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A NOTE ON p-ADIC RANKIN–SELBERG L-FUNCTIONS

DAVID LOEFFLER

Abstract. We prove an interpolation formula for the values of certain p-adic Rankin–Selberg L-
functions associated to non-ordinary modular forms.

1. Introduction

1.1. Background. Let f1, f2 be two modular eigenforms, of weights k1 > k2. Then there is an associated
Rankin–Selberg L-function L(f1, f2, s), which is defined by a Dirichlet series

∑
cnn
−s such that for `

prime we have c` = a`(f)a`(g).
If p is prime, and f1 is ordinary at p, then a well-known construction due to Panchishkin [Pan82] and

(independently) Hida [Hid85] gives rise to a p-adic Rankin–Selberg L-function Lp(f1, f2, σ). This is a
p-adic analytic function on the space W of continuous characters of Z×p , with the property that if σ is a

locally algebraic character z 7→ zjχ(z), with j in the critical range k2 6 j 6 k1 − 1 and χ of finite order,
then

Lp(f1, f2, σ) = (?) · L(f1, f2, χ
−1, j)

where (?) is an explicit factor. Hida subsequently showed in [Hid88] that if f2 is also ordinary, then
Lp(f1, f2, σ) extends to a 3-variable analytic function in which the forms f1 and f2 are allowed to vary in
Hida families F1,F2. The existence of this p-adic L-function plays a major role in several recent works
on arithmetic of Rankin–Selberg L-functions, in particular appearing in the explicit reciprocity law for
the Euler system of Beilinson–Flach elements [BDR15a, BDR15b, KLZ17] (which is in turn crucial for
several other recent works such as [BL16a, Cas15, Das16]).

It is natural to seek a generalisation of this construction to non-ordinary eigenforms, and variation
in Coleman families. For fixed f1 and f2 of level prime to p and satisfying a suitable “small slope”
hypothesis, such a construction was carried out by My [My91], but allowing variation in families has
proved to be substantially more difficult. A construction of a 3-variable p-adic L-function with the
expected interpolating property was initially announced in [Urb14], but an error in this construction was
subsequently found, and (to the best of the this author’s knowledge) this has not been fully resolved at
the present time1.

In the author’s recent work with Zerbes [LZ16, Theorem 9.3.2], it was shown that there exists a
3-variable p-adic L-function with the expected interpolating property at crystalline points (i.e. where
f1 and f2 are p-stabilisations of eigenforms of level prime to p, and χ is trivial). Moreover, this p-adic
L-function is related by an explicit reciprocity law to the Euler system of Beilinson–Flach elements,
as in the ordinary case. Unfortunately, we were not able to establish unconditionally that the p-adic
L-function thus constructed also had the expected interpolation property at non-crystalline points, so
our results fell short of giving a full proof of the results announced in [Urb14].

This gap in the published literature has become increasingly troublesome, since several papers have
now been published which assume this stronger interpolation property; these include several papers mak-
ing major contributions to famous open problems, such as the Iwasawa main conjecture for supersingular
elliptic curves [BL16b, Wan15] and the Birch–Swinnerton-Dyer conjecture in analytic rank 1 [JSW15].

1.2. Aims of this paper. The purpose of this note is to give a proof of an interpolation formula for
the L-function of [LZ16] at all critical points, crystalline or otherwise, in a certain special case. The
assumption we make is that the Coleman family F2 is ordinary, although F1 may not be; this suffices for
the applications in the papers cited above (all of which correspond to the case where F2 is an ordinary
family of CM-type). The present author is cautiously optimistic that it might be possible to push these
methods further in order to give a full proof of the results announced in [Urb14], but believes it is in the

2010 Mathematics Subject Classification. 11F85, 11F67, 11G40, 14G35.
The author’s research was supported by a Royal Society University Research Fellowship.
1See note on next page.

1



interests of the research community to release this partial proof without further delay, in order to place
the already-published papers conditional on this result on a firm footing.

Our strategy will be to relate the 3-variable “geometric” p-adic L-function, constructed using Beilinson–
Flach elements, with two families of “analytic” p-adic L-functions. These 2-variable functions, denoted
here by superscripts ♠ and ♦, are defined over 2-variable slices of the full 3-variable parameter space.
Their construction involves nearly-overconvergent forms of a fixed degree, and therefore can be carried
out using the methods of [Urb14] without the technical issues which arise when the degree of near-
overconvergence is allowed to vary. The assumption that the second Coleman family F2 is ordinary
implies that it is defined over an entire component of weight space; this gives sufficient “room” to move
along ♠ and ♦ families from an arbitrary critical point to a crystalline one at which the results of [KLZ17]
can be applied.

A secondary aim of this paper is to make the interpolation formula for the resulting p-adic L-function
completely explicit, at least in the most important cases. This calculation is not new, but a precise
statement of the formula seems to be difficult to find in the existing references (particularly in the non-
crystalline cases); so we have given careful statements in Propositions 2.10 and 2.12, and an outline
sketch of their proofs in an appendix.

Note added during review. Since the initial version of this paper was released, the author has learned of
the article [AIU] in preparation, which circumvents the problems with [Urb14] via a new approach to
nearly-overconvergent modular forms (as sections of a certain sheaf of Banach modules). This should
in due course lead to a proof of an analogue of Theorem 6.3 of the present paper for arbitrary pairs
of Coleman families, without the restriction imposed here that F2 be ordinary. However, the author
believes that there is still value in making this note available, since the preprint [AIU] has not yet been
published, and the preliminary version of [AIU] seen by the author only considers families over the
“centre” of weight space and thus does not cover most non-crystalline classical points.

Acknowledgements. I am grateful to Eric Urban and Xin Wan for helpful comments on the topic of
this paper, and to Xin Wan in particular for encouraging me to write it up. Part of the work described
in the paper was carried out during a visit to the Institute for Advanced Study in Princeton in the spring
of 2016, and I am very grateful to the IAS for their hospitality.

2. Complex Rankin–Selberg L-functions and period integrals

2.1. The complex L-function. Let k, k′ be positive integers, and f1, f2 two new, normalised cuspidal
modular eigenforms of weights k1, k2 (and some levels N1, N2). We assume k1 > k2 without loss of
generality.

Definition 2.1. The (imprimitive) Rankin–Selberg L-function of f1 and f2 is the Dirichlet series

Limp(f1, f2, s) = L(N1N2)(ε1ε2, 2s+ 2− k1 − k2) ·
∑
n>1

an(f1)an(f2)n−s.

More generally, if χ is a Dirichlet character of conductor Nχ we set

Limp(f1, f2, χ, s) = L(N1N2Nχ)(ε1ε2χ
2, 2s+ 2− k1 − k2) ·

∑
n>1

(n,Nχ)=1

an(f1)an(f2)χ(n)n−s.

This L-function has an Euler product, in which the local factor for a primes ` - N1N2Nχ is given by
P`(f1, f2, χ(`)`−s)−1, where

P`(f1, f2, X) = (1− α1α2X)(1− α1β2X)(1− β1α2X)(1− β1β2X).

Here α1, β1 denote the roots of the polynomial X2 − a`(f1)X + `k−1ε1(`), and similarly for α2, β2.

Remark 2.2. We refer to this L-function as an “imprimitive” L-function since it differs by finitely many
Euler factors from the L-function of the motive associated to f1⊗f2⊗χ (the “primitive” Rankin–Selberg
L-function). The only primes ` at which the local Euler factors can differ are those ` dividing at least
two of the three integers N1, N2, Nχ; so if these are pairwise coprime, then the primitive and imprimitive
L-functions coincide.

It is well known that Limp(f1, f2, χ, s) has meromorphic continuation to all s ∈ C. It is entire unless
k1 = k2 and f2 = f1 ⊗ ε−11 χ−1, in which case there is a simple pole at s = k1. The critical values are
those in the interval k2 6 s 6 k1 − 1.
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2.2. A Petersson product formula. Now let p be prime; and choose an embedding Q ↪→ Qp.

Definition 2.3. A locally algebraic character of Z×p is a homomorphism Z×p → Q
×
p of the form x 7→

xnχ(x), where n ∈ Z and χ is a finite-order character (equivalently, a Dirichlet character of p-power
conductor). We denote this character by “n+ χ”.

Definition 2.4. By a p-stabilised newform of tame level N , where N is an integer coprime to p, we shall
mean a normalised cuspidal Hecke eigenform of level Γ1(Npr), for some r > 1, such that either f is a
newform, or f is a Up-eigenform in the two-dimensional space of oldforms associated to some newform
of level N . In the latter case, we say f is crystalline.

We define the weight-character of f to be the locally-algebraic character κ of Z×p defined by κ = k+εp,
where k is the weight of f and εp is the p-part of the Nebentypus character of f .

If f is a p-stabilised newform, we denote by f c the unique p-stabilised newform with the same weight-
character as f satisfying

an(f c) = εN,f (n)−1an(f),

where εN,f is the prime-to-p part of the Nebentypus of f , for all (n,N) = 1 (even if p | n).

Remark 2.5. Note that if f is a p-stabilised newform whose nebentypus is trivial at p, then f c has the
same Hecke eigenvalues away from p as the conjugate form f∗ defined by f∗(τ) = f(−τ̄). However, f c

and f∗ do not generally have the same Up-eigenvalue; in particular f c is ordinary if f is (which is not
true of f∗). On the other hand, if f has non-trivial character at p, then the Hecke eigenvalues of f c and
f∗ away from p are different.

Let f1, f2 be p-stabilised newforms of some tame levels N1, N2, and let κ1 = k1 + ε1,p, κ2 = k2 + ε2,p
be their weight-characters. We choose an integer N divisible by both N1 and N2, and with the same
prime factors as N1N2. Given σ = j + χ a locally algebraic character, we consider the formal power
series

EN (κ1, κ2, σ) :=
∑
n>1
p-n

∑
d|n

dσ−κ2
(
n
d

)κ1−σ−1
[
e2πid/N + (−1)κ1−κ2e−2πid/N

] qn.

Lemma 2.6. If 1 6 k2 6 j 6 k1 − 1, then EN (κ1, κ2, σ) is the q-expansion of a nearly-holomorphic
modular form of weight k1−k2, level dividing Np∞, and degree at most min(k1− 1− j, j−k2), on which
the diamond operators at p act via the character ε1,p − ε2,p.

Proof. See [LLZ14, §5.3]. �

If Πhol denotes Shimura’s holomorphic projector, then the cuspidal modular form

Πhol (f2 · EN (κ1, κ2, σ))

has level dividing Np∞, and its weight-character agrees with that of f1 (and thus also of f c1).

Definition 2.7. Suppose f1 has finite slope (that is, ap(f) 6= 0). We let λfc1 denote the unique linear
functional on Sk1(N1p

∞, ε̄1,p) which factors through the Hecke eigenspace associated to f c1 , and maps
the normalised eigenform f c1 itself to 1. We extend this to forms of tame level N by composing with the
trace map.

Definition 2.8. We set

I(f1, f2, σ) = Nκ1+κ2−2σ−2 · λfc1
(

Πhol (f2 · EN (κ1, κ2, σ))
)
.

Theorem 2.9 (Rankin–Selberg, Shimura). If 1 6 k2 6 j 6 k1 − 1 then we have

I(f1, f2, j + χ) = (?) · Limp(f1, f2, χ
−1, j)

where (?) is an explicitly computable factor.

We shall not give the precise form of the factor (?) in all possible cases, since this rapidly becomes
messy, but we shall give a selection of useful cases. First, we treat the case where f1 and f2 are crystalline,
hence p-stabilisations of forms f◦1 , f

◦
2 of levels N1, N2 coprime to p. We write αi for the Up-eigenvalue of

fi, so that αi is a root of the Hecke polynomial of f◦i at p, and βi for the other root of this polynomial.
We assume2 that α1 6= β1.

2This assumption is known to be true if k1 = 2, and is known to follow from the Tate conjecture if k1 > 3 [CE98].
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We define certain local Euler factors at p, as in [BDR15a] and [KLZ17, Theorem 2.7.4], by

E(f1) =

(
1− β1

pα1

)
, E∗(f1) =

(
1− β1

α1

)
,

E(f1, f2, j + χ)=


(

1− pj−1

α1α2

)(
1− pj−1

α1β2

)(
1− β1α2

pj

)(
1− β1β2

pj

)
if χ = 1,

G(χ)2 ·
(
p2s−2

α2
1α2β2

)r
if χ has conductor pr > 1.

Here G(χ) is the Gauss sum
∑
a∈(Z/prZ)× χ(a)e2πia/p

r

.

Proposition 2.10. In the above setting, we have

I(f1, f2, j + χ) =
E(f1, f2, j)

E(f1)E∗(f1)
· (j − 1)!(j − k2)!ik1−k2

π2j+1−k2 22j+k1−k2 〈f◦1 , f◦1 〉N1

Limp(f◦1 , f
◦
2 , χ

−1, j).

Remark 2.11. For χ trivial, this formula is standard, and its derivation can be found in many references
such as [BDR15a, LLZ14, LZ16]. For χ non-trivial, references are more scant; many sources, such as
[Hid88], give more general but less explicit formulas, and the work involved in recovering a completely
explicit form for all the local factors is routine but unpleasant. For the convenience of the reader we
give an account of the main steps required to evaluate I(f1, f2, j +χ) in this case in an appendix to this
paper.

The other case we shall consider is that where f1 is still assumed crystalline, but f2 has some non-
trivial character ε2,p at p, and neither χ nor χ′ = χε−12,p is trivial. We define β2 = pk2−1ε2,N (p)/α2, and

we let the conductor of χ (resp. χ′) be pr (resp. pr
′
).

Proposition 2.12. In this setting we have

I(f1, f2, j + χ) =
(
pj−1

α1α2

)r
G(χ)

(
pj−1

α1β2

)r′
G(χ′)

× (j − 1)!(j − k2)!ik1−k2

E(f1)E∗(f1)π2j+1−k2 22j+k1−k2 〈f◦1 , f◦1 〉N1

Limp(f◦1 , f2, χ
−1, j).

3. Overconvergent families

Let us fix a finite extension L/Qp (contained in our fixed choice of algebraic closure Qp).

Definition 3.1. Let the weight space, W, be the rigid-analytic space over L parametrising continuous
characters of Z×p , so that for an affinoid L-algebra A, we have W(A) = Hom(Z×p , A

×).

As in [KLZ17], we identify both Z and the set of Dirichlet characters of p-power order with subsets
of W(L̄) in the natural fashion; and we denote the group law on W additively. If κ = k + χ is a locally
algebraic character, we write w(κ) := k.

Now let N be an integer coprime to p. It will be convenient to assume that L contains the N -th roots
of unity; let ζN ∈ L× denote the image of e2πi/N ∈ Q under our chosen embedding.

Lemma 3.2. The power series in E
[p]
k and F

[p]
k in O(W)[[q]] given by

E
[p]
k :=

∑
n>1
p-n

∑
d|n

dk−1(ζdN + (−1)kζ−dN )

 qn

and

F
[p]
k :=

∑
n>1
p-n

∑
d|n

(n
d

)k−1
(ζdN + (−1)kζ−dN )

 qn

are both the q-expansions of families of overconvergent modular forms over W of tame level Γ1(N) and
weight k (with radius of overconvergence bounded below over any affinoid in W). �
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Lemma 3.3. Let χ be a Dirichlet character of p-power conductor, with values in L. Then, for any
family of overconvergent modular forms F of tame level Γ1(N) and weight κ : Z×p → A×, where A is an
affinoid algebra, the power series defined by

θχF :=
∑
n>1
p-n

an(F)χ(n)qn

is the q-expansion of a family of overconvergent forms over A, of weight κ+ 2χ.

Sketch of proof. Let χ have conductor pr. Then there is a “twisting homomorphism” tj : X1(Np2r) →
X1(N), given in terms of complex uniformizations by τ 7→ τ + j

pr , for any j ∈ Z/prZ. This preserves

the component of the ordinary locus containing ∞, and extends to all sufficiently small overconvergent
neighbourhoods of it, so it induces a pullback map on overconvergent modular (or cusp) forms. Since
θχF is equal to

∑
j∈(Z/prZ)× χ(j)−1t∗j (F) up to a constant, it is overconvergent of level Γ1(Np2r) and

weight-character κ; and the diamond operators at p act on it via χ2, so it descends to an overconvergent
form of level Γ1(N) ∩ Γ0(p2r) and weight κ + 2χ. Via the canonical-subgroup map we can regard it as
an overconvergent form of level N . �

In order to allow more general twists, we work with families of nearly-overconvergent modular forms
(of some finite degree r > 0), in the sense of [Urb14, §3.3.2]. If τ is a locally algebraic weight with
w(τ) > 0, we may thus define θτ (F) as a family of nearly-overconvergent forms of weight κ + 2τ and
degree w(τ).

Lemma 3.4. If F is a Coleman family (a family of overconvergent normalised eigenforms of finite
slope), new of some tame level N , defined over some affinoid A→W, then there is a unique tame level
N Coleman family Fc over A satisfying

an(Fc) = εN (n)−1an(F)

for all (n,N) = 1 (including n = p). Here εN : (Z/NZ)× → L× is the prime-to-p nebentype of F .

Proof. This is proved in the same way as the previous lemma. �

We now recall the construction of the universal object parametrising Coleman families – the eigencurve:

Definition 3.5. Let CN denote the Coleman–Mazur–Buzzard cuspidal eigencurve, of tame level N .

By definition, CN is a reduced rigid space, equidimensional of dimension 1, equipped with a morphism
CN → W; and there is a universal eigenform over CN – that is, CN comes equipped with a power series
Funiv =

∑
anq

n ∈ O(CN )[[q]], with a1 = 1 and ap invertible on CN , with the following universal property:

For any affinoid X with a weight morphism κ : X → W, and any family of finite-
slope eigenforms FX over X of tame level N and weight κ, there is a unique morphism
X → CN lifting κ such that FX is the pullback of Funiv.

4. Two-variable p-adic L-functions

Let U1 and U2 be two affinoid subdomains of W. We write ki : Z×p → O(Ui)
× for the pullbacks of

the canonical character k. We suppose that we are given the following data:

• a finite flat covering Ũ2 → U2,

• an overconvergent family F2 ∈M†k2
(Γ1(N); Ũ2) (not necessarily cuspidal or normalised),

• a locally analytic character τ ∈ W(L), with t = w(τ) > 0.

We define two families of nearly-overconvergent forms over U1 × Ũ2, both of weight k1 and degree of
near-overconvergence 6 t, by

Ξ♠τ := F2 · θτ
(
E

[p]
k1−k2−2τ

)
,

Ξ♦τ := F2 · θτ
(
F

[p]
k1−k2−2τ

)
.

We apply to both of these forms the overconvergent projector Πoc of [Urb14, §3.3.4]. This gives
elements

Πoc
(
Ξ♠τ
)
, Πoc

(
Ξ♦τ
)
∈ 1∏2t

m=2 (∇1 −m)
S†k1

(
Γ1(N), U1 × Ũ2

)
,

where ∇1 ∈ O(U1) is the pullback to U1 of the unique rigid-analytic function ∇ ∈ O(W ) such that
∇(κ) = w(κ) for all locally-algebraic κ.
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Proposition 4.1. Let (κ1, κ2) be a locally-algebraic point of U1 × U2 such that 1 6 k2 6 k1 − 1 − t,
where ki = w(κi), and with k1 /∈ {2, . . . , 2t}. Let κ̃2 be a point of Ũ2 above κ2, and f2 the specialisation
of F2 at κ̃2. Let us suppose that f2 is a classical modular form.

Then the specialisations of Πoc
(
Ξ♠τ
)

and Πoc
(
Ξ♦τ
)

at (κ1, κ̃2) are given by

Πoc
(
Ξ♠τ
)

(κ1, κ̃2) = Πhol
(
f2 · EN (κ1, κ2, κ1 − 1− τ)

)
,

Πoc
(
Ξ♦τ
)

(κ1, κ̃2) = Πhol
(
f2 · EN (κ1, κ2, κ2 + τ)

)
.

Proof. An elementary computation shows that θτ
(
E

[p]
κ1−κ2−2τ

)
= EN (κ1, κ2, κ1−1−τ) and similarly that

θτ
(
F

[p]
κ1−κ2−2τ

)
= EN (κ1, κ2, κ2 + τ). The result now follows from the compatibility of the holomorphic

and overconvergent projection operators. �

Remark 4.2. We may consider the formal power series F2 · EN (k1,k2, σ) as a family of p-adic modular

forms over U1 × Ũ2 × W. This is not overconvergent, or even nearly-overconvergent, in any reason-
able sense, since the near-overconvergence degrees of its specialisations are not bounded above over

any open affinoid in the parameter space U1 × Ũ2 × W. However, the above proposition gives two
families of 2-dimensional “slices” of the parameter space for which the above family does become nearly-
overconvergent, of bounded degree, over any given slice.

Let us now suppose that k1 > 2 is a non-negative integer lying in U1, Nf is an integer dividing N , and
f1 ∈ Sk1(Γ1(Nf ) ∩ Γ0(p), L) is a “noble eigenform” in the sense of [LZ16, Definition 4.6.3]; that is, f1 is
a p-stabilisation of some normalised newform of level Γ1(Nf ) whose Hecke polynomial at p has distinct
roots, and a mild extra condition is satisfied in the case of critical-slope eigenforms.

Then, after possibly shrinking the affinoid neighbourhood U1 3 k1, we can find a Coleman family
of normalised eigenforms F1 over U1 whose specialisation at k1 is f1; and a continuous O(U1)-linear
functional

λFc1 : S†k1
(Γ1(Nf ), U1)→ O(U1)

factoring through the Hecke eigenspace associated to the dual family Fc1 , and mapping the normalised
eigenform Fc1 itself to 1. We extend this to a linear functional on forms of level N by composing
with the trace map. We can therefore define two meromorphic functions, both lying in the space

1∏2w(τ)
j=2 (∇1−j)

O(U1 × Ũ2), by the formulae

L♠p (F1,F2; τ) = N (−k1+k2+2τ)λFc1

[
Πoc

(
Ξ♠τ
) ]
,

and

L♦p (F1,F2; τ) = N (k1−k2−2τ−2)λFc1

[
Πoc

(
Ξ♦τ
) ]
.

By construction, L♠p interpolates the values I(f1, f2, κ1 − 1− τ), and L♦p the values I(f1, f2, κ2 + τ), for
varying f1 and f2 (but fixed τ).

Remark 4.3. Our eventual goal is to show that there is a 3-variable L-function on U1×Ũ2×W interpolating
all critical values of the Rankin L-function. The 2-variable L-functions L♠p and L♦p will turn out to
be slices of this 3-variable L-function, along two different families of 2-dimensional subspaces of the
parameter space.

Let us, finally, specialise to the case where Ũ2 is an affinoid subdomain of the eigencurve CN2
, and F2

is the universal eigenform. One knows that CN2
is admissibly covered by affinoids Ũ2 with the property

that Ũ2 is a finite flat covering of an admissible open in W, as above; and the above construction is
clearly compatible on overlaps, so we obtain two families of meromorphic functions on U1 × CN2

.

5. Compatibility of the two families

Definition 5.1. Given a locally algebraic τ with w(τ) > 0, we define two 2-dimensional rigid-analytic

subspaces of U1 × Ũ2 ×W by

W♠(τ) = {(κ1, κ̃2, κ1 − 1− τ) : κ1 ∈ U1, κ̃2 ∈ U2}
and

W♦(τ) = {(κ1, κ̃2, κ2 + τ) : κ1 ∈ U1, κ̃2 ∈ U2}.
We set Σ♠crit(τ) = Σcrit ∩W♠(τ) and similarly Σ♠geom(τ), Σ♦crit(τ), Σ♦geom(τ).
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We can then regard L♠p (F1,F2; τ) as a p-adic meromorphic function on W♠(τ) in a natural way,

interpolating classical L-values at the points in Σ♠crit(τ); and similarly for ♦.
We have the following technical lemma:

Lemma 5.2. Let τ, τ ′ be two locally-algebraic characters with w(τ) > 0, w(τ ′) > 0, and suppose that we
have

{κ− (1 + τ + τ ′) : κ ∈ U1} ⊆ U2.

Then L♠p (F1,F2; τ) and L♦p (F1,F2; τ ′) coincide as functions on W♠(τ) ∩W♦(τ ′).

Proof. The intersection W♠(τ) ∩ W♦(τ ′) consists of those points of the form (κ1, κ̃2, κ1 − 1 − τ) such
that κ̃2 lies above the point κ1 − (1 + τ + τ ′) of W. In particular, under the assumptions of the lemma,
this is simply a finite covering of U1.

Let (κ1, κ̃2, σ) be a point in this intersection with κ1 locally algebraic, and such that w(κ1) >
2 max(w(τ), w(τ ′)) + 1 in order to avoid singularities of the nearly-overconvergent projection opera-
tors. Then the two p-adic L-functions specialise to the image under λfc1 of the nearly-overconvergent
modular forms with q-expansions

f2θ
τ
(
E

[p]
κ1−κ2−2τ

)
and f2θ

τ ′
(
F

[p]
κ1−κ2−2τ ′

)
.

Since these two modular forms are identical, we deduce that the two L-functions agree at the given point.
As the set of locally-algebraic κ1 ∈ U1 with w(κ1) greater than any given bound is clearly Zariski-dense,
it follows that the two p-adic L-functions are identically equal on this intersection. �

Lemma 5.3. Let τ be a locally algebraic character with w(τ) > 0. If U2 is sufficiently large (depending
on U1 and τ), then the union of the intersections W♠(t) ∩ W♦(τ), as t varies over integers > 0, is
Zariski dense in W♦(τ).

Proof. Easy check. �

6. The 3-variable geometric L-function

We now turn from “p-adic analytic” methods to “arithmetic” ones – that is, we invoke the existence
of the Euler system of Beilinson–Flach elements.

Theorem 6.1. Suppose Ũ2 is the preimage of U2 in the ordinary locus of the eigencurve, and F2 the
universal ordinary family over U2. Then there exists a p-adic meromorphic3 function Lgeom

p (F1,F2) on

U1 × Ũ2 ×W with the following property:

(†) For any crystalline character τ = t with t > 0, the 2-variable p-adic L-function L♠p (F1,F2; τ) is

the restriction of Lgeom
p to W♠(τ).

Moreover, Lgeom
p is related to the Euler system of Beilinson–Flach elements via the formula

Lgeom
p (F1,F2) =

(
c2 − εN,1(c)−1εN,2(c)−1c2s+2−k1−k2

)−1
(−1)sλ(F1)−1

〈
cBF [F1,F2], ηF1

⊗ ωF2

〉
in the notation of [LZ16, §9.1], for any c > 1 coprime to 6pN1N2.

Proof. This is essentially proved in [LZ16, §9.3]. The only difference in our present statement is that we

are allowing U2 to be arbitrary, and permitting some finite flat covering Ũ2 → U2, whereas in our earlier
work we assumed both U1 and U2 were small neighbourhoods of some given eigenforms f1, f2. However,
the latitude to shrink U2 was only used in op.cit. at precisely two points:

• in the proof of Proposition 5.3.4 of op.cit., in order to arrange that all specialisations of F2 at
points of classical weight were classical; this is automatically satisfied for ordinary families.

• in Sections 6.3 and 6.4 of op.cit., in order to find a triangulation of the (ϕ,Γ)-module associated
to F2, and canonical crystalline periods for the filtration steps; this can be carried out globally
over an ordinary family, using Ohta’s results [Oht00], as in [KLZ17]. �

In order to complete the proof, we shall manoeuvre from the rather weak interpolating property (†)
of Lgeom

p into a much stronger one, by repeatedly using the compatibility between the ♠ and ♦ slices.

3It is analytic if the product of the prime-to-p nebentypus characters of F1 and F2 is non-trivial. Otherwise, it may

have poles along the near-central points (κ1, κ2, σ) such that κ1 +κ2 = 2σ. This is a consequence of the ‘smoothing factors’
c2 − c? appearing in the construction of the Beilinson–Flach elements. In particular, the restriction of Lgeom

p to any ♦ or

♠ slice is well-defined.
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Corollary 6.2. Let τ be any locally-algebraic character (not necessarily crystalline) with w(τ) > 0. If
U2 is sufficiently large (depending on U1 and τ) then

L♦p (F1,F2; τ) = Lgeom
p (F1,F2)|W♦(τ)

and

L♠p (F1,F2; τ) = Lgeom
p (F1,F2)|W♠(τ).

Proof. By Lemma 5.3, for the first equality, it suffices to show that L♦p and Lgeom
p agree on the intersection

W♠(t) ∩W♦(τ), for integers t > 0. However, we know that L♦p and L♠p coincide on these intersections,

and that Lgeom
p in turn coincides with L♠p .

For the second equality, we consider the intersection of W♠(τ) with the slices W♦(τ ′), where τ ′ is
an arbitrary locally-algebraic character of weight w(τ ′) > 0. Using the previously-proved equality, we
know that Lgeom

p agrees with L♠p (F1,F2; τ) on each of these intersections. As before, the union of these

is Zariski dense in W♠(τ) as required. �

We conclude, finally, the following interpolation formula. Recall that we are assuming F2 to be an
ordinary family.

Theorem 6.3. Let (κ1, κ̃2, σ) be a triple of locally-algebraic points in U1 × Ũ2 ×W, with 1 6 w(κ2) 6
w(σ) 6 w(κ1) − 1. Let f1, f2 be the specialisations of F1,F2 at the weights κi, and suppose that these
specialisations are classical.

Then we have

Lgeom
p (F1,F2)(κ1, κ̃2, σ) = I(f1, f2, σ).

Proof. Given any such triple, let us write τ = κ1 − 1 − σ and τ ′ = σ − κ2. Both of these are locally
algebraic characters, and w(τ), w(τ ′) > 0.

Since w(τ) + w(τ ′) = w(κ1) − 1 − w(κ2), at least one of the quantities w(τ) and w(τ ′) must be

6 w(κ1)−1
2 . If w(τ) 6 w(κ1)−1

2 , then (κ1, κ̃2, σ) lies in the interval in which L♠p (F1,F2; τ) interpolates
the classical Rankin–Selberg period. Similarly, if w(τ ′) is smaller than this bound we may invoke the
interpolating property of L♦p .

Since F2 is an ordinary family, we may assume without loss of generality that U2 is arbitrarily large, and
via the previous theorem, we can conclude that L♠p or L♦p coincides with the appropriate specialisation
of the 3-variable p-adic L-function. �

Appendix A. Evaluation of the Rankin–Selberg period

For the convenience of the reader, we outline the derivation of the formula relating the period
I(f1, f2, σ) defined above to the Rankin–Selberg L-function. Our approach is closely based on that
of [PR88]. We place ourselves in the setting of Proposition 2.10; and, since the case of trivial χ is covered
in many references, we shall assume that χ is non-trivial, of conductor pr with r > 1.

Step 1. We express the linear functional λfc1 on Sk (Γ1(N) ∩ Γ0(pn)), for any n > 1, via the formula

λfc1 (h) =

(
ε1(p)

α1

)n−1
·
〈gn, h〉N(pn)

〈g, fc1〉N1(p)

,

where g = WN1p(f1,β) and gn = g |k
(
pn−1

1

)
. Here f1,β is the p-stabilisation of f◦1 corresponding to

the root β1 of the Hecke polynomial; and the subscript N(pn) denotes the Petersson product at level
Γ1(N) ∩ Γ0(Npn). Cf. [Hid85, Proposition 4.5]. A computation closely analogous to the final step of
[KLZ17, Proposition 10.1.1] shows that the denominator term is given by

〈g, f c1〉N1(p)
=
λ(f◦1 )αE(f1)E∗(f1)

ε1(p)
· 〈f◦1 , f◦1 〉N1

,

where λ(f◦1 ) denotes the Atkin–Lehner pseudo-eigenvalue of f◦1 . This yields the formula

I(f1, f2, j + χ) =
ε1(p)2r

α2r
1 λ(f◦1 )E(f1)E∗(f1)〈f◦1 , f◦1 〉N1

〈gn, f2 · E(k1, k2, j + χ)〉N(p2r) .
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Step 2. We recognise the nearly-holomorphic Eisenstein series E(k1, k2, j + χ) of level Np2r as the twist

by the character χ of a simpler Eisenstein series Ẽ of level Npr and character χ−2, whose q-expansion is∑
n>1

qn
∑
d|n
p-nd

dj−k2(n/d)k1−1−jχ(n/d)−2
(
e2πid/N + (−1)k1−k2e−2πid/N

)
.

Since an(g2r) = 0 unless p2r−1 | n, we can pull the twist through the Petersson product to write

〈g2r, f2 · E(k1, k2, j + χ)〉N(p2r) = χ(−1)
〈
g2r, f2,χ · Ẽ

〉
N(p2r)

.

Step 3. We re-write the last Petersson product using the local Atkin–Lehner operator Wp2r acting on
forms of level Np2r. We compute that

Ẽ |Wp2r = p2r(k1−2−j)χ(−1)
∑

a∈(Z/p2rZ)×

χ(a)−2E1/N+a/p2r

where the nearly-holomorphic Eisenstein series Eγ = Ek1−k2γ (−, j− k1 + 1) for γ ∈ Q/Z is as in [LLZ14,
§4–5]. On the other hand, the action on f2,χ is given by

f2,χ |Wp2r = p(k2−3)rε2(p)rG(χ)2f2,χ−1 .

Combining these formulae we deduce

〈g2r, f2 · E(k1, k2, j + χ)〉N(p2r) =

(
p(2k1+k2−5−2j)rG(χ)2χ(N2)

ε1(p)2rε2(p)r

)〈
f1,β |k1 WN1 , f2,χ−1 · E1/Np2r

〉
Np2r

.

Step 4. Via the classical “unfolding” technique, integrating against the Eisenstein series E1/Np2r gives
the (imprimitive) Rankin–Selberg L-function at s = j; cf. [Kat04, Theorem 7.1]. That is, we have

〈
f1,β |k1 WN1

, f2,χ−1 · E1/Np2r
〉
Np2r

=
(j − 1)!(j − k2)!ik1−k2Limp

(
f1,β |k WN1

, f2,χ−1 , j
)

Nk1+k2−2j−2p2r(k1+k2−2j−2)π2j+1−k222j+k1−k2
.

However, since all Fourier coefficients an of f2,χ−1 with p | n are zero, this formula is unchanged if we

replace f1,β |k WN1 with any form having the same Fourier coefficients away from p; one such form is

λ(f◦1 )f◦1 , so this is〈
f1,β |k1 WN1 , f2,χ−1 · E1/Np2r

〉
Np2r

=
(j − 1)!(j − k2)!ik1−k2λ(f◦1 ) · Limp

(
f◦1 , f

◦
2 , χ

−1, j
)

Nk1+k2−2j−2p2r(k1+k2−2j−2)π2j+1−k222j+k1−k2
.

Combining steps 1, 3 and 4 gives the formula stated in Proposition 2.10. A similar argument (using an

Eisenstein series of level Npr+r
′
) can be used to prove Proposition 2.12.
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