ogT) , vU 
= vS~v 

(see Chapter 2, §1 for notation). Take the twisted Dirac operator 

DV associated to ((,),y) . 

(1.3.1) 

(1.3.2) 

By (1.3), associated to the triple ((,),y,rr) there is the 

twisted, by V, Dirac operator TIDV of the connection determined· 

by yS~l~l + l~l~drr on (S~v~W)~. (1.4.1) 

Therefore TIDV' and DV~W are related by 

(1.4.2) 

as operators on r(s~v~w)~. 
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(1.5) Let (K,L) be a compact pair~ We use the notation of (1.1). 

For ~ € k , (dR(~)2 9 l)~ = ~(dR(~) + dTI(~))2. Let {nil be an 

orthonormal basis of k (w.r.t (,) see Chapter 0, (4.2)). putting 

~ = ni and summing over i , we get 

nK is the Casimir operator of K. It is easily seen that 

dR(n K) = dL(nK) . So ~dL{nK) = d(L9TI)(nK)~ . 

§2. The Spin Representation of a Compact, Connected Lie Group. 

(1.5.1) 

(1.5.2) 

(2.1) Let K be a compact connected Lie group and H a maximal torus 

of K. We have k = h ~ p an orthogonal direct sum w.r.t(,) . Here 

p is even dimensional. 

W.r.t the pairs (k,(,)), (h,(,)) , (p,(,)) we have 

Cliff (k) = Cliff (h) ~ Cliff (p) a direct sum 

as associative algebras. Take a minimal left ideal SO,S in Cliff(h[) , 

Cliff(P[) respectively, then Sl = SOS is a minimal left ideal in 
. [,t/2J 

Cliff(k[) . The dimension of SO' d,m So = 2 where,t = rank K 

([,t/2J denotes the integral part of [,t/2J, i.e. the greatest 

integer" ~ ,t/2). Also dim S = 2m , m = i dim K/H = i dim p = no of 

Tve roots. dim Sl = (dim SO)(dim S) • 
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By composing the left regular representation of Cliff(~[) with 

the lift of the adjoint representation of K to Spin (~) , we get 

the spin representation (Sl,al ) of K (see Chapter 0, (4.3). 

Recall that we are assuming that pEA). Similarly we get the spin 

representa ti on (SO,aO) of H. K/H ;s K-spi n so we also have the 

spin representation ($,0) of H. Unitarise these as in Chapter 1, 

§1. 

Sl = So ~ S as unitary H-modules (see Chapter 6, (1.2)). 

By Chapter 0, (5.3) we see that So is trivial as an H-module. Also. 

the differential of 0 1 is given by 

dal(n) = -! ~ c[nniJc(ni) = (lod~l)(adn), n E ~ • 
1 

where' {nil is an orthonormal (w.r.t(,)) basis of ~ . 

(2.1.1) 

(2.2) We shall say that a finite-dimensional unitary K-module U is 

primary if it is the direct sum of a number of copies of a simple 

K-module Uv • Then the muZtipZicity is the intertwining number 

i(U,U ) . v 

Proposition 10. 

Sl is primary as a K-module, the simple K-module of highest weight 

p ,U , occurring with multiplicity 2[1/2J . 
p 
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Proof. 

By Chapter 3 (1.1), the weights of (S,o) are the p-IAI , 
+ where A sR. p-IAI occurs as a weight with multiplicity equal to 

the number of B s R+ with IBI = IAI • These are also the weights 

of (Sl,ol) as a representation of K, the multiplicity as a weight 

of 01 being 2[2/2J times the multiplicity as a weight of o. 

In particular the 'highest ' weight p occurs with multiplicity 2[i/2J. 

By Wey1 1 s degree formula, U has dimension 2m = dim S , m = no of +ve p 

roots. Hence the assertion. 

Hence we see that the weights of U and their multiplicities, 
p 

are just those of (S,o). (See also [21J.) 

o 

For w € W(K,H) (the Wey1 group), define Aw s R+ by Aw = wR- n R+ 

(here R- denotes the set of -ve roots i.e. -R+). So 

wp = p-I Awl . Note that as p occurs wi th mu1 t 1 as a wei ght of Up , 

A S R+ , IAI = IAw l implies that A = Aw. The set of weights of Up 
+ are, of course, invariant under W(K,H). For w € W(K,H) , A s R let 

the sum of distinct roots in R+, IAlw' be given by 

w(p-IAI) = p-IAl w • So we have IAlw = wlAI + IAw l . 

§3. The Case of the Identity Subgroup. 

(3.1) Recall Chapter 2, §l. Set L =" {e} the identity subgroup (the 

a-dimensional Lie group with {a} Lie algebra). 
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There is the adjoint representation (~,Ad) of K. The tangent 

bundle of K, T(K) = KX~ the product bundle 
K 

= (~) {e} 

which is Riemannian via (,). 

Note that any linear map Yl:~ + ~o(~) determines a K-invariant 

metric connection on T(K) , since (i), (ii) of Proposition 1 (Chapter 0, 

(2.2» are trivially satisfied. We define a family of connections by 

Yl a lifts to a unique K-invariant, metric connection on 

(~l) ~e} = KxSl (product bundl e), determi ned by 

S 
Yal(~) = (todWl)Yla(~) = a dcrl(~) , ~€ ~ a € m . 

(See Proposition 3 Chapter 1 (1.1) and §2.) 

(3.1.1) 

(3.1.2) 

The curvature Rl ( ,) , and the torsion Tl (,) (see Chapter 0, 

(2.4» of Yla are given by: 

2 
Rl(~,n) = a [ad ~,ad nJ - a ad[~nJ 

i.e. R1(~,n) = a(a-l) ad[~nJ , ~,n € ~ , (3.1.3) 
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. and T1(~,n) = -[~,nJ + a ad ~(n) - a ad n(~) 

= (2a -1) [ sn ] , s, n E k. • ( 3.1 .4) 

Therefore Y1a gives a flat connection (i.e. R1(,) = 0) iff 

a = 0 or 1 • 

a = 0 gives the reductive connection 

a = ~ II 
II Levi-Civita II 

S 
The curvature R 1(,) is given by 

S 
R 1(,) = (£od1/J1)R1(,) 

so 
S 

R l(~,n) = a(a-1)dcr1([t;nJ) , t;,n E k. • 

These are trivial if K is abelian. 

(3.2) The formula for D~. 

(3.1.5) 

K 2 K 
Note that for a complex vector space V1 ' r(~.l){e},L (Yl){e} 

is just the smooth functions f:K + V1 ' square-integrable functions 

f:K + V1 respectively. 

. K 
The Laplacian on (SlGV){e} associated to «')'Yl a) (with the 

reductive connection on y; here V is any complex vector space) 

L!.1 is given by 

(See Chapter 0, (2.5).) 
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Also associated to ((,),Yla ), there is the Dirac operator Dl . 

Dl : r($lGV)~e} ~r($lGV)~e} 

$ 
Dl = E c ( n . )( d R ( n .) + Y 1 (n. )) • 
ill a 1 

Now the Laplacian 

2 2 
~l·= -E(dR(n.)+2adcrl (n.)dR(n.)+a dcrl(n.) ) • 
ill 1 1 

$0 this has an expression in terms of Casimir operators of K i.e . 

Consider the formula in Proposition 4 (Chapter 1 (2.2)) for Di. 
The 'torsion term' is 

- ~(2a-') E c(n.)c(n.)dR([n.n.]) + adcr,([n.nJ.J)) 
•. 1 J 1 J 1 
1 ,J 

. (3.2.1) 
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The Icurvature term l is 

i a ( a - 1) L C (11 ' ) C (11 ' ) da 1 ([ 11 ,11 ,J ) 
" 1 J 1 J 1,J 

2 If K = H is abelian, this reduces to DO = dR(nH) . (3.2.3) 

For the reductive connection a = 0 and 

(3.2.4) 

For the Levi-Civita connection a = i and 

(3.2.5) 

(3.3) Take V = 1 i.e. l-dimensional. 

Theorem 3. 

(1) If K = H is abelian, Ker DO is the trivial primary H-submodule 

2 H 
in L (SO) {e} Th lt ' l' 't ' d' S 2[dimh/2J e mu 1p 1C1 Y 1S 1m 0= .. 

(2) If K is non-abelian: Ker 01 = 0 for a = i; and for 
2 K 

a = 0 , Ker 0
1 

is the trivial primary K-submodule in L (Sl){e} 

the multiplicity being dim 51 = 2[~/2~ ~ = rank K . 
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Proof. 

(1) dR(QH) = dL(QH) is constant on the ll-primary H-submodule in 
. 2 2 
L (H) , 11 € A; the constant being 111111 • Hence the assertion for 

K abelian. 

(2) dR(QK) = dL(QK) is constant on the v-primary K-submodule in 

L2(K) ,v € An rd; the constant being IlvtpI12_llpI12. (See 

(Chapter 0, (3.1), (3.2), (4.2).) 

Now by Proposition 10 , 00, (QK) is the constant 311pl12 on Sl 

Thus as a Casimir operator is positive, essentially s~if-adjoint we~~et 

the assertion for a = i. See (3.2.5). 

Consider a = O. There is a unitary equivalence. 

vi-primary K-submodule therein, I P • 
V V 

K -1 r I(Sl){ } = r m ~ IP (a finite orthogonal direct sum). 
v _ e v v v 

~-lvIPv is preserved by of (see (1.5)). 

as Vi is of the form Vi = v-p+IAI some 

In fact on this space, 
+ A S R , we have, by (3.2.4), 

oi = 2 ( " v+ I A 1112 _II p 112) - (II v+p 112 -1/ p 112) + 311 p 112 . 

. 2 
Then o~ - Ilv-pl1 2 = 2(2<v,IAI> + IIIAIII ) . Thus on Ker 01 ' we 

must have A = ~ ; (the empty set) v = p • Therefore Vi = a . 

But these conditions are also sufficient for Ker 01 . Hence assertion. 
o 
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§4. The Case of a Maximal Torus. 

Recall Chapter 2, §l. Let K be non-abelian and L = H a maximal 

torus of K. Associated to the pair «,),y) we have the twisted 

Dirac operator D = DV . 

2 The formula for D given by Proposition Chapter 1 (2.2) and 

Chapter 4 (1.1), looks complicated for a general pair (K,L) • There is 

a first order term in the Laplacian for y the Levi-Civita connection; 

and for y the reductive connection there is a first order 'torsion 

term ' • Although for a symmetric pair, it turns out that da(nl ) is 

a constant on S (see Chapter 4, (2.7)), this is certainly not true 

for general (K,L). 

Exampl e. 

Take (K,H) where K = SO(5). This has rank 2. The direct 

(
case si ne) product of 2 copies of -sine case ; e dR and 1 , is a maximal 

torus H. K is simple and k.(t is of type 82". The 2 simple roots 

of 82 are not of equal length. In fact we can take simple roots ~,a 

with IIall 2 = 211~1I2. With y = ~ or a, IIp-yll2 = IIpIl2_2<p,y>+/ h1l 2
= 

= IIpl12 + /1~//2 • Thus IIp-al1 2 f IIp_~112. It follows from this 

and Chapter 3, (1.1), that dcr(nH) is not a constant. 

To obtain Ker D, we could at once attempt a 'highest weight 

argument ' , along the lines of that which we use in the last part of the 
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proof of Theorem 4 , for the reductive connection. (See- (4.3).) 

The idea being to try and compute the infinitesimal character 

on QK' vX(QK)' for Uv a simple K-module occurring in Ker 0 . 

This came straight from 02 for a symmetric pair (see Chapter 4, §3). 

However, the following method, for (K,H), shows that the sum 

of 02 and an anti-commutator of 0, is expressible entirely in 

terms of Casimir operators. This more naturally extends the work 

of §3 and gives more precise information along the way, which will be 

also important in Chapter 9. 

(4.1) Recall §1,2,3. Regard aO as the restriction of the trivial 

representation of K on Then there is a unitary equivalence 

Sl 9 V = So 9 (S9V) as a unitary H-module. 

Consider Os 9V' As aO is trivial 
o 

where {~.} 
J 

is an orthonormal (w.r.t(,)) basis of p 

°V91 is the di rect s urn of 2[1I./2J copies of ° = °v . We 

02 K 
Os 9V also by ° . We intend to compute on r(S19V)H 

0 

denote 
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Take . {~t} an orthonormal (w.r.t(,)) basis of hand 

. {n.} = {~t'~.} . 
1 J 

Reductive connection: Y = 0 on p. With a = 0 (see (3.1), (3.2)) 

D1 = DO + D (4.1.1) 

where DO is the trivia' extension (see Ch.6,(2.2)) to K of the 
H Dirac operator with the reductive connection on T(H) = (~){e} over H. 

1. e. 

DO = L c(~t)dR(~t) 
t 

= -Lc(~t)d(crGT)(~t) 
t 

(N.B. DO preserves r(s,GV)~ as c(~) E HomH(Sl'S,) , ~ E h .) 

Then D2 = D2 + [D DJ + D2 
1 0 0 + 

where (i.e. [ J+ is the anti-commutator). 

(4.1.2) 

Levi Civita connection: y = YO 

(3.1 ), (3.2)) . For a ny a E R , 

(see Chapter 0 (2.4)). Take a = ~ 

S1 
Ya (~)= - !a Lc[~n.Jc(n.) 

; 1 1 

= 2aY6(~) - !a ~c(Q[~~jJ)c(~j) -
J 

(see 
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- 1a E C(~.)C[~'~tJC(~t) 
t · J J ,J 

~ E p. 

S K (Here, of course, YO is the lift of YO to (~)H.) 

S 
Also Yal(~) = a dcr(~) , ~ E h • 

Now -1 E c(~.)c(Q[~.~.J)c(~.) = 1 E c(~.)c(~.)c(Q[~.~.J) 
i,j 1 1 J J i,j 1 J 1 J 

= E C(~t)dcr(~t) . 
t 

Sl S 
Thus Ec(n')Ya (n.) = 3a E c(~t)dcr(~t)+2a E c(~.)y (~.) . 
ill t j J 0 J 

So, with a = i , 

where 

(4.1.3) 

i.e. DO is the trivial extension to K of the Dirac operator with 
the connection 3/2dcr on (SlGV)~e} over H. DO preserves r(SlGV)~. 

Now D6 = ~O ~ - E (dR(~t) + 3/2dcr(~t))2 
t 

= dR(nH) + 3 Edcr(~t)d(aGT)(~t) + 9/4da(nH) 
t 
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2 200 = 2d(cr~L)(nH)+3(dcr(nH)-d(cr~L)(nH)+dL(nH)-2dcr(nH)) 

+ 9/2dcr(nH) 

(4.2) There is a unitary equivalence 

Take V = EA ' A € A, the simple l-dim unitary H-module with 

charactereA • Let. A be non-singular. (See Chapter 0, (4.2).) 

(4.1.4) 

Then take the unique w € W(K,H) such that WA is dominant w.r.t R+. 
,. 

Let (Uv,nv) € K, v being the highest weight. Take (a non-zero) 

Sl ~Jv,(EA)~ and the v-primary K-submodule therein, vPvl 

By assumption, A is a weight of U I , so Vi = WA+S, s a sum of 
v 

(not necessarily distinct) roots in R+ (see Chapter 0 (4.2)). Also 

v = v'-p+IAI some A £ R+. (See Remark 3 Chapter 3 (1.3).) 

-1 . ~ K ~ Let f € ~ vPvl K r~(Sl~EA)H (Kdenotes K-submodule) .. 

Write f = fl + .•.•. +fr , with 
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being distinct. Where if B s R+, S_p+IBI is the -p+IBI weight 

space in S as an H-modu1e. 

Then v = wA-p+IA·1 + s,., s. a sum of +ve roots i = 1, ... ,r , , W , 

(see (2.2)). We have IAilw + si = IAI + s, Vi • (4.2.1) 

(0) Levi-Civita connection: 

2(02+[OOOJ+)f ~{(llwA+IAI+sI12_llpI12)+(llwA+P+sI12_llpI12)+3/21Ipll2 

-31IAI12}f + L(IIA-P+IA.111 2-3/21Ip-IA.111 2)f. 
i.' 1 1 

= 2<WA,IAI+2s>f + L 2<WA,IA.1 >f. 
• 1 W 1 
1 

(1) Reductive connection: 

I 
2 2 2 = ~2<wA,si>fi+{2<wA,IAI> + I I IA +sl I -I Ip+sl I +21 Ipl I }f , 

p+s = p-IAI+IA.lw+s. 
1 1 
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(4.3) Now K -1 
r(Sl~EA)H = L ~ ~ vPvl (a finite orthogonal direct sum). 

Vi 

(See Chapter 0 (3.1), (3.2).) Note that this is finite-dimensional. 

Writing f € r () as f = f'+ ..•.. +f t with fj € ~-l P v v v. 
J 

we see from (4.2) that we can make the inner product 

2 
«0 +[OOO~)f,f> > a <f,f> for any rea' number a , a> 0 , 

by taking A s.n.s (i.e. A sufficiently non-singular. See Chapter 0 

(4.2)), provided we are not in the situation: 

(0 ) t = , , s = 0 , A = 4> • So s i = 0 = I A i I w ' Vi. 
(' ) t = 1 , s. = 0 , Vi , A = 4> • 

1 

So S = 1Ai1w = IAjlW and 1Ai I = IAjl ' Vi,j. . (4.2.4) 

Recall the ~-Oirac operators D+ = D~ , 0- = DV (See Chapter 0 

(5.4), N.B. y gives a connection on ~+ , ~- ). 

Theorem 4. 

Let A € A • 

Take y either the Levi-Civita or the reductive connection. 

If A is singular w.r.t R, Ker D = 0 . 

If A is non-singular w.r.t R , Ker 0+ = UWA -
P 

, Ker 0- = O. (Here 

jj(w) is even. If odd interchange +,-. See Proposition 7, Chapter 3 (2.1).) 

Proof. 

We shall, here, prove this for A s.n.s. This restriction will 

be removed in Chapter 9. 
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K 1 t Take f € rv(SlGEA)H ' f = f + .... +f (see above). Suppose 

f € Ker D. As D is symmetric, <DDOf,f> = <DOf,Df> = 0 . 

2 So «D +[DODJ+)f,f> = O. We deduce from that, for either 

connection, t = 1 and (i) A = ~ , s = 1B1w some B S R+ 

(ii) f € rv(SOGS_p+IBI G EA)~ • 

s So, in particular, Uv K Ker D implies that v is of the form 
+ v = wA-p+IBl w ' B sR. 

In the case (0) we already have 1B1w = 0, and therefore 

B = A -1 (see (2.2)). 
w 

Suppose U 61 b v 

(See Chapter 0 (3.2).) 

By conditi on (i i), b € HomH (Uv' S _p+ I B I61EA). Fi x v to be I the I 

weight vector with weight w-lv = A-p+IBI • This weight has multiplicity 1. 

Let e be the identity element of K. We must have f(e) = b(v) F 0 

(otherwise b = 0). 

Now dR(~) f =-dL(~) f e e 

= %t f(exp t~)lt=o = -~t b(nv(exp t~)v)lt=o 

= -ben (~)v) , ~ € ~ • . v 
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dR(E ) f = 0, Va E R 
a e 

it follows that 

2 S In the case (1) ,0 = dR(QK)+4~YO(~j)dR(~j)+dcr(QH)-dT(QH) 
J 

Then 0 = (02f )(e) = (llwA+IBlwI12_llpI12+llp-IBII12_IIAI12)f(e) 

2 o = 2<WA-P,IBl w> + 2111Blwll . 

As A was taken to be non-singular, this implies that IBI = 0 • w 

Hence, for either connection, we have shown that a simple 

K-module occurring in Ker 0 must have highest weight v = WA-P . 

This is our vanishing theorem. 

We now have to show that U ~ does occur in the kernel. For 
WA-P 

this we compute the index of 0+. (See Chapter 0, (3.3).) As 0 is 

essentially self-adjoint, the adjoint of 0+ is 0-, thus for A E A , 

Index 0+ = Ker 0+ - Ker 0- '" in 7l[ KJ 

= 0 , A singular 

= U, ,A non-singular by Bottis index theorem 
WA-P 

and Proposition 7. Hence the assertion of the Theorem. 

o 
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CHAPTER 6. 

Step 2. In this chapter we deal with the case of (K,L) with 

rank L = rank K. (See §4.) 

Here, we extend Chapter 5, §4 to the case of equal rank. This 

'Step' can in fact be removed, and we can still get from Step 1 to 3. 

However §2,3 of this chapter are essential. 

In §2,3 we develop our technique of 'inducing in stages' and apply 

it to the Dirac operator. The notion of the 'trivial extension' and 

the 'pull-back' of the Dirac operator is introduced. 

§l. Spin Triples. 

(1.1) Let (M,K,L) be a triple of Lie groups with L a closed sub­

group of K and K a closed subgroup of M. Write L ~ K ~ M . 

We have i # K/L ----;> M/L ---.;.;.->M/ K 

where i is the inclusion and # is the projection (i .e. #(mL) = mK 

m € M). We suppose that these homogeneous spaces ·are reductive. Let 

m = ~ ~ Pl and ~ = l ~ P with Pl Ad K-invariant, and P Ad L-invariant. 

We suppose that there is an inner product (,) on P 1 Pl ' such that 

P'P
l 

are orthogonal and (p,AdL) , (Pl,AdK) are orthogonal (w.r.t{ ,)) • 

Then T(K/L) = (eJE ' T(M/K) = (Pl)~ T(M/L) = (P'{9Pl)~ and these 

become Riemannian. 

Take the pairs (P{9Pl'('))' (p,(,)) , (Pl'('}) . Then 

Cliff(P{9Pl) = Cliff(p) (9 Cliff(Pl) a direct sum as associative algebras. 
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Let SL' SK be the space of spinors in C1iff(p(t) , C1iff(P1(t) 

respectively. Then S = SLSK is the space of spinors in C1iff(PffiP1)(t . 

(1.2) We suppose that the above reductive homogeneous spaces are spin. 

Then we get the unitary spin representations (SL,aL), (S,a) of L 

and (SK,aK) of K. Refer to Chapter 0 and Chapter 1 §1. Recall 
-1 that c(~)aL(~) = aL(~)c(Ad~ ~) , ~ € P 

-1 c ( ~) a (~ ) = a (~ ) c (Ad ~ ~ ) , t; € P@Pl ' ~ € L 

and c{~)aK(k) = aK(k)C(Adk-lt;) , t; € Pl ' k € K . 

Then one sees that a = aL ~ aK as unitary representations. 

Let . {~t} ,{t;j} be an orthonormal (w.r.t(,)) basis for P'Pl 
respectively. Set' {nil = {~t'~j}. Then 

daK{t;) = -1 E c([t;~.J)c(t;.) , t; € k 
. J J 
J 

§2. Inducing in Stages. 

(2.1) Let (U,K) be a finite-dimensional unitary representation of L . 
K M There is the induced K,M-vector bundle (Q)L' (Q)L over K/L, MIL 
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respectively. There is an M-equivalence of vector bundles 

Following the notion of inducing in stages for representations of 

finite groups, we define 

run~ > r(r(Q)~)~ (inducing in stages) 

'" f > f 
'" where f(m)(k) = f(mk) , 

mEM , kEK , fa(.!:!) 

'" So f(m) = f(m) (e) • 

We have f(mk)(k l ) = f(mkk l ) = (k: lf(m))(k
1

), 

'" -1 '" (m.f) (ml)(k) = (m.f)(mlk) = f(m m1k) = (m.f)(ml)(k) . 
, , 

and 

'" 1'" " '" So f(mk) = k- .f(m), (m.f)'" = m.f, m EM, k E K . 

Thus '" is an M-equivalence. It extends to a unitary 
. 2 M '" 2 2 KM equlvalence L (Q)L > L (L (.!:!)L)K . 

(2.1.1) 

(2.2) Let vU , by yU: k + u(U) , be a K-invariant, metric connection 

on (.!:!)~. Extend yU trivially to m i.e. yU = 0 on p, . Then 

yU: m + u(U) determines an M-invariant, metric connection (also denote 

by vU) on (Q)~. 
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Let (Ul,K l ) be also a finite-dim unitary representation of L . 

Let D:r(Q)~-+- r(Q)~ , D = aol7 U be the 1st order K-invariant differ­

ential operator with symbol map P~U a > Ul • Extend a trivially to, 

P«lPl i • e. a (t;) = 0, t; € Pl' Then 

(2.2.1 ) 

i.e. DO = r a(1;t)(dR(1;t) + yU(1;t)) i's a 1
st order 

t 

M-invariant differential operator, which we will call the trivial extension 

of D to MIL. Note that if L < K (i.e. L is a proper subgroup 

of K) DO is non-elliptic (even if D is elliptic). 

We can view this another way: 

define the differential operator Dl:r(Q)r -+- r(Q)r by 
, (~ ~ , ,Dlf) (m) = D(f(m)) ,m € M (2.2.2) 

~ 

So (Dlf)(m) = D(f(m))(e). (e is the identity element of M .) 

Propos iti on 11. 

Dl = DO' Let D be elliptic, then 

Ker DO --~--> L2(Ker D)~ is a unitary equivalence. 

Proof. 

For t; € P , 

(a(t;)(dR(t;)+yU(t;))f(m))(e) = a(t;)%tf(m) (exptt;) It=o+a(t;)yU(t;)f(m) 

= a(E;)%tf(m exptt;) I t=O + .. 

= (a(E;)(dR(t;)+yU(t;))f)(m), mEM, f€r(Q)r • 
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So Dl = DO . 

By the 'regularity theorem I for elliptic operators, Ker D is 
2 K a closed subspace of L (Q)L' and so, by invariance, it is a unitary 

IV 
K-submodule. We see that f e: Ker DO iff f(m) e: Ker D, Vm e: M , 

where f e: r (Q)r • 
o 

§ 3. Inducing in Stages and the Dirac Operator. 

(3.1) Let (V,L) be a finite-dimensional unitary representation of L . 

There are the unitary equivalences 

(See Chapter 5 (1.1), and (2.1).) 

M For ~ e: P, , f e: r(_)L 

IV d IV 
(dR(~)m~Kf)(k) = dt ~Kf(m exPt~)lt=O(k) 

= crK(k)~tf(m expt~k)lt=o 

Now (dR(~)f)IV(m)(k) = dR(~)mkf 

= ~t f(mk exPt~)lt=o 

= ~ f(m exptAd(k)~k)lt=o • 
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. tU 
Therefore E c(~.)dR(~.) ~Kf = ~K E c(~.)(dR(~.)f)(m), m € M . 

j J J m j J J 

Take an M-invariant metric connection determined by YK on 

T(M/K) = (Pl)~ • As we know, YK lifts to a unique connection 

SK M 
determined by Y on (SK)K over M/K. 

Then 
SK 

= Ec(~.)y (~.)oK(k)f(mk) 
. J J 
J 

(3.1.2) 

. S 
= EC(~.)oK(k)Y K(Adk-l~.)f(mk) 

. J J 
J 

S 
= 0K(k) E c(~.)y K(~.)f(mk) 

j J J 

S . 
= ~K E c(~.)y K(~.)f(m)(k) 

j J J 
(3.1.3) 

Associ a ted to 2 K 
((')'YK) there is the twisted, by L (SL~V)L ' Dirac 

opera tor OK' 

M On r(SK~SL~V)L there is the operator 

SK 
01 = ~ c(~j)(dR(~j) + Y (~j)) 

J 

(3.1.4) 

M tU tUtU tU 
For f € r(. )L' write tU(f) = f and 01 f = (D1f) , then 

tU . 
we have ~KD1 = DK~KtU . (3.1.5) 

We refer to 01 as the putt-back of OK to MIL . 
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(3.2) Take a 

YL lifts to a 

Associ a ted to 

- 123 -

K-invariant, metric connection YL on T(K/L) 
S 

unique connection Y L on (~)~ over K/L. 

«')'YL) there is the twisted, by SK ~ V , Dirac 

operator DL . Also associated to «')'YL,oK) there is the twisted, 

by V, Dirac operator DL (see Chapter 5 (1.4)). And there are 
oK 

the trivial extensions to MIL (see (2.2)). 

Let Y determi ne an M-i nvari ant, metri c connecti on on 

T(M/L) = (P'@Pl)~. Y 1 ifts to a uni que connecti on yS on 

over MIL. Associated to «,),y) there is the twisted, by V , 

Dirac operator D = DV .. We intend to express D as the sum of 

trivial extensions of 

(3.3) Consider Y = YO' the Levi-Civita connection. 

Yo = ! Poad, P the orthogonal projection onto P @Pl 

And YS(n) = -! L c(~P[nn.])c(n.), n € P@P l • Write P = pO+pl 
. 1 1 
1 

where pO, pl is the orthogonal projection onto P'P
l 

respectively; 

° 1 ° 1 and n = n +n , n € p,n € Pl • 

Now 

so· ° ° ° YO(n ) = -!~c(!P [n '~t])c(~t)-!~c(~[n ~j])c(~j) 

SL ° 0 = YO (n ) + ~ doK(n ) . 
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And 

-1 L c(~.)c{~[~·~tJ)c{~t) = -1 L c{~t)c{~[~t~.J)c{~.) 
t,j J J t,j J J 

Thus 

SK 
+ L c ( ~ ')Yo (~.) ( 3 . 3. 1) 

. j J J 

SL SK 
where YO ,YO is the lift of the Levi-Civita connection YOL' YOK 

on T{K/L), T{M/K) to (~)~, (SK)~ respectively. 

(3.4) Consider Y the reductive connection: Y = 0 on p @ P1 • 

L c(n.)dR{n.)= L c(~t)dR(~t) + L C(~J.)dR(~.) 
ill t j J 
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i.e. we express D = DO + D1 where DO is the trivial extension 

of DL with YL the reductive connection; and D1 is the pull-back 

of DK with YK the reductive connection (see (3.1)). (3.4.1) 

Consider Y = YO' the Levi-Civita connection: 

i.e. we express D = DO + D1 where DO = D2+~D3-~D4 with D2,D3 
the trivial extension of 0KDL with YL the Levi-Civita connection, 

reductive connection respectively; and D4 is the trivial extension of 

DL with YL the reductive connection. And D1 is the pull-back of 

DK with YK the Levi-Civita connection. (3.4.2) 

(3.5) J+ is the anti-commutator. 

DO,Dl are essentially self-adjoint. (This is because D and Dl are. 

(See Chapter 0, (5.4)).) 

If M is compact, so therefore K and L are also compact, we 

take (,) on m as given in Chapter 0, (4.2). Recall Chapter 2, §1. 

It is seen that we can carry out the constructions of (1.1). For (1.1) 

M could be a reductive Lie group and K,L compact. Suppose this is so: 
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(i) rank L ~ rank K = rank M . 

There are the ~-Oirac operators 

(ii) rank L = rank K ~ rank M • 

There are the ~-Oirac operators 

-
preserve sE~v, [OOOlJ+ sends sE~sK into s~~ SK . 

Lemma 12. 

(i) 

(i i ) 

Proof. 

(i) 

(i i) 

+ 
Ker O± = Ker DO n Ker 0, 

+ 
Ker ±O = Ker DO n Ker 01 • 

And 00,0
1 

are essentially self-adjoint. 

N.B. It doesn1t necessarily follow that Ker ° = Ker 0+ @ Ker 0_ 

or = Ker +0 @ Ker 0 . 

o 
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§4. The Case of an Equal Rank Pair. 

(4.1) In Chapter 2, §l take the compact pair (K,L) with rank L = rank K . 

(K non-abelian.) 

Take a maximal torus H of L (see Chapter 3). We have the triple 

(K,L,H). L/H -+ K/H -+ K/L S = SH G SL. Recall §1,2,3. 

Take V = EA ' A € A (a l-dim unitary H-module). If A is 

non-singular w.r.t R, we take w € W(K,H) the unique element such 
+ that WA is dominant w.r.t R . Let Uv be the simple K-module of 

highest weight v • 

Let. A € A, be non-singular and dominant w.r.t R~. (See Remark 

Chapter 0, (4.2).) Then by Proposition 7 (Chapter 3(2.1», and Theorem 4 

(Chapter 5, (4.3», the simple L-module VA of highest weight 
. -PL 

. A-PL occurs with multiplicity 1 in L2(SHGEA)~ and is Ker D~H ; 

with YH the Levi-Civita or reductive connection. (N.B. here DAH 

is the twisted, by EA , Dirac operator associated to ((')'YH) over 

L/H.) Ker D~H = a (or +,- interchanged). 

Let V 
Jl 

2 L be the Jl-primary L-submodule in L (SHGEA)H • 

. Let JlDL be the twisted, by 1{Jl , Dirac 

operator associated to ((')'YL) over K/L. There is the countable 

direct sum DL = E m DL . Define DAL = A DL · There are the ~-Dirac 
Jl Jl -PL 

+ 
operators D~L· 
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Theorem 5. 

Take YL the Levi-Civita or the reductive connection. Then, 

if A is singular w.r.t R, Ker DAL = O. If A is non-singular 
+ -w.r.t R, Ker DAL = UWA -P , Ker DAL = 0 (or +,- interchanged 

see Proposition 7). 

Proof. 

The weights of SL~E as an H-modu1e are the A-(p-P L) + IAI , 

wei ght of 

. A simple component L-modu1e of SL~VA P has highest 
- L 

the form A-p+IAI , A s R+-R~. For A s.n.s these all 

occur (see Chapter 3 (1.2)). 

As in (3.3), write ° = DO + 01 . 

By Theorem 4, we have 

2! -1 Ker DH L ~L (\~Ker DAH ) (with equality for. A s.n.s). 
::; . 

(L means L-submodule. See (3.1) for ~L .) 

+ 2! -1 + - l' f ' In fact Ker DH L ~L (SL ~Ker ° H) , Ker DH = O. (With equa ,ty or. 1\ 

s.n.s.). And by Chapter 5 (1.3), 

In fact 

+ Ker DH 
C1L 
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Here YH is either connection. Thus for YL either connection, 

by Proposition 11 , (2.2), we get 

+ ~ ~ -1 2 + K ~ In fact (Ker DO) K ~L L (SL~Ker DAH)L ,(here K means K-submodu1e). 

~ > -1 Now by (3.1) (Ker 01) K ~L (Ker DAL ) .• 

-1 s ~ s ~ Thus ~L (Ker DAL ) K (Ker DO n Ker 01) K (Ker D) . 

-1 s + ~ ~ 12) In fact ~L (Ker D"L) K (Ker DO n Ker 01) = (Ker +0) (by Lemna . 

2 . + K ~ 
Hence Ker DAL = L (SL~Ker D"H)L n ~L(Ker D) (or + changed to - ). 

The result now follows on appealing once again to Theorem 4, and 

Proposition 7. o 
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CHAPTER 7. 

Step 3. The Case of an abelian pair (H,HO) . 

Step 4. The Case of (K,L) with L = HO an abelian subgroup. 

§1. The Case of an Abelian Pair. 

(1.1) In Chapter 2, §1 take K = H , L = HO where H is abelian. 

Here (,) is a fixed inner product on h. h = hO @ h1 is 

orthogonal. We will use the notation of Chapter 2, §2 and (3.2). 
~ ~ * Here we will write <1..,]1> = <~'.lC> + </..,]1> , 1..,]1 € I-lh and 

/1>.//2 = II~II2 + 11>:1/2 for ]1 = >.. (i.e. <~'.lC> =<>',]1>1 , 

<t~> = ,<1..,]1>1 in the notation of Chapter 2, (3.2).) 

The adjoint representation of H or HO is trivial. (H,HO) 

is always a spin pair, and the spin representations of H,HO are 

trivial. Take y to be the Levi-Civita connection on T(H/HO) = (hl)~ . 
- 0 

Here y = 0 on h1 ' so this is the same as the reductive connection. 

Take V = EAo ' AO € 11.0 (a 1-dim unitary HO-modu1e). Associated 

to {(,),y) there is the twisted Dirac operator D = DV • 

On r(S~EAo)~o' D2 = ~ (the Laplacian) 

= dR(nH)-dR(nH ) . 
o 

Therefore (1.1.1) 

" 
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Theorem 6. 

tV 
Consider the condition (0) ~ € A , ~ = ~O ' X = 0 . 

Then, if (0) cannot be satisfied Ker 0 = 0 

if (0) can be satisfied Ker 0 is the . ~-primary 

the multiplicity is dim S = 2[dim h1/2J, 

Proof. 

On the ~-primary H-submodu1e, with. ~ = ~O' 02 
= 11~112 

tV 

Hence on the kernel of 0, ~ = 0 . 

§2. The Case of an Abelian Subgroup. 

(2.1) In Chapter 2, §1 take (K,L) with K non-abelian and L = HO 

an abelian subgroup. 

o 

Take a maximal torus H of K with HO S H.. We use the 

notation of Chapter 2, §2,3. See also §1. Refer also to the notation 

and material of Chapter 6, §1,2,3. 

There is the triple (K,H,HO). 

S = SH ~ SH as a unitary HO-modu1e. W.r.t the pair (hO'(')) take 
o 
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Cliff(hO) and the space of spinors So in Cliff(hO[) • The 

unitary spin representations (SO,oO),(SH ,oH) of HO are trivial. 
o 0 

Take V = EA 'AO e:AO (a l-dim, unitary HO-module). 
. 0 

Associated to ((,),y) there is the twisted Dirac operator D = DV 

(see Chapter 2, §l). 

We shall say that AO is non-singular if when writing 

~a = ~O + ~l ' ~O e: l-lhO' ~l e: I-lhl we have AO(~O) F 0, Va e: R . 

. AO non-singular means geometrically, that. AO does not lie on one 

of the walls of the open cones determined by the finite set 

. {~O;a e: R}. (See Chapter 0, (4.1),(4.2).) Also we say that AO 

is s.n.s (sufficiently non-singular) if IAo(~o)1 is sufficiently 

+ve Va e: R. So geometrically, AO s.n.s, means that AO does not 

lie close to the walls of the open cones. 

Again for. A e: A , if A is non-singular we take w e: W(K,H) 

the unique element such that WA is dominant w.r.t R+ 

Write as before D = DO + Dl ' 

(2.2) Theorem 7. 

Let y be the reductive or Levi-Cevita connection. Then 

Ker D = Ker DO n Ker Dl . 

Hence, let A e: A, A non-singular w.r.t R and consider the 

conditions 

'" -1 '" (0) ~ = AO ' 2A = -(w p) • 
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In the following, condition (1), (0) refers to y the reductive, Levi­

Civita connection respectively. 

If (1) or (0) cannot be satisfied for any A, then respectively 

Ker D = 0 . 

If (1) or (0) can be satisfied, then of course A is unique and, respectivel 

Ker D is the WA-P primary K-submodule r, (S~E, )HK , the . WA-P A o 0 --
[dim h,l2J 2 K 

multiplicity is dim SH = 2 , in L (S~EA )H 
o 0 0 

Proof. 

We prove ·this here for AO s.n.s. This restriction will be 

removed in Chapter 9. 

Take an orthonormal basis' {T,;t} for h such that' {1;t}(t=l, ....•. ,R.O)' 

. {1;t}(t=R.O+l, •••••• ,R.) lies in hO,hl respectively. R.O = dim hO ' 

R. = dim h • 

(2.2.1) 

on SOS. 

H-module 

~O,F preserve the weight spaces of SOG SH G SH as an 
o 

(here So G SH is regarded as a trivial H-module). 
o 

Recall Chapter 6, §3. 

(2.2.2) 

is preserved by DO and Dl so also by D. We consider operators 

on this Hilbert space (i.e. on their domains). 
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(1) reductive connection: 

An easy computation using [dcrH(~),c(~)J = c[~~J,~ E h,~ E P1 

(see Chapter 1,§1) gives [DO+F,D1J+ = o. So (D+F)2 = (DO+F)2 + D~ . 

2 2 '" 2 Also F = dcrH(QH)-dcrH(QH
O
)' and (DO+F) = IIAII . Suppose Ker D f O. 

Take non-zero f E Ker D. Then, as D is essentially self-adjoint 

2 11"'112 2· <Dlf,f> = - A <f,f> + <F f,f> • (2.2.3) 

(See Chapter 0, (3.1) for <,>.) DO,Dl are essentially self-adjoint, 

F is self-adjoint. Hence if Ker D f 0 ,we require 

I I~I 12 ~ max {I I~-I~I 112} =: a2 , where a ~ a and a is independent 
AsR+ 

of A • SO II ~ II ~ a . (2.2.4) 

K On r(SOGSGEA)H ' consider DS GE • This is the direct 
__ ---:..0 a 0 AO 

sum of dim So copies of D (see Chapter 5, (4.1)). We also denote 

DSOGEA by D. Then D2 - [FOD1J+ = D6 - [FO+F,D1J+ + Di. (2.2.5) 
o 

Now IA(~a)1 = IA{~o) + A(~l)1 

~ I A ( ~O ) I - I A ( l; 1 ) I , a E R • 

If . ~ = AO and AO is s.n.s, as 11'3:11 ~ a , then A can be made 

s.n.s. We then see from (2.2.5) and Chapter 5 (4.2), (4.3), that if 
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v is the highest weight of a simple K-module occurring in Ker 0 , 

then (i) v =wA-p+IBlw ' some + B So R , and 

Suppose Uv 61 b 

(see proof of Theorem 4 Chapter 5, (4.3)) .. Let v be 'the ' weight 

vector with weight w-lv = A-p+IBI . Let fl € rv( ),f,(k) = b(ITv(k)-lv). 

Then f,(e) F 0 and dR(~)ef, = 0, V~ € Pl' Let f be such that 

fl = ~H~' Then f(e) = fl(e)(e) F O. For ~ € hl ' 

'" '" '" dR(~)ef = -dL(~)ef = -(A-p+IBI)(~)f(e), and YO(~) = daH(~) for 

YO. the Levi-Civita connection on T(K/HO) . 

d 
Also for ~ € Pl ' (dR(~)efl)(h) = dt fl(exp t~)lt=O(h) 

d 
=.oH(h)QE f(exp t~h)lt=o ' 

Thus, from 

we obtain 

o = (02f )(e)=(1 IWA+IBlwl 12_1 Ipl 12+4~(~_I~1 )(~(~-~+~~I)(~t) 

+ II R, -I ~ 1112 - II AO 112) f (e) 
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Now, by (2.2.3), 11~1I ~ II~-I~III , so 

Hence, we require IBlw=O, therefore B = A -1 (see Chapter 5, (2.2)). 
w 

(0) Levi-Civita connection: 

In Chapter 6, (3.4), for the triple (K, H, HO) , we have YH = 0 
0 

on hl' for either connection so 02 = °3 • Also 04 + F = 02 ' 
SH SH 

00-~F = °2 • Now, using the fact that [dcrH(~)'Y (~)J = Y [~~J , 

~ E h , ~ E P, (see Proposition 1 Chapter 0, (2.2)) we get 
222 2 ~ 2 

[02,01J+ = O. Thus (O-~F) = 02+01 . Now 02 = IIAII , so 

2 ~ 2 2 . 
<O,f,f> = -I IAI I <f,f> + a<F f,f> , f E Ker ° . (2.2.6) 

. ~ 

Hence, if Ker ° -f 0, we requi re II A II ~ !a . 

222 
From ° + ~[FOO,J+. = 00+![FO+F,Ol J+ + 01 (2.2.7) 

we see that if v is the highest weight of a simple K-module occurring 

in Ker· 0', then \I = wA-P . 
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2 H K Take in L (SHGrA(SH GEA )H)H ' the WA-P primary K-submodu1e. (2.2.8) 
000 

The multiplicity, by Proposition 7, is that of the A-primary 

H-submodu1e in L2(SH ~EA)~ i.e. dim SH • By Theorem 4 
o 0 0 0 

this K-submodu1e lies in Ker DH . Hence, for both connections we 

have shown that Ker ° = Ker DO n Ker 01 . 

and 

-1 H 
We have (ct>H f)(k) € r -1 (S -1 ~ SH 61 EA)H ' Vk € K • 

A-W P -w P 0 0 0 

(1) reductive connection: 

-1 tV -1 (ct>H f)€(KerDO) iff (ct>H f)(k) € Ker DH ' Vk € K (by Proposition 11) 
o 

-1 tV iff (A-W p) = 0 (by Theorem 6 ) 

(0) Levi-Civita connection: 

where we also denote DO = DH + ~ F (see Chapter 6, (3.4)). 
. O'H 0 . 
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Then 

2 2 DO = 2dR(nH)-3.2LdaH(~t)dR(~t) + 9/2daH(nH) 
t 

- 3/2 daH(nH ) + d(a~T)(nH ) - 3dT{nH ) o 0 0 

H 
Therefore, on r -1 (S -1 ~ SH ~ EA)H ' 

A-W p -w pO· 0 0 

. IV . IV 
= 4 11~112 + 4<~,w-lp> + Ilw- l

pl1 2 

IV. 
= 1 12~ + w-lpl 12 • 

-1 IV -1 IV Thus ~H f € (Ker DO) iff (2A+W p) = 0 . 

To finish the proof, we now have to show that (2.2.8) is actually the 

WA-P primary K-submodu1e in L2{S~EAO)~0 under ~HIV. This we will do 

for all parameters. AO' . 

Consider, therefore, r ~ (SH~r (SH ~ E~ )HH )HK 
WA-P ~ 0 AD 0 (2.2.9) 

with ~ € A , ~ = AO . Suppose this space is non-zero. 
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We have /lA// 2 = /1111/ 2 + a , for some a € IR , a ~ 0; so 

/1~112 = //~//2 + a. Thus if //~//2 ~ /1~1/2 , we must have equality, 

a = 0; and then by Proposition 7, 11 = W,A some w, € W(K,H) . 

So suppose that / /~/ /2 s / /~/ /2. The following method will be 

utilized further in Chapter 9. Tensor (2.2.9) with U ,the simple 
. v 

K-modu1e of highest weight v • Let v € Uv be 'the' weight vector of 
-1 -1 weight w v • Take f € rWA -p( ) and f~t1 = ~ (f~v), where 

-1 . t 1(k) = rr)k) v, k € K (see Chapter 5, (1.1.1)). Put tll = b1t l ' 

where b1 is the orthogonal projection of r(uv)~ onto the induced 

line bundle sections, r([v)~. Taking f to be a A-w-lp weight 

vector, f~tl1 lies in rwA_p+v(SH ~ Ell ~ E -1)~ (recall that Ell ' 
. W v 

11 € A is the 1-dim unitary H-modu1e with character ell). Then 

we have //A+w- 1v// 2 s //1l+w-1v// 2 so //~//2 + 2<X',w-t v> 

s ,,~,,2 + 2<~,w-tv". 

If /I~/l2 < "~,, 2, then 
'V . 'V 

'V -1 ",,-1 2<A,W v> <2<1l,W v> • 

But taking v = WA, we get 211~1I2 < 2<~,~> <2,,~,,2 (by the 

(2.2.10) 

Cauchy-Schwarz inequality. This is a contradiction. Thus it must be 

that //~112 ~ 1/~1/2 • From (2.2.10) we also get ~ = ~ • 

Hence the result follows. 
o 
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(2.3) Consider the condition (0) in Theorem 6. 
,. 

Take Xo € HO' Now H = HOHl where Hl is the connected 

subgroup of H with (abelian) Lie algebra h1 • Satisfying (0) is 

equivalent to finding 

,. 
X € H with X1Ho = XO,XIH

l 
= 1 (the trivial character) 

In (2.3.1) X is clearly unique if it exists. In fact it is easily 

seen that to satisfy (2.3.l),it is necessary and sufficient that 

XolHonHl = 1 

(2.3.1) 

(for then with h = hOh l , h € H, hO € HO' hl € Hl define X(h) = XO(hO))' 

(2.4) Examples. 

Any compact, connected abelian Lie group of dimension n, is 

isomorphic to the n~torus i.e. the direct product of n copies of S' , 

the complex numbers of modules 1, n € ~ • 
,. 

The unitary character group S' , has lattice 7l: The finite 

cyclic group of order n, <e i21T/ n
> has (finite) lattice 7ln (the 

congruence classes modulo n). (N.B. this finite group is of course 

not connected.) i = 1-1 • 

The characters of S' are given by x,q,(e) = ei,q,e, e €[0,2-irJ 

where t €ll. And the characters of <e i21T/ n
> are given by the nth 

roots of unity ei2k1T/n k = 0,1, .... ,n-l . 
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,. 
(i) Take H = $' X $' (the 2-torus). H has lattice 7l ID71 . 

The characters of H are given by (t,m) where 

Xtm(e,~) = Xt(e)Xm(~) 

= ei(te+m~) , e,~ E [O,2nJ ; t,m Ell. 

In what follows for subspaces hO,h, Of h, we shall fix 

an inner product <,> on h w.r.t which ho and h, are orthogonal. 

. i e i e Take HO = {(e ,e ); a E [O,2nJ} the diagonal subgroup. 

And Hl =. {(eie,ei(n+l)a) e E [O,2nJ} n E ~ • 

We write the elements of H as (a,~). $0 (a"~1)(e2'~2) = (el+a2'~1+~2)' 

Now (ne,O) = «n+l)e,(n+l)e)(-a,-(n+l)e) ; (O,n~) = (-~,-~)(~,(n+l)~) . 

$0 H = HOHl . 

Also (a,a) = (~,(n+l)~) implies that a = ~, na = 2kn , k E ~ • 

Therefore , the 'diagonal' finite cyclic subgroup 

of order (~n,(n+,)~n)). 

The characters of HO are the restrictions of those of H, therefore 

. b· ( ). () i2ta ~ are glven y t,t l.e. Xtt a = e , t € • 

(t l ,tl ) is a restriction of (t,m) iff t+m = 2tl . 

(t,t) is trivial on HO n H, iff 2i :: O(n) (i.e. n divides into 2i). 

(t,m) is trivial on Hl iff t+m(n+l) = ° . 
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If n = 3 , £ = 2 we cannot satisfy (2.3.1) as 4 ~ 0(3) . 
,.. 

Take (n,n) in HO ~ For (2.3.1) we require 

£+m = 2n } 2 n+mn = 0 

£+m(n+1) = 0 n(m+2) = 0 so m = -2,£ = 2(n+1) . 

,.. 
In general starting with (£1'£1) in HO' for (2.3.1) we 

require n12£1 ' then 

£+m = 2£1 } mn = -2£1 2£1 2£ 

£+m(n+l) = 0 so m = ---n--' £ = ~(n+1) 

,.. 
We get the required (£,m) in H 

For example starting with (n2,n2) in Ho m = -2n , £ = 2n(n+l) • 

(ii) Of course if H = HO x Hl a direct product, then 
,.. ,.. A 

H = Ho x H1 and one can always satisfy (2.3.1). For example 

H = S I X S I wi th HO = S I x" {e}, Hl =" {e} x S I • 



Chapter 8. - 143 -

CHAPTER 8. 

Step 5. The case of any pair (K,L) • 

§1. The General Case. 

(1.1) In Chapter 2, §1 take any pair (K,L). 

Take a maxi rna 1 torus HO of L, and a maxi rna 1 torus H of 

K with HO ~ H. (We use the notation of Chapter 2, §2,3.) Recall 

Chapter 6, 1,2,3. There is the triple (K,L,HO)' 

L/HO + K/HO + K/L • 

S := SH 6a SL • 
a 

In Chapter 6, §3 take V = EA ' AO € AO (a 1-dim unitary 
a 

Ho-modu1e). Let. AO be non-singular and dominant w.r.t R~. See 

Remark 1 Chapter 0, (4.2). Then by Proposition 7 Chapter 3, (2.1), 

and Theorem 4 Chapter 5, (4.3), the simple L-module V of 
AO -PL 

highest weight AO-PL occurs with multiplicity 1 in 

+ 
Ker DA H 

a a 
; with YH the Levi-Civita or 

a 

reductive connection. N.B. here DAOHO 

Dirac operator associated to (( ')'YH ) 
a 

(or +,- interchanged). 

is the twisted, by EA ' . a 
over L/HO' Ker D~ H = a t a a 
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2 L Let V be the ~O-primary L-submodu1e in L (SH ~ EA )H 
~O 0 0 0 

So V~ = VA .. Let DL be the twisted, by V , Dirac 
AO-PL O-PL ~O ~O 

operator associated to ((')'YL) over K/L. There is the countable 

direct sum DL = L (D DL . 
~O ~O 

For A e: A , A non-singular w.r.t R, take w e: We ,H) the unique 

element such that WA is dominant w.r.t R+. 

Theorem 8. 

Let A e: A , . A non-singular w.r.t R and consider the 
~ -1 ~ ~ -1 ~ 

conditions (1) . ~ = AO ' A = (w p) (0) ~ = AO ' 2A = -(w p) 

If (1), (0) cannot be satisfied, for any A, then for YL the 

reductive, Levi-Civita connection respectively, Ker DA L = 0 . 
o 

If (1), (0) can be satisfied, of course. A is unique, then for YL 

the reductive, Levi-Civita connection respectively; Ker DA L is the 
o 

WA-P primary K-submodule rWA-p(\~ VA _P )~ 
o L 

Proof. 

2 K . 
in L (SL~V~ - }L· AO PL . 

This is similar to that of Theorem 5 Chapter 6, (4.1). 

A simple component L-module in SL ~ VA _P has highest weight of 
o L 

the form AO+~O-PL where ~O is a weight of SL; and occurs with 

multiplicity at most that of ~O. (See Remark 3 Chapter 3, (1.3), 

-and also Chapter 2, (3.6).) 
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As in Chapter 6, (3.4) write D = DO + D1 . By Theorem 4 

we have 

+ > -1 + 
Ker DH L ~L (SL ~ Ker D). H ) , Ker DH = 0 

0, 0 0 0 

s (L means L-submodu1e). And, by Chapter 5, (1.3), 

Here YH is either connection. Thus, for YL either connection, 
o 

by Proposition 11 Chapter 6, (2.2), we get 

s ( K means K-submodu1e). Now by Chapter 6, (3.1), 

Thus 

-1 . + ~ , ~ 
~L (Ker D).OL) ~ (Ker DO n Ker D1) = (Ker+D) 

~y Lemma 12) 

Hence, 2 + K ~ 
Ke r 0). L = L (SL 6a Ke r D). H \ n ~L (Ker D) • o . ·00 

(or + changed to -. N.B. here 00,01 ' are different than those 

for the triple (K,H,HO) in Chapter 7, (2.1)). 

(1.1.1) 

The result now follows on appealing to Theorem 7 Chapter 7, (2.2Y. 
o 
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(1.2) See Theorem 8. Consider the wA-P primary K-submodu1e 

K r, (SL ~ VA }L' We wnat to compute the multiplicity (see 
WA-P O-PL 

Chapter 0, (3.2}). For (K,L) of equal rank we already know that the 

multiplicity is 1 . And for L = HO ' a closed abelian subgroup of 

't' Zr K, 1 1S , .r = ~[dim H-dim HOJ . Also for ( K,L) a symmetric 

pair of unequal rank, the multiplicity in 2r . 

We intend to take up the general case in later work. 
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CHAPTER 9. 

Step 6. A 'Zuckerman technique'. 

In this chapter we complete the proofs of Theorems. 4,7. See 

Chapter 5, (4.3) and Chapter 6 (2.2). This involves considering any 

parameter AO which is not necessarily 'sufficiently non-singular' • 

Thus we complete the 'Problem' for y the Levi-Civita or reductive 

connection. 

The technique developed in this chapter involves twisting a twisted 

Dirac operator with a simple module. Our work of Chapter 5, §1 is 

crucial here. 

We shall name our technique after G. Zuckerman. He has considered 

the tensor product of a discrete series representation (for a non-compact 

semi-simple Lie group G), and a finite-dimensional representation. 

(See [23] .) His results on the infinitesimal characters of the 

composition factors of this tensor product, turned out to be important 

in dealing with the Dirac operator of the pair (G,M) , M a maximal 

compact subgroup of G. See [31]. 

In §1 of this chapter, we compute a difference of two squares of 

twisted Dirac operators •. §2 looks at twisting by an irreducible 

representation. §3 combines §1,2. 

§1. A Difference Formula • 

. (1.1) Let (K,L) be a pair of Lie groups with L a closed subgroup 

of K. Let (U,K) be a finite-dimensional unitary representation 
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of L, and (W,TI) a finite-dimensional unitary representation of K. 

Refer to Chapter 5, §l. 

There is a unitary equivalence 

(~TIf)(k) = (l~TI(k))f(k), k € K , f € r(U~W) 

Let K/L be reductive, and Riamannian via (,) (see Chapter 5, (1.3)). 

Take a K-invariant, metric connection on T(K/L) = (E)~' determined 

by y:k. -+ .6o(p) and a K-invariant, metric connection vU on (~)~. 

determined by yU:k. -+ u(U) (see chapter 0, §2). 

Associated to «,),y,yU) there is the Laplacian ~U 

(see Chapter 0, (2.5)). There is also the Laplacian AU~W 

(UQW)~ (where we take the reductive connection on (~)~). 

on (U) K -L 
on 

Associated to «,),y,yU,TI) there is the Laplacian TI~U on 
K . U 

(U~W)L (where we take the tensor product connection y ~ 1 + 1 ~ dTI 

on U~W). 

We have 

.(1.1.1) 

By Proposition 2 the difference of the Laplacians 

. 2 
~U _ ~U~W = -2~ dTI(~.)dR(~.) - ~ dTI(~J.) 

TI j J J j 

- 2~ yU(~.)~dTI(~.) + ~dTI(Y(~J.)~J.) , . . J J J J . 
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where . {~j} is an orthonormal basis of p. 

(1.2) Let (K,L) be K-spin. See Chapter 5, (1.4) for notation. 
2 2 We want to consider the difference of squares DV~W - nDv of Dirac 

operators. Refer to Chapter 1, (2.2). 

The difference of the 'torsion terms' is 

- ~ L C (~ • ) c (~ .) ~ dn (T (~ . ,~ . ) ) 
.. 1 J 1 J 
1 ,J 

The difference of curvatures 

S~V S~V~W nR (~,n)-R (~,n) = [dn(~),dn(n)J - dn(p[~,nJ) 

= dn(Q[~,nJ) . 

Q,P is the projection onto i,p respectively. nRS~v(,) is the 

curvature 2-form of nVS~v . 

So the difference of the 'curvature terms' is 

~ L c (~ . ) c (~ .) ~ dn (Q[ ~ • ~ .J) • 
•• 1 J 1 J 1,J 

(1.3) Let (K,L) be a compact pair as in Chapter 2, §1. 

Take an orthonormal (w.r.t{,)) basis· {Z;t} of i. Set 

. {ni} =' {Z;t'~ j} an orthonormal basis of k. 
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Then 

n~U - ~U~W = -2 ~dn(ni)dR(ni) - ~dn(ni)2 
1 . 1 

(z.o.t denotes a sum of zeroth order terms) 

Hence 

And 

= -dR(QK)-dn(QK) + d(R~n)(QK) + dn(QK) 

2 
- 2 LdK(~t)~dn(~t) - 2Ldn(~t) -dn(QL) + z.o.t 

t t 

- ! .L.C(~i)C(~j)~dn(Q[~i~jJ) = -2Ldcr(~t)~dn(~t) 
1,J t 
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Hence we obtain 

2 2 
DV~W - nDv = (dR(nK)-d(T~n)(nL))-(d(R~n)(nK)-dT(nL)) 

+ 2 ~yS(~j)~dn(~j)-~l~dn(Y(~j)~j) . 
J J 

(1.3.2) 

(nK,nL is the Casimir element of K,L w.r.t( ) respectively.) 

§2. Twisting by an Irreducible Representation. 

(2.1) Take a pair (K,HO) with K a compact, non-abelian connected 

Lie group and HO a closed, connected abelian subgroup. Take H a 

maximal torus of K with HO ~ H. We shall use the' notation of 

Chapter 2, §2 and Chapter 7. 

There are the orthogonal decompositions ~ = h ffi Pl ' h = hO ffi hl . 

Take an orthonormal basis '{I;t}'{~j} of hl,Pl respectively. 

Let (W,n) be a finite-dimensional unitary representation of K. 

Refer to Chapter 5, (1.4). There are the twisted Dirac operators 

Dv ' nDv and DV~W • 

On r(s~v)~ ~ r(w)~ ,dR(~) = dR(~)~l + l~dR(~) , ~ E ~ • 
- 0 - 0 

Therefore on r(S~V) 9 r(~) 

DV~W = L(C(l;t)~1)(dR(l;t)+yS(l;t))91 + C(l;t) 9 dR(l;t) 
t 

+-~(C(~j)~l)(dR(~j) + yS(~j))91 + c(~j)~dR(~j) . 
J 
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Thus 

(2.1.1) 

Therefore 

D~ ~ 1 + I DVc(~.)9dR(~.) + C(~.)DV~dR(~.) 
j J J J J 

+ I C(~t)c(~.)~dR(~t)dR(~.) + C(~.)c(~t)9dR(~.)dR(~t) 
t,j J J J J 

- E1~dR(~t)2 + E c(~.)C(~.) ~ dR(~.)dR(~.) 
t .. 1 J 1 J 

1 , J 
(2.1.2) 

We will take {~.} = {~ }(a € R) where 
J a 

(2.2) 

2 ~ = (€ _Ea
) + 1-1(E +Ea

) , a € R (see Chapter 3, (1.1)). a a a 

Now take W = U the simple K-modu1e of highest weight ~ . 
~ 

Take an orthonormal basis· {v} of weight vectors of W. q 

(Recall that the weight spaces are orthogonal w.r.t 'the ' inner product 

<,> on W.) Let v have weight ~ • q q 
K . 

Define t € r(~H ' for each q , 
q 0 

Decompose tq = I t with t q € r([vp)~ 
, p pq p --- 0 

induced, complex line bundle via ~p € AO . 

so as to agree with the previous notation. 

-1 
by tq (k) = IT (k) v q' ~ € K . 

K Here ([v)H is the 
J 0 

We will write [v = E 
P ~p 
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. Define, for each p, bp € HomH(W,a:v
P

) by bp(vq) = 0pqvp . 

This gives rise to a linear map on r(~) , which we also denote bp ' 

by bpt, t € r(.!i) where (bpt)(k) = bpt(k), k € K. bp is the 

orthogonal projection of r(W) onto r(a:v). (See Chapter 0, (3.1) 
- --.I? 

for the inner product <,> on sections of an induced bundle.) bp 
commutes with DV~W for each p. 

There are the matrix elements Mpq of IT where Mpq(k) = <IT(k) Vp,Vq>' 

Recall the Schur orthogonality relations (see Chapter 0, (4.3)). It 

is seen that tpq(k) = Mpq(k),k € K. (- denotes the complex 

conjuga te.) 

We have 1 <t ,t > = 1 ,<t ,t > = ~ for each p,q, q q pq pq U\~I 
where 

is the dimension of U as given by Weyl's degree formula. 
~ 

For ~ € k., dR(~)k M = ddt<IT(k)IT(exp t~)v ,v> pq p q 

For ~,n € k., (dR(~)dR(n)Mpq)(k) = dR(~)k(dR(n)Mpq) 

= ~ (dR(n)Mpq)(k exp t~)lt=o 

(2.2.1 ) 

(2.2.2) 

d a I = at as Mpq(k exp t~ exp ~n) s=t=O 

= <IT(k)dIT(~)dIT(n)v ,v > , k € K , (2.2.3) p q 

for each p,q. 
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Recall that for a € R, drr(£)v is zero or a ~ +a weight ap p 
vector. Hence from (2.2.2), (2.2.3) and the orthogonality relations, 

I (dR(~ )Mpq)(k)M (k)dk = 0, Va € R • 
K a pq (2.2.4) 

And for a,S € R 

I (dR(~ )dR(~Q)M )(k)M (k)dk = a,s ~ ±a K a I-' pq pq 

1 1-1 
= dGiT -2- ~p (I;;a) , S = -a ; (2.2.5) 

(See Chapter 3, (1.1). Recall that I;; = [e:e:aJ .) 
a a 

Also 

2 

I 
2 ~ (I;;) -

(dR(I;;) M )(k)M (k)dk = P , I;; € h • 
K pq pq d(~) 

(2.2.6) 

And 

1 22' 2 
= dTiiJ (1I~+pll -llpll -11~pll ) , 

for each p,q. (2.2.7) 

Fix an element w in the Weyl group W(K,H). Arrange so that 

v
l 

is 'the' weight vector of weight w-1~. Then with p = 1 , (2.2.7) 

2<~,p> 
becomes d hI) . for each q. 
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(2.3) 

As 

we get 

Let f € r(s~v)~ • Note that f ~ t = ~II-l(f~V) for each q . o q q 

We have L <c(s )c(sa)f,f>(-l) ~ ~ (~ ) + aLp a 
a€R 

= L 
+ a€R 

• For a € R , 2 c(s) = -1 . a 

2 We intend to take the inner product <Dvowf~t ,f~t > in (2.1.2). 
\a pq pq 

(2.4) Consider HO = H . 

K Write f = fl + .•..• + f t with fi € r(S_p+IA. I~ V)H . 
1 

Where as previously S~p+IBI ' B £ R+, is the-p+IBI weight space 

in the spin H-module S. (See Chapter 5, §2.) 

Then 

= L 2<~ ,p-IA!I> • . p 1 
1 

Where for B £ R+~, BI is the complement of B in R+. 
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Now for S S R+ , <w-l~,p-Is' I> = <~,p_ISI 1 > . And from 
w 

w(p-ISI) = p-Isl w ' w(p-IB'I) = p_1B'1W we get 0= 2p-(/Blw + 1B'1W) . 

Then 2<~,p-IB' 1 > + 2<~,p> = 2<~,2p-ls' 1 > = 2<~,IBI > : w w w 

It follows from the computations of (2.1)-(2.3), and the above, 

that the inner product 

for each q • 

(2.5) Consider any HO' 

There is the triple (K,H,HO)' See Chapter 6, (3.1) and 

Chapter 7, (1.1), (2.1). 

We obtain 

(2.4.1) 

for each q • 

§3. A 'Zuckerman Technique ' • 

Refer to §1,2. 

(3.1) Take the pair (K,HO) as in (2.1). 



Chapter 9. - 157 -

Take the twisted, by V, Dirac operator D = DV associated 

to «,),y) (see Chapter 2, §1). At the moment y is any invariant 

metric connection. 

(3.2) Consider HO = H • 

There are the unitary equivalences 

(For Sl ' see Chapter 5, (2.1).) 

= -M (k)<rr(k)drr(~)v ,v > . pq p q 

This integrates to zero. Therefore, from (1.3.2), 

<D~fiaW(f61tpq),ffiatpq> - <rrD~(f61tq),ffiatpq> = «Casimir terms)f61tq,f61tpq>' (3.2.2) 

f € r(S61V) . 

Take V = EA ' A € A (1-dimensiona1). Fix w € W(K,H) such 

that wA is dominant w.r.t R+. w is unique if A is non-sin~u1ar . 

w.r.t R • 

Let f be a weight vector in rv(S61EA)~' the v-primary 

K-submodu1e, with-weight w-1v. Then ffiat1 lies in 
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(Recall that W = U .) 
~ 

Now v is of the form v = wX-p+IAI+s , with A ~ R+ and 

s a sum of +ve roots. 

= 2 <~,IAI+s> • 

Therefore, from (1.3.~) we obtain 

(3.3) Consider any HO. There is the triple (K,H,HO). 

Take V = Ex (l-dimensional, Xo € AO . 
. 0 

K -1 Let f € r (SSE')H be a w v-weight vector such that 
v . AO 0 

Then fStl~. r + (SSEx S U)~ . Recall W = U . And 
v ~ O.~ 0 ~ 

. ~ ~ 

Now I Ix+w-l~1 12_1 Ixl 12 _ I 1~+w~l~1 12 + I I~I 12 = 2<~,w-lv> + I Iw-lvl 12 . 
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Take y to be the reductive connection, so y = 0 on Pl . 

Then we obtain, 

tV 
2 2 1 tV-1 

<DV~W(f~t11),f~t11> = <nDv(f~t1),f~t11>+ ~(2<A'W ~>+ 

tV 

+ Ilw-1~112+2<~,IAI+s» <f,f>. (3.3.1 

(3.4) Proposition 12. 

Let HO = H, and y be any connection. 

Then Ker 0 is a 

(a finite direct sum), where B runs over R+, and vB = wx-p+IBI . 

(See 3.2.) 

(Of course if vB is not dominant for some B oS R+ then , 

certainly vB does not occur.) 

Proof. 

Suppose the kernel of 0 = DV is non-zero on 

Ker 0 is a K-module, we may find a (non-zero) weight vector f of 

weight w-lv, with f € rv( ). Then from (2.4.1) and (3.2.3), we 

get 

L 2<~,IA.1 ><f.,f.> = 2<~,IAI+s><f,f> 
i 1 w 1 1 

Now v is also of the form v = wX-p+IAi'w + si , S. 
1 

(3.4.1) . 

a sum of +ve 
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roots, for each i . So IA.I + s. = IAI+s, Vi . Then (3.4.1) 
1 w 1 

with ~ = p implies that s. = 0 , V. . Hence the assertion. 
1 1 o 

(3.5) + Let B sR. p-IBI is a weight of U the simple K-module 
p 

of highest weight p . Therefore I Ip-IBI I 12 ~ I Ipl 12 , which implies 

that 2<p, I B I > ~ III B 1112 • 

(3.6) We now complete the proof of Theorem 4, Chapter 5, (4.2). 

For y the Levi-Civita connection we see from (3.5) and 

Chapter 5, (4.2.2) that for (non-zero) f E Ker 0 we must have s = 0 

A = ~. Hence our 'vanishing' result for all A. So in fact this 

connection does not require a 'Zuckerman ' argument. 

Consider A the reductive connection. The argument in the proof 

of Proposition 12, in (3.4), shows that s. = 0 , Vi Thus 
1 

from (3.9.2), iff E Ker 0 we mus t have s = 0 , A = ~. 

Hence our vanishing result for all A 

(3.7} Refer to Chapter 5, (4.2). See (3.5), (3.9) and Chapter 5, (4.2.2). 

Note that for y the Levi Civita connection «02+[000J+)f,f> ~ 0 

for all A •. And for y the reductive connection, if si = 0, Vi , 
. 2 

then «0 + [OOOJ+)f,f> ~ 0 for all A. 

We now complete the proof of Theorem 7 Chapter 7, (2.2). 

Note that as KerO is finite-dimensional, 00 and 01 are bounded 
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(therefore continuous on Ker D) . In fact from (2.2.3), (2.2.6), which 

hold for all AO' we see that for either connection, DO and 01 
are bounded by a on Ker 0 . 

Consider y the Levi-Civita connection. By the remark at the 

beginning of this number, we see immediately from Chapter 7 (2.2.7) 

that Ker 0 = Ker DO n Ker 01 for all AO' 

Consider y the reductive connection. Suppose Ker 0 is non­
K zero on rV(S~EA )H Then as Ker 0 is a K-module, we can find 

o 0 --
an f as in (3.3), with f € Ker O. From (2.5.1) and (3.3.1), 

get 

E2<]1,IA.1 ><f. ,f.> 
i 1 w 1 1 

tV 

tV -1 I I = (2<A,W ]1> + 2<]1, A +s»<f,f> 

Since v is also of the form v = wA-p+IA.1 + s. ,s. a sum of 
1 w 1 1 

(3.7.1) 

+ve roots Vi , we have IAilw + si = IAI + s ,Vi Thus taking 

]1 = m(wA) + p , where the +ve integer m is 6hosen so that 
tV 

ml I~I 12 + <~,w-lp> ~O, we get from (3.7.1) that· si = 0 , Vi 

Hence, from Chapter 7 (2.2.5), Ker 0 = Ker DO n Ker 01 for all AO' 

This completes the proof of Theorem 7. 

(3.8) Take (K,H). Refer to Chapter 5, (4.2), (4.3). 

Here we consider y any connection, and any A . 
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Suppose Uv 61 b ---> rv(S_p+IBI61 E))~ (see Chapter 0, (3.2)), (3.8.1) 

w is chosen as in (3.2). 

With v € Uv ' v 61 b > f 

where f(k) = b(ITv(k)-l v),k € K • 

Fix v to be 'the ' weight vector with weight w-1v. 

Then we have 

Propos iti on 13. 

f(e) ~ a (e the identity element of K) 

and dR(~)ef = 0, v ~ € P . 

Proof. 

This follows by an argument used in the proof of Theorem 4. 

Note that dR(qef = -dL( ~)ef • 

(3.9) Refer to Chapter 5, (4.1.2). 

2 2 d(R61cr , ){nK) = -r(dR(~t)+dcr(~t)) -r(dR(~.)+dcr.(~.)) • 
t j , J J 

Then with f asin (3.8) 

o 

(3.8.2) 

(d(R61cr.)(nK)f)(e) = «dr(nH)+dR(nK)-dR(nH)+dcr.(nK)-dcr(nH))f)(e) 

d(R61cr.){nK)f(e) = (dR(nK)+dcr. (nK)-dcr(nH)-d{cr61r) (nH)+dr(nH))f(e) • (3.9.1) 
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As each Casimir term on the right hand side acts by a constant, 

hol ds Vk € K • 

Therefore Chapter 5,(4.1.2) becomes 

And (4.1.5) becomes 

(3.10) Take (K,H) and the Dirac operator D = DV with V = EA ' 

A € A as in (3.1). 
... 

Suppose for (U,II) € K, that U 6a b ---:> Ker D , v v v 

b € HomH(Uv,S6a EA). Then by Proposition 12, we have (3.8.1). Thus 

taking f as in (3.8), f € Ker D, we get (3.8.2). 

(3.9.2) 
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CHAPTER 10. 

§1. Conclusion. 

(1.1) In Chapter 2, §l take any pair (K,L). Take a maximal 

torus HO of L, and a maximal torus H of K with HO ~ H . 

There is the twisted Dirac operator D = DV associated to ((, ),y) • 

Take V = VA _ the simple L-module of highest weight AO-P L . a PL 

For A € A, A non-singular take w in the Weyl group W(K,H) , 

the unique element such that w A is dominant w.r.t R+ . 

We restate our main theorem. See Chapter 8. 

Theorem 8. 

Let A € A , _ A non-singular w.r.t R and consider the conditions 
IV -1 IV IV -1 IV 

(1) ~ = A a ' A = (w p) • (0 ) ~ = A a ' 21. = - (w p) • 

If (1), (0) cannot be satisfied for any A, then for y the reductive,-Levf-Civita 

connection respectively, Ker D = a . 

If- (1), (0) can be satisfied, of course A is unique, then for y 

the reductive, Levi-Civita connection 

Ker D is the wA-P. primary K-submodule 

respectively; 

r, -(SQV, )L
K in 

Wl\-P - I\-P a L 

2 . K 
L (SQV, _ ) L • 

1\0 PL 

The multiplicity is given in Chapter 3, (1.2), for some cases. 

It is seen that for y the Levi-Civita or reductive connection, 

Ker D is either zero or primary as a K-module. 
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Theorem 8 contains all previous theorems as corollaries. 

Example. 

(K,L) a symmetric pair. Here the Levi-Civita connection is the 

reductive connection. Thus we require ~ = O. Therefore w = 1 and 
~ = O. As was noted before, we can always satisfy . ~ = AO ' ~ = a . 
The multiplicity is 2r where r = ~[dim H-dim HOJ. See Theorem 2, 

Chapter 4 (3.3) .. 

The special case of Theorem 8 with L = H (i.e. Theorem 4, Chapter 4, 

(4.3)) gives us a geometric construction of all irreducible representations 

of a compact, connected Lie group K. 

In the case of equal rank i.e. rank L = rank K, we do not expect 

Theorem 5 (Chapter 6, (4.1)) to depend on the connection y In fact 

we already have enough information, in previous chapters, to prove this 

for L = H and A sufficiently non-singular. However, in the case of 

unequal rank i.e. rank L < rank K, Theorem 8 does depend on y • 

See for example Theorem 3, (Chapter 5, (3.2)). 

We expect that the techniques we have introduced in previous chapters, 

can be used to deal with any connection y This will be pursued in 

future work. We also want to consider applications of Theorem 8 .. 

Also, more generally, to consider the pair (G,L) with G a 

reductive Lie group and L a compact subgroup. 
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