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Abstract	

	

White	blister	rust	caused	by	 the	obligate	pathogen	Albugo	candida	 is	 infectious	

across	 the	Brassicaceae,	 and	 is	 an	economically	 important	disease	of	 cultivated	

Brassica	species.		The	advance	in	genotyping	technologies	has	made	possible	the	

understanding	and	deployment	of	host	resistance	to	plant	pathogens,	previously	

unachievable	through	conventional	plant	breeding.		

	 In	 this	 work,	 the	 application	 of	 Genotyping	 by	 Sequencing	 (GBS)	 and	

Resistant	 Gene	 Enrichment	 Sequencing	 (RenSeq)	 has	 identified	 a	 single	 GDSL	

lipase	as	a	candidate	for	recessive	race	non-specific	resistance	to	A.	candida	in	B.	

oleracea.	 	A	 second	 locus	has	been	 identified	conferring	dominant	 race	specific	

resistance	to	an	A.	candida	isolate	collected	from	Australia.		

	 Much	 work	 has	 been	 achieved	 in	 understanding	 the	 genetic	 basis	 of	

resistance	to	A.	candida	in	the	model	organism	Arabidopsis	thaliana,	including	the	

identification	of	white	rust	resistance	(WRR)4,	a	single	dominant	resistance	(R)	

gene	conferring	resistance	to	A.	candida	races	2,	4,	7	and	9	in	A.	thaliana	Columbia.		

In	this	thesis	research,	three	Columbia-virulent	isolates	were	characterised	that	

are	capable	of	breaking	WRR4-Col	mediated	resistance.		Two	of	these	were	used	to	

map	 a	 new	 broad	 spectrum	 resistance	 locus,	 designated	 WRR4-OyC1,	 in	 the	

vicinity	of	WRR4	in	the	Norwegian	A.	thaliana	accession	Oy-0	and	two	additional	

minor	effect	QTLs.		All	three	isolates	were	used	for	association	genetic	analysis	of	

genome-wide	‘effectorome’	sequencing	to	identify	candidate	genes	for	avrWRR4	

in	A.	candida	for	both	WRR4,	and	Oy-0	recognition.		

	 From	the	combined	results	of	this	research,	a	potential	strategy	for	durable	

white	rust	control	in	oilseed	and	vegetable	Brassica	would	be	stacking	of	at	least	

two	R	alleles	(WRR4-Col	and	WRR-OyC1)	in	a	genetic	background	containing	the	

recessive,	resistance	allele	of	the	GDSL	lipase.		
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1.1	 Preface	

The	 Food	 and	 Agriculture	 Organization	 predict	 that	 net	 food	 production	 will	

need	 to	 increase	 60%	 by	 2050	 in	 response	 to	 population	 growth,	 and	 an	

increasing	demand	for	more	nutritious	diets	in	developing	nations	(FAO,	2016).		

This	 rise	 in	demand	runs	parallel	 to	decreasing	 farmland	per	 capita	and	water	

availability,	and	 increasing	 frequency	and	severity	of	damaging	weather	events	

causing	volatility	in	annual	crop	yields.	 	The	changing	climate	is	simultaneously	

altering	 local	 pressures	 from	 diseases	 and	 pests,	 whilst	 tighter	 agrochemical	

legislations	 are	 reducing	 the	 number	 of	 pesticides	 available	 to	 growers,	

impairing	their	ability	to	respond	to	potentially	devastating	crop	infestations.	

Faced	 with	 these	 pressures,	 global	 agriculture	 needs	 to	 produce	 more	

food	 from	 the	 same	 area	 of	 land	whilst	 reducing	 the	 inputs,	water	 and	 energy	

required	 for	 production.	 	 Failure	 to	 achieve	 this	will	 result	 in	 greater	 levels	 of	

environmental	 degradation	 caused	 by	 food	 production,	 undermine	 the	

ecosystem	 services	 on	 which	 food	 production	 is	 reliant,	 leading	 to	 increased	

levels	 of	 food	 insecurity.	 	 Food	 production	 now	 requires	 sustainable	

intensification;	 where	 output	 is	 increased	 whilst	 increasing	 the	 efficiency	 and	

sustainability	of	production.			

Agriculture	is	a	system	comprising	of	biotic	and	abiotic	 interactions	that	

determine	the	input	requirement	to	achieve	a	viable	output.		Components	of	this	

system	can	be	altered	at	different	levels,	from	the	regional	ecology	of	agricultural	

landscapes	 to	 the	 interactions	 between	 organisms	 in	 given	 cropping	 systems.		

Sustainable	 intensification	can	 therefore	be	achieved	 through	multiple	 changes	

within	an	agricultural	system.	
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1.2	 Genetics,	an	applied	discipline	from	inception	

The	development	and	cultivation	of	crop	varieties	possessing	durable	resistance	

to	 damaging	 diseases	 is	 a	 system	 change	 that	 reduces	 the	 agrochemical	

requirement	and	consequently	the	environmental	impact	and	cost	of	production,	

whilst	 maintaining	 crop	 quality	 and	 yield.	 	 The	 introgression	 of	 disease	

resistance	 into	 crop	 varieties	 first	 requires	 an	 understanding	 of	 what	 causes	

some	plants	to	be	susceptible	to	certain	pathogens,	while	others	display	varying	

degrees	of	tolerance.		

	 Gregor	 Mendel	 was	 a	 pioneer	 of	 applying	 a	 mathematical	 method	 for	

experimentation	 in	 biology,	 with	 the	 aim	 to	 “determine	 the	 law	 according	 to	

which	 (traits)	 appear	 in	 successive	generations”	 (Mendel,	 1865).	 	Mendel	used	

Pisum	 sativum	 (pea)	 plants	 as	 an	 experimental	 model	 organism	 to	 generate	

monohybrid	crosses	and	observe	patterns	of	 inheritance	of	natural	variation	in	

seven	traits	 including:	 	 flower	colour,	colour	and	form	of	 the	mature	seed	coat,	

colour	and	form	of	the	mature	pod,	colour	of	the	unripe	pods,	and	overall	plant	

height.	 	 Mendel’s	 core	 discovery	 was	 that	 for	 each	 trait	 the	 hybrid	 took	 the	

characteristic	 of	 a	 single	 parent.	 	 Yet	 the	 progeny	 of	 the	 hybrid	 expressed	 the	

characteristics	 of	 both	 parents,	 suggestive	 that	 the	 hybrid	 possessed	 the	

determinants	 of	 both	 parental	 lines.	 	 Mendel	 termed	 the	 characteristics	 that	

were	 present	 in	 the	 hybrid	 as	 dominant,	 and	 those	 that	were	 absent	 until	 the	

subsequent	 generation	 as	 recessive.	 	 This	 led	 to	 the	 observation	 that	 in	 the	

second	generation	the	dominant	and	recessive	traits	appeared	at	an	approximate	

ratio	of	3:1.	Heritable	variation	was	apparent	when	observing	the	progeny	of	a	

single	plant,	yet	the	3:1	ratio	became	more	apparent	when	collating	results.		This	

led	Mendel	to	conclude	that	large	sample	sizes	accounted	for	errors	induced	by	

natural	variation.		

	 From	the	understanding	that	the	dominant	phenotype	can	be	the	result	of	

the	parental	or	hybrid	type,	Mendel	suggested	that	the	two	observed	phenotypes	

in	 the	 second	 generation	 were	 actually	 three	 distinct	 classes	 of	 dominant,	

recessive	 and	 hybrid,	 with	 the	 characteristic	 of	 the	 dominant	 type	 always	

apparent	in	the	hybrid.		In	contemporary	annotation,	this	ratio	would	be	denoted	

as	 homozygous	AA,	 heterozygous	Aa	 and	 aA,	 and	homozygous	 aa.	 	 In	 dihybrid	



	 4	

crosses	 with	 parental	 lines	 possessing	 two	 separate	 phenotypes,	 Mendel	

observed	the	progeny	exhibited	four	phenotype	classes	of	a	ratio	of	9:3:3:1,	the	

exact	 product	 of	 two	 1:2:1	 ratios.	 	 In	 trihybrid	 crosses	 Mendel	 observed	 27	

phenotype	classes	in	a	ratio	consistent	with	three	1:2:1	ratios.		Backcrossing	the	

hybrids	to	the	parental	lines	again	generated	ratios	consistent	with	the	observed	

patterns	 of	 inheritance.	 	 The	 significance	 of	 Mendel’s	 discovery	 remained	

unrealized	until	the	subsequent	rediscovery	by	the	German	botanist	Carl	Correns	

and	 Dutch	 botanist	 Hugo	 de	 Vries	 in	 the	 1890’s.	 	 The	 discoveries	 laid	 the	

foundation	 for	 the	 discipline	 termed	 genetics	 by	 William	 Bateson	 in	 1906	

(Bowler,	1989).	

	 The	 first	 demonstration	 that	 genetics	 could	 be	 used	 to	 harness	 natural	

variation	for	economic	benefit	came	through	the	breeding	of	resistance	of	yellow	

rust	 resistance	 in	 wheat	 (Puccinia	 striiformis	 f.sp.	 tritici)	 (Biffen,	 1907).	 	 By	

crossing	 the	 partially	 resistant	 variety	 Rivet	 with	 the	 susceptible	 variety	 Red	

King,	 Biffen	 observed	 the	 susceptibility	 of	 Red	 King	 in	 the	 F1	 hybrids.	 	 The	 F2	

progeny	 displayed	 a	 Mendelian	 pattern	 of	 inheritance,	 segregating	 for	

susceptible	and	resistant	at	a	ratio	of	3:1.	 	Although	Biffen	further	observed	“In	

the	 following	 (F2)	 generation	 the	 relatively	 immune	 individuals	 bread	 true	 for	

this	character,	though	not	necessarily	to	other	characters	as	well”,	implying	that	

the	 introgression	of	resistance	had	come	at	physiological	cost.	 	Both	the	F1	and	

the	F2	observations	were	suggestive	of	recessive	resistance,	or	a	dominant	allele	

that	 conferred	 susceptibility.	 	 Furthermore,	 the	 F3	 progeny	 of	 the	 susceptible	

lines	either	conferred	complete	susceptibility,	or	were	segregating	for	resistant.		

This	 confirmed	 the	 Mendelian	 prediction	 that	 two	 thirds	 of	 the	 susceptible	

progeny	 would	 be	 heterozygous	 at	 the	 resistance	 locus.	 	 In	 a	 separate	 study	

(Biffen,	1912),	 recessive	resistance	 to	yellow	rust	 in	 the	variety	American	Club	

was	 observed,	 with	 the	 F2	 progeny	 of	 crosses	 to	 susceptible	 lines	 again	

segregating	for	susceptible	and	resistant	at	a	ratio	of	3:1.		Biffen	also	noted	that	

no	morphological	defects	were	present	in	the	resistant	F2,	consequently	making	

the	lines	ideal	for	selection	of	parents	for	the	breeding	of	commercial	varieties.		

The	first	application	of	genetics	to	study	both	the	plant	and	pathogen	was	

performed	 on	 the	 Linum	 usitatissimum	 (flax)	 and	 Melampsora	 lini	 (flax	 rust)	
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pathosystem	 (Flor,	 1942;	 Flor,	 1947;	 Flor	 1955).	 	 Flor	 generated	hybrids	 from	

cross-fertilizing	 different	 races	 of	 the	 fungus,	 and	 evaluated	 the	 segregation	 of	

pathogenicity	 in	 F2	 generation	 following	 inoculation	 of	 flax	 varieties	 each	

containing	 a	 different	 R-gene.	 	 	 In	 many	 cases,	 he	 observed	 a	 3:1	 ratio	 of	

avirulent	 to	 virulent	 F2	 progeny,	 suggesting	 that	 a	 single	 avr	 allele	 confers	 an	

incompatible	 phenotype	 in	 a	 specific	 correspondence	with	 each	R-gene.	 	 From	

this,	Flor	proposed	an	interaction	between	paired	cognate	genes	in	the	pathogen	

and	 host.	 	 This	 provided	 a	 theoretical	 basis	 for	 the	 gene-for-gene	 hypothesis	

(Flor,	 1971),	where	 an	 avirulence	 gene	 in	 the	 pathogen	 produces	 an	 avirulent	

phenotype	 on	 a	 host	 possessing	 the	 corresponding	 R	 gene.	 	 There	 were	

exceptions.	 	 For	 example,	 two	 flax	 varieties	 were	 resistant	 and	 six	 were	

susceptible	 to	all	F2	 fungal	cultures,	and	one	culture	showed	segregation	ratios	

suggestive	of	two	recessive	loci	inducing	pathogenicity.	 	However,	Flor's	simple	

gene-for-gene	 hypothesis	 has	 provided	 a	 general	 explanation	 for	 major	 gene	

resistance	commonly	used	to	develop	new	resistant	varieties,	and	as	described	

below,	provided	the	theoretical	basis	for	the	molecular	identification	of	host	and	

pathogen	genes	encoding	matching	pairs	of	recognition	(R)	and	avirulence	(avr)	

proteins,	respectively.		

	

1.3	 Molecular	basis	of	induced	host	defence	

Active	 defence	 following	 pathogen	 infection	 results	 in	 a	 hypersensitive	

(HR)	response,	the	initiation	of	rapid	cell	death	surrounding	the	site	of	infection	

to	 arrest	 pathogen	 development	 (Jones	 and	 Dangl,	 2006).	 	 The	 recognition	

initiating	 a	 HR	 has	 common	 features	 to	 the	 defence	 strategies	 deployed	 by	

vertebrates.		In	both	cases,	host	recognition	of	pathogen	derived	proteins	results	

in	 the	 induction	 of	 signalling	 cascades	 that	 generate	 a	 defence	 response.	 	 In	

mammalian	 pathosystems,	 initial	 recognition	 is	 triggered	 by	 antigens,	 and	 in	

plants	by	elicitors	(Keen,	1990).		Elicitors	translated	from	avirulence	genes	only	

initiate	 an	 HR	 response	 in	 plants	 possessing	 the	 corresponding	 R	 gene.		

Pathogens	 vary	 in	 their	 avirulence	 gene	 repertoire	 and	 consequently	 their	

compatible	 (virulent)	 and	 incompatible	 (avirulent)	 host	 interactions.		

Consequently,	 avirulence	 genes	 generate	 specific	 recognition	 by	 certain	 plant	

species.	
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The	 isolation	 of	 the	 first	 pathogen	 effectors	 was	 achieved	 through	 the	

generation	 of	 a	 genomic	 library	 of	 Pseudomonas	 syringae	 pv.	 glycinea	

(Staskawicz	et	al.,	1984).	Out	of	680	race	6	cosmid	clones	mobilised	in	individual	

conjugations	 to	 a	 race	 5	 strain,	 a	 single	 clone	 changed	 the	 race	 5	 isolate	 from	

virulent	 to	 avirulent	 on	 susceptible	 soybean	 cultivars.	 	 Similar	 work	 on	 P.	

syringae	 pv.	 tomato	 race	 0	 led	 to	 the	 discovery	 of	avrPto	(Ronald	et	al.,	 1992).	

This	avirulence	gene	interacts	with	the	tomato	Pto	R	gene,	which	in	turn	was	the	

first	 R	 gene	 to	 be	 cloned	 that	 fits	 the	 gene-for-gene	 hypothesis	 (Martin	 et	al.,	

1993).	 	Different	 resistance	 genes	 are	often	 clustered	with	 alternate	 functional	

alleles	being	present	at	 some	R	gene	 loci.	 	A	high	recombination	 frequency	has	

also	been	observed	between	tightly	linked	R	genes,	allowing	for	the	selection	of	

new	 recognition	 specify	 (Crute	 and	 Pink,	 1996,	 Bennetzen	 et	al.,	 1988,	 Pryor,	

1987,	Shepherd	and	Mayo,	1972).	

Adapted	 pathogens	 secrete	 further	 effectors	 that	 evade	 or	 suppress	

pattern	 recognition	 receptor	 dependant	 responses.	 	 Effector	 repertoires	 have	

been	 documented	 in	 a	 diverse	 range	 of	 pathogens.	 	Pseudomonas	syringae	can	

suppress	 PAMP	 triggered	 immunity	 through	 the	 injection	 of	 type	 III	 effector	

(T3E)	 proteins	 into	 the	 host	 cell.	 	 Immune	 suppression	 is	 achieved	 through	

altering	 organelle	 function,	 blocking	 RNA	 pathways	 and	 interfering	 with	

receptor	signalling	(Block	and	Alfano,	2011).		

The	 first	 layer	 of	 plant	 immunity	 is	 perception	 by	 extracellular	 pattern	

recognition	 receptors.	 	 Typically	 plasma	 membrane-localized	 receptor-like	

kinases	 or	 receptor-like	 proteins,	 pattern	 recognised	 receptors	 recognise	

conserved	microbial	or	pathogen	associated	molecular	patterns	(PAMPs)	such	as	

peptidoglycans,	 bacterial	 lipopolysaccharides	 or	 fungal	 chitin	 (Monaghan	 and	

Zipfel,	 2012).	 	 A	 binding	 of	 the	 effector	 and	 R	protein	 initiates	 physiological	

changes	 in	 the	 host	 that	 attempt	 to	 suppress	 infection.	 	 These	 include	

intracellular	 signalling	 and	 a	 transcriptional	 reprogramming	 through	 the	

activation	of	calcium-dependant	and	mitogen-dependant	protein	kinases,	which	

is	sufficient	to	inhibit	colonisation	in	the	majority	of	cases	(Monaghan	and	Zipfel,	

2012).	
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Intracellular	 immune	 receptors	 provide	 the	 second	 layer	 of	 defence	 by	

recognition	 of	 secreted	 pathogen	 effector	 proteins.	 	 Such	 resistance	 is	 often	

correlated	with	an	HR.		These	cytoplasmic	R	genes	typically	encode	proteins	with	

a	central	nucleotide	binding	(NB)	domain,	flanked	by	leucine	rich	repeats	(LRRs)	

on	 the	 C-	 terminal	 and	 an	 N-terminal	 signalling	 domain.	 	 Two	 modes	 of	

recognition	 of	 NB-LRR	 genes	 have	 been	 documented:	 non-self-recognition	

through	directly	interacting	with	effector	proteins,	and	modified	self-recognition	

through	 recognising	 host	 target	modification	 by	 effector	 proteins	 (Chisholm	et	

al.,	2006,	Jones	and	Dangl,	2006).	

The	 HR	 induced	 necrosis	 does	 not	 directly	 inhibit	 the	 pathogen,	 but	

enables	 the	 build-up	 of	 metabolites	 that	 act	 as	 secondary	 elicitor	 for	 the	

activation	of	defence	response	in	neighbouring	cells.		Therefore,	R	genes	encode	

two	 functions:	 the	 specific	 recognition	 of	 pathogen	 elicitors	 and	 HR	 initiation	

(Keen,	1990).	

NB-LRR	genes	are	highly	polymorphic	owing	to	the	specialisation	induced	

through	pathogen	host	coevolution.	 	Positive	selection	 for	adaptation	 following	

the	loss	of	immunity	is	apparent	through	allelic	sequence	variation.		Divergence	

within	 NB-LRR	 genes	 has	 developed	 two	 subclasses	 distinguished	 by	 an	 N-

terminal	Coiled-coil	(CC)	or	Toll	and	human	interleukin	receptor	(TIR)	domain.		

This	divergence	has	 led	to	differences	 in	signalling	networks,	with	TIR-NB-LRR	

genes	requiring	a	functional	allele	of	a	lipase-like	enhanced	disease	susceptibility	

(EDS)1	gene,	and	CC-NB-LRR	genes	often	requiring	the	Non-race-specific	Disease	

Resistance	 (NDR)1	 gene	 to	 confer	 resistance	 (Aarts	et	al.,	 1998b,	McHale	et	al.,	

2006).	 	 New	 specificities	 can	 also	 evolve	 owing	 to	 the	 complexity	 of	 NB-LRR	

genes,	 where	 transposon	 insertions,	 gene	 rearrangements	 and	 duplications	

allow	 for	 the	 selection	 of	mutations	 conferring	 resistance	 to	 different	 isolates.		

However,	the	limited	number	of	NB-LLR	repertories	in	any	given	plant	genome	

indicate	the	original	virulence	factors	were	conserved	across	different	pathogen	

classes	(Goritschnig	et	al.,	2016).	
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1.4	 The	Brassicaceae	

The	 angiosperm	 family	Brassicaceae	 is	 currently	 known	 to	 include	 338	 genera	

and	3709	 species	 (Warwick	et	al.,	 2006).	Many	are	 important	 to	both	 research	

and	agriculture,	the	foremost	being	the	Brassica	crops	and	Arabidopsis	thaliana.		

A.	thaliana	has	become	the	experimental	model	system	of	choice	in	plant	biology	

owing	to	its	comparatively	small	genome	and	chromosome	number	(157	Mb,	n	=	

5)	(Johnston	et	al.,	2005),	rapid	generation	time,	ease	of	crossing	and	fecundity	

(Meyerowitz	and	Somerville,	1994).	 	Over	three	decades	since	1985,	more	than	

50,000	research	articles	have	been	published	covering	406	biological	disciplines	

which	 contain	 Arabidopsis	 in	 the	 title,	 abstract	 or	 keywords	 (Provart	 et	 al.,	

2016).		This	research	has	developed	the	field	of	plant	biology	creating	new	ways	

address	food	insecurity	through	crop	improvement.	

	 Brassicas	are	 highly	 diverse	 in	 both	 speciation	 and	 morphology.	 	 This	

diversity	has	led	to	the	worldwide	cultivation	of	brassica	crops	that	are	adapted	

to	 different	 climates	 with	 different	 harvestable	 components	 that	 are	 used	 as	

culinary	vegetable,	oilseeds	and	condiments	(Cheng	et	al.,	2014).	 	Three	diploid	

brassicas	(B.	rapa,	(AA),	n	=	10;	B.	nigra,	(BB),	n	=	8;	and	B.	oleracea,	(CC),	n	=	9)	

and	 three	 allotetraploids	 originating	 from	 each	 pair	 of	 diploids	 (B.	 juncea,	

(AABB),	n	=	18;	B.	napus,	(AACC),	n	=	19;	and	B.	carinata,	(BBCC),	n	=	10)	are	the	

most	widely	cultivated.		The	relationship	between	the	species	was	first	observed	

by	U	(1935),	and	is	widely	referred	to	as	‘The	Triangle	of	U’	(Figure	1.1).	

	The	diversity	of	cultivated	subspecies	within	each	of	the	Brassica	denoted	

by	 ‘U’s’	 triangle	 is	 again	 extensive.	B.	rapa	 includes	 turnip,	 cok	 choy	 and	 field	

mustard.	B.	nigra	 is	 primarily	 cultivated	 for	 seeds	 used	 as	 a	 spice.	B.	oleracea	

cultivars	 include	 cabbage,	 broccoli,	 kale,	 cauliflower	 and	 Brussels	 sprouts.	 B.	

juncea	is	a	mustard	variety,	with	cultivars	including	English,	Indian	and	Chinese	

mustard.	 B.	 carinata	 is	 predominantly	 cultivated	 as	 an	 oilseed	 crop,	 although	

comparatively	high	seed	glucosinolate	and	erucic	acid	 levels	make	B.	napas	the	

primary	 source	 of	 oilseed	 production.	 Turnip	 cultivars	 of	 B.	 napus	 are	 also	

grown,	 and	 are	 predominantly	 used	 for	 animal	 fodder	 (Schmidt	 and	 Bancroft,	

2011).	
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Figure	 1.1	 U’s	 triangle	 (U,	 1935)	 representing	 the	 relationship	 between	 the	
three	 diploid	 Brassicas	Brassica	rapa,	Brassica	nigra	and	Brassica	oleracea,	and	
the	 three	 allotetraploids	 Brassica	carinata,	Brassica	 juncea	and	 Brassica	napus.	
The	haploid	genomes	of	each	diploid	species	are	labelled	A	(B.	rapa),	B	(B.	nigra)	
and	C	(B.	oleracea).		
	

Polyploidy	 has	 been	 identified	 a	 driving	 force	 for	 evolution	 and	

speciation,	 through	 the	 creation	 large	 levels	 of	 gene	 redundancy,	 enabling	

evolutionary	 adaptation	 through	 subfunctionalization	 or	 neofunctionalization	

(Cusack	 and	 Wolfe,	 2007,	 Blanc	 and	 Wolfe,	 2004).	 	 The	 higher	 chromosome	

number	and	 increased	genome	size	are	 indicative	of	 time	since	 the	polyploidy.		

Neopolyploids	 such	 as	 B.	 napus	 will	 evolve	 to	 mesopolyploids	 and	 ultimately	

paleopolyploids	through	diploidization	and	genetic	rearrangement	(Wolfe,	2001,	

Kagale	et	al.,	2014).		Parental	subgenomes	are	discernible	in	both	neopolyploids	

and	 mesopolyploids,	 yet	 are	 more	 disguised	 in	 paleopolyploids	 owing	 to	

integration	through	genome	restructuring	over	time	(Kagale	et	al.,	2014).		The	A.	

thaliana	genome	reveals	evidence	of	three	distinct	polyploidy	events,	a,	b	and	g	

(Bowers	et	al.,	2003)	that	are	shared	with	the	crucifer	taxa	(Haudry	et	al.,	2013).		

The	genus	Brassica	shows	evidence	of	a	further	whole	genome	triplication	event	
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n=8

BB
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AABB
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Brassica	napus
n=19

AACC

Brassica	oleracea
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(Wang	et	al.,	2011,	Beilstein	et	al.,	2010,	Haudry	et	al.,	2013,	Kagale	et	al.,	2014,	

Liu	 et	 al.,	 2014,	 Parkin	 et	 al.,	 2014)	 that	 has	 driven	 the	 diversification	 now	

utilised	by	agriculture	(Cheng	et	al.,	2014).	

The	 Arabidopsis	 and	 Brassica	 genomes	 have	 been	 shown	 to	 share	 a	

minimum	of	21	 conserved	 syntenic	blocks	 (Lysak	et	al.,	 2007).	 	The	phylogeny	

between	 A.	 thaliana,	 the	 Brassica	 A,	 B	 and	 C	 genomes	 and	 the	 three	

allotetraploids	denoted	by	U’s	triangle	enable	comparative	analysis	between	the	

model	 organism	 and	 its	 important	 crop	 relatives.	 	 Such	 analysis	 enables	 an	

understanding	of	how	speciation	caused	the	loss,	retention	and	adaptation	of	R	

genes	that	has	driven	pathogen	adaptation	(Peele	et	al.,	2014,	Yu	et	al.,	2014).	

The	diversity	 across	 the	Brassica	 species	 is	 reflected	by	 the	diversity	 in	

pathogenic	 organisms	 that	 have	 adapted	 to	 exist	 on	 Brassica	 hosts,	 causing	

economically	 significant	 crop	 damage	 and	 increasing	 the	 agrochemical	

requirement	 for	 production.	 In	 many	 cases,	 much	 progress	 has	 been	made	 in	

understanding	 the	genetic	basis	 for	 resistance	 in	wild	 relatives	of	 crop	 species	

and/or	 crop	 varieties,	 enabling	 the	 introgression	 of	 resistant	 traits	 through	

conventional	 breeding	 aided	 by	 marker	 assisted	 selection	 or	 transgenic	

approaches.	 The	 airborne	 fungal	 pathogen	 Leptosphaeria	maculans	 causes	 the	

disease	 Phoma	 stem	 canker,	 inducing	 serious	 losses	 in	 B.	 napus	 in	 North	

America,	and	Australia,	with	UK	losses	in	excess	of	£48	million	per	annum	(Fitt	et	

al.,	2006).	Major	gene	resistance	has	now	been	discovered	in	B.	napus	(Delourme	

et	 al.,	 2006).	 Light	 leaf	 spot	 is	 caused	 by	 the	 airborne	 fungus	 Pyrenopeziza	

brassicae	 and	 is	 one	 of	 the	most	 significant	 diseases	 of	B.	napus	in	 continental	

Europe	 and	 the	 UK,	 and	 also	 causes	 severe	 losses	 in	 B.	oleracea	 (Majer	 et	al.,	

1998).	QTL’s	contributing	to	field	resistance	have	now	been	identified	in	B.	napus	

(Pilet	 et	 al.,	 1998).	 Downy	 mildew,	 caused	 by	 the	 terrestrial	 oomycete	

Peronospora	parasitica	 is	 both	 soil	 and	 airborne,	 has	 a	worldwide	 distribution	

and	is	one	of	the	most	damaging	foliar	diseases	of	B.	oleracea.	Resistant	sources	

have	 been	 identified	 in	 B.	 oleracea	 diversity	 collections,	 and	 generated	 into	

double	haploid	lines	to	determine	the	genetic	basis	for	resistance	(Vicente	et	al.,	

2012).	 Vascular	 wilt	 of	 B.	 napus	 caused	 by	 soil	 borne	 fungus	 Verticillium	

longisporum	was	 first	 confirmed	 in	 the	UK	 in	2007	and	 can	 causes	 crop	 losses	

ranging	 from	 12-24%.	 Significant	 losses	 in	 B.	 oleracea	 have	 also	 been	
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documented	 (Klosterman	et	al.,	 2009).	 Differential	 responses	 to	 infection	 have	

now	been	discovered	in	B.	napus,	providing	a	means	for	determining	the	genetic	

basis	of	resistance	 (Eynck	et	al.,	2007).	Turnip	yellows	virus	 is	one	of	 the	most	

important	viruses	effecting	Brassicas	in	 the	United	Kingdom	and	 is	 transmitted	

through	the	mouth	parts	of	Myzuz	persicae	(peach	potato	aphid).	Oil	content	and	

yield	of	B.	napus	and	vegetative	production	of	B.	oleracea	are	seriously	affected	

by	infection.	Introgression	of	resistance	into	commercial	B.	napus	has	now	been	

achieved	 (AHDB,	 2015).	 Black	 spot	 caused	 by	 different	 species	 of	 the	 soil	 an	

airborne	fungus	Alternaria	is	infectious	across	the	Brassicaceae,	with	crop	losses	

as	high	86%	in	B.	oleracea	being	documented	(Nowicki	et	al.,	2012).	Major	effect	

resistance	 has	 not	 yet	 been	 identified	 in	 cultivated	 Brassica	species,	 although	

differing	 degrees	 of	 tolerance	 have	 been	 reported	 (Nowicki	 et	 al.,	 2012).	

Sclerotinia	 stem	 rot	 caused	 by	 the	 soil	 borne	 fungus	Sclerotinia	sclerotiorum	is	

again	 damaging	 across	 the	 Brassicaceae,	 causing	 yield	 losses	 in	 oilseed	

production	ranging	from	10-80%	(Mei	et	al.,	2011).		Loci	associated	with	partial	

resistance	 (Zhao	and	Meng,	2003)	 and	major	 resistance	 (Wu	et	al.,	 2013)	have	

now	been	discovered	 in	B.	napus.	Clubroot	caused	by	Plasmodiophora	brassicae	

has	 a	 world-wide	 distribution	 and	 is	 pathogenic	 across	 the	 Brassicaceae.	

Resistant	B.	rapa	 accessions	 have	 now	 been	 developed	 using	 European	 turnip	

cultivars	as	a	 source	of	 resistance	 (Hirai,	2006).	Xanthomonas	campestris	is	 the	

causal	 agent	 black	 rot	 of	 crucifers	 and	 Brassica,	 and	 is	 the	 most	 important	

disease	of	B.	oleracea	worldwide.	Resistance	to	different	physiological	races	of	X.	

campestris	has	now	been	discovers	in	both	B.	oleracea	and	B.	campestris	(Vicente	

et	al.,	2002).		

	

1.5	 Albugo	candida	

The	 eukaryotic	 oomycete	 order	 Albuginales	 consists	 entirely	 of	 obligate	

biotrophic	pathogens	of	plants.	 	The	largest	genus	is	Albugo,	the	causal	agent	of	

white	 blister	 rust	 (white	 rust	 or	 staghead),	with	 a	worldwide	 distribution	 and	

comprised	of	over	50	species	that	collectively	parasitize	over	400	domesticated	

and	 wild	 host	 species	 (Biga,	 1955,	 Choi	 and	 Priest,	 1995,	 Walker	 and	 Priest,	

2007).	 	 Three	 species	 cause	 economically	 significant	 crop	 damage	 including	A.	

candida	 in	 oilseed	 and	 vegetable	 brassicas	 (Choi	 et	 al.,	 2009),	 A.	 ipomoeae-
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panduratae	in	sweet	potato	(Sato	et	al.,	2009),	and	A.	tragopogonis	(syn.	Pustula	

helianthicola)	in	sunflower	(Lava	et	al.,	2013,	Thines	et	al.,	2006).	

White	 blister	 rust	 causes	 crop	 yield	 and	 quality	 reductions	 in	 different	

ways.	 	The	development	of	rust	pustules	on	foliage	restricts	the	photosynthetic	

capacity	 of	 the	 host,	 whilst	 simultaneously	 downgrading	 the	 aesthetic	 and	

nutritional	 quality	 of	 the	harvestable	 component.	 	 Pustule	 growth	on	 the	 stem	

causes	 structural	 weakness,	 impairing	 transpiration	 and	 nutrient	 transport	

whilst	 increasing	 the	 likelihood	 of	 lodging.	 	 Malformations	 such	 as	 abnormal	

stem	twisting	and	impaired	floral	development	cause	the	majority	of	seed	yield	

reductions	 through	 pod	 abortion	 and	 frequently	 host	 death	 (Figure	 1.2).	 	 This	

phase	of	disease	 is	especially	destructive	 in	seed	crops	such	as	 Indian	mustard	

(B.	 juncea).	 	 Symptoms	 are	 influenced	 planting	 time,	 nutrient	 availability,	

environmental	 conditions	 and	 genotype-pathotype	 interaction	 (Saharan	 and	

Verma,	1992).	

A.	 candida	 can	 infect	 over	 200	 host	 species	 in	 63	 genera	 within	 the	

Brassicaceae.	 Pathogen	 development	 post	 infection	 is	 favoured	 by	 canopy	

temperatures	ranging	from	12-24°C	with	relative	humidity	in	excess	of	70%	(Liu	

and	Rimmer,	1990,	Chattopadhyay	et	al.,	2011).		Regions	where	such	conditions	

commonly	present	during	 crop	development	 include	 India	and	Pakistan	where	

large	areas	of	arable	land	are	dedicated	to	the	cultivation	of	susceptible	B.	juncea	

and	oilseed	crucifers.		Yield	reductions	following	white	rust	have	been	calculated	

to	be	as	high	as	89.8%,	but	more	commonly	 range	 from	40-60%	(Saharan	and	

Verma,	1992).	 	 Such	 losses	 impact	 regional	 food	security	and	are	economically	

devastating	 to	 smallholder	 farmers.	 	 In	United	Kingdom	high	 rates	of	 infection	

can	be	observed	 in	commercially	grown	B.	oleracea,	B.	juncea	and	wild	Capsella	

bursa-pastoris.	
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A	 	 	 	 	 	 					

	

B	

	

Figure	1.		White	blister	rust	caused	by	Albugo	candida	growing	on	A,	leaf	tissue	
of	Brassica	oleracea	(cabbage)	in	Warwickshire,	UK;	B,	Inflorescence	tissue	of	B.	
juncea	(English	mustard)	growing	in	Peterborough,	UK.	
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A.	 candida	 is	 a	 diploid	 organism	 that	 reproduces	 both	 sexually	 and	

asexually.	 	 Generally,	 symptoms	 become	 apparent	 above	 ground	 through	 the	

development	of	white	pustules	on	the	leaf	surface	and	aerially	exposed	regions	

through	 the	 enzymatic	 digestion	of	 epidermal	 cell	walls.	 	 The	pustules	 contain	

asexual	sporangiospores,	 situated	 for	dispersal	by	air	currents	or	rain	droplets	

following	 the	 rupturing	 of	 the	 sorus.	 	 Each	 sporangiospore	 contains	 4-6	

biflagellate	zoospores,	which	are	released	upon	re-hydration	and	swim	into	the	

stomatal	 opening	 of	 the	 subsequent	 host.	 	 Following	 infection,	 the	 zoospores	

encyst	through	the	loss	of	the	flagella	and	the	production	of	cell	walls;	allowing	

the	development	of	a	germ	tube	which	enters	the	sub-stomatal	chamber	before	

penetrating	 the	 palisade	 mesophyll	 cells.	 	 Intercellular	 hyphae	 then	 migrate	

through	 the	 leaf	 tissue	 where	 they	 encounter	 veins,	 allowing	 access	 to	 the	

hypocotyl	causing	the	infection	to	become	systemic.	 	Epidermal	emergence	and	

subsequent	 sporulation	 conclude	 the	 asexual	 life	 cycle	 (Holub	 et	al.,	 1995).	 A.	

candida	 also	 exists	 in	 the	 soil	 or	 as	 a	 seedbourne	 contaminant	 as	 dormant	

oospores	 developed	 through	 induced	 hypertrophy	 associated	 with	 the	 sexual	

phase	 of	 reproduction.	 	 Male	 (antheridia)	 and	 female	 (oogonia)	 sex	 organs	

develop	 on	 the	 hyphal	 tips	 deep	 within	 the	 inflorescence	 tissue	 (Holub	 et	al.,	

1995).	

A.	candida	is	currently	subdivided	into	17	physiological	races	determined	

by	host	specificity	across	the	Brassicaceae.		The	first	six	races	were	described	by	

Pound	and	Williams	(1963)	as	race	1	of	Raphanus	stivas,	race	2	of	B.	juncea,	race	

3	of	Armoracia	rusticana,	race	4	of	Capsella	bursa-pastoris,	race	5	of	Sisymbrium	

officinale	and	 race	 6	Rorippa	islandica.	 	 	Race	 7	 was	 later	 reported	 on	B.	rapa	

(syn.	 B.	 campestris;	 (Verma	et	al.,	 1975)),	 race	 8	 on	 B.	nigra	 (Delwiche,	 1976),	

race	9	on	B.	oleracea	and	race	10	Sinapis	arvensis	(Hill	et	al.,	1988),	race	11	on	B.	

carinata	 (Williams,	 1985)	 and	 races	 12	 –	 17	 providing	 a	 host	 differential	

between	Indian	varieties	of	B.	rapa	and	B.	juncea	(Verma	et	al.,	1999,	Gupta	and	

Saharan,	 2002).	 	 In	 addition,	 sub-characterisation	 of	 race	 2	 and	 7	 identifies	

virulence	 (V)	 or	 avirulence	 (A)	 on	 cultivars	 of	 B.	 juncea	 and	 B.	 rapa	 (Petrie,	

1994).	
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It	remains	unclear	how	the	races	of	A.	candida	evolved.		Evolutionary	and	

population	 genetic	 theory	 suggest	 that	 the	 natural	 selection	 and	 trade-offs	 of	

specialisation	 can	 lead	 to	 adaptive	 radiation	 and	 speciation	 of	 a	 pathogen	

(Abbott	et	al.,	2013,	Stukenbrock	et	al.,	2012).	 	However,	A.	candida	 is	a	distinct	

species	 that	 maintains	 multiple	 physiologically	 specialised	 races	 (described	

above),	which	are	each	adapted	for	a	different	range	of	host	species.	 	Yet	 there	

are	 examples	 of	 races	 able	 to	 cause	 disease	 on	 Brassicaceae	 other	 than	 their	

corresponding	 host	 (Pound	 and	 Williams,	 1963,	 Downey	 and	 Rimmer,	 1993,	

Rimmer	et	al.,	2000).	

Albugo	 spp.	 are	 highly	 effective	 in	 suppressing	 host	 defence	 with	 the	

consequence	 of	 enhancing	 susceptibility	 to	 secondary	 infection	 by	 otherwise	

avirulent	pathogens	(Cooper	et	al.,	2008).		Thus,	it	is	possible	that	suppression	of	

innate	immunity	facilitates	the	coexistence	of	multiple	physiological	races	in	the	

same	host	tissue,	enabling	sexual-crossing	that	enables	the	emergence	of	distinct	

species	 (Hedrick,	 2013).	 	 Comparative	 analysis	 of	whole	 genome	 sequences	 of	

five	A.	candida	confirmed	molecular	divergence	of	three	distinct	races	(McMullan	

et	 al.,	 2015).	 However,	 there	 was	 a	 mosaic	 structure	 of	 sequence	 variation	

indicating	 genetic	 recombination	 between	 the	 different	 subgroups	 had	 indeed	

occurred.		

However,	 this	 mechanism	 promotes	 intraspecific	 competition	 for	

resources	from	different	pathogens	such	as	Hyaloperonospora	parasitica	(Cooper	

et	al.,	2008).		In	addition,	the	gene-for-gene	hypothesis	predicts	that	pathotypes	

will	commonly	occur	within	physiological	races	that	have	the	ability	to	overcome	

or	break	resistance	conferred	by	a	specific	R-gene.	Sexual	reproduction	between	

races	 would	 potentially	 create	 an	 evolutionary	 disadvantage,	 as	 hybrids	 will	

inherit	 effector	 repertoires	 from	 both	 parental	 races,	 enabling	 recognition	 by	

host	 immunity	 that	 would	 otherwise	 go	 undetected.	 	 Yet	 under	 the	 extreme	

selection	 pressure	 presented	 in	 monoculture	 cropping	 systems,	 functional	

recombinants	may	ultimately	be	generated,	with	asexual	reproduction	allowing	

rapid	colonisation	once	a	functional	hybrid	has	been	selected.	
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1.6	 White	rust	resistance	in	Brassicaceae	hosts	

Much	has	been	achieved	 in	understanding	the	genetics	of	white	rust	resistance	

across	the	Brassicaceae.	 	 In	A.	thaliana,	 resistance	to	race	4	 isolate	AcEm1	with	

phenotype	 of	 small	 necrotic	 flecks	 on	 the	 upper	 leaf	 surface	 was	 mapped	 on	

chromosome	 1	 in	 Ksk-1	 ((Crute	 et	 al.,	 1993,	 Holub	 et	 al.,	 1995).	 	 Defined	 as	

resistance	to	A.	candida	(RAc)1,	the	locus	was	further	characterised	as	a	TIR-NB-

LRR	 (Borhan	 et	 al.,	 2004)	 requiring	 functional	 expression	 of	 the	 lipase	 like	

(EDS)1	(Aarts	et	al.,	1998b).	 	Recessive	resistance	RAc2	has	been	mapped	to	a	6	

cM	 interval	 at	 the	 bottom	 arm	 of	 chromosome	 3	 in	 Ksk-2	 and	RAc3	 has	 been	

identified	as	 linked	to	 the	RPP8/HRT	on	chromosome	5	 in	Ksk-1	(Borhan	et	al.,	

2001).	 	 The	 white	 rust	 resistance	 gene,	 (WRR)4	 has	 been	 characterised	 in	 A.	

thaliana	 Col-0.	 	 Located	 on	 the	 bottom	 arm	 chromosome	 1,	WRR4	 is	 an	EDS1	

dependent	TIR-NB-LRR,	and	confers	major	effect	resistance	to	A.	candida	races	2,	

4,	7	and	9	(Borhan	et	al.,	2008).		Col-0	is	now	known	to	possess	three	other	WRR	

alleles,	 the	 functional	 gene	 pair	WRR5	 and	 6,	 and	WRR7.	 	 All	 are	 situated	 on	

chromosome	5	(Holub	and	Cevik,	unpublished).	

Pound	and	Williams	(1963)	observed	a	3:1	segregation	ratios	of	resistant	

to	 susceptible	 from	 separate	 self-pollinated	 heterogeneous	 accessions	 of	 B.	

oleracea	resistant	to	a	race	1	isolate,	suggestive	of	resistance	being	conferred	by	

a	single	dominant	gene.		In	B.	napus,	inheritance	studies	on	independent	crosses	

between	 the	 Canadian	 race	 7	 resistant	 cultivar	 Regent	 with	 two	 Chinese	

susceptible	cultivars	predicted	three	independent	dominant	genes	at	three	loci,	

Ac7-1,	Ac7-2	and	Ac7-3	(Fan	et	al.,	1983,	Liu	et	al.,	1996).		Inheritance	studies	in	

B.	napus	have	also	suggested	a	single	recessive	gene	(wpr)	conferring	a	partially	

resistant	phenotype	with	pinhead	size	pustules	developing	on	the	leaf	surface	at	

the	site	of	infection	in	B.	napus,	(Bansal	et	al.,	2005).	

In	 B.	 juncea,	 A.	 candida	resistance	 (Acr),	 has	 been	 mapped	 to	 a	 6.3	 cM	

region	chromosome	7	in	resistant	line	J90-2733	(Cheung	et	al.,	1998).	J90-2733	

was	also	used	to	define	A.	candida	Ac2(t)	locus	with	RADP	markers	(Prabhu	et	al.,	

1998).	This	was	subsequently	narrowed	with	two	PCR-based	cleaved	amplified	

polymorphic	(CAPS)	markers	at	distances	of	3.8	cM	and	67	cM	from	the	R	gene	

(Varshney	et	al.,	2004).	Here,	the	use	of	PCR	based	genotyping	greatly	improved	

that	ability	 for	breeders	 to	apply	marker	assisted	selection	(MAS).	Two	further	
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independent	 loci	 have	 been	mapped	 in	B.	 juncea	 in	 partially	 resistant	 Eastern	

European	 line	 Heera	 on	 A4	 (AcB1-A4.1),	 and	 fully	 resistant	 Eastern	 European	

line	Donskaja-IV	on	A5	(AcB1-A5)	(Panjabi-Massand	et	al.,	2010).	Evolving	in	the	

absence	 of	 pathotypes	 found	 in	 South	 Asia,	 these	 sources	 of	 resistance	 may	

prove	durable	in	Indian	oilseed	production.	

In	B.	rapa,	the	development	of	144	restriction	fragment	length	markers	on	

a	susceptible	‘R500’	x	race	2	and	7	resistant	‘Per’	recombinant	identified	a	single	

major	 effect	 locus	 (Aca1)	 on	 A4	 in	 the	 same	 location	 as	 resistance	 previously	

characterised	 against	 race	 2.	 	 This	 suggested	 either	 a	 single	 gene	 conferring	

resistance	 to	 both	 races	 or	 two	 tightly	 linked	 genes	 (Kole	 et	 al.,	 2002).	 	 In	

addition,	a	second	a	minor	effect	QTL	was	discovered	on	A02,	syntenic	to	Aca2	

conferring	 resistance	 to	 race	 9	 in	 B.	 oleracea	 which	 we	 define	 in	 this	 work	

(Chapter	2).	

	

1.7	 Genetics	of	avirulence	in	Albugo	candida	

The	 inheritance	 of	 virulence	 in	 the	 pathogen	 has	 also	 been	 studied.	 	 By	

generating	 hybrids	 of	 race	 2	 and	 race	 7	 through	 co-infection	 on	 a	 common	

susceptible	 host	 and	 examining	 virulence	 of	 the	 F2	 on	 cultivars	 of	 B.	 rapa	 cv.	

Torch,	 a	 3:1	 segregation	 ratio	 was	 observed,	 suggestive	 of	 a	 single	 dominant	

avirulent	gene	(AvrAc1)	 (Adhikari	et	al.,	2003).	 	This	provided	 further	evidence	

of	a	gene	for	gene	relationship	in	the	Albugo-Brassica	pathosystem.		In	addition,	

systemic	 resistance	 to	A.	candida	 has	 shown	 to	 be	 induced	 by	 pre	 inoculation	

with	incompatible	 isolates	prior	to	 inoculation	with	otherwise	virulent	 isolates,	

or	 inoculation	with	both	virulent	and	a	virulent	isolate	in	B.	juncea	(Singh	et	al,	

1999)	(Singh	et	al.,	1999).		
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1.8	 Aims	and	objectives	

Broad	spectrum	resistance	to	A.	candida	race	9	has	previously	been	identified	in	

the	B.	oleracea	 double	 haploid	 accession	 EBH527,	whilst	 the	accession	 A12DH	

was	 identified	 as	 being	 broadly	 susceptible	 to	 an	 extensive	 collection	 of	 A.	

candida	 isolates	 derived	 from	 UK	 B.	 oleracea	 production	 (DEFRA,	 2003).		

However,	 interestingly,	 this	 accession	 is	 resistant	 to	 an	 A.	 candida	 isolate	

obtained	from	Australia	(AcAus)	(Holub,	unpublished).		Thus,	the	primary	aim	of	

this	 study	 was	 to	 generate	 an	 F5	 recombinant	 inbred	 population	 of	 A12DH	 x	

EBH527,	 and	apply	next	generation	 sequencing	 to	develop	markers	and	define	

the	genetic	basis	for	resistance	in	EBH527.	Secondly,	to	define	a	locus	conferring	

resistance	to	AcAus	in	A12DH	using	the	same	population.	

Borhan	et	al	(2008)	proposed	that	A.	candida	contains	a	highly	conserved	

effector	 present	 in	 at	 least	 four	 races	 (2,	 4,	 7	 and	 9)	 to	 explain	 the	 apparent	

broad	spectrum	resistance	conferred	by	the	WRR4-Col	allele	from	A.	thaliana.	 	If	

so,	 then	 Col-virulent	 pathotypes	 may	 arise	 in	 natural	 populations	 due	 to	

mutations	in	this	predicted	Avr	gene.		Two	WRR4-Col	virulent	isolates,	AcExeter	

and	AcCarlisle,	have	been	identified	((Fairhead,	2012)	Master’s	thesis).	The	third	

aim	of	this	study	was	to	use	AcExeter	and	AcCarlisle	to	identify	and	map	a	new	

and	potentially	broader	spectrum	source	of	white	rust	 resistance	 in	A.	thaliana	

that	could	be	used	as	a	transgene	in	commercial	Brassica	production.	

Although	A.	candida	has	been	useful	to	investigate	disease	resistance	in	A.	

thaliana	 under	 controlled	 environment	 conditions,	 it	 is	 important	 to	 know	

whether	 A.	 thaliana	 is	 a	 potential	 reservoir	 for	 this	 pathogen	 under	 field	

conditions.			Thus,	the	fourth	aim	was	to	determine	whether	A.	candida	could	be	

readily	detected	as	the	cause	of	white	rust	in	natural	populations	of	A.	thaliana,	

particularly	in	floral	stem	and	leaf	tissue	of	plants	growing	in	close	proximity	to 

Capsella	 bursa-pastoris,	 which	 is	 the	 most	 prolific	 source	 of	 inoculum.	 The	

identification	AcExeter	provided	the	first	evidence	that	A.	candida	can	overcome	

WRR4-mediated	resistance,	and	was	the	first	evidence	of	a	previously	race	non-

specific	 resistance	 to	 A.	 candida	 breaking	 down.	 	 Thus,	 the	 fifth	 aim	was	 to	

determine	 whether	 additional	 Col-virulent	 isolates	 could	 be	 collected	 from	

Arabidopsis	under	field	conditions.		Association	genetics	can	provide	a	means	for	

identifying	 virulence	 determinants	 in	 microbial	 pathogens	 (Bart	 et	 al.,	 2012).		
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Thus,	 the	 sixth	 aim	 was	 to	 determine	 whether	 a	 collection	 of	 Col-0-virulent	

isolates	 could	 be	 used	 to	 search	 genome-wide	 effector	 sequences	 and	 identify	

candidates	for	avrWRR4-Col.	As	described	in	this	study,	the	Norwegian	accession	

of	A.	thaliana	Oy-0	carries	resistance	to	AcExeter	and	AcCarlisle.	Thus,	 the	 final	

aim	was	to	use	the	effector	database	to	search	for	candidate	effectors	that	trigger	

WRR4	and	WRR-OyC1	resistance.		
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Chapter	2	
	

Use	 of	 a	 recombinant	 inbred	 Brassica	 oleracea	 population	

and	modern	genotyping	technology	to	determine	the	genetic	

basis	of	broad-spectrum	white	rust	resistance		
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2.1	 INTRODUCTION	
Albugo	candida	(causal	 agent	 of	white	 rust)	 is	 a	major	 threat	 to	 production	 of	

vegetable	 and	oilseed	brassicas	 in	 the	UK	and	 across	 the	world	 (Saharan	et	al,	

2014).	 The	 range	 of	 approved	 crop	 protection	 products	 for	 use	 on	B.	oleracea	

(cabbage,	broccoli,	cauliflower,	kale,	etc)	is	heavily	restricted,	as	it	is	a	vegetable	

crop	 where	 the	 harvested	 biomass	 is	 directly	 consumed	 (Alford,	 2008).		

Fungicide	applications	of	metalaxyl	and	Chlorothalonil	are	approved	for	use	on	

B.	oleracea	in	the	UK,	yet	only	two	sprays	up	to	the	maximum	permitted	dosage	

are	 recommended	 (Alford,	 2008).	 With	 few	 available	 control	 options	 the	

likelihood	 of	 selecting	 for	 chemical	 resistant	 pathogens	 is	 greater.	 	 Disease	

resistant	 varieties	 provide	 an	 essential	 alternative	 control	 of	 white	 rust,	

increasing	 the	 potential	 durability	 of	 integrated	 disease	 management	 whilst	

reducing	the	environmental	 impact	of	production	and	the	consumer’s	exposure	

to	 agrochemical	 residues.	 	 White	 rust	 resistance	 is	 an	 important	 target	 for	

commercial	breeding	of	brassicas.	

	 Single	dominant	R	genes	are	available	 in	varieties	of	many	crop	species,	

and	 have	 typically	 been	 deployed	 individually	 in	 cropping	 systems.		

Consequently,	selection	pressure	on	monocultures	has	enabled	the	pathogen	in	

many	 cases	 to	 rapidly	 overcome	 the	 resistance.	 	 Well	 documented	 examples	

include	late	blight	of	potato	caused	by	Phytophthora	infestans,	stem	rust	of	wheat	

caused	 by	Puccinia	graminis,	 blackleg	 of	 oilseed	 rape	 caused	 by	 Leptosphaeria	

maculans	and	downy	mildew	of	lettuce	caused	by	Bremia	lactucae	(Ballini	et	al.,	

2013,	 Zhang	 et	 al.,	 2009,	 Sivasithamparam	 et	 al.,	 2005,	 Crute	 and	 Norwood,	

1981).	 	 	 Strategies	 such	 as	 pyramiding	 of	R	 genes	 or	 the	 use	 of	multi-parental	

populations	 (e.g.,	 variety	 mixtures)	 have	 been	 considered	 for	 longer-lasting	

disease	 control,	 and	 have	 worked	 in	 some	 crops	 (Joshi	 and	 Nayak,	 2010).		

However,	such	approaches	have	been	impractical	in	most	crops	due	the	time	and	

cost	required	to	introgress	multiple	target	loci	into	a	new	variety.		Whilst	mixing	

cultivars	does	have	potential	application	in	cereals	and	other	combinable	crops,	

the	morphological	uniformity	desired	by	retailers	and	the	consumer	makes	this	

impractical	for	vegetable	production.	

	 The	advent	of	new	crop	 improvement	 technologies	 is	 greatly	 improving	

the	 feasibility	 of	 introgressing	 multiple	 resistant	 genes	 into	 a	 cultivar.	 	 For	
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example,	 progress	 has	 been	 achieved	 in	model	 organisms	 such	 as	Arabidopsis	

thaliana	where	research	has	revealed	the	molecular	basis	of	R	genes	conferring	

resistance	to	a	wide	spectrum	of	pathogens.	 	These	genes	are	potentially	useful	

in	transgenic	crops,	as	demonstrated	with	a	white	rust	resistance	gene	(WRR4)	

in	oilseed	brassicas	(Borhan	et	al.,	2010),	or	more	generally	as	precedents	for	the	

development	 of	 molecular	 markers	 in	 conventional	 breeding	 (Speulman	 et	al.,	

1998,	 Aarts	 et	 al.,	 1998a,	 van	 der	 Linden	 et	 al.,	 2004).	 	 Combining	 multiple`	

resistance	 specificities	 is	 theoretically	 achievable	 using	 conventional	 marker-

assisted	 breeding	 to	 pyramid	 resistance	 alleles	 from	 several	 loci	 and/or	

'stacking'	 of	 alleles	 in	 a	 single	 DNA	 construct	 for	 GM	 application.	 	 Recent	

advances	 in	 affordable	 DNA	 sequencing	 have	 enabled	 rapid	 development	 of	

marker	 technologies	 such	 as	 Genotyping-by-Sequencing	 (GBS)	 (Elshire	 et	 al.,	

2011)	and	Resistant	Gene	Enrichment	Sequencing	(RenSeq)	(Jupe	et	al.,	2013).	

	 With	these	advances	in	technology,	B.	oleracea-A.	candida	is	emerging	as	a	

suitable	crop	pathosystem	for	improvement	through	the	sustainable	deployment	

of	R	genes.		Nine	sources	of	white	rust	and	downy	mildew	resistance	have	been	

identified	in	a	European	diversity	collection	of	400	B.	oleracea	accessions	(Leckie	

et	al.,	 1994,	 Vicente	et	al.,	 2012,	 DEFRA,	 2003),	 with	 the	 aim	 of	 establishing	 a	

breeding	resource	for	combined	resistance	to	both	diseases.		The	B.	oleracea	ssp.	

alboglabra	accession	 A12DH	was	 identified	 as	 being	 broadly	 susceptible	 to	 an	

extensive	 collection	 of	A.	candida	 and	H.	brassicae	 isolates	 derived	 from	UK	B.	

oleracea	 production	 (DEFRA,	 2003).	 	 However,	 interestingly,	 this	 accession	 is	

resistant	 to	 an	 A.	 candida	 isolate	 obtained	 from	 Australia	 (AcAus)	 (Holub,	

unpublished).	 	 Doubled	 haploid	 (DH)	 lines	 were	 produced	 for	 each	 source	 of	

resistance	 to	 facilitate	 genetic	 studies	 and	 more	 reproducible	 pathotyping	 of	

pathogen	 isolates	 (DEFRA,	2003).	 Specifically	 for	white	 rust	 resistance,	 the	DH	

lines	 were	 assessed	 for	 reaction	 to	 18	 A.	 candida	 isolates	 sampled	 from	 B.	

oleracea	across	 major	 vegetable	 growing	 regions	 across	 the	 UK.	 	 Three	 lines	

(EBH527,	516	and	535)	were	resistant	to	all	 isolates,	whilst	two	lines	(EBH508	

and	553)	exhibited	differential	reactions.			

	 The	 broad	 spectrum	 resistant	 line	 EBH527	 was	 chosen	 for	 further	

investigation	 in	the	current	study,	 to	determine	the	genetic	basis	 for	resistance	

through	 the	 use	 of	 a	 recombinant	 inbred	 mapping	 population	 (A12DH	 x	
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EBH527)	and	the	latest	marker	technologies	(GBS	and	RenSeq).	 	A	candidate	R-

gene	was	identified,	and	subsequently	enabled	use	of	the	C	genome	diversity	set	

(Walley	 et	 al.,	 2012)	 to	 investigate	 allelic	 variation	 relative	 to	 the	 resistance	

phenotype.	 	Work	was	also	 initiated	to	map	alternative	resistance	specificity	 in	

both	EBH527	and	A12DH	to	the	A.	candida	isolate	from	Australia	(AcAus).	

2.2	 MATERIALS	AND	METHODS	
	

2.2.1	 Maintenance	of	Albugo	candida	isolates	

A	standard	isolate	of	A.	candida	race	9	(AcBoWells)	was	obtained	by	myself	and	

Dr.	 Joana	 Vicente	 in	 September	 2014	 from	 a	 cabbage	 field	 experiment	 at	 the	

University	of	Warwick	Crop	Centre.		A	genetically	refined	culture	was	generated	

by	inoculating	B.	oleracea	var.	Maris	Kestrel	with	zoosporangia	harvested	from	a	

single	 small	 pustule	 site	 with	 a	 pipette	 tip.	 	 These	 were	 suspended	 in	 sterile	

water	 and	 then	 transferred	 to	 the	 underside	 of	 nine-day-old	 cotyledons.	 	 The	

resulting	 isolate	was	 then	 bulked	 and	maintained	 on	 cotyledons	 of	B.	oleracea	

var.	Marris	Kestrel.		Similarly,	a	second	isolate	obtained	by	Professor	Eric	Holub	

from	researchers	in	Australia	(AcAus)	was	bulked	and	maintained	on	B.	oleracea	

var.	Senna.	

	 For	 preparation	 of	 plants	 for	 inoculation,	 seeds	 were	 grown	 in	 a	 peat-

based	Levington	M2	compost	in	P180	plug	trays	(2.5	x	2.5	cm	cells)	cut	to	10	x	6	

grids	and	placed	in	propagator	trays.	 	Holes	of	a	depth	of	approximately	0.5	cm	

were	made	 in	 the	 compost.	 	A	 single	 seed	was	placed	 in	each	cell	 and	covered	

with	vermiculite.	 	The	 trays	were	 covered	with	aluminium	 foil	 and	placed	 in	 a	

fridge	at	4°	C	 for	48h	to	break	dormancy	and	promote	even	germination.	 	Lids	

were	placed	on	the	propagators,	which	were	subsequently	placed	in	a	Conviron	

plant	growth	cabinet	at	20±2°C	with	a	10h	photoperiod.	

For	 quantification	 of	 inoculum,	 a	 haemocytometer	 was	 used	 and	 the	

inoculum	concentration	was	adjusted	to	approximately	concentration	of	4x	104	

zoosporangia	ml-1.		Small	droplets	(ca.	10µl)	were	applied	to	the	upper	and	lower	

surfaces	of	cotyledon	 leaves	attached	to	 the	plant	using	a	pipette.	 	Propagators	

were	sealed	and	placed	back	in	the	growth	cabinet	at	20±2°C	for	an	 initial	12h	
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period	in	darkness	followed	by	a	10h	photoperiod.		Pustules	would	emerge	7-10	

days	 later.	 The	 isolates	 were	 subcultured	 every	 two	 weeks	 for	 use	 on	

experimental	lines	

	

2.2.2	 Recombinant	inbred	mapping	population	and	diversity	collection	of	

Brassica	oleracea	

The	initial	A12DH	-	EBH527	cross	was	performed	by	Professor	Eric	Holub.		F1,	F2	

and	F4	 seeds	were	provided	as	 starting	material	of	 this	project.	 	To	establish	a	

mapping	 population,	 F5	 recombinant	 inbreds	 were	 generated	 in	 a	 polytunnel	

from	70	F4	lines.		One	plant	from	each	parental	line	was	grown	in	individual	3L	

pots	 containing	 M2	 compost.	 	 Flowering	 plants	 from	 each	 generation	 were	

covered	 with	 air	 permeable	 bags	 and	 agitated	 to	 assist	 self-pollination.	 	 Each	

plant	 was	 desiccated	 at	 maturity	 by	 severing	 the	 stem	 with	 secateurs.	 	 The	

harvested	plant	material	was	placed	in	a	drying	room	for	ten	days,	prior	to	seed	

cleaning.		A	working	stock	of	clean	seed	samples	was	sealed	in	1.5	ml	Eppendorf	

tubes	and	stored	at	-20°C,	with	the	remainder	stored	in	5	ml	Falcon	tubes.	

	 In	addition,	126	lines	from	the	wild	species	and	diversity	fixed	foundation	

set	and	120	lines	from	the	B.	oleracea	diversity	fixed	foundation	set	(Appendix	1)	

were	obtained	from	the	Genetic	Resources	Unit	at	Warwick	Crop	Centre	(Walley	

et	 al.,	 2012).	 	 Transcriptome	 sequence	 from	 the	 wild	 species	 diversity	 fixed	

foundation	 set	was	 obtained	 through	 the	 University	 of	Warwick	 (Barker	 et	 al,	

unpublished).	

	

2.2.3	 Inoculation	of	experiments	

Experimental	lines	of	B.	oleracea	were	tested	using	the	same	method	as	used	for	

the	maintenance	of	A.	candida	isolates.		To	test	the	F5	A12DH	x	EBH527	mapping	

population,	 three	 replicates	 of	 each	 inbred,	 ten	 susceptible	 (A12)	 and	 ten	

resistant	(EBH527)	controls	were	randomly	established	in	five	propagators.		To	

test	 the	diversity	 set,	 3-5	 replicates	of	 each	 line	were	 established	 in	 individual	

columns	 across	 30	 propagators.	 	 In	 each	 test,	 nine-day-old	 cotyledons	 were	

inoculated	with	a	single	10	µl	drop	of	A.	candida	inoculum	to	the	upper	surface	of	

the	 leaf	 at	 an	 approximate	 concentration	 of	 4x	 104	 zoosporangia	 ml-1.		

Propagators	 containing	 the	 experimental	 lines	were	 sealed	 and	 placed	 back	 in	
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the	growth	cabinet	at	20°C	for	an	 initial	12	h	period	of	shading,	 	 followed	by	a	

10h	photoperiod.	 	 Symptoms	were	 assessed	 ten	days’	 post	 inoculation	using	 a	

quantitative	 phenotype	 type	 scale.	 	 For	 the	 mapping	 population,	 a	 one-way	

analysis	of	variance	was	performed	across	the	five	propagators.	

	

2.2.4	 DNA	extraction	

True	 leaf	 tissue	 from	 each	 of	 the	 F4	 parental	 lines,	 EBH527	 and	 A12DH	 was	

harvested	using	 a	 sterile	 scalpel	 and	 tweezers	 and	placed	 in	1.5	ml	Eppendorf	

tubes.		The	samples	were	freeze	dried	for	seven	days,	sealed	in	tubes	and	stored	

at	-20°C.	

	 A	 sterile	 pestle	 was	 used	 to	 crush	 lyophilized	 tissue	 within	 the	 tubes.	

Approximately	50	mg	of	lyophilized	tissue	was	transferred	into	2	ml	Eppendorf	

tubes.		Each	sample	was	disrupted	by	adding	two	tungsten	beads	and	placing	the	

sealed	Eppendorf	tubes	in	the	TissueRuptorâ	for	a	total	time	of	1.5	m	at	60	Hz.		

After	 45	 s	 of	 disruption,	 the	 TissueRuptorâ	 containing	 plates	 were	 inverted,	

swapping	samples	situated	closer	to	the	machine	with	those	situated	on	the	edge	

of	the	containing	plate	which	consequently	reverberated	at	a	greater	frequency.		

	 DNA	was	extracted	using	a	DNeasyâ	Plant	Mini	Kit.	 	Quantities	of	buffer	

were	amended	in	order	to	achieve	a	higher	DNA	yield.		A	500	µl	aliquot	of	lysis	

buffer	AP1	and	5	µl	of	RNase	A	were	added	to	each	sample.	 	The	samples	were	

incubated	for	ten	minutes	at	65°C,	and	agitated	four	times	during	incubation.		A	

162.5	µl	 volume	 of	 neutralisation	 buffer	 P3	was	 added	 to	 each	 sample,	which	

was	then	incubated	on	ice	for	ten	minutes.		The	lysate	was	centrifuged	for	5	m	at	

14,000	rpm.		The	flow	through	was	transferred	into	a	new	2	ml	Eppendorf	tube	

and	1	ml	of	Buffer	AW1	was	added.	 	The	samples	were	mixed	by	pipetting	and	

centrifuged	 through	 DNeasy	mini	 spin	 columns	 at	 8000rpm	 in	 three	 separate	

aliquots	of	approximately	556µl.		Three	washes	were	performed	using	500	µl	of	

wash	buffer	AW2.		The	first	two	were	centrifuged	through	the	DNeasy	mini	spin	

columns	 for	 1	minute	 at	 8000	 rpm.	 	 The	 final	wash	was	 centrifuged	 at	 14000	

rpm	for	2	minutes.		The	samples	were	eluted	into	two	separate	1.5	ml	Eppendorf	

tubes,	using	100	µl	of	buffer	AE	for	each.		A	Qubit	flurometric	quantifier	was	used	

to	measure	the	yield	achieved	thought	the	extractions.		The	first	elution	achieved	
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concentrations	ranging	from	300	–	140	ng/µl,	and	the	second	elution	from	60	-

16	ng/µl.	 	The	 first	 elution	was	used	was	used	 for	next	 generation	 sequencing	

applications	and	the	second	elution	was	used	for	conventional	PCR	techniques.		

	

2.2.5	 Molecular	genotyping	

For	Genotyping-by-Sequencing	(GBS),	DNA	samples	from	the	first	elution	of	the	

70	F5	RILs,	EBH527	and	A12DH	were	reduced	to	10	µg	of	DNA	at	≥50	ng/µl.		The	

samples	were	sent	 to	 the	Genomic	Diversity	Facility	at	Cornell	University.	 	The	

library	was	 prepared	 through	 restriction	 digests	 at	 ApeKI	 recognition	 sties	 as	

described	 in	Elshire	et	al.	 (2011).	 	Single-end	reads	were	generated	by	48-plex	

sequencing	through	101	cycles	on	an	Illumina	HiSeq	2500.	

	 For	 Resistance	 Gene	 Enrichment	 Sequencing	 (RenSeq),	 DNA	 samples	

from	the	first	elution	of	the	EBH527	and	A12DH	were	reduced	to	10	µg	of	DNA	at	

≥50	ng/µl.	 	The	samples	were	sent	to	The	Sainsbury	Laboratory	in	Norwich	for	

Resistance	 Gene	 Enrichment	 and	 Sequencing	 (RenSeq).	 	 	 The	 library	 was	

prepared	as	described	in	Jupe	et	al.	(2013).			Paired-end	reads	were	generated	by	

96-plex	sequencing	through	150	cycles	on	an	Illumina	HiSeq	2500.	

	 Bioinformatics	support	for	GBS	and	RenSeq	data	analysis	was	provided	by	

Dr.	Jonathan	Moor	and	Dr.	Yi-Fang	Wang.	Quality	control	was	performed	through	

FastQC	(Andrews,	2010).	 	Adaptors	and	 low	quality	reads	were	removed	using	

TrimGalore	 (Krueger,	 2015).	 	 The	 trimmed	 reads	 from	 both	 datasets	 were	

aligned	 to	 the	B.	oleracea	 reference	 genome	 (accession	 TO1000;	 (Parkin	et	al.,	

2014))	 by	 the	 Bowtie2	 (version	 2.2.3;	 (Langmead	 and	 Salzberg,	 2012))	 with	

default	 settings.	 	 The	 aligned	 .sam	 files	 were	 converted	 into	 .bam	 files	 using	

SAMtools	(version	0.1.19;	(Li	et	al.,	2009)).	

	 For	 the	 reference-based	SNP	 calling,	 the	 SAMtools	mpileup	and	bcftools	

were	applied	with	phred	score>=20	(Li,	2011).		The	results	were	converted	from	

vcf	format	to	bcf	format.		The	Discosnp++	(Uricaru	et	al.,	2015)	was	applied	with	

default	settings	for	the	reference	free	SNP	calling	between	A12DH	and	EBH527.		

The	reference-based	SNP	markers	for	the	GBS	parental	lines	were	converted	into	

a	 genotype	 score	 matrix	 for	 the	 progeny	 by	 a	 custom	 PERL	 script	 written	 by	

Wang	(2014).		
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2.2.6	 QTL	analyses	

All	 QTL	 analyses	 were	 performed	 using	 RQTL	 (Broman	 et	 al.,	 2003).	 	 Three	

statistical	 approaches	 were	 applied	 to	 interval	 mapping.	 	 Standard	 interval	

mapping	 applied	 a	 maximum	 likelihood	 estimation	 under	 a	 mixture	 model	

(Lander	and	Botstein,	1989).	 	The	Haley-Knott	regression	used	approximations	

of	the	mixture	model	(Haley	and	Knott,	1992).		And	the	multiple	imputation	used	

the	mixture	model	with	multiple	imputations	as	appose	to	maximum	likelihood	

estimation	(Sen	and	Churchill,	2001).	

	

2.2.7	 Reference	based	marker	development	and	use	in	genotyping	

The	 B.	 oleracea	 reference	 genome	 TO1000	 (Parkin	 et	 al.,	 2014)	 was	 used	 for	

designing	markers	 in	 candidate	 genes	 (Table	 2.2).	 	 Primer	 3	 through	Geneious	

version	9.1.4	(Kearse	et	al.,	2012)		was	used	for	all	primer	design.	

	 All	 PCR	 reactions	 for	 genotyping	 were	 conducted	 using	 Phusion
Ò
	 high-

fidelity	DNA	polymerase.		Reaction	volumes	of	25	µl	were	created	containing	5	µl	

of	5	x	GC	buffer,	0.5	µl	of	10	mM	dNTPs,	1.25	µl	of	10	µm	forward	and	reverse	

primers,	 1	 µl	 of	 template,	 15.75	 µl	 nuclease-free	 water	 and	 0.25	 µl	 of	 DNA	

polymerase	 added	 last.	 	 All	 reactions	 were	 prepared	 on	 ice.	 	 All	 PCRs	 were	

performed	 using	 a	 standard	 touchdown	 program	 (Table	 2.1)	 with	 extension	

times	adapted	to	30	seconds	per	kilo	base	of	product	and	annealing	temperature	

adapted	to	each	primer	pair	(Table	2.2).		A	5	µl	sample	of	PCR	product	was	added	

to	2	µl	of	loading	dye	for	assessment	using	electrophoresis.		
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Table	2.1.		Standard	touch	down	polymerase	chain	reaction	(PCR)	program	used	
for	 the	 amplification	 of	 regions	 of	 genomic	 DNA	 within	 a	 major	 effect	 QTL	

conferring	resistance	to	Albugo	candida	in	Brassica	oleracea.	D:	denaturation,	A:	
annealing,	E:	extension.	

	
	 Start	 Touchdown	(8	Cycles)	 (28	Cycles)	 Finish	

D	 D	 A	 E	 D	 A	 E	 E	

Temperature	

(°C)	

98	 98	 65	–	57	 72	 98	 56	 72	 72	

Time	(minutes)		 3.00	 0.30	 0.30	 1.30	 0.30	 0.30	 1.30	 7.00	

	

Genomic	DNA	and	PCR	products	were	assessed	through	electrophoresis,	

using	agarose	gels	ranging	from	0.5	–	4%	volume	to	weight	agarose/	Tris	Borate	

buffer	 (TBE)	according	 to	 fragment	 size.	 	 Separation	was	 through	applying	80-

160V	over	1-14	h	depending	on	fragment	size	and	gel	concentration.		Invitrogen	

1	 kb	 or	 1	 kb	 plus	 ladders	 were	 used	 for	 all	 samples.	 	 Centrifuge	 driven	 PCR	

purification	was	 performed	 using	 the	Qiagen	 PCR	 purification	 kit	 according	 to	

protocol.	

	 A	5	µl	aliquot	of	PCR	product	and	5	µl	of	primer	at	a	concentration	of	5	

mM	 were	 pipetted	 into	 1.5	 ml	 Eppendorf	 tubes	 and	 sequenced	 through	 the	

LightRun	service	provided	by	GACT	Biotech.		For	the	sequencing	of	PCR	products	

greater	than	500	bp,	internal	primers	were	designed	from	the	TO1000	reference	

genome	and	used	to	sequence	the	samples	as	described	(Appendix	2).		

	 Sequence	analysis	was	performed	in	silico.	Geneious	version	9.1.4	(Kearse	

et	 al,	 2012)	was	used	 for	 trimming,	 quality	 control,	 reference	based	 alignment	

and	polymorphism	detection	for	all	sequenced	PCR	products.	
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Table	 2.2.	 	Markers	 designed	 from	Brassica	oleracea	var.	 TO1000	 reference	 genome	 (Parkin	 et	al.,	 2014)	 within	 a	major	 effect	 QTL	 conferring	
resistance	to	Albugo	candida	 isolate	AcBoWells.	 	QTL	identified	in	an	F5	recombinant	 inbred	mapping	population	derived	from	a	cross	of	parental	
lines	A12DH	(susceptible)	and	EBH527	(resistant).	
	

Marker	 Type	 Gene	ID	 Primer	sequence	5’	To	3’	 Anneling	

Temp	(°C)	

Product	

length	(bp)	

Gene	type	

Bo-01	 SNP	 Bo2g016470	 F:	CTTTGAATCTGACGGATGAAGGAAG	

R:	GATTCAATTTCTCCGTCAAGGCTAG	

63.07	

68.93	

2990	 TIR-NBS-LRR	class	disease	

resistance	protein	

Bo-02	 Whole	

gene	

Bo2g016480	 F:	TCAGAACAACTTGAGTTATTTCATTCTCAT	

R:	ATATTACCAAAGTATTTGTGGTCCAAGAAA	

61.50	

61.91	

1872	 GDSL	esterase/lipase	

Bo-03	 Whole	

gene	

Bo2g016490	 F:	TTTTGAGGGTTTGTAGTCAGGAGAA	

R:	GTCTCTTTGTTACACGAAAACGACT	

61.10	

58.82	

1384	 Ethylene-responsive	

transcription	factor	

Bo-04	 Whole	

gene	

Bo2g016500	 F:	TTGGACTAGCTATTGTAAATCTTTCTTGAG	

R:	AAACTTTCAATACACGTTGGAAGTTTATTC	

60.58	

61.76	

3731	 Protein	of	Unknown	

Function	(DUF239)	

Bo-05	 Whole	

gene	

Bo2g016510	 F:	GAAACAGTTGGGAGTGTAAAAGGAG	

R:	TGATTCTGTGAAGTGATGTGTTGTG	

60.22	

60.82	

1325	 G-type	lectin	S-receptor-like	

protein	kinase	

Bo-06	 SNP	 Bo2g016520	 F:	CTTCAAAGACATGTAATAACTTCCTCTCTT	

R:	CATAGCCTCATCAACTTGACCATTC	

59.84	

61.79	

452	 Pentatricopeptide	repeat-

containing	protein	

Bo-07	 SNP	 Bo2g016550	 F:	TCTACTCCTTCTTCTTCCTCTGCTA	

R:	GTTGATATTATCTGTTGCTGTGCGA	

58.07	

61.14	

447	 Lung	seven	transmembrane	

receptor	family	protein	

Bo-08	 SNP	 Bo2g016610	 F:	CCTTGCAATAAACAAAGACACATGC	

R:	TTTGCCGCTCAGATTTTCTTGAGCC	

62.58	

68.93	

500	 TIR-NBS-LRR	class	disease	

resistance	protein	
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2.3	 RESULTS	
2.3.1	 Reference-based	SNP	 identification	 from	Genotyping-by-Sequencing	

data	of	recombinant	inbred	lines	

Approximately	 four	 million	 single-end	 100	 bp	 reads	 were	 generated	 from	

Illumina	 sequencing	 of	 the	 pooled	 barcoded	 samples	 for	 each	 recombinant	

inbred.		The	average	alignment	rate	of	reads	per	sample	to	the	TO1000	reference	

genome	was	 90.14%,	with	 an	 average	 single	 alignment	 rate	 of	 44.23%	and	 an	

average	 multiple	 alignment	 rate	 of	 44.92%	 (Figure	 2.1).	 	 The	 read	 data	 was	

filtered	 for	each	sample	of	parent	and	recombinant	 inbred	to	remove	examples	

with	a	read	depth	of	 less	than	ten.	 	The	filtered	reads	from	parents	A12DH	and	

EBH527	were	then	compared	to	identify	10152	single	nucleotide	polymorphisms	

(SNPs)	 relative	 to	 nine	 chromosomes	 and	 465	 unassigned	 scaffolds	 in	 the	

reference	genome.		SNPs	were	removed	from	this	list	if	data	was	missing	in	three	

or	more	RIL’s,	 and	19	were	 removed	 that	were	monomorphic	 between	A12DH	

and	EBH527,	leaving	5335	SNPs	(5184	aligned	to	nine	chromosomes	and	151	to	

scaffolds)	as	genetic	markers	for	constructing	an	A12DHxEBH527	linkage	map.	

	

	

	
Figure	2.1.		Alignment	of	reads	to	the	reference	genome	of	Brassica	oleracea	(TO1000)	
generated	 through	 Genotyping-by-Sequencing	 (GBS)	 of	 70	 F5	 A12DH	 x	 EBH527	
recombinant	inbred	lines.		Colours	indicate	the	percentage	of	sequence	reads	that	align	
to	the	reference	once	(RED),	more	than	once	(GREEN),	or	no	alignment	(BLUE).	
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2.3.2	 Construction	 of	 a	 linkage	 map	 for	 the	 A12DH	 x	 EBH527	 mapping	

population	

A	preliminary	linkage	map	was	constructed	using	the	Haldane	mapping	function	

through	MapDisto	(Lorieux,	2012)	with	a	majority	of	markers	being	assigned	to	

nine	linkage	groups.		Markers	that	had	initially	mapped	at	this	stage	to	scaffolds	

in	the	reference	genome	were	subsequently	positioned	in	one	of	the	nine	linkage	

groups	 of	 the	 A12DHxEBH527	map.	 	 This	 provided	 1616	 usable	markers	 that	

were	 distributed	 amongst	 387	 unique	 positions	 (separated	 by	 at	 least	 one	

recombinant	in	the	mapping	population)	and	a	total	map	distance	of	577.31	cM.		

A	 single	 marker	 from	 each	 position	 was	 chosen	 which	 retained	 a	 total	 map	

distance	 to	 556.08	 cM.	 	 This	 representative	 set	 of	 387	 markers	 was	 used	 to	

generate	 a	 new	 core	map	of	markers	 in	nine	 linkage	 groups	using	 the	Lander-

green	algorithm	(Figure	2.2).		No	re-ordering	of	markers	was	observed	compared	

with	 the	 preliminary	 map,	 however	 expansion	 of	 each	 linkage	 group	 was	

apparent	resulting	in	a	total	map	distance	of	857.90	cM.	

	 The	error	 logarithm	of	the	odds	(LOD)	score	(Lincoln	and	Lander,	1992)	

was	calculated	for	both	maps,	and	identified	17	genotyping	errors	in	the	Haldane	

map,	and	eight	in	the	Lander-Green	map	(Table	2.3).		Throughout	the	core	set	of	

387	 markers,	 this	 gave	 genotyping	 error	 rates	 of	 4.39%	 and	 1.80%	

retrospectively.	 Given	 the	 phred	 score	 >	 20	 should	 have	 yielded	 a	 base	 score	

accuracy	 of	 99%,	 the	map	 generated	 through	 the	 Lander-green	 algorithm	was	

used	 for	 all	 subsequent	 analysis.	 	 A	 final	 calculation	 of	 the	 pairwise	

recombination	fractions	was	performed	on	the	map	to	ensure	all	markers	were	

correctly	positioned.		A	low	recombination	score	was	identified	for	each	linkage	

group	(Figure	2.3).	
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Table	 2.3.	 	 Genotyping	 errors	 identified	 by	 error	 logarithm	 of	 the	 odds	 (LOD)	 score	
(Lincoln	 and	 Lander,	 1992)	 in	 maps	 generated	 for	 the	 A12DHxEBH527	 mapping	
population	of	Brassica	oleracea	using	the	Haldane	mapping	 function	 in	MapDisto	(left),	
and	the	Lander-Green	algorithm	in	rQTL	(right).	
	

Haldane	mapping	function	 	 Lander-Green	algorithm	

Chr	 Marker	 Error	LOD	 	 Chr	 Marker	 Error	LOD	

1	 C1_9185330	 4.399104	 	 9	 C9_49680324	 5.008935	

1	 C1_39339432	 4.354891	 	 7	 C7_36665321	 4.389245	

7	 C7_22774980	 4.338783	 	 3	 C3_55672048	 4.317023	

1	 C1_34895284	 4.338533	 	 8	 C8_31557217	 4.292683	

8	 C8_31557217	 4.321148	 	 3	 C3_55672048	 4.263668	

8	 C8_30557258	 4.308828	 	 1	 C1_9185330	 4.218287	

5	 C5_2764043	 4.307996	 	 5	 C5_2764043	 4.112729	

4	 C4_6777362	 4.303254	 	 9	 C9_53266711	 4.069941	

7	 C7_45047380	 4.298430	 	 	 	 	

7	 C7_36665321	 4.274911	 	 	 	 	

3	 C3_55672048	 4.266879	 	 	 	 	

2	 C2_44720126	 4.146484	 	 	 	 	

3	 C3_55672048	 4.137833	 	 	 	 	

2	 C2_21261609	 4.097974	 	 	 	 	

4	 C4_43251317	 4.097540	 	 	 	 	

9	 C9_53266711	 4.087518	 	 	 	 	

7	 C7_30485203	 4.031587	 	 	 	 	
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Figure	2.2.		Comparison	of	Brassica	oleracea	linkage	maps.		Markers	developed	through	
genotyping-by-sequencing	 of	 F5	 recombinant	 inbred	 population	 of	 A12DH	 x	 EBH527.		
The	Haldane	mapping	 function	 in	MapDisto	 (left-side	 of	 each	 chromosome)	 created	 a	
total	 map	 distance	 of	 556.08	 cM.	 	 The	 Lander-Green	 algorithm	 in	 rQTL	 (right-side)	
created	a	total	map	distance	of	857.90	cM.	
	

	

	

	

	
Figure	 2.3.	 	 Pairwise	 recombination	 fractions	 and	 LOD	 scores	 of	 all	 markers	 in	 the	
linkage	map	generated	for	the	A12DHxEBH527	mapping	population	of	Brassica	oleracea	
through	the	Lander-Green	algorithm	in	rQTL.	 	The	colour	spectrum	from	RED	to	BLUE	
indicates	the	recombination	fraction	from	small	to	large,	respectively.	
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2.3.3	 Characterisation	 of	 white	 rust	 phenotypes	 in	 Brassica	 oleracea	

mapping	population	

An	 eight-class	 disease	 severity	 scale	 (Figure	 2.4)	 was	 used	 to	 determine	 the	

phenotypic	interaction	of	experimental	lines	following	inoculation	of	cotyledons	

with	a	standard	isolate	of	A.	candida	race	9.	 	The	phenotype	classes	represent	a	

visual	interpretation	of	the	ability	of	the	pathogen	to	develop	within	the	host.		A	

class	'0'	phenotype	represents	the	greatest	degree	of	inhibition,	with	no	evidence	

of	pathogen	presence	or	host	response.		Phenotype	classes	1-3	indicate	differing	

host	responses	that	have	inhibited	pathogen	development:	 	class	1	shows	small	

necrotic	 lesions	 and	 no	 visible	 sporulation;	 class	 2	 shows	 a	 yellowing	

surrounding	the	site	of	infections	with	sporulation	inhibited;	and	class	3	shows	

flaccid	 grey	 host	 tissue	 surrounding	 the	 site	 of	 infection	 with	 sporulation	

partially	 inhibited.	 	Differing	degrees	of	 sporulation	are	apparent	 in	phenotype	

classes	4-7.	 	Class	7	showed	the	greatest	amount	of	unrestricted	sporulation	on	

the	lower	cotyledon	surface,	and	often	sporulation	on	the	upper	surface.		In	class	

4,	the	pathogen	is	unable	to	develop	through	the	leaf	tissue	or	away	from	the	site	

of	 infection,	 although	 small	 white	 blisters	 could	 often	 be	 observed	 in	 the	

immediate	vicinity	to	the	site	of	inoculation.		In	class	5,	sporulation	is	visible	on	

both	 the	 upper	 and	 lower	 surface	 of	 the	 leaf	 but	 is	 confined	 to	 the	 site	 of	

infection,	 suggesting	 the	pathogen	has	penetrated	 through	 the	cotyledon	but	 is	

restricted	from	extending	hyphae	laterally.		This	was	similar	to	class	6,	yet	here	

no	sporulation	was	detectable	on	the	upper	surface.	
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Figure	 2.4.	 	 An	 eight-class	 scale	 of	 phenotypic	 variation	 observed	 in	 cotyledons	 of	
Brassica	oleracea	following	 inoculation	with	Albugo	candida	race	9	 (AcBoWells)	on	 the	
upper	 (left),	 and	 lower	 leaf	 surfaces	 (right)	 ten	 days	 post	 inoculation.	 	 The	 degree	 of	
host	 response	 and	pathogen	 reproduction	observed	on	upper	 and	 lower	 surfaces	was	
recorded	ten	days	post	inoculation	ranging	from:		0	=	no	visual	presence	of	the	pathogen	
or	 host	 response;	1	 =	 	 discrete	 necrotic	 lesions	 of	 host	 tissue	 confined	 to	 the	 site	 of	
inoculation	on	the	upper	surface	of	the	leaf	and	no	visible	rust	pustules;	2	=		yellowing	
of	 host	 tissue	 on	 the	 upper	 and	 lower	 surfaces	 of	 the	 leaf	 with	 occasional	 small	 rust	
pustules;	3	=		flaccid	grey	host	tissue	confined	to	site	of	infection	on	the	upper	and	lower	
surface	 of	 the	 leaf	 with	 inhibited	 pathogen	 development;	 4	 =	 	 no	 host	 response	 but	
numerous	 large	pustules	visible	 that	are	confined	 to	 the	site	of	 infection	on	 the	upper	
surface;	5	=	 	 small	pustules	visible	on	upper	and	 lower	surfaces	 in	 tissue	surrounding	
the	site	of	inoculation;	6	=		no	host	visible	host	response	but	large	pustules	on	the	lower	
surface	 and	 confined	 in	 tissue	 below	 the	 site	 of	 inoculation;	 and	 7	 =	 large	 pustules	
visible	 mostly	 on	 the	 lower	 surface	 and	 of	 the	 leaf	 migrating	 out	 from	 the	 site	 of	
infection.	
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Figure	2.5.		Phenotypes	observed	on	the	upper	(top	row)	and	lower	(bottom	row)	cotyledon	surfaces	of	Brassica	oleracea	accessions	A12DH	(left),	
EBH527	 (centre	 left),	 F1	hybrid	of	A12DH	x	EBH527	 (centre	 right),	 and	F1	hybrid	EBH527	x	A12DH	right,	 ten	days	post	 inoculation	with	Albugo	
candida	race	9.		
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2.3.4		Inheritance	of	white	rust	resistance	in	cotyledons	to	Albugo	candida	

race	9	

The	phenotypes	of	parent	accessions	A12DH	and	EBH527	were	observed	across	

ten	replicates.	 	A12DH	consistently	showed	a	phenotype	of	5,	whereas	EBH527	

consistently	 showed	 a	 phenotype	 of	 0	 (Figure	 2.5).	 	 Three	 F1	 lines	 of	

A12xEBH527	 and	 the	 reciprocal	 EBH527xA12DH	were	 tested,	 and	 all	 showed	

phenotype	 of	 5	 (Figure	 2.5),	 suggesting	 that	 the	 resistance	 inherited	 from	

EBH527	is	recessive.	

	 A	 sample	 of	 600	 F2	 individuals	 was	 tested	 for	 response	 to	 inoculation	

with	 A.	 candida	and	 a	 ratio	 of	 357	 resistant	 versus	 243	 susceptible	 lines	 was	

observed.	 The	 600	 F2	 individuals	 were	 tested	 as	 subsamples	 grown	 in	 nine	

different	propagators.		A	one-way	analysis	of	variance	was	conducted	across	the	

mean	 phenotypes	 of	 each	 propagator.	 	 No	 significant	 variation	 between	 the	

means	of	each	phenotype	across	the	nine	subsamples	(Figure	2.6).			Chi-squared	

tests	 were	 performed	 for	 several	 genetic	 models,	 and	 an	 expected	 ratio	 of	 9	

resistant	 to	 7	 susceptible	 provided	 the	 best	 fit	 of	 the	 observed	 data	 (chi-

square=2.575;	 p=0.109),	 suggesting	 two	 genes	 with	 either	 complementary	 or	

recessive	 epistatic	 interactions.	 	 An	 additive	 interaction	 for	 resistance	 can	 be	

excluded,	 because	 a	 7:9	 of	 resistance	 to	 susceptible	would	 be	 expected	 in	 this	

case.	 	However,	recessive	epistasis	 is	a	possibility,	where	the	recessive	allele	of	

one	gene	masks	the	effect	of	either	allele	of	the	second	gene.	

	 	Amongst	 70	 F5	 recombinant	 inbreds,	 27	 were	 resistant	 and	 43	 were	

susceptible.	 	 By	 this	 generation,	 97%	 of	 the	 inbreds	 will	 be	 homozygous	 for	

either	allele	of	a	given	gene	(i.e.,	 .48.5%	AA	 :	48.5%	BB	 :	3%	AB).	 	For	a	single	

gene	model	with	the	residual	heterozygous	class	having	a	susceptible	phenotype	

(48.5%	 resistant	 :	 51.5%	 susceptible),	 the	 observed	 data	 had	 a	 chi-square	 of	

2.763	with	1	degrees	of	freedom	(p=	0.01).			
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Figure	 2.6.	 	 One-way	 analysis	 of	 variance	 of	 phenotypes	 observed	 across	 nine	
propagators	 containing	 600	 F2	 lines	 of	 Brassica	oleracea	 A12xEBH527	 ten	 days	 after	
inoculation	with	Albugo	candida	race	9.		The	mean	of	the	resistant	group	was	44.63	with	
a	 standard	 deviation	 of	 33.15,	 giving	 a	 95%	 confidence	 interval	 between	 24.76	 and	
64.49.		The	mean	of	the	susceptible	group	was	30.38	with	a	standard	deviation	of	16.54,	
giving	a	95%	confidence	interval	between	10.51	and	50.24.	p>0.005.	
	 		

	

2.3.5	 Standard	interval	mapping	of	a	major	locus	for	white	rust	resistance	

in	EBH527	

For	QTL	mapping,	three	replicates	of	the	F5	inbred	population	were	tested	using	

a	randomised	block	design.		A	linear	mixed	model	was	applied	to	the	phenotype	

data	 to	calculate	 the	effect	of	genotype	and	experimental	position.	 	Most	of	 the	

variation	(86%)	was	attributed	to	the	genotype,	with	0%	attributed	to	position	

and	 the	 remaining	 14%	 identified	 as	 residual.	 	 Average	 phenotypes	 were	

subsequently	 calculated	 from	 the	 three	 replicates	 and	 used	 for	 QTL	 mapping	

(Appendix	3).	

	 Conditional	 genotype	 probabilities	 were	 calculated	 on	 a	 grid	 with	 a	

density	 of	 1	 cM	 assuming	 a	 genotyping	 error	 probability	 of	 0.001.	 	 Standard	

interval	 mapping	 was	 performed	 in	 RQTL	 (Broman	 et	 al.,	 2003)	 	 using	 three	

methods:	 	 1)	 a	 maximum	 likelihood	 estimation	 under	 a	 mixture	 model;	 2)	 a	

Haley-Knott	 regression	performed	using	approximations	of	 the	mixture	model;	
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and	3)	a	multiple	imputation	method	that	was	applied	instead	of	the	maximum	

likelihood	estimation	(Broman	and	Sen,	2009).	

	

	 For	 both	 maximum	 likelihood	 estimation	 and	 Haley-Knott	 regression,	

1000	 permutations	 of	 the	 genotype	 probabilities	 were	 conducted	 to	 calculate	

genome	wide	 LOD	 significance	 threshold	 of	 3.96	 for	 a	 5%	 confidence	 interval.		

For	 the	 multiple	 imputation	 method,	 100	 imputations	 were	 performed,	

calculating	 the	 genome	 wide	 LOD	 significance	 threshold	 as	 4.09	 for	 a	 5%	

confidence	 interval.	 	 The	 maximum	 likelihood	 estimation	 detected	 single	 QTL	

with	 a	 LOD	 score	 of	 29.9,	 located	 on	 chromosome	 2	 at	 34.00	 cM	 between	

markers	 C2_3711838	 and	 C2_4567864,	 the	 Haley-Knott	 regression	 detected	 a	

single	 QTL	 with	 a	 LOD	 score	 of	 23.3,	 situated	 on	 chromosome	 2	 at	 36.00	 cM	

between	 markers	 C2_3711838	 and	 C2_4978392,	 and	 the	 multiple	 imputation	

method	detected	single	QTL	with	a	LOD	score	of	28.7,	situated	on	chromosome	2	

at	33.00	cM	between	markers	C2_3711838	and	C2_4567864	(Figure	2.7).	

	

2.3.6	 Multiple	QTL	mapping	

A	multiple	QTL	scan	was	conducted	on	each	model	controlling	the	primary	locus	

on	 chromosome	 2	 to	 make	 any	 minor	 effects	 more	 apparent.	 	 The	 genotype	

probabilities	were	 calculated	with	 an	 error	 of	 0.01	 and	 a	 step	 size	 of	 1	 cM	 for	

maximum	 likelihood	 and	 Haley-Knott	 regression,	 and	 100	 imputations	 were	

performed	for	the	multiple	imputation	method.		The	marker	closest	to	the	peak	

locus	identified	the	physical	position	of	4567846.	 	This	position	was	used	as	an	

additive	 covariant	 in	 the	 single	QTL	 scans	 shown	 in	Figure	2.8,	 and	no	 further	

significant	QTLs	could	be	detected	across	the	rest	of	the	genome.		
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A	

	 	

B	

	

C	

	
Figure	2.7.	 	Mapping	of	 resistance	 to	Albugo	candida	 (AcBoWells)	 in	Brassica	oleracea	
using	an	F5	A12DH	 (susceptible)	 x	EBH527	 (resistant)	mapping	population.	 	A,	 shows	
the	genome	scan	using	the	maximum	likelihood	algorithm	(logarithm	of	the	odds	(LOD)	
significance	 threshold	 of	 3.96	 for	 a	 5%	 confidence	 interval);	B,	 shows	 the	 scan	 using	
Haley-Knott	 regression	 (LOD	 significance	 threshold	 of	 3.96	 for	 a	 5%	 confidence	
interval);	and	C,	shows	the	scan	using	multiple	imputations	(LOD	significance	threshold	
of	 4.09	 for	 a	 5%	 confidence	 interval).	 	 Phenotypes	 were	 recorded	 ten	 days	 post	
inoculation	of	 cotyledons	 and	 scored	using	 a	 eight	 class	phenotype	 scale	of	 resistance	
and	differing	phenotypes	of	susceptibility.		Left:	whole	genome.	Right:	chromosome	2.	
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A	

	 	
B	

	

C	

	

	 	

Figure	2.8.		Composite	interval	mapping	of	resistance	to	Albugo	candida	(AcBoWells)	in	
Brassica	 oleracea	 using	 an	 F5	 A12DH	 (susceptible)	 x	 EBH527	 (resistant)	 mapping	
population,	 controlling	 the	 marker	 most	 tightly	 linked	 to	 the	 major	 effect	 on	
chromosome	2	(C2_4567846).		A,	shows	the	genome	scan	using	the	maximum	likelihood	
algorithm;	 B,	 shows	 the	 scan	 using	 Haley-Knott	 regression;	 C,	 shows	 the	 scan	 using	
multiple	 imputations.	 	 Phenotypes	 were	 recorded	 ten	 days	 post	 inoculation	 of	
cotyledons	 and	 scored	 using	 a	 five	 phenotype	 scale	 of	 resistance	 and	 differing	
phenotypes	of	susceptibility.	 	Left:	single	QTL	genome	scan	(blue)	and	single	genotype	
scan	with	C2_4567846	used	as	an	addative	covarient	(red).	 	Right:	effect	of	controling	
C2_4567846	 ilistrated	 by	 subtracting	 the	 the	 single	 QTL	 with	 the	 additive	 covarient	
from	the	standard	model.	
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2.3.7	 Two-dimensional	QTL	genome	scan	

A	two-dimensional	genome	scan	was	performed	to	begin	searching	for	multiple	

linked	 or	 interacting	 QTLs	 underling	 resistance	 to	 A.	 candida	 in	 the	 mapping	

population.	 	 By	 taking	 into	 account	 large	 effect	 QTLs,	 the	 multidimensional	

approach	reduces	residual	variation,	allowing	the	detection	of	modest	QTLs.		The	

comparison	 of	 single	 and	 two-QTL	models	 also	 enables	 a	 better	 separation	 of	

linked	QTLs.	 	 In	 addition,	 epistasis	 can	only	 be	detected	 through	multiple	QTL	

models.	

	 By	considering	each	pair	of	positions	across	 the	genome	as	 the	putative	

locations	 for	 two	 QTLs,	 the	 maximum	 LOD	 for	 the	 full	 model	 (Sf)	 and	 the	

maximum	 LOD	 for	 the	 additive	 model	 (Sa)	 were	 calculated	 (Table	 2.4).		

Maximisation	of	both	models	was	allowed	at	different	positions.		A	LOD	score	for	

a	 test	 of	 epistasis	 (Si)	could	 be	 calculated	 (Si	=	Sf	–	Sa).	 	 Two	 LOD	 scores	 that	

indicate	 evidence	of	 a	 second	QTL	were	also	 calculated;	 the	 comparison	of	 the	

full	 model	 to	 the	 best	 single-QTL	 model	 (Sfv1),	 and	 the	 comparison	 of	 the	

additive	model	to	the	best	single-QTL	model	(Sav1).		These	five	thresholds	were	

calculated	 using	 the	 multiple	 imputation	 method	 as	 the	 model	 accounts	 for	

missing	genotype	the	putative	QTL	locations	(Broman	and	Sen,	2009).	 	Pairs	of	

chromosomes	were	reported	 for	which	one	or	both	of	 the	 following	conditions	

hold	true:		Sf	≥	Sf	and	(Sfv1	≥	Sfv1	or	Si	≥	Si);	or	Sa	≥	Sa	and	Sav1	≥	Sav1.	

	

Table	2.4.	 	 Predicted	 second	 gene	 effects	 for	 resistance	 to	Albugo	candida	 in	Brassica	
oleracea	 A12DH	 x	 EBH527	 F5	 mapping	 population	 calculated	 using	 a	 multiple	
imputation	genome	scan.		Significance	thresholds	for	the	LOD	of	the	full	model	(Sf),	LOD	
of	the	additive	model	(Sa),	test	for	epistasis	(Si),	the	comparison	of	the	full	model	to	the	
best	 single-QTL	 model	 (Sfv1),	 and	 the	 comparison	 of	 the	 additive	 model	 to	 the	 best	
single-QTL	model	(Sav1)	were	calculated	using	100	permutations.			
	 Position	

1	full	

Position	

2	full	

Sf	 Sfv1	 Si	 Position	

1	additive	

Position	

2	additive	

Sa	 Sav1	

Significance	

threshold	

-	 -	 9.29	 7.36	 6.06	 -	 -	 6.38	 3.13	

	 	 	 	 	 	 	 	 	 	

C2:C2	 30	 35	 40.4	 7.56	 6.2756	 32.5	 35	 34.1	 1.28	

C2:C5	 35	 95	 42.2	 9.38	 6.2840	 35.0	 95	 35.9	 3.10	

C2:C8	 35	 40	 38.9	 6.08	 2.1708	 35.0	 50	 36.7	 3.91	

C2:C9	 35	 75	 37.8	 5.02	 -0.0315	 35.0	 75	 37.6	 5.05	
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When	 comparing	 the	 full	 two-QTL	 model	 with	 the	 best	 single	 fit	 QTL	

model,	 there	 is	 evidence	 of	 a	 second	 QTL	 on	 chromosome	 2	 and	 another	 on	

chromosome	5	with	allowance	 for	epistasis.	 	When	comparing	 the	 full	additive	

QTL	model	without	allowance	for	epistasis	with	the	best	single	QTL	model,	there	

is	evidence	of	additional	QTLs	with	an	additive	effect	on	chromosomes	8	and	9.		

The	 effects	 of	 putative	 linked	 loci	 on	 chromosome	 2,	 and	 unlinked	 loci	 on	

chromosomes	5,	8	and	9	were	assessed	by	analysing	phenotype	as	a	function	of	

the	genotype	of	the	most	tightly	linked	markers	(Figure	2.9).	

	 The	results	reveal	recombinants	homozygous	for	EBH527	at	the	inferred	

positions	 3711838	 and	 4567864	 on	 chromosome	 2	 that	 exhibit	 a	 resistant	

phenotype.		A	heterozygous	allele	at	either	marker	combined	with	a	homozygous	

allele	 at	 the	 other	 creates	 a	 susceptible	 phenotype,	 suggesting	 a	 single	 or	 two	

closely	 linked	 recessive	 genes.	 	 This	 is	 conferred	 by	 all	 recombinants	

heterozygous	at	both	positions	showing	a	susceptible	phenotype.		Recombinants	

homozygous	for	the	A12DH	allele	at	position	3711838	and	either	heterozygous,	

or	 homozygous	 for	 the	 EBH527	 allele	 at	 position	 4567864	 appear	 to	 be	

segregating	 for	 resistance.	 	 This	may	 indicate	 recombination	 between	 the	 two	

markers.	 	 All	 lines	 homozygous	 for	 the	 A12DH	 allele	 at	 both	 positions	 confer	

resistance.	

	 The	 interaction	 between	QTLs	 on	 chromosomes	2	 and	5	 again	 show	all	

recombinants	 resistant	 when	 homozygous	 for	 the	 EBH257	 allele	 at	 both	 loci.		

Apart	 from	 one	 outlier,	 all	 lines	 homozygous	 for	 the	 EBH527	 allele	 at	 the	

chromosome	2	locus	and	heterozygous	at	the	C5	locus	are	resistant,	whilst	either	

a	 heterozygous	 or	 homozygous	 A12DH	 allele	 on	 chromosome	 2	 confers	

susceptibility	 in	 all	 cases	 apart	 from	 two	 outliers.	 	 This	 may	 indicate	 that	 a	

recessive	gene	on	chromosome	2	and	a	dominant	gene	on	chromosome	5	both	

contribute	to	the	full	resistant	phenotype.	

	 The	additive	effect	of	the	locus	on	chromosome	8	requires	a	homozygous	

EBH527	 allele	 at	 the	 chromosome	 2	 locus	 for	 a	 resistant	 phenotype.	 	 A	

heterozygous	 allele	 on	 chromosome	 8	 creates	 the	 most	 notable	 phenotypic	

variation	 from	 the	additive	and	 interactive	effects	with	a	homozygous	EBH527	

allele	 on	 chromosome	 2.	 	 This	 may	 indicate	 that	 the	 additive	 effect	 on	

chromosome	8	is	recessive.		However,	a	resistant	phenotype	is	observed	when	a	
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homozygous	 EBH527	 chromosome	 2	 allele	 is	 combined	 with	 a	 homozygous	

A12DH	 allele	 on	 chromosome	 8,	 indicating	 the	 gene	 may	 be	 monomorphic	

between	the	two	lines.	

	 The	 additive	 effect	 of	 the	 chromosome	 9	 locus	 requires	 a	 homozygous	

EBH527	 allele	 at	 the	 chromosome	 2	 locus	 for	 a	 resistant	 phenotype.	 	 A	

heterozygous	allele	at	the	chromosome	9	combined	with	a	homozygous	EBH527	

allele	 on	 chromosome	 2	 creates	 a	 resistant	 phenotype	 in	 all	 cases,	which	may	

indicate	that	the	chromosome	9	allele	is	dominant.		

	 The	predicted	locations	of	the	putative	QTLs	were	defined	as	a	model	 in	

order	 estimate	 the	 effects	 of	 each	 locus.	 	 For	 this	 purpose,	 the	 multiple	

imputation	 method	 was	 used	 to	 compensate	 for	 missing	 genotype	 data.	 	 By	

pulling	 out	 the	 imputed	 genotypes	 at	 each	 location,	 a	 five	 QTL	 model	 was	

generated	 allowing	 for	 interactions	 between	 the	 two	 QTLs	 on	 chromosome	 2,	

and	between	the	primary	peak	on	chromosome	2	with	the	chromosome	5	QTL.		

The	overall	fit	of	the	model	provided	a	LOD	score	of	51.6	relative	to	null	model,	

with	 96.64%	 of	 the	 phenotypic	 variance	 being	 accounted	 for.	 	 Each	 locus	was	

dropped	 and	 reintroduced	 in	 succession,	 allowing	 comparison	 to	 be	 made	

between	 the	 full	 model	 and	 the	 model	 with	 the	 term	 omitted.	 	 The	 results	

provided	 strong	 evidence	 for	 loci	 on	 chromosomes	 2,	 5	 and	 9,	 and	 for	

interactions	between	the	two	loci	on	chromosome	2	and	between	chromosomes	

2	and	5.		The	chromosome	8	locus	was	found	to	be	insignificant	(Table	2.5).		
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A	 	 	 	 	 	 B	

	 	

C	 	 	 	 	 	 D	

	 	
Figure	2.9.	 	Dot	plots	of	Brassica	oleracea	F5	recombinant	 inbred	lines	with	white	rust	
resistant	phenotype	as	a	 function	marker	genotypes	 identified	as	 interactive,	A	 and	B,	
and	 additive	 C	 and	 D,	 using	 a	 two	 dimensional	 two	 QTL	 genome	 scan.	 	 Black	 dots	
correspond	 to	 observed	 genotypes	 and	 red	 dots	 correspond	 to	missing,	 consequently	
imputed	genotypes.		
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Table	2.5.	 	Analysis	of	 the	effect	of	dropping	each	QTL	 independently	 from	a	 five	QTL	
model	 generated	 by	 identifying	 fixed	 locations	 of	 QTLs	 contributing	 to	 resistance	 to	
Albugo	 candida	 AcBoWells	 in	 Brassica	 oleracea	 A12DH	 (susceptible)	 x	 EBH527	
(resistant)	F5	mapping	population.	
Position	 Type	3	sum	

of	squares	

LOD	 %	variance	 F	value	 P	value	(F	

stastic)	

C2	30cM	 12.73	 11.10	 3.61	 9.13	 8.47e-07	

C2	35cM	 56.62	 26.69	 16.06	 24.42	 4.44e-16	

C5	95cM	 9.08	 8.66	 2.58	 6.53	 3.72e-5	

C8	50cM	 0.64	 0.80	 0.18	 1.37	 0.26	

C9	75cM	 6.90	 7.00	 1.99	 14.88	 8.11e-06	

C2	30cM	&	

C2	35cM		

13.85	 11.78	 3.93	 14.93	 3.83e-08	

C2	35cM	&	

C5	95cM		

5.08	 5.43	 1.44	 5.48	 9.55e-04	

	

	

2.3.8	 Fine-mapping	 eliminates	 NB-LRR	 genes	 as	 candidate	 genes	

conferring	recessive	white	rust	resistance	in	EBH527	at	the	Bo-ACA2	locus	

The	locus	for	a	major	effect	QTL	on	chromosome	2	defined	using	the	Haley-Knott	

regression	was	designated	Bo-ACA2.		Br-ACA1	was	previously	mapped	by	Kole	et	

al.	(2002)	as	a	white	rust	resistance	locus	on	chromosome	4	of	B.	rapa.			

	 A	physical	interval	of	1,266,554	bp	was	estimated	for	Bo-ACA2	by	relating	

markers	C2_3711838	and	C2_4978392	to	their	physical	locations	on	the	TO1000	

reference	genome.		This	interval	was	wider	than	the	856,026	bp	defined	by	both	

standard	 interval,	 and	multiple	 imputation	 genome	 scans,	 encompassing	more	

potential	 candidate	 genes	 and	 both	 putative	 QTLs	 identified	 in	 the	 two	

dimensional	 two	 QTL	 genome	 scan	 (Table	 2.6).	 	 Four	 recombinants	 (RIL_22,	

RIL_38,	 RIL_49	 and	 RIL_59)	 were	 identified	 which	 reduced	 the	 interval	 to	

410,528	bp	between	markers	C2_4567864	and	C2_4978392	(Figure	2.10).		This	

fine	map	 interval	 spans	67	annotated	genes	 in	 the	TO1000	reference	 including	

seven	that	encode	TIR-NBS-LRR	proteins.	

	 Importantly,	 all	 RILs	 that	 are	 homozygous	 for	 EBH527	 DNA	 across	 the	

interval	had	a	resistant	phenotype,	all	RILs	that	are	homozygous	for	A12DH	DNA	

had	a	susceptible	phenotype,	and	all	heterozygous	RILs	are	susceptible.	 	These	
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results	therefore	confirmed	the	predictions	made	from	the	F1	phenotype	(Figure	

2.5)	that	the	resistance	is	recessive.	

	 A	 new	 marker	 technology	 called	 Resistance	 gene	 enrichment	 and	

sequencing	(RenSeq)	(Jupe	et	al.,	2013,	Jupe	et	al.,	2014)	was	used	to	investigate	

whether	Bo-ACA2	resistance	is	conferred	by	one	of	the	TIR-NBS-LRR	genes.		This	

method	enables	capturing	of	high	quality	sequence	of	NB-LRR	genes	across	the	

whole	 genome	 of	 a	 plant	 accession.	 	 Following	 quality	 control,	 RenSeq	 of	

genomic	DNA	from	A12DH	yielded	a	total	of	283,535	paired	end	reads	including	

15251	(5.38%)	that	did	not	map	to	the	TO1000	reference,	88253	(31.13%)	that	

aligned	 once	 and	 180031	 (63.50%)	 aligned	 more	 than	 once	 to	 the	 reference.		

Sequence	comparison	of	matching	alleles	identified	7114	SNPs	between	A12DH	

and	 TO1000,	 supported	 by	 a	 depth	 of	 coverage	 of	 ten	 or	 greater.	 	 Similarly,	

RenSeq	 of	 genomic	 DNA	 from	 EBH527	 yielded	 a	 total	 of	 1141966	 paired	 end	

reads;	 including	 26753	 (2.34%)	 that	 did	 not	 map	 to	 the	 reference,	 273202	

(23.92%)	that	aligned	once	and	842011	(73.73%)	that	aligned	more	than	once	to	

the	 reference.	 	 Sequence	 comparison	 identified	 10788	 SNP’s	 between	 EBH527	

and	TO1000,	supported	by	a	depth	of	coverage	of	ten	or	greater.		By	combining	

the	datasets,	9723	unique	polymorphisms	were	 identified	between	A12DH	and	

EBH527	in	514	predicted	gene	models.		

Of	 the	 seven	 NB-LRR	 genes	 within	 the	 ACA2	 interval	 of	 TO1000,	 five	

possessed	unique	polymorphisms	between	both	parents	supported	by	a	depth	of	

coverage	 greater	 than	 ten.	 	 In	 Bo2g014340	 a	 polymorphism	 was	 detected	

between	EBH527	and	TO1000,	but	an	 insufficient	depth	of	 coverage	 in	A12DH	

meant	 this	could	not	be	 identified	as	a	certain	polymorphism	between	 the	 two	

parents.		In	Bo2g016440,	no	polymorphisms	could	be	detected	between	EBH527	

and	TO1000,	and	again	the	A12DH	locus	was	not	supported	by	a	sufficient	depth	

of	 coverage	 to	 accurately	 identify	 any	 mutations	 (Table	 2.6).	 	 Of	 the	 genes	

identified	as	polymorphic,	Bo2g016470	and	Bo2g016610	were	used	for	further	

analysis	owing	comparatively	high	mean	depth	of	coverage	and	ability	to	exclude	

the	remaining	candidate	NB-LRRs	if	the	parental	mutations	did	not	cosegregate	

with	the	phenotype	across	the	recombinants.		

In	Bo2g016470	 a	 SNP	 at	 position	 4,840,023	 from	 thymine	 in	A12DH	 to	

guanine	 in	 EBH527,	 and	 in	 Bo2g016610	 a	 SNP	 at	 position	 4,914,224	 from	
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thymine	 in	 A12DH	 to	 adenine	 in	 EBH527	 was	 used	 to	 genotype	 the	 key	

recombinants.	 Neither	 cosegregated	 the	 phenotype,	 narrowing	 the	 interval	 to	

64,445	bp	containing	13	predicted	genes	in	the	reference	genome.	

	

Table	2.6.		Mean	depth	and	breadth	of	sequence	coverage	for	Nucleotide	Binding	Site-
Leucine-Rich	 Repeat	 (NBS-LRR)	 genes	 in	Brassica	oleracea	reference	 genome	 TO1000	
within	 the	 fine	 mapping	 interval	 of	 Bo-ACA2.	 	 Sequence	 was	 generated	 from	 parent	
accessions	 A12DH	 (susceptible)	 and	 EBH527	 (resistant)	 using	 a	 new	 exome	 capture	
method	called	Resistant	Gene	Enrichment	Sequencing	(RenSeq).	(Juper	et	al	2013;	Jupe	
et	al,	2014)	Corresponding	homologs	were	identified	for	three	genes	on	the	top	arm	of	
chromosome	5	in	Arabidopsis	thaliana.	
Gene	ID	 A12DH	

depth		

EBH527	

depth	

A12DH	

breadth	

EBH527	

breadth	

Supported	

Mutations	

Bo2g014110	 19.3	 49.5	 42.3	 51.7	 Yes	

Bo2g014320	 25.6	 185.0	 64.3	 100	 Yes	

Bo2g014340	 7.3	 185.4	 58.3	 88.6	 No	

Bo2g014350	 11.3	 443.5	 52.9	 100	 Yes	

Bo2g016440	 1.1	 10.6	 37.1	 42.5	 No	

Bo2g016470	 80.7	 126.0	 99.2	 76.0	 Yes	

Bo2g016610	 63.2	 119.4	 100	 91.0	 Yes	
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Figure	 2.10.	 	 Summary	 of	 phenotype	 and	 genotype	 information	 for	 F5	 A12DH	
(susceptible)	x	EBH527	(resistant)	recombinant	inbred	lines	(RIL)	of	Brassica	oleracea.		
The	inbreds	were	phenotyped	for	white	rust	resistance	following	cotyledon	inoculation	
with	Albugo	candida	race	9	(AcBoWells).	 	Genotype	information	spans	the	map	interval	
on	 chromosome	 2	 for	 Bo-ACA2	 defined	 using	 a	 Haley-Knott	 regression	 mapping	 of	
Genotyping-by-Sequencing	markers	(C2_4567864	and	C2_4978392).		Allelic	variation	in	
eight	genes	within	the	interval	was	used	to	generate	new	markers	including	two	genes	
that	 encode	 TIR-NBS-LRR	 proteins	 (Bo2g016470	 and	 Bo2g016610).	 	 A	 marker	
generated	within	Bo2g016480	co-segregated	with	inbred	phenotypes;	this	gene	encodes	
a	 GDSL	 lipase-like	 protein.	 	 For	 genotype	 scores:	 	 AA	 indicates	 homozygous	 for	 an	
EBH527	 allele;	 BB	 indicates	 homozygous	 for	 an	 A12DH	 allele;	 AB	 indicates	
heterozygous	 alleles;	 and	MM	 indicates	monomorphic	 alleles.	 	 Interaction	 phenotypes	
were	'resistant'	(ranging	in	a	score	of	1	to	3)	or	'susceptible'	(ranging	in	a	score	from	6	
to	8).	
	

	

2.3.9	 Comparative	 sequence	 analyses	 identifies	 a	 single	 candidate	

resistance	gene	

The	 centre	 point	 of	 the	 interval	was	 taken	 for	 further	 reference-based	marker	

design	 to	 search	 for	 polymorphisms	 between	 the	 parents.	 	 Bo2g016550,	

encoding	a	lung	seven	transmembrane	receptor	family	protein,	was	found	to	be	

polymorphic	and	was	used	to	genotype	the	recombinants.	 	The	marker	did	not	

cosegregate	with	 phenotype,	 therefore	 excluding	 this	 gene	 as	 a	 candidate	 and	

narrowing	 the	 interval	 to	 25,637	 bp	 that	 contains	 seven	 predicted	 genes	 in	

TO1000.	 	Within	 this	 fine	 interval,	 two	 genes	were	 found	 to	 be	monomorphic	

including	 Bo2g016540	 (encoding	 a	 kinase	 family	 protein)	 and	 Bo2g016530	

encoding	a	glycogenin-1	protein).	

	 Reference	 based	 marker	 design	 and	 genotyping	 revealed	 Bo2g016520,	

encoding	 a	 pentatricopeptide	 repeat–containing	 protein,	 also	 does	 not	
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cosegregate	 with	 phenotype	 and	 narrowing	 the	 interval	 to	 18,033	 bp	 that	

contains	four	predicted	genes	in	the	reference	genome.		These	were	Bo2g016510	

(a	 G-type	 lectin	 S-receptor-like	 serine/threonine-protein	 kinase),	 Bo2g016500	

(a	 protein	 of	 unknown	 function),	 Bo2g016490	 (an	 ethylene-responsive	

transcription	factor)	and	Bo2g016480	(a	GDSL	lipase).	

	 Primers	 flanking	 each	 of	 the	 four	 remaining	 candidate	 genes	 were	

designed	 from	the	reference	genome	and	whole	gene	amplicons	were	obtained	

from	 A12DH	 and	 EBH527.	 	 Multiple	 sequencing	 reactions	 were	 performed	 on	

each	 sample	and	 the	 reads	were	aligned	back	 to	 the	 reference	genome.	 	Three	

genes	 (Bo2g016510,	 Bo2g016500	 and	 Bo2g016490)	 were	 found	 to	 be	

monomorphic;	 whereas	 a	 single	 SNP	 was	 found	 in	 Bo2g016480	 at	 position	

4,846,936	(with	adenine	in	A12DH	and	TO1000,	and	thymine	in	EBH527).		This	

marker	 was	 used	 to	 genotype	 the	 recombinants.	 	 The	 genotype	 of	 the	

recombinants	 did	 cosegregate	 with	 their	 corresponding	 phenotype,	 thus	

suggesting	that	Bo2g016480	is	the	only	remaining	candidate	gene	(Figure	2.10).		

	 The	 SNP	 in	 Bo2g016480	 encodes	 a	 non-synonymous	 change	 in	 the	

predicted	 codon	 of	 the	 first	 reading	 frame,	 translating	 into	 an	 isoleucine	 in	

EBH527	and	a	lysine	in	A12DH	and	TO1000.		The	EBH527	protein	is	predicted	to	

have	a	hydrophobic	side	chain	as	opposed	to	an	electrically	charged	side	chain,	

thus	affecting	the	hydrophobicity	and	isoelectric	point.	(Kearse	et	al,	2012).		The	

secondary	 structure	 of	 the	 A12DH	 protein	 also	 appears	 to	 have	 an	 additional	

beta	strand	in	place	of	an	elongated	turn	in	EBH527,	thus	reducing	the	size	of	a	

predicted	antigenic	region	in	A12DH	by	two	residues	(Table	2.7).	
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Table	2.7.	 	Predicted	changes	in	the	secondary	structure	of	the	ACA2	protein	(encoded	
by	Bo2g016480)	caused	by	the	translation	of	either	a	 lysine	 in	the	transcript	 from	the	
A12DH	allele	or	an	isoleucine	in	the	EBH527	allele	at	amino	acid	position	300.	
Allele	 Type	of	change	 Minimum	 Maximum	 Length	

A12DH	 Coil	 292	 294	 3	

	 Turn	 295	 304	 10	

	 Antigenic	region	 301	 310	 10	

	 Beta	Strand	 305	 307	 3	

	 Turn		 308	 309	 2	

	 Coil	 310	 310	 1	

	 	 	 	 	

EBH527	 Coil	 292	 294	 3	

	 Turn	 295	 309	 15	

	 Antigenic	region	 299	 310	 12	

	

2.3.10	Characterisation	of	Bo2g016480	diversity	with	respect	to	white	rust	

resistance.		

Ten	 replicates	 of	 246	 lines	 from	 the	 C	 genome	 diversity	 collection	 were	

phenotyped	following	cotyledon	inoculation	with	A.	candida	isolate	AcBoWells	to	

search	 for	 additional	 sources	 of	 resistance	 (Appendix	 1).	 	 The	 set	 was	

representative	 of	 the	 morphological,	 physiological	 and	 genotypic	 variation	

across	the	C	genome	(Walley	et	al.,	2012).	 	Twelve	lines	were	scored	as	class	2,	

suggestive	 of	 resistance	 with	 a	 similar	 phenotype	 to	 EBH527.	 	 Transcriptome	

sequence	 was	 available	 for	 the	 set	 of	 112	 lines	 (Barker,	 unpublished).		

Nucleotide	 sequence	 of	 Bo2g016480	 was	 extracted	 from	 the	 data.	 	 The	 A12	

residue	was	highly	conserved,	with	all	 accessions	apart	 from	EBH527	having	a	

lysine	at	the	mutated	position.	Phylogenetic	analysis	of	both	the	nucleotide	and	

translated	 protein	 sequence	 indicate	 that	 EBH527	 has	 a	 unique	 allele	 of	

Bo2g016480	 amongst	 the	 line	 assessed	 (Figure	 2.11	 and	 2.12).	 Interestingly,	

EBH527	 did	 not	 group	 with	 four	 other	 accessions	 (HRIGRU007514,	 C04044,	

C044045	and	HRIGRU011555)	that	exhibited	resistance	to	A.	candida,	suggesting	

that	they	contain	alternative	genes	conferring	white	rust	resistance.	
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Figure	 2.11.	 	 Phylogeny	 of	 coding	 nucleotide	 sequence	 variation	 in	 alleles	 of	
Bo2g016480	 from	 a	 C	 genome	 diversity	 collection	 of	 Brassica	 oleracea	 and	 related	
species	generated	using	Jukes-Cantor	genetic	distance	model	and	Neighbor-Joining	build	
method	with	no	outgroup.		This	gene	was	identified	as	a	candidate	determinant	for	Bo-
ACA2	resistance	to	Albugo	candida	race	9	(AcBoWells).		Red	labels	indicate	alleles	from	
accessions	 that	 are	 resistant	 to	 AcBoWells;	 and	 Black	 labels	 indicate	 alleles	 from	
susceptible	accessions.	
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Figure	2.12.	Phylogeny	of	protein	sequence	variation	in	alleles	of	Bo2g016480	from	a	C	
genome	 diversity	 collection	 of	 Brassica	 oleracea	 and	 related	 species	 generated	 using	
Jukes-Cantor	 genetic	 distance	 model	 and	 Neighbor-Joining	 build	 method	 with	 no	
outgroup.	 	This	gene	was	identified	as	a	candidate	determinant	for	Bo-ACA2	resistance	
to	Albugo	candida	race	9	(AcBoWells).	 	Red	labels	indicate	alleles	 from	accessions	that	
are	resistant	to	AcBoWells;	and	Black	labels	indicate	alleles	from	susceptible	accessions.	
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2.3.12	Mapping	 of	 a	 QTL	 conferring	 resistance	 to	 an	 Australian	 isolate	 of	

Albugo	candida	in	A12DH	

An	Australian	 isolate	 of	A.	candida	 isolate	 (AcAus)	was	 used	 to	 phenotype	 ten	

plants	of	both	A12DH	and	EBH527.		Both	lines	consistently	displayed	a	resistant	

phenotype	of	class	1.		The	same	isolate	was	used	to	phenotype	a	subset	of	the	F5	

A12DH	x	EBH527	mapping	population.		The	inbreds	segregated	26	susceptible	to	

12	 resistant	 (based	 on	 a	 mean	 phenotype	 score	 across	 three	 replicates),	

indicating	 that	 resistance	 is	 conferred	 in	 each	 parent	 by	 a	 different	 resistance	

gene.		F1	or	F2	seed	was	not	available	for	testing	with	AcAus.	

	 As	 described	 above	 for	 Bo-ACA2,	 initial	mapping	 of	 resistance	 to	 AcAus	

was	 performed	 using	 the	 available	 GBS	 data	 for	 the	 mapping	 population.		

Conditional	genotype	probabilities	were	calculated	on	a	grid	with	a	density	of	1	

cM	assuming	a	genotyping	error	probability	0.001.	 	 Standard	 interval	mapping	

was	performed	using	a	maximum	likelihood	estimation	under	a	mixture	model,	

Haley-Knott	 regression	 was	 performed	 using	 approximations	 of	 the	 mixture	

model,	and	a	multiple	 imputation	method	was	applied	 to	model	 in	place	of	 the	

maximum	 likelihood	 estimation	 (Broman	 and	 Sen,	 2009).	 	 For	 both	maximum	

likelihood	 estimation	 and	 Haley-Knott	 regression,	 1000	 permutations	 of	 the	

genotype	 probabilities	 were	 conducted	 to	 calculate	 genome	 wide	 LOD	

significance	 threshold	 of	 4.58	 for	 a	 5%	 confidence	 interval.	 	 For	 the	 multiple	

imputation	method,	 100	 imputations	 were	 performed,	 calculating	 the	 genome	

wide	LOD	significance	threshold	as	4.14	for	a	5%	confidence	interval.	 	All	three	

methods	 identified	a	 single	major	effect	 locus	on	 chromosome	4	 (Figure	2.13):		

the	 maximum	 likelihood	 estimation	 and	 multiple	 imputation	 both	 detected	 a	

locus	at	26.60	cM	between	markers	C4_5615273	and	C4_10354410	(LOD	score	

of	 7.5),	 and	 Haley-Knott	 regression	 detected	 a	 locus	 at	 27.00	 cM	 between	

markers	C4_5615273	and	C4_10354410	(LOD	score	of	7.5).	

	 A	multiple	QTL	scan	was	then	conducted	on	each	model	 for	the	primary	

locus	 on	 chromosome	 4	 to	 determine	 if	 any	 minor	 effects	 are	 involved.	 	 The	

genotype	probabilities	were	 calculated	with	 an	 error	 probability	 of	 0.01	 and	 a	

step	size	of	1	cM	for	maximum	likelihood	and	Haley-Knott	regression,	and	100	

imputations	were	performed	for	the	multiple	imputation	method.		The	genotype	

of	 the	marker	closest	 to	 the	peak	of	 the	 locus	 for	each	output	was	 identified	at	
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the	physical	position	8059884,	and	was	subsequently	 removed	and	used	as	an	

additive	covariant	 in	 the	single	QTL	scans	(Figure	2.14).	 	No	 further	significant	

QTLs	could	be	detected	across	the	rest	of	the	genome	using	this	method.	

A	

	

B	

	
C	

	 	
Figure	 2.13.	 	Mapping	 of	 resistance	 to	 Albugo	 candida	 (AcAus)	 in	 Brassica	 oleracea	
using	an	F5	A12DH	(resistant)	x	EBH527	(resistant)	population.	 	A,	 shows	the	genome	
scan	using	the	maximum	likelihood	algorithm	(logarithm	of	odds	(LOD)	of	4.58	for	a	5%	
confidence	interval);	B,	shows	the	scan	using	Haley-Knott	regression	(LOD	of	4.58	for	a	
5%	confidence	interval);	and	C,	shows	the	scan	using	multiple	imputations	(LOD	of	4.14	
for	a	5%	confidence	 interval).	 	Phenotypes	were	recorded	ten	days	post	 inoculation	of	
cotyledons	and	scored	using	an	eight	class	phenotype	scale.		Left:	whole	genome.	Right:	
chromosome	4.	
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A	

	 	

B	

	
C	

	
Figure	2.14.	 	Composite	 interval	mapping	 of	 resistance	 to	Albugo	candida	 (AcAus)	 in	
Brassica	 oleracea	 using	 an	 F5	 A12DH	 (resistant)	 x	 EBH527	 (resistant)	 mapping	
population,	 controlling	 the	 marker	 most	 tightly	 linked	 to	 the	 major	 effect	 on	
chromosome	4	(C4_8059884).		A,	shows	the	genome	scan	using	the	maximum	likelihood	
algorithm;	 B,	 shows	 the	 scan	 using	 Haley-Knott	 regression;	 C,	 shows	 the	 scan	 using	
multiple	 imputations.	 	 Phenotypes	 were	 recorded	 ten	 days	 post	 inoculation	 of	
cotyledons	 and	 scored	 using	 a	 five	 class	 phenotype	 scale	 of	 resistance	 and	 differing	
phenotypes	of	susceptibility.	Left:	 single	QTL	genome	scan	(blue)	and	single	genotype	
scan	with	C4_8059884	used	as	an	addative	covarient	(red).	 	Right:	effect	of	controling	
C4_8059884	 illustrated	 by	 subtracting	 the	 the	 single	 QTL	with	 the	 additive	 covarient	
from	the	standard	model.	
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	 A	 two-dimensional	 genome	 scan	was	 performed	 to	 begin	 searching	 for	

multiple	 linked	 or	 interacting	 QTLs	 that	may	 underlie	 resistance	 to	A.	candida	

(AcAus)	 in	 the	mapping	 population.	 	 A	 multiple	 imputation	 genome	 scan	 was	

used	to	obtain	values	for	the	maximum	LOD	of	the	full	model	(Sf),	maximum	LOD	

of	 the	 additive	 model	 (Sa),	 a	 LOD	 score	 for	 a	 test	 for	 epistasis	 (Si),	 the	

comparison	 of	 the	 full	 model	 to	 the	 best	 single-QTL	 model	 (Sfv1),	 and	 the	

comparison	of	 the	additive	model	 to	 the	best	single-QTL	model	(Sav1).	 	With	a	

5%	 confidence	 interval	 and	 100	 permutations	 these	 values	were	 calculated	 as	

12.6,	 7.51,	 8.51,	 9.86,	 and	 4.05	 retrospectively.	 	 No	 pairs	 of	 loci	 matched	 the	

criteria	of	Sf	≥	Sf	and	(Sfv1	≥	Sfv1	or	Si	≥	Si),	or	Sa	≥	Sa	and	Sav1	≥	Sav1,	 implying	

no	interactive	or	additive	QTL’s	could	be	detected.		The	predicted	location	of	the	

putative	 QTL	 on	 chromosome	 4	 was	 subsequently	 defined	 as	 a	 model	 and	

compared	to	the	null,	concluding	that	it	accounted	for	57.70%	of	the	phenotypic	

variance.	

	 The	 interval	between	markers	C4_5615273	and	C4_10354410	was	used	

as	a	 focus	for	 further	analyses.	 	All	 inbred	lines	that	are	either	homozygous	for	

A12DH	 DNA	 or	 heterozygous	 exhibited	 a	 resistant	 phenotype,	 indicating	 a	

dominant	A12DH	allele	conferring	resistance	 to	AcAus.	 	Two	out	of	13	 inbreds	

that	 are	 homozygous	 for	 EBH527	 across	 the	 interval	 also	 had	 a	 resistant	

phenotype	 (RIL_50	 and	 RIL_67),	 which	 could	 be	 explained	 by	 an	 expected	

resistance	 inherited	from	EBH527	at	a	different	 location.	 	These	 inbreds	would	

therefore	 provide	 a	 resource	 for	 mapping	 resistance	 to	 AcAus	 in	 EBH527	

through	 the	 development	 of	mapping	 populations	 from	 the	 progeny.	 	 As	 both	

parents	were	resistant	and	no	second	QTL	was	detected,	it	is	possible	all	or	some	

of	 the	 lines	phenotyped	as	resistant	had	both	 the	A12DH	and	EBH527	R	genes.	

Fine	mapping	within	the	interval	is	consequently	problematic,	as	it	not	possible	

the	 rule	 out	 that	 an	 EBH527	 locus	 in	 producing	 the	 resistant	 phenotype.		

Nevertheless,	three	recombinants,	which	if	lacking	the	EBH527	resistance	allele,	

suggest	 the	 interval	 could	 be	 narrowed	 between	 markers	 C4_8059884	 and	

C4_9033847	(Figure	2.15).		
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Figure	2.15.		Summary	of	genotype	and	white	rust	resistance	phenotype	for	F5	A12DH	x	
EBH527	recombinant	inbreds	of	Brassica	oleracea	following	cotyledon	inoculation	with	
an	 Albugo	 candida	 isolate	 from	 Australia	 (AcAus).	 	 Genotype	 information	 spans	 a	
putative	 QTL	 for	 a	 resistance	 locus	 on	 chromosome	 4	 (centered	 on	 boxed	 position),	
identified	using	a	maximum	likelihood,	Haley-Knott	regression,	and	multiple	imputation	
genome	scan	of	a	genetic	map	constructed	from	markers	generated	through	Genotyping	
by	sequencing	(GBS).	Genotype	scores	include:		AA=		homozygous	for	the	EBH527	allele,	
BB=	homozygous	for	the	A12DH	allele,	and	AB=heterozygous.		Phenotypes	were	using	a	
seven-class	severity	scale	including	classes	1-3	(resistant	with	no	blisters)	or	classes	4-8	
(with	increase	amounts	of	blisters).	
	

	 One	 broad	 mapping	 interval	 spans	 145	 predicted	 gene	 models	 in	 the	

TO1000	 reference	 genome	 (Appendix	 3),	 and	 only	 includes	 one	 example	 of	 a	

resistance	 gene	 that	 encodes	 a	 CC-NBS-LRR	 protein.	 	 Bo4g038670	 is	 located	

between	8,267,696	and	8,271,861	bp,	and	is	a	ortholog	of	a	known	CC-NBS-LRR	

downy	 mildew	 resistance	 gene	 in	 A.	 thaliana	 designated	 RPP7	 (Holub,	 2007).		

The	RenSeq	data	from	both	parents	was	analysed	to	search	for	polymorphisms.		

A12DH	had	a	mean	depth	of	coverage	of	10.6	reads	a	36.9%	breadth	of	coverage,	

and	EBH527	had	a	mean	depth	of	coverage	of	24.1	reads	with	a	74.8%	breadth	of	

coverage.		This	data	was	insufficient	for	reliable	comparison	of	alleles,	so	primers	

flanking	the	gene	were	designed	from	the	reference	genome	and	used	to	obtain	

whole	gene	amplicons	from	both	parents.		Multiple	Sanger	sequencing	reactions	

were	 performed	 on	 both	 samples	 and	 the	 reads	 were	 aligned	 back	 to	 the	

reference	 genome,	 revealing	 that	 EBH527	 shares	 the	 same	 allele	 as	 TO1000	

whereas	 the	A12DH	allele	has	15	 SNPs,	 a	 35	bp	deletion	 and	a	7	bp	 insertion.		

The	 nucleotide	 sequence	 for	 both	 parents	 was	 translated	 into	 protein	 coding	



	 59	

sequence,	and	revealed	a	SNP	at	position	8,268,802	(a	cytosine	 in	EBH527	and	

TO1000,	 and	 an	 adenine	 in	 A12)	 causes	 a	 premature	 stop	 codon	 in	 A12DH,	

shortening	the	length	of	the	predicted	protein	from	714	to	510	amino	acids.		Two	

additional	non-synonymous	mutation	are	also	present	in	the	A12DH	allele	prior	

to	the	stop	codon:		an	adenine	at	position	8,271,245	in	A12DH	to	encode	aspartic	

acid	 instead	 of	 a	 thymine	 to	 encode	 valine	 in	 EBH527	 and	 TO1000;	 and	 a	

thymine	at	position	8,271,115	in	A12DH	to	encode	alanine	instead	of	a	cytosine	

to	 encode	 valine	 in	 EBH527	 and	 TO1000.	 	 A	 protein	 BLAST	 search	 was	

conducted	 on	 both	 alleles.	 	 Both	 contained	 a	 conserved	 N-terminal	 coiled	 coil	

domain,	 and	 a	 AAA	 ATPase	 domain	within	 the	 NB-ARC	 although	 EBH527	 and	

TO1000	contained	an	additional	topology	modulation	protein	caused	by	the	two	

non-synonymous	 SNPs.	 	 Most	 notable	 was	 the	 lack	 of	 the	 leucine	 rich	 repeat	

domain	 in	 the	 A12DH	 allele	 caused	 by	 the	 premature	 stop	 codon.	 	 The	 35	 bp	

deletion,	7	bp	insertion	and	remaining	13	SNPs	upstream	of	the	premature	stop	

codon	were	evidence	of	redundancy.		

2.4	 DISCUSSION	
The	discovery	of	a	single	candidate	gene	that	cosegregates	with	the	phenotype	of	

key	recombinants	provides	strong	evidence	that	a	GDSL	lipase	(Bo2g016480)	at	

the	ACA2	 locus	 explains	 the	 broad	 spectrum	 resistance	 to	A.	candida	race	 9	 in	

EBH527.	 	 The	 recessive	 nature	 of	 this	 resistance	 is	 intriguing	 because	 it	 may	

indicate	that	the	alternative	allele	in	accession	A12DH	encodes	a	protein	that	is	

required	 for	 compatibility	 with	 A.	 candida.	 	 In	 addition,	 the	 identification	 of	

additive	 effects	 of	 other	 loci	 indicates	 that	 alleles	 of	 additional	 genes	 are	

required	 in	 the	 genetic	 background	 to	 enhance	 resistance	 (or	 disrupt	

compatibility).	

	 The	 application	 of	 new	 genotyping	 technology	 made	 it	 possible	 to	

progress	 rapidly	 in	defining	a	narrow	 interval	 for	 the	ACA2	 locus.	 	RenSeq	has	

been	 promoted	 recently	 as	 a	 powerful	 means	 of	 identifying	 R-genes	 in	 major	

crop	species	(Witek	et	al.,	2016,	Andolfo	et	al.,	2014,	Jupe	et	al.,	2013,	Jupe	et	al.,	

2014).	However,	R-genes	 are	 typically	 associated	with	 dominant	 resistance,	 so	

GBS	was	critical	in	this	current	work	to	characterise	an	example	of	the	recessive	
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resistance.		Once	a	locus	had	been	established,	then	high	quality	sequence	of	NB-

LRR	 genes	 within	 the	 map	 interval	 was	 useful	 as	 a	 means	 of	 narrowing	 the	

interval.	

	 Although	 this	 genetic	 mapping	 suggests	 that	 an	 NB-LRR	 gene	 is	 not	

involved	at	the	ACA2	locus,	this	important	class	of	R-protein	may	still	play	a	role	

at	a	secondary	 locus.	 	For	example,	 this	has	been	demonstrated	 for	a	 recessive	

resistance	in	barley	to	the	wheat	stem	rust	pathogen	Puccinia	graminis,	in	which	

tightly	 linked	 NB-LRR	 genes	 were	 found	 to	 be	 essential	 components	 of	 the	

resistance	(Wang	et	al.,	2013).		Interestingly,	copies	exist	in	both	A.	thaliana	and	

B.	rapa	within	regions	associated	with	white	rust	resistance.		In	A.	thaliana	Col-0,	

the	homologous	GDSL	lipase	At5g18430	lies	approximately	0.28	Mb	from	WRR5	

and	WRR6;	whereas	 in	B.	rapa,	 the	Bra023673	homolog	on	chromosome	2	 sits	

within	a	putative	QTL	conferring	a	minor	effect	to	resistance	to	A.	candida	race	2	

(Kole	 et	 al.,	 2002).	 	 This	 suggests	 that	 syntenic	 blocks	 of	 genes	 are	 evolving	

resistance	 to	 A.	 candida	 across	 the	 Brassicaceae,	 and	 we	 can	 speculate	 that	 R	

gene	variation	within	these	blocks	are	driving	the	specialisation	apparent	within	

the	coevolving	pathogen	(McMullan	et	al.,	2015).	

To	 initiate	 verification	 that	 the	 candidate	 GDSL	 lipase	 is	 required	 for	

compatibility	with	A.	candida,	experiments	were	 initiated	using	TDNA	insertion	

knock-out	mutants	 of	 the	 homologous	 gene	 in	A.	thaliana	(At5g18430).	 	 These	

were	generated	in	the	Col-0	background	(reference	genome)	and	available	from	

a	public	resource	(Alonso	et	al.,	2003)	supplied	by	the	Arabidopsis	Stock	Centres.		

A	knock-out	or	loss-of-function	mutation	would	be	expected	to	exhibit	enhanced	

resistance	to	a	virulent	isolate	of	A.	candida.		Five	independent	mutant	lines	were	

obtained,	and	ten	of	each	was	tested	with	a	Col-virulent	 isolate	AcExeter.	All	of	

the	lines	were	heterozygous	for	the	TDNA	insert.		Two	lines	(SALK_116756	and	

SALK_079740)	 with	 insertions	 affecting	 the	 first	 exon	 had	 at	 least	 two	

individuals	that	exhibited	no	blisters	and	small	necrotic	lesions	surrounding	the	

site	 of	 inoculation.	 	 No	 seed	 germinated	 for	 one	 line,	 and	 results	 were	

inconclusive	for	the	other	two	lines.		Homozygous	lines	will	be	selected	for	each	

TDNA	 insertion	 for	 testing	 in	 a	 follow-up	 experiment	 to	 confirm	 a	 non-

segregating	 resistant	phenotype.	 	Nevertheless,	 the	preliminary	 results	 suggest	

that	a	GDSL	lipase	is	required	for	susceptibility	to	a	virulent	isolate	of	A.	candida.	
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Homologs	 of	 the	 candidate	 ACA2	 lipase	 in	A.	thaliana	 and	B.	rapa	 have	

been	 shown	 to	 be	 co-expressed	 with	 At4g34760	 encoding	 a	 SAUR-like	 auxin-

responsive	 protein,	 At4g25010	 encoding	 an	 integral	 membrane	 protein,	 and	

At3g20710	 encoding	 an	 F-box	 family	 protein	 (Figure	 2.16A)	 (Lee	et	al.,	 2015).		

The	co-expression	with	an	integral	membrane	protein	adds	to	the	evidence	that	

the	 ACA2	 lipase	 is	 localised	 to	 the	 cell	 wall	 or	 extra	 cellular	 matrix	 ECM.		

Expression	analysis	 in	A.	thaliana	 has	 shown	 the	highest	 level	 of	 expression	of	

At5g18430	in	the	stomata	(Figure	2.16B)	(Yang	et	al.,	2008).	 	Since	the	stomata	

are	 the	 primary	 site	 of	A.	candida	penetration,	 this	 fits	 with	 At5g18430	 being	

involved	 in	 defence	 response.	 	 In	 addition,	 expression	 has	 been	 shown	 to	 be	

upregulated	 following	 treatment	with	 abscisic	 acid	 (ABA)	 (Figure	 1B).	 	 ABA	 is	

known	to	play	an	important	role	in	both	abiotic	and	biotic	stress	(Zhu,	2002,	Seo	

and	Koshiba,	2002).	

	

	

A	 	 	 	 	 B	

															 	
Figure	2.16.	 	Summary	of	gene	expression	 information	 for	 the	ortholog	 in	Arabidopsis	
thaliana	 (At5g18430)	 of	 the	 Brassica	 oleracea	 candidate	 white	 rust	 resistance	 gene	
ACA2	 including:	 	A)	a	predicted	functional	gene	network	in	Arabidopsis	thaliana	(Lee	et	
al.,	2015);	and	B)		expression	in	A.	thaliana	Columbia-0	following	treatment	with	water	
(top)	and	with	abscisic	acid	(bottom)(Yang	et	al.,	2008).	
	

Pathogen	 and	 host	 lipids	 and	 lipid	 metabolites	 are	 expected	 to	 play	 a	

fundamental	role	 in	pathogenesis	and	host	defence	responses	and	elicitation	of	

systemic	 acquired	 resistance	 (Shah,	 2005).	 	 Induced	 defence	 mechanisms	 are	

generally	 thought	 to	 be	 activated	 by	 a	 signal	 that	 is	 generated	 at	 the	 primary	

infection	 site	 and	 translocated	 throughout	 the	 host	 tissue	 (Dangl	et	al.,	 2013).		

GDSL	 lipase	 proteins	 have	 been	 shown	 to	 induce	 both	 local	 and	 systemic	

resistance	 against	 necrotrophic	 pathogens	 in	 plants	 (Kwon	 et	al.,	 2009).	 	 The	
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ECM	contains	active	components	that	regulate	cell	–	cell	 interactions,	 including	

secreted	proteins	that	play	a	role	in	physiological	processes	such	as	growth	and	

defence	 responses.	 	 For	 instance,	 the	 application	 of	 two-dimensional	 (2D)	 gel	

electrophoresis	 and	 matrix-assisted	 laser	 desorption	 ionization	 time-of-flight	

mass	 spectrometry	 has	 been	 applied	 to	 the	 secretome	 of	 cultured	Arabidopsis	

cells	to	identify	the	secreted	proteins	involved	in	plant	defence	(Oh	et	al.,	2005).		

Salicylic	 acid	 (SA)	 induced	 changes	 in	 the	 secretome	 revealed	 13	 different	

proteins	species	expression	were	altered	by	SA	treatment.			

A	 secreted	 lipase	 with	 a	 GDSL	 motif	 called	 GLIP1	 (GDSL	 LIPASE1)	 has	

been	 identified	which	 is	 essential	 for	 non-host	 resistance	 in	A.	thaliana	to	 the	

necrotrophic	 fungus	 Alternaria	 brassicicola	 (Oh	 et	 al.,	 2005).	 	 Subcellular	

localisation	 experiments	 indicate	 that	 the	 GLIP1	 protein	 is	 confined	 to	 the	

extracellular	 matrix.	 	 Inoculation	 of	 glip1	mutants	 with	 A.	 brassicicola	 exhibit	

spreading	lesions	due	to	fungal	growth,	as	compared	with	small	necrotic	lesions	

that	confine	the	infection	in	the	wild	type.		Given	a	similar	domain	architecture	of	

the	candidate	ACA2	lipase,	it	is	possible	it	is	also	a	secreted	protein	found	in	the	

extracellular	matrix.	 	A	subcellular	 localisation	experiment	would	be	needed	to	

explore	 this	possibility	 further.	 	 If	 this	were	 the	 case,	 then	 it	 is	possible	 that	 it	

could	be	directly	 involved	in	antimicrobial	activity	and/or	required	for	defence	

related	signalling.		

GLIP1-mediated	 resistance	 to	 A.	 brassicola	 appears	 to	 involve	 salicylic	

acid	(SA)	and	ethylene	induced	signalling	of	systemic	acquired	resistance	(SAR)	

in	surrounding	tissues,	which	confers	resistance	to	biotrophic	pathogens	such	as	

Pseudomonas	 syringae	 (Kim	 et	 al.,	 2013).	 	 A.	 brassicicola	 initiates	 an	 SAR	

response	 that	 induces	defence	related	genes	 including	PDF1.2,	PR-3,	and	PR4	 in	

Col-0	(Penninckx	et	al.,	1996,	Thomma	et	al.,	1999)	Oh	et	al	(2005)	Investigated	

the	systemic	spread	of	A.	brassicicola	in	glip1	mutants	not	observed	in	Col-0	with	

SAR	 through	 infiltrating	 the	mutants	with	 recombinant	GLIP1	protein	 followed	

by	 A.	brassicicola	 inoculation	 and	 trypan	 blue	 staining.	 	 These	 results	 suggest	

that	 GLIP1	 activated	 systemic	 resistance	when	 challenged	 by	 the	 pathogen.	 	 If	

ACA2-mediated	resistance	is	mechanistically	similar,	then	it	 is	possible	that	the	

candidate	 lipase	 may	 inhibit	 pathogen	 development	 via	 salicylic	 acid	 defence	

signalling	and	SAR.	 	However,	an	 issue	remains	 that	 these	responses	have	only	
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been	observed	in	response	to	infection	with	a	necrotrophic	fungus,	leading	to	the	

possibility	that	GLIP1	and	candidate	ACA2	lipase	are	mechanistically	distinct.		

A	GDSL	lipase	has	been	implicated	as	a	component	of	non-host	resistance	

to	 a	 biotrophic	 fungus	 in	A.	thaliana.	 	Comparative	 genome	wide	 transcription	

profiling	of	A.	thaliana	identified	the	gene	UDP-glucosyltransferase	8482	(BRT1)	

that	is	required	for	resistance	to	Phakopsora	pachyrhizi,	the	causal	agent	of	Asian	

soybean	 rust	 (Langenbach	 et	 al.,	 2016).	 	 Ten	 genes	 were	 found	 to	 be	

transcriptionally	 co-regulated	 with	BRT1,	 and	 one	 of	 these	 was	 a	 GDSL	 lipase	

(PING7).	 	 Expression	 as	 a	 transgene	 in	 soybean	 was	 found	 to	 significantly	

enhance	 resistance	 to	 P.	 pachyrhizi,	 demonstrating	 how	 GDSL	 lipases	 could	

potentially	 to	 be	 used	 to	 engineer	 resistance	 to	 biotrophic	 pathogens	 in	major	

crops.	

A	 GDSL	 lipase	 also	 appears	 to	 play	 a	 role	 in	 the	 haustorial	 interaction	

between	 A.	 thaliana	 and	 another	 co-evolving	 biotrophic	 oomycete	

Hyaloperanospora	 arabidopsidis	 (Caillaud	 et	 al.,	 2014).	 	 At	 this	 interface	 the	

pathogen	 is	 separated	 from	 the	 host	 by	 the	 extrahaustorial	 matrix,	 which	

contains	 cell	 wall	 material	 from	 both	 the	 plant	 and	 pathogen,	 and	 the	 extra	

haustorial	membrane	 (EHM).	 	The	EHM	and	plasma	membrane	are	continuous	

yet	 differ	 in	 protein	 composition.	 	 The	 plasma	 membrane	 that	 lines	 the	

plasmodesmata	 is	 proposed	 to	 be	 a	 specialised	 domain,	 and	 has	 shown	 to	

contain	 specialised	 receptors.	 	 Plasmodesmata	 Located	 Proteins	 (PDLPs)	 have	

been	 shown	 to	 upregulate	 and	 localise	 to	 the	 extra-haustorial	 membrane	

following	penetration	by	HpA.	 	The	GDSL	 lipase	At4g28780	has	been	shown	by	

co-immunoprecipitation	 to	 interact	 with	 PDLP1,	 possibly	 implying	 a	 role	 in	

defence	response	(Caillaud	et	al.,	2014)	

Effector	 proteins	 are	 pathogen	molecules	 that	 are	 translocated	 into	 the	

plant	 cell	 and	 serve	 as	 virulence	 factors	 to	 promote	 pathogenicity.	 	 Some	

effectors	elicit	race-specific	resistance	(aka	avirulence	proteins)	in	the	presence	

of	 the	 corresponding	 R	 gene.	 	 Recent	 evidence	 suggests	 the	 host's	 plasma	

membrane	is	the	active	site	of	effector	proteins.		For	example,	P.	syringae	effector	

proteins	 including	AvrRpm1,	AvrPto,	AvrRpt2	and	AvrPhB	have	been	shown	to	

localise	to	plasma	membranes.	 	Membrane	localisation	of	secreted	effectors	has	

been	 shown	 to	 be	 shown	 to	 be	 important	 for	 both	 virulence	 and	 avirulence	
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function,	 and	 has	 been	 shown	 to	 coregulate	 with	 host	 lipid	 modification	

myristoylation	 and/or	 palmitoylation.	 	 It	 has	 been	 proposed	 the	 GDSL-motif	

lipase	 At2g04020	 is	myristoylated	 in	A.	thaliana	(Boisson	 et	 al.,	 2003).	 	 If	 the	

candidate	 Aca2	 lipase	 was	 involved	 in	 myristoylation	 in	 B.	 oleracea,	 then	 the	

membrane	binding	properties	 of	 cytoplasmic	proteins	 and	 consequently	 signal	

transduction	cascades	required	for	defence	response	would	be	altered	through	a	

non-functional	allele.		

Perception	of	pathogen	derived	effector	molecules	is	fundamental	to	race-	

specific	resistance.		R	proteins	including	Cf2,	Cf4,	Cf5	and	Cf9	from	tomato	(Dixon	

et	al.,	 1996,	 Jones	et	al.,	 1994,	 Munnik,	 2001,	 Van	 der	 Hoorn	et	al.,	 2001)	 and	

Xa21	from	rice	(Song	et	al.,	1995)	are	integral	membrane	proteins.	 	Arabidopsis	

R	proteins	RPM1	 and	RPS2	 are	also	plasma	membrane	associated	 (Boyes	et	al.,	

1998).	 	Membrane	 localization	of	RPM1	 is	mediated	through	 lipid	modification,	

and	 is	 fundamental	 and	 to	 conferring	 resistance	 to	P.	syringae.	 	 The	 additional	

requirement	 of	 RIN4,	 also	 target	 to	 the	 plasma	 membrane	 (Axtell	 and	

Staskawicz,	 2003)	 is	 suggestive	 that	 this	 is	 the	 location	 of	 RPM1-mediated	

defence	related	signalling.	

Further	 work	 is	 needed	 for	 a	 theoretical	 understanding	 of	 the	 role	 of	

ACA2	in	host	defence.	Yet	this	would	not	necessarily	be	required	for	application	

in	 crop	 production.	 The	 selection	 of	 parental	 lines	 both	 homozygous	 for	 the	

EBH527	 allele,	 or	 the	 induction	 of	 the	 EBH527	 allele	 into	 crop	 types	 through	

gene	editing	would	ensure	the	trait	was	present	in	the	resulting	variety.		Yet	if	it	

is	the	case	the	A12DH	allele	encodes	a	protein	that	is	required	for	compatibility	

with	A.	candida,	this	may	suggest	the	EBH527	allele	is	non-functional.	The	effect	

of	 this	 allele	 on	 other	 traits	 of	 agronomic	 importance	 would	 need	 to	 be	

investigated	further	prior	to	any	commercial	application.	
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Chapter	3	
	

Mapping	of	white	rust	resistance	to	Albugo	candida	

variants	that	can	break	broad	spectrum	WRR4-mediated	

resistance	in	Arabidopsis	thaliana	Columbia	
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3.1	 INTRODUCTION	
Arabidopsis	 thaliana	 accessions	 have	 been	 identified	 that	 possess	 varying	

degrees	 of	 resistance	 to	Albugo	candida	race	 4,	 allowing	 their	 use	 as	 a	 tool	 to	

assess	the	genetic	basis	of	pathogen	host	interactions	(Borhan	et	al.,	2008,	Links	

et	al.,	 2011).	 	For	 example,	 A.	 thaliana	accession	Wassilewskija	 (Ws-0)	 is	 fully	

susceptible	to	this	pathogen,	which	produces	profuse	asexual	sporulation	visible	

as	white	blisters	that	form	without	inducing	a	host	response;	whereas	accession	

Columbia	 (Col-0)	 has	 several	White	Rust	Resistance	 (WRR)	 genes	 that	 provide	

combined	layers	of	induced	resistance	

	 Three	 genes	 have	 been	 molecularly	 characterised	 in	 Col-0	 which	 all	

encode	 proteins	 with	 an	 N-terminal	 Toll/Interleukin-1	 Receptor	 domain,	 a	

nucleotide-binding	 site	 and	 a	C-terminal	 leucine-rich	 repeat	 domain	 (TIR-NBS-

LRR).	 	WRR4	 (At1g56510)	 induces	 a	 rapid	 defence	 that	 restricts	 the	 pathogen	

from	being	able	to	extend	beyond	the	first	penetrated	cell	(Borhan	et	al.,	2008),	

and	 effectively	 masks	 phenotypes	 conferred	 by	 other	 resistance	 genes	 in	

Columbia.		The	hyperstatic	defence	layers	included	resistance	from	a	pair	of	TIR-

NBS-LRR	genes	(WRR5a,	At5g17880;	and	WRR5b,	At5g17890	which	contains	an	

additional	LIM	domain	at	the	C-terminus)	that	induce	a	yellowing	host	response	

surrounding	 a	 patch	 of	 hypha	 without	 sporulation	 (Cooper,	 Cevik	 &	 Holub,	

unpublished).		And,	a	third	layer	of	defence	is	conferred	by	WRR7	(a	gene	located	

on	the	bottom	arm	of	chromosome	5	encoding	a	small	LIM	domain	protein)	that	

exhibits	a	 flaccid	response	of	the	cotyledon	and	occasional	production	of	small,	

restricted	pustules	(Holub	&	Cevik,	unpublished).	

A	selection	of	F9	Col-0	x	Ws-0	recombinant	 inbreds	provides	a	means	to	

compare	microscopic	differences	in	phenotype	conferred	independently	by	each	

WRR	gene	(Figure	3.1).	 	For	example,	inbred	CW20	has	a	Columbia	WRR4	allele	

and	 Ws-0	 alleles	 of	 WRR5a,	 5b	 and	 7	 and	 exhibits	 full	 immunity	 following	

inoculation	with	 the	A.	candida	 race	4	 isolate	AcEm2;	inbred	CW5	contains	 the	

Columbia	 alleles	 of	WRR5a	 and	 5b	 and	 a	Ws-0	 allele	 of	WRR4,	and	 exhibits	 a	

yellow	patch	phenotype	following	inoculation;	and	inbred	CW14	has	Ws-0	alleles	

of	WRR4,	 5a	 and	 5b	 and	 exhibits	 the	 flaccid	 grey	 phenotype	 associated	 with	

WRR7	 following	 inoculation.	 In	 the	 susceptible	 control	 Ws-0,	 the	 pathogen	

develops	 extensively	 across	 the	 entire	 cotyledon	 within	 five	 days	 after	
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inoculation,	resulting	in	sporulation	without	inducing	a	host	response.		In	CW20	

(WRR4	alone),	pathogen	development	is	arrested	in	a	stomatal	chamber	cell.		In	

CW5	(WRR5a	and	5b),	pathogen	development	 is	restricted	with	no	sporulation,	

and	a	host	response	is	visible	by	the	retention	of	trypan	blue	stain	in	mesophyll	

cells	surrounding	the	hyphae.		And,	in	CW14	(WRR7)	more	extensive	trypan	blue	

staining	 is	 visible,	 however,	 the	 host	 response	 is	 less	 successful	 at	 impairing	

pathogen	 development	with	more	 extensive	 sporulation	 surrounding	 infection	

sites.	

A.	 thaliana	 ecotype	 Ws-3	 has	 been	 shown	 to	 have	 varying	 degrees	 of	

susceptibility	 to	 A.	 candida	race	 4	 (AcEm2),	 race	 2	 (Ac2v),	 race	 7	 (Ac7v)	 and	

inhibited	susceptibility	to	race	9	(Ac9v),	where	restricted	colonies	were	able	to	

form	without	the	development	of	pustules	(Borhan	et	al,	2008).		Transformation	

of	Col-0	WRR4	 into	Ws-3	induces	resistance	to	the	representative	isolates	of	all	

four	races,	 indicating	a	broad-spectrum	resistance	and	consequent	applicability	

as	a	transgene	in	commercial	brassica	production	(Borhan	et	al,	2008).		

	 Borhan	et	al	(2008)	proposed	that	A.	candida	contains	a	highly	conserved	

effector	 present	 in	 at	 least	 four	 races	 (2,	 4,	 7	 and	 9)	 to	 explain	 the	 apparent	

broad	 spectrum	 resistance	 conferred	 by	 the	WRR4-Col	allele.	 	 If	 so,	 then	 Col-

virulent	 pathotypes	may	 arise	 in	 natural	 populations	 due	 to	mutations	 in	 this	

predicted	Avr	gene.		As	described	in	Chapter	4,	three	such	isolates	of	A.	candida	

isolates	(AcExeter,	AcCarlisle	and	Ac167)	have	been	identified	as	used	to	identify	

candidate	avrWRR4-Col	genes.		The	aim	of	this	chapter	is	to	use	two	of	these	Col-

virulent	 isolates	 (AcExeter	 and	 AcCarlisle)	 to	 identify	 and	 map	 a	 new	 and	

potentially	broader	spectrum	source	of	white	rust	resistance	in	A.	thaliana.	



	 68	

	
Figure	3.1.	 	Cotyledons	of	Arabidopsis	thaliana	accessions	Col-0	(resistant),	Ws-0	(susceptible)	and	F9	recombinant	inbred	lines	identified	as	each	
having	 a	 single	 white	 rust	 resistance	 (WRR)	 specificity	 that	 induces	 differing	 degrees	 of	 resistance	 to	Albugo	candida	 race	 4.	 	 Cotyledons	were	
photographed	seven	days	post	inoculation	with	isolate	AcEm2,	and	stained	with	trypan	blue.		Upper	images	are	10×	magnification	and	lower	images	
are	40×	magnification.		Inbred	CW5	has	the	Col-0	alleles	of	WRR5a	and	5b	(At5g17880	and	At5g17890)	from	the	top	arm	of	chromosome	5;	inbred	
CW14	has	the	Col-0	allele	of	WRR7	 from	the	bottom	arm	of	chromosome	5,	and	 inbred	CW20	has	the	Col-0	allele	of	WRR4	(At1g56510)	 from	the	
bottom	arm	of	chromosome	1.		(Figure	prepared	from	photographs	taken	during	MSc	research	project,		Fairhead,	2012).	
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3.2	 MATERIALS	AND	METHODS	

3.2.1	 Maintenance	of	Albugo	candida	isolates	

The	 Col-virulent	 A.	 candida	 isolates	 AcExeter	 and	 AcCarlisle	 were	 bulked	 and	

maintained	on	 juvenile	 leaves	of	A.	thaliana	Col-0,	and	 the	Col-avirulent	 isolate	

AcEm2	 was	 bulked	 and	 maintained	 on	 juvenile	 leaves	 of	 A.	 thaliana	Ws-eds1.		

Seeds	were	grown	on	an	Arabidopsis	compost	mix	(6:2:2	Levington	F2,	sand	and	

vermiculite)	in	P180	plug	trays	(2.5cm	x	2.5cm	cells)	cut	to	10	x	6	and	placed	in	

propagator	trays.		Two	to	five	seeds	were	sown	per	cell	prior	to	being	reduced	to	

single	plant	following	germination.		The	trays	were	covered	with	aluminium	foil	

and	 placed	 in	 a	 fridge	 at	 4°C	 for	 48h	 to	 promote	 even	 germination.	 The	

propagators	were	covered	with	transparent	lids	and	placed	in	a	Conviron	plant	

growth	cabinet	at	20±2°C	with	a	10h	photoperiod.	

All	 three	 isolates	were	 revived	 from	 leaf	 tissue	 that	was	stored	at	 -80	C	

and	 containing	mature	 pustules.	 	 The	 leaves	 were	 submerged	 and	 agitated	 in	

sterile	 water.	 A	 haemocytometer	 was	 used	 to	 estimate	 the	 inoculum	

concentration	 in	 order	 to	 adjust	 it	 to	 an	 approximate	 concentration	 of	 4x	 104	

zoosporangia	per	ml.	 	 Small	 droplets	 (ca.	 10µl)	were	 applied	 to	 the	upper	 and	

lower	 surfaces	 of	 cotyledon	 and	 juvenile	 leaf	 tissue	 using	 a	 repetitive	 pipette.		

Propagators	were	sealed	and	placed	back	in	the	growth	cabinet	at	20±2	C	for	an	

initial	12h	period	 in	darkness	 followed	by	a	10h	photoperiod.	 	 Pustules	would	

emerge	7-10	days	later.		The	isolates	were	sub-cultured	every	two	weeks	for	use	

on	experimental	lines	

	

3.2.2	 Characterising	 phenotypic	 variation	 of	 Arabidopsis	 thaliana	

germplasm	in	response	to	Albugo	candida	

A	diversity	collection	consisting	of	19	accessions	(Bur-0,	Can-0,	Col-0,	Ct-1,	Edi-0,	

Hi-0,	Kn-0,	Ler-0,	Mt-0,	No-0,	Oy-0,	Po-0,	Rsch4-4,	Sf-2,	Tsu-0,	Wil-2,	Ws-0,	Wu-0	

and	 Zu-0)	was	 used	 to	 identify	 examples	 that	 are	 resistant	 to	 each	 of	 the	 Col-

virulent	 isolates	 of	 A.	candida.	 	These	 accessions	 had	 previously	 been	 used	 to	

generate	 a	 Multiparent	 Advanced	 Generation	 Inter-Cross	 (MAGIC)	 inbred	

mapping	 population	 (Kover	 et	 al.,	 2009),	 and	 have	 been	 used	 to	 generate	 a	
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database	 of	 high	 resolution	 genotypes	 with	 more	 than	 single	 nucleotide	

polymorphisms	(SNPs)	relative	to	the	reference	Col-0	genome	(Gan	et	al.,	2011).		

As	 described	 below,	 genetic	 mapping	 of	 resistance	 was	 conducted	 using	

phenotype	scores	for	450	MAGIC	inbred	lines,	and	470	F8	recombinant	 inbreds	

from	a	bi-parental	cross	of	Oy-0	(resistant)	x	Col-0	(susceptible)	obtained	from	

INRA	(Simon	et	al.,	2008).	

	 A	ten-class	disease	severity	scale	(Figure	3.2)	was	used	to	determine	the	

phenotypic	 interaction	 of	 the	 wild	 accessions	 and	 experimental	 lines	 of	 A.	

thaliana	 following	 inoculation	 of	 cotyledons	 with	 A.	 candida,	 specifically	 with	

isolates	that	can	overcome	white	rust	resistance	in	the	accession	Columbia.		The	

phenotype	classes	represent	a	visual	interpretation	of	the	ability	of	the	pathogen	

to	 develop	 within	 the	 host.	 	 A	 ‘0’	 phenotype	 indicates	 full	 resistance,	 with	 no	

visible	presence	of	 the	pathogen	or	host	 response.	 	A	class	1	phenotype	shows	

small	 necrotic	 lesions	 at	 the	 immediate	 site	 of	 infection	with	 no	 blisters	 being	

apparent,	 also	 indicating	 rapid	 host	 response	 that	 completely	 restricts	 the	

infection.	 	 Phenotypes	 classes	2-4	 exhibit	 increasing	degrees	of	necrosis	 at	 the	

site	of	infection	with	no	apparent	presence	of	the	pathogen.		A	class	5	phenotype	

shows	 yellowing	 patches	 that	 develop	 on	 the	 upper	 and	 lower	 leaf	 surface,	

typically	 with	 no	 sporulation	 in	 the	majority	 of	 cases,	 yet	 minute	 blisters	 can	

occasionally	be	detected	indicating	that	hyphae	have	developed	within	the	 leaf.		

Phenotypes	 6-7	 exhibit	 a	 grey	 flaccid	 response	 in	 the	 cotyledon,	 with	

development	 of	minute	 pustules	 can	 be	 detected	 on	 the	 upper	 and	 lower	 leaf	

surface.	 	And,	phenotype	classes	8	and	9	are	fully	susceptible	with	unrestricted	

sporulation	on	the	lower	leaf	surface,	with	no	visible	host	response	in	class	8	but	

flaccidity	of	host	tissue	in	class	9.	
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Figure	 3.2.	 	 A	 ten-class	 scale	 of	 interaction	 phenotypes	 in	 cotyledons	 of	 Arabidopsis	
thaliana	following	inoculation	with	Albugo	candida	race	4.		The	degree	of	host	response	
(top	 row	 of	 descriptions)	 and	 pathogen	 reproduction	 (bottom	 row	 of	 descriptions)	
observed	on	upper	and	lower	surfaces	was	recorded	ten	days	post	inoculation.	
	

	

	 The	 diversity	 collection	 and	 mapping	 populations	 of	 A.	 thaliana	were	

phenotyped	 for	 response	 to	A.	candida	 using	 the	 same	method	 applied	 for	 the	

maintenance	of	 the	pathogen	isolates.	 	Ten-day-old	cotyledons	were	 inoculated	

with	a	single	10µl	drop	of	A.	candida	inoculum	to	the	upper	surface	of	the	leaf	at	

an	 approximate	 concentration	 of	 4x104	 zoosporangia	 per	 ml.	 	 Propagators	

containing	 the	 experimental	 lines	 were	 sealed	 and	 placed	 back	 in	 the	 growth	

cabinet	 at	 20°C	 for	 an	 initial	 12	 h	 period	 of	 shading	 followed	 by	 a	 10	 h	

photoperiod.	 	 Three	 replicates	 of	 each	 experimental	 line	 were	 tested	 with	

following	 inoculations	with	AcExeter	and	AcCarlisle.	 	 Symptoms	were	assessed	

ten	 days	 post	 inoculation	 using	 the	 phenotype	 scale	 described	 above,	 and	

average	phenotypes	across	replicates	were	calculated	for	further	analysis.	
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3.2.3	 QTL	analysis	

QTL	mapping	in	the	MAGIC	population	was	conducted	using	a	multipoint	method	

through	a	HAPPY	software	package	in	R	(Kover	et	al.,	2009).		QTL	mapping	of	the	

bipartite	 F8	 Oy-0	 x	 Col-0	 population	 was	 performed	 on	 a	 genetic	 map	 of	 85	

markers	across	the	five	linkage	groups	that	accompanied	the	population	(Simon	

et	al.,	2008)	using	RQTL	(Broman	et	al.,	2003).		Three	statistical	approaches	were	

applied	 to	 interval	 mapping	 including:	 	 1)	 standard	 interval	 mapping	 using	 a	

maximum	 likelihood	 estimation	 under	 a	 mixture	model	 (Lander	 and	 Botstein,	

1989);	 2)	 Haley-Knott	 regression	 using	 approximations	 of	 the	 mixture	 model	

(Haley	and	Knott,	1992);	and	3)	a	multiple	imputation	method	using	the	mixture	

model	with	multiple	imputations	as	opposed	to	maximum	likelihood	estimation	

(Sen	and	Churchill,	2001).	

	

	

3.3	 RESULTS	

3.3.1	 Phenotypic	characterisation	of	A.	thaliana	diversity	collection	

Phenotypic	 variation	 was	 observed	 amongst	 the	 19	 MAGIC	 parents	 following	

separate	 inoculation	 with	 AcExeter	 and	 AcCarlisle	 and	 the	 Columbia-avirulent	

control	isolate	AcEM2	(Table	3.1).		Importantly,	three	accessions	(Mt-0,	Oy-0	and	

Rsch-4)	were	resistant	 to	all	 three	 isolates.	 	Four	accessions	(Bur-0,	Ct-1,	Edi-0	

and	 Ler-0)	 exhibited	 the	 same	 pattern	 of	 phenotypes	 as	 Col-0,	 indicating	 the	

presence	of	a	functional	WRR4	allele.	 	Three	accessions	(Can-0,	Ws-0	and	Kn-0)	

were	broadly	susceptible	to	all	three	isolates.		An	interaction	phenotype	was	not	

obtained	for	eight	accessions,	however,	six	of	these	(Hi-0,	No-0,	Sf-2,	Wil-2,	Wu-0	

and	Zu-0)	were	susceptible	to	both	of	the	Col-virulent	isolates.	
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Table	3.1.		Summary	of	interaction	phenotypes	in	cotyledons	of	19	Arabidopsis	thaliana	
accessions	recorded	at	ten	days	after	inoculation	with	three	isolates	of	Albugo	candida,	
race	4:	AcEm2,	Ac	Exeter	and	AcCarlisle.		The	accessions	are	the	parents	of	a	Multiparent	
Advanced	Generation	Inter-Cross	(MAGIC)	recombinant	inbred	population	(Kover	et	al,	
2009).	
	
A.	thaliana	accession	

A.	candida	isolate	
AcEm2	 AcExeter		 AcCarlisle	

	 	 	 	
Can-0,	Ws-0,	Kn-0	 Susceptible	 Susceptible	 Susceptible	
	 	 	 	
Bur-0,	Col-0,	Ct-1,	Edi-0,	Ler-0	 Resistant	 Susceptible	 Susceptible	
	 	 	 	
Mt-0,	Oy-0,	Rsch-4	 Resistant	 Resistant	 Resistant	
	 	 	 	
Hi-0,	No-0,	Sf-2,	Wil-2,	Wu-0,	Zu-0	 NA	 Susceptible	 Susceptible	
	 	 	 	
Po-0,	Tsu-0	 NA	 NA	 NA	
	 	 	 	
	

	

3.3.2	 Mapping	of	resistance	to	Columbia-virulent	Albugo	candida	isolates	

using	a	MAGIC	inbred	population	

The	450	MAGIC	recombinant	inbreds	were	used	for	mapping	resistance	to	both	

AcExeter	and	AcCarlisle.		A	major	effect	allele	was	identified	on	the	bottom	arm	

of	chromosome	1	between	markers	PERL0132168	and	NMSNP1_24	at	physical	

positions	 16134927	 and	 24734584,	 respectively,	 (P≤0.001)	 (Figure	 3).		

Interestingly,	this	interval	spans	the	region	that	contains	WRR4.	The	haplotype	of	

Can-0,	Mt-0,	Oy-0	 and	Rsch-4	 at	 the	 centre	 of	 the	QTL	 are	 predicted	 to	 confer	

resistance	to	AcExeter	and	AcCarlisle,	indicating	they	may	share	an	allele	of	the	

same	broad-spectrum	R	gene.	
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A	

	

	

B	

	
	

Figure	 3.3.	 	 QTL	 analysis	 of	 white	 rust	 resistance	 in	 470	 Multiparent	 Advanced	
Generation	Inter-Cross	(MAGIC)	 inbred	 lines	of	Arabidopsis	thaliana	 recorded	ten	days	
after	 inoculation	with	Albugo	candida	isolates	AcCarlisle	 (A)	 or	AcExeter	 (B).	Whisker	
plots	 represent	 the	 predicted	 contribution	 of	 each	 genotype	 to	 the	 corresponding	
phenotype,	ranging	from	0.0	(resistant)	to	1.0	(susceptible).	
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3.3.3	 QTL	interval	mapping	of	resistance	in	Arabidopsis	thaliana	accession	

Oy-0	to	AcExeter	

The	 Norwegian	 accession	 Oy-0	 was	 chosen	 as	 an	 example	 of	 resistance	 to	

AcExeter	 for	 fine-mapping	 using	 an	 F9	 Col-0	 x	 Oy-0	 recombinant	 inbred	

population.	 	 For	 this	 QTL	 analysis,	 conditional	 genotype	 probabilities	 were	

calculated	 on	 a	 grid	 with	 a	 density	 of	 1	 cM	 assuming	 a	 genotyping	 error	

probability	 0.001.	 	 Standard	 interval	 mapping	 was	 performed	 using	 1)	 a	

maximum	 likelihood	 estimation	 under	 a	 mixture	 model,	 2)	 a	 Haley-Knott	

regression	that	was	performed	using	approximations	of	the	mixture	model,	and	

3)	 a	 multiple	 imputation	 method	 that	 was	 applied	 instead	 of	 the	 maximum	

likelihood	estimation.	

	 	For	 the	 maximum	 likelihood	 estimation	 and	 Haley-Knott	 regression	

(Figure	 4.5A	 and	 4.5B,	 respectively),	 1000	 permutations	 of	 the	 genotype	

probabilities	 were	 conducted	 to	 calculate	 genome	 wide	 LOD	 significance	

threshold.	 	 These	were	 2.5	 and	 2.4	 for	 a	 5%	 confidence	 interval,	 respectively.		

For	 the	 multiple	 imputation	 method	 (Figure	 4.6C),	 1000	 imputations	 were	

performed	to	calculate	the	genome	wide	LOD	significance	threshold	as	2.3	for	a	

5%	 confidence	 interval.	 	 All	 three	 methods	 detected	 three	 QTLs	 above	 the	

corresponding	threshold.		A	major	effect	QTL	on	chromosome	1	changed	slightly	

in	 the	 position	 and	 LOD	 score	 according	 to	method.	 	 The	maximum	 likelihood	

estimation	gave	a	LOD	of	61.95	at	position	73.0	cM,	the	Haley-Knott	regression	

gave	a	LOD	of	55.5	at	73.0	cM,	and	the	multiple	 imputation	scan	gave	a	LOD	of	

53.72	at	74.0cM.		A	second	minor	QTL	was	mapped	on	chromosome	3	to	position	

67	 cM	 (LOD	 of	 8.0)	 with	 the	maximum	 likelihood	 estimation	 and	 Haley-Knott	

regression;	and	to	position	68	cM	(LOD	7.6)	with	the	multiple	 imputation	scan.		

And,	a	third	minor	QTL	was	detected	on	chromosome	5	at	position	16.7	cM	(LOD	

of	3.89)	with	all	three	methods.	

	 A	 multiple	 QTL	 scan	 was	 conducted	 on	 each	 model	 controlling	 the	

primary	 locus	 on	 chromosome	 1	 to	 see	 whether	 any	 minor	 effects	 following	

inoculation	with	AcExeter	would	become	more	significant	(Figures	4.5		and	4.6).		

The	genotype	probabilities	were	calculated	with	an	error	probability	of	0.01	and	

a	step	size	of	1	cM	for	maximum	likelihood	and	Haley-Knott	regression,	and	100	

imputations	were	performed	for	the	multiple	imputation	method.		The	genotype	
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for	the	marker	closest	to	the	peak	locus	for	each	output	at	identified	the	physical	

position	C1_4567846,	and	was	subsequently	removed	(Figure	4.5A,B,	and	C)	or	

used	as	an	additive	covariant	in	the	single	QTL	scans	(Figure	4.6A,B	and	C).		The	

LOD	 score	 of	 the	 two	 minor	 QTLs	 increased	 in	 all	 cases.	 	 For	 the	 maximum	

likelihood	 genome	 scan,	 the	 chromosome	 3	 locus	 had	 a	 LOD	 of	 12.4,	 and	 the	

chromosome	 5	 locus	 had	 a	 LOD	 of	 5.64.	 	 For	 the	 Haley-knot	 regression	 the	

chromosome	3	locus	had	a	LOD	of	12.6	and	the	chromosome	5	locus	had	a	LOD	

of	5.67.		For	the	multiple	imputation	genome	scan	the	chromosome	3	locus	had	a	

LOD	of	13.4	and	the	chromosome	5	locus	had	a	LOD	of	5.42.		No	additional	QTLs	

were	detected	with	any	method.	
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A	 	 AcExeter	 	 	 D	 								AcCarlisle	

	
B	 																																											E	 	 	

	
C	 																																											F	 	

	
Figure	 3.4.	 	 Mapping	 of	 resistance	 to	 Albugo	 candida	 isolate	 AcExeter	 (A,B,C)	 and	
AcCarlisle	 (D,E,F)	 in	 Arabidopsis	 thaliana	 using	 an	 F9	 Col-0	 (susceptible)	 x	 Oy-0	
(resistant)	 mapping	 population.	 	 A	 and	 D,	 show	 genome	 scans	 using	 the	 maximum	
likelihood	algorithm	(logarithm	of	odds	(LOD)	of	2.5	for	both	isolates	at	a	5%	confidence	
interval);	B	and	F,	show	scans	using	Haley-Knott	regression	(LOD	of	2.4	for	both	isolates	
at	a	5%	confidence	interval);	and	C	and	F,	show	scans	using	multiple	imputations	(LOD	
of	 2.3	 and	2.5	 for	 each	 isolate,	 respectively	 at	 a	 5%	 confidence	 interval).	 	 Phenotypes	
were	 recorded	 ten	 days	 post	 inoculation	 of	 cotyledons	 and	 scored	 using	 a	 ten	 class	
phenotype	scale	of	resistance	(see	Figure	1).	
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A																													AcExeter	 D											AcCarlisle	

	 	 	

B	 	 E	 	

	 	 	
C	 	 F	 	

	 	
Figure	 3.5.	 	 Composite	 interval	 mapping	 of	 resistance	 to	 Albugo	 candida	 isolate	
AcExeter	 (A,B,C	 )	 and	 AcCarlisle	 (D,E,F)	 in	 Arabidopsis	 thaliana	 using	 an	 F9	 Col-0	
(susceptible)	 x	Oy-0	 (resistant)	mapping	population,	with	 the	effect	of	 subtracting	 the	
marker	(C1_20384)	that	is	most	tightly	linked	to	the	major	effect	locus	on	chromosome	
1.		A	and	D,	show	genome	scans	using	the	maximum	likelihood	algorithm;	B	and	E,	show	
scans	 using	 Haley-Knott	 regression;	 and	 C	 and	 F,	 show	 scans	 using	 multiple	
imputations.	 	 Phenotypes	were	 recorded	 ten	 days	 post	 inoculation	 of	 cotyledons	 and	
scored	 using	 a	 five	 class	 phenotype	 scale	 of	 resistance	 and	 differing	 phenotypes	 of	
susceptibility.		
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A	 AcExeter	 D	 AcCarlisle	

		 	

B	 	 E	 	

		 	
C	 	 F	 	

		 	
Figure	 3.6.	 	 Composite	 interval	 mapping	 of	 resistance	 to	 Albugo	 candida	 isolates	
AcExeter	 and	AcCarlisle	 in	Arabidopsis	thaliana	using	 an	 F9	 Col-0	 (susceptible)	 x	Oy-0	
(resistant)	mapping	 population,	 by	 using	 the	marker	most	 tightly	 linked	 to	 the	major	
effect	on	chromosome	1	 (C1_20384)	as	an	additive	 covariate.	 	A	 and	D,	 show	genome	
scans	using	the	maximum	likelihood	algorithm;	B	and	E,	show	scans	using	Haley-Knott	
regression;	 and	 C	 and	 F,	 show	 scans	 using	 multiple	 imputations.	 	 Phenotypes	 were	
recorded	 ten	 days	 post	 inoculation	 of	 cotyledons	 and	 scored	 using	 a	 five	 class	
phenotype	scale	of	resistance	and	differing	phenotypes	of	susceptibility.	 	
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	 A	 two-dimensional	 genome	 scan	was	 performed	 to	 begin	 searching	 for	

multiple	 linked	 or	 interacting	 QTLs	 underlying	 resistance	 to	A.	candida	 isolate	

AcExeter	 (Table	 3.2).	 	When	 comparing	 the	 full	 two-QTL	model	 with	 the	 best	

single	fit	QTL	model,	there	is	evidence	of	the	major	effect	QTL	on	chromosome	1,	

and	 the	secondary	QTLs	on	chromosomes	3	and	5	with	allowance	 for	epistasis	

(Figure	3.7).		The	significance	thresholds	for	each	of	these	interactions	is	greater	

than	 when	 comparing	 the	 full	 additive	 QTL	 model	 without	 allowance	 for	

epistasis	 with	 the	 best	 single	 QTL	 model,	 indicating	 that	 they	 are	 interactive.		

However,	there	is	evidence	of	a	second	QTL	on	chromosome	1	when	comparing	

the	full	additive	QTL	model	without	allowance	for	epistasis	with	the	best	single	

QTL	model.	 	The	effects	of	putative	 linked	 loci	on	chromosome	1,	and	unlinked	

loci	on	chromosomes	3	and	5	were	assessed	through	analysing	phenotype	as	a	

function	of	the	genotype	of	the	most	tightly	linked	markers,	and	by	assessing	the	

phenotype	averages	of	each	of	the	four	two	locus	genotype	groups	for	each	pair	

of	contributing	effects.	
	

Table	3.2.		Predicted	second	gene	effects	for	resistance	to	Albugo	candida	isolate	
AcExeter	in	Arabidopsis	thaliana	Col-0	x	Oy-0	F9	mapping	population	calculated	using	a	
multiple	imputation	genome	scan.		Significance	thresholds	for	the	LOD	of	the	full	model	
(Sf),	LOD	of	the	additive	model	(Sa),	test	for	epistasis	(Si),	the	comparison	of	the	full	
model	to	the	best	single-QTL	model	(Sfv1),	and	the	comparison	of	the	additive	model	to	
the	best	single-QTL	model	(Sav1)	were	calculated	using	100	permutations.		
	 Position	

1	full	
Position	
2	full	

Sf	 Sfv1	 Si	 Position	
1	additive	

Position	
2	additive	

Sa	 Sav1	

Significance	
threshold	

-	 -	 5.10	 3.66	 3.27	 -	 -	 3.47	 1.18	

	 	 	 	 	 	 	 	 	 	
C1:C1	 68	 74	 56.3	 2.60	 0.565	 70	 76	 55.8	 2.03	

C1:C3	 74	 58	 70.2	 16.49	 1.775	 74	 58	 68.4	 14.71	

C1:C5	 72	 16	 58.9	 5.22	 0.182	 72	 16	 58.8	 5.04	

C3:C5	 60	 16	 12.1	 4.46	 0.333	 60	 16	 11.8	 4.13	
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A.1	 	 	 		A.2	 	 														B	.1																													B.2	

	 	
C.1	 	 	 		C.2	 	 														D	.1																													D.2	

	 	

	
Figure	3.7.		The	effect	of	putative	QTLs	identified	as	contributing	to	white	rust	resistant	
phenotype	in	Arabidopsis	thaliana	Col-0	(AA)	x	Oy-0	(BB)	mapping	population	following	
cotyledon	inoculation	with	Albugo	candida	 isolate	AcExeter.	 	 .1,	dot	plots	of	phenotype	
as	 a	 function	 marker	 genotypes	 identified	 as	 interactive.	 	 Black	 dots	 correspond	 to	
observed	 genotypes	 and	 red	 dots	 correspond	 to	 missing,	 consequently	 imputed	
genotypes.	 	 .2,	estimated	 phenotype	 averages	 for	 each	 two	 locus	 genotype	 group.	 	A,	
putative	QTLs	chromosome	1	at	physical	positions	20384	and	22181	Mb;	B,	interactive	
QTLs	 on	 chromosomes	 1	 and	 3	 at	 positions	 22181	 and	 17283	 Mb,	 respectively;	 C,	
interactive	 QTLs	 on	 chromosomes	 1	 and	 5	 at	 positions	 20384	 and	 04011	 Mb,	
respectively;	and	D,	 interactive	QTLs	on	chromosomes	3	and	5	at	positions	17283	and	
05319	Mb,	respectively.	
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The	 results	 for	 the	 two	 putative	 QTLs	 on	 chromosome	 1	 show	 a	mean	

susceptible	 phenotype	 when	 both	 loci	 are	 homozygous	 for	 Col-0,	 and	 a	 mean	

resistant	phenotype	when	both	 loci	are	homozygous	 for	Oy-0.	 	A	greater	mean	

phenotype	 with	 lower	 variance	 was	 observed	 when	 marker	 C1_20384	 is	

homozygous	 for	 Col-0	 and	 C_22181	 is	 homozygous	 for	 Oy-0,	 than	 when	

C1_20384	 is	homozygous	 for	Oy-0	and	C_22181	 is	homozygous	 for	Col-0.	 	This	

indicates	a	stronger	contribution	to	resistance	at	C1_20384,	yet	Oy-0	alleles	are	

required	at	both	loci	for	a	resistant	phenotype.		

	 The	results	 for	 the	 interactive	effect	between	 the	chromosomes	1	and	3	

loci	 reveal	 greatest	 mean	 susceptible	 phenotype	 with	 the	 lowest	 degree	 of	

variance	 when	 both	 loci	 are	 homozygous	 for	 Col-0,	 and	 the	 greatest	 mean	

resistant	 phenotype	 with	 the	 lowest	 degree	 of	 variance	 when	 both	 loci	 are	

homozygous	for	Oy-0.		This	indicates	that	an	Oy-0	allele	at	both	loci	is	required	

for	 a	 fully	 resistant	 phenotype.	 	 In	 addition,	 the	 mean	 phenotype	 when	 the	

chromosome	1	locus	is	homozygous	for	Col-0	allele	and	the	chromosome	3	locus	

is	 homozygous	 for	 the	 Oy-0	 allele	 is	 significantly	 greater	 than	 when	 the	

chromosome	1	locus	is	homozygous	for	Oy-0	allele	and	the	chromosome	3	locus	

is	homozygous	for	the	Col-0	allele.		This	indicates	that	the	chromosome	1	locus	is	

the	greatest	contributor	to	the	resistant	phenotype.	

	 For	the	interaction	between	the	chromosome	1	and	chromosome	5	locus,	

the	 greatest	 mean	 susceptible	 phenotype	 is	 observed	 when	 both	 loci	 are	

homozygous	 for	 Col-0,	 and	 the	 lowest	 mean	 resistant	 phenotype	 is	 observed	

when	both	loci	are	homozygous	for	the	Oy-0	allele.		Again	there	is	a	significantly	

higher	mean	 phenotype	when	 the	 chromosome	 5	 locus	 is	 homozygous	 for	 the	

Oy-0	allele	and	the	chromosome	1	locus	is	homozygous	for	the	Col-0	allele	than	

when	 the	 chromosome	 5	 locus	 is	 homozygous	 for	 the	 Col-0	 allele	 and	 the	

chromosome	1	 locus	 is	homozygous	 for	 the	Oy-0	allele.	 	This	 indicates	that	 the	

predominant	contribution	to	resistance	is	from	the	chromosome	1	locus.	

	 In	the	interaction	between	the	loci	on	chromosome	3	and	chromosome	5,	

all	groups	possess	an	intermediate	mean	phenotype,	likely	a	consequence	of	the	

absence	 of	 an	 Oy-0	 allele	 at	 the	 C1	 locus.	 	 Nevertheless,	 the	 greatest	 mean	

susceptible	phenotype	is	observed	when	both	loci	are	homozygous	for	Col-0,	and	

the	 lowest	 mean	 resistant	 phenotype	 is	 observed	 when	 both	 loci	 are	
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homozygous	for	the	Oy-0	allele.	

	 A	 multiple	 imputation	 method	 was	 used	 to	 compensate	 for	 missing	

genotype	data,	and	 therefore	 improve	 the	predictive	model	 for	 locations	of	 the	

putative	QTLs.		By	pulling	out	the	imputed	genotypes	at	each	location,	a	four	QTL	

model	 was	 generated	 allowing	 for	 interactions	 between	 the	 QTLs	 on	

chromosomes	 1	 and	 3,	 1	 and	 5,	 and	 3	 and	 5.	 	 The	 overall	 fit	 of	 the	 model	

provided	 a	 LOD	 score	 of	 79.04	 relative	 to	 null	 model,	 with	 54.44%	 of	 the	

phenotypic	 variance	 being	 accounted	 for.	 	 Each	 locus	 was	 dropped	 and	

reintroduced	 in	 succession,	 allowing	 comparison	 to	 be	made	 between	 the	 full	

model	 and	 the	 model	 with	 the	 term	 omitted.	 	 The	 results	 provided	 strong	

evidence	for	a	role	of	both	loci	on	chromosome	1,	as	well	as	the	additional	loci	on	

chromosomes	3	and	5.		Evidence	for	interactions	between	the	primary	focus	on	

chromosome	 1	 and	 the	 chromosome	 3	 locus	 was	 apparent.	 The	 interactions	

between	 chromosomes	 1	 and	 5,	 and	 3	 and	 5	 fell	 below	 the	 threshold	 for	

significance	(Table	3.3).	

	

	
Table	3.3.	 	Analysis	of	 the	effect	of	dropping	each	QTL	 independently	 from	a	 five	QTL	
model	 generated	 by	 identifying	 fixed	 locations	 of	 QTLs	 contributing	 to	 resistance	 to	
Albugo	 candida	 isolate	 AcExeter	 in	 Arabidopsis	 thaliana	 F9	 Col-0	 x	 Oy-0	 mapping	
population.			
Chr	position	
(cM)	

Type	3	sum	of	
squares	

	
LOD	

	
%	variance	

	
F	value	

	
P	value	

C1	70	 206.88	 6.25	 2.92	 29.17	 0.00	
C1	76	 279.64	 8.36	 3.95	 13.14	 0.00	
C3	58	 624.63	 17.79	 8.82	 29.36	 0.00	
C5	16	 259.33	 7.77	 3.66	 12.19	 0.00	
C1	76	&	C3	58		 49.78	 1.54	 0.70	 7.02	 0.01	
C1	76	&	C5	16	 8.28	 0.26	 0.12	 1.17	 0.28	
C3	58	&	C5	16		 16.92	 0.53	 0.24	 2.34	 0.12	
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3.3.4	 QTL	 interval	 mapping	 of	 resistance	 in	 Arabidopsis	 	 thaliana	

accession	Oy-0	to	AcCarlisle	

The	same	mapping	analyses	as	described	above	were	used	to	identify	QTLs	and	

possible	 interactions	 between	 loci	 following	 inoculation	 of	 F9	 Col-0	 x	 Oy-0	

inbreds	 with	 a	 second	 Columbia-virulent	A.	candida	 isolate	 AcCarlisle.	 	 In	 this	

case,	 the	 genome-wide	 LOD	 significance	 threshold	was	 2.5	with	 the	maximum	

likelihood	estimation	and	multiple	imputation	method	and	2.4	with	Haley-Knott	

regression	for	a	5%	confidence	interval.		All	three	methods	detected	QTLs	above	

the	corresponding	threshold	on	chromosomes	1	and	3,	but	not	on	chromosome	5	

as	 detected	with	 AcExeter	 (Figure	 3.4D,E	 and	 F).	 	 The	 predicted	 position	 of	 a	

major	 effect	 QTL	 on	 chromosome	 1	 is	 73.0	 cM	 with	 maximum	 likelihood	

estimation	 and	 Haley-Knott	 regression	 (LOD	 scores	 of	 43.80	 and	 41.67,	

respectively),	 and	 74.0	 cM	 with	 the	 multiple	 imputation	 scan	 (LOD	 of	 40.67).		

The	predicted	position	of	a	minor	effect	QTL	on	chromosome	3	is	49.2cM	with	all	

three	 methods	 (LOD	 score	 of	 2.64)	 with	 maximum	 likelihood	 estimation	 and	

Haley-Knott	 regression;	 and	2.69	with	multiple	 imputation	 scan.	 	 Interestingly,	

the	position	of	the	second	minor	effect	QTL	was	approximately	16	cM	above	the	

one	predicted	on	the	same	chromosome	with	AcExeter.	

	 A	multiple	QTL	scan	was	conducted	on	each	model	controlling	the	major	

effect	locus	on	chromosome	1	to	make	any	minor	effects	more	apparent	(Figures	

5	and	6).	 	No	 further	significant	QTLs	could	be	detected.	 	The	same	position	of	

the	minor	effect	QTL	is	predicted	on	chromosome	3	of	50	cM	for	the	maximum	

likelihood	 genome	 scan	 and	 Haley-knot	 regression	 (LOD	 of	 3.19	 and	 3.13,	

respectively)	and	49.2	for	the	multiple	imputation	genome	scan	(LOD	of	3.18).	

	 A	 two	 dimensional	 genome	 scan	was	 performed	 to	 begin	 searching	 for	

multiple	linked	or	interacting	QTLs	underlying	resistance	to	A.	candida	AcCarlisle	

(Table	3.4).		When	comparing	the	full	two-QTL	model	with	the	best	single	fit	QTL	

model,	 there	 is	 evidence	 of	 the	 major	 effect	 QTL	 on	 chromosome	 1,	 and	 a	

secondary	QTL	on	chromosomes	3	and	5	with	allowance	for	epistasis.	The	effects	

of	 both	 loci	 were	 assessed	 through	 analyzing	 phenotype	 as	 a	 function	 of	 the	

genotype	of	the	most	tightly,	and	by	assessing	the	phenotype	averages	of	each	of	

the	four	two	locus	genotype	groups	for	each	pair	of	contributing	effects.	(Figure	

3.8).			 	
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	 The	 results	 reveal	 the	 greatest	mean	 susceptible	 phenotype	when	 both	

alleles	are	homozygous	for	Col-0,	and	the	lowest	mean	resistant	phenotype	when	

both	alleles	are	homozygous	for	Oy-0.		There	is	a	greater	mean	phenotype	when	

the	chromosome	1	locus	is	homozygous	for	the	Col-0	allele	and	the	chromosome	

3	locus	is	homozygous	for	the	Oy-0	allele	than	when	the	chromosome	1	locus	is	

homozygous	for	the	Oy-0	allele	and	the	chromosome	3	locus	is	homozygous	for	

the	Col-0	allele.		This	indicates	the	chromosome	locus	is	a	greater	contributor	to	

a	resistant	phenotype.		

	

3.3.5	 Oy-0	x	Col-0	RIL	phenotyping	with	AcEm2	suggests	shared	resistance	

locus	

The	experimental	procedure	as	described	above	was	performed	using	AcEm2	on	

the	Oy-0	x	Col-0	RIL	population.		None	of	the	470	lines	developed	pustules,	with	

all	 exhibiting	a	phenotype	of	0	or	1.	 	 Single	QTL	genome	scans	using	 the	 three	

statistical	 approaches	 described	 and	 two	 dimensional	 two	 QTL	 genome	 scans	

were	performed	using	the	phenotype	data.		No	significant	QTLs	were	detected	as	

expected.	
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Table	 3.4.	 	 Predicted	 second	 gene	 effects	 for	 resistance	 to	 Albugo	 candida	 isolate	
AcCarlisle	in	Arabidopsis	thaliana	Col-0	x	Oy-0	F9	mapping	population	calculated	using	a	
multiple	imputation	genome	scan.		Significance	thresholds	for	the	LOD	of	the	full	model	
(Sf),	 LOD	 of	 the	 additive	model	 (Sa),	 test	 for	 epistasis	 (Si),	 the	 comparison	 of	 the	 full	
model	to	the	best	single-QTL	model	(Sfv1),	and	the	comparison	of	the	additive	model	to	
the	best	single-QTL	model	(Sav1)	were	calculated	using	100	permutations.		
	
	 Position	

1	full	

Position	

2	full	

Sf	 Sfv1	 Si	 Position	

1	additive	

Position	

2	additive	

Sa	 Sav1	

Significance	

threshold	

-	 -	 4.45	 3.58	 3.08	 -	 -	 3.52	 1.85	

	 	 	 	 	 	 	 	 	 	

C1:C3	 74	 8	 44.4	 3.7	 0.887	 74	 50	 43.5	 2.82	

	

	

	
Figure	 3.8.	 	 The	 effect	 of	 putative	 QTLs	 on	 chromosomes	 1	 and	 3	 identified	 as	
contributing	to	white	rust	resistant	phenotype	in	Arabidopsis	thaliana	Col-0	(AA)	x	Oy-0	
(BB)	mapping	 population	 following	 cotyledon	 inoculation	with	Albugo	candida	 isolate	
AcCarlisle.	 	 Left,	dot	 plots	 of	 phenotype	 as	 a	 function	marker	 genotypes	 identified	 as	
interactive.	 	Black	dots	correspond	 to	observed	genotypes	and	red	dots	correspond	 to	
missing,	 consequently	 imputed	 genotypes.	 	 Right,	 estimated	 phenotype	 averages	 for	
each	two	locus	genotype	group.		
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	 The	predicted	locations	of	the	putative	QTLs	were	defined	as	a	model	 in	

order	 estimate	 the	 effects	 of	 each	 locus.	 	 For	 this	 purpose,	 the	 multiple	

imputation	 method	 was	 used	 to	 compensate	 for	 missing	 genotype	 data.	 	 By	

pulling	 out	 the	 imputed	 genotypes	 at	 each	 location,	 a	 two	 QTL	 model	 was	

generated	 suggesting	 an	 additive	 effect	 between	 the	QTL’s	 on	 chromosomes	 1	

and	3.		The	overall	fit	of	the	model	provided	a	LOD	score	of	41.18	relative	to	null	

model,	with	33.9%	of	 the	phenotypic	variance	being	accounted	for.	 	Each	 locus	

was	dropped	and	 reintroduced	 in	 succession,	 allowing	 comparison	 to	be	made	

between	 the	 full	model	and	 the	model	with	 the	 term	omitted	 (Table	3.5).	 	The	

results	provided	strong	evidence	for	both	loci.	

	
Table	3.5.	 	Analysis	of	 the	effect	of	dropping	each	QTL	 independently	 from	a	 five	QTL	
model	 generated	 by	 identifying	 fixed	 locations	 of	 QTLs	 contributing	 to	 resistance	 to	
Albugo	 candida	 isolate	 AcCarlisle	 in	 Arabidopsis	 thaliana	 F9	 Col-0	 x	 Oy-0	 mapping	
population.			
	
Position	 Type	3	sum	

of	squares	

LOD	 %	variance	 F	value	 P	value	(F	

stastic)	

C1	70cM	 2015.8	 38.67	 31.405	 216.21	 0.00	

C3	76cM	 112.9	 2.84	 1.914	 13.18	 0.00	

	

	

3.3.5	 Identification	of	candidate	disease	resistance-like	genes	located	

within	QTLs	that	confer	resistance	to	A.	candida	isolates	AcExeter	and	

AcCarlisle	

The	physical	locations	of	markers	flanking	the	putative	QTLs	on	chromosomes	1,	

3	 and	 5	 were	 related	 to	 the	 TAIR10	 reference	 genome	 and	 used	 to	 identify	

candidate	NBS-LRR	genes	within	each	interval	(Table	3.6).		The	major	effect	QTL	

on	chromosome	1	locus	from	C1_20308	to	C1_22181	spans	500	predicted	genes	

that	 include	 16	which	 are	 predicted	 to	 encode	 NBS-LRR	 proteins.	 	 The	minor	

effect	QTL	on	chromosome	3	from	C3_15117	to	C3_23412	spans	2219	predicted	

genes	 that	 include	 11	 predicted	 NBS-LRR	 genes.	 	 The	 minor	 effect	 QTL	 on	

chromosome	5	 locus	 from	C5_02900	 to	C5_06820	 spans	1152	predicted	 genes	

that	include	seven	predicted	NBS-LRR	genes.		Given	the	broad	mapping	intervals,	
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these	three	loci	will	be	referred	to	below	by	temporary	names	WRR-OyC1,	WRR-

OyC3	and	WRR-OyC5,	respectively.	

	
Table	3.6.		Disease	resistance-like	genes	located	in	putative	QTLs	that	were	predicted	to	
contribute	to	segregation	of	resistance	in	Arabidopsis	thaliana	Col-0	x	Oy-0	F9	mapping	
population	to	Albugo	candida	isolates	AcExeter	and	AcCarlisle.		
Locus	 Gene	ID	 Protein	Description	 Source	
WRR-OyC1	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

At1g56470	
At1g56510	
At1g56520	
At1g56540	
At1g57840	
At1g58390	
At1g58400	
At1g58410	
At1g58602	
At1g58807	
At1g58848	
At1g59124	
At1g59218	
At1g59620	
At1g59780	
At1g61100	

	

Pseudogene,	disease	resistance-like	protein			
WRR4A	white	rust	resistance	protein	(TNL)		
Disease	resistance-like	protein	(TNL)	
Disease	resistance-like	protein	(TNL)	
pseudogene,	putative	disease	resistance-like	protein		
rpp7-like	protein	(CNL)		
rpp7-like	protein	(CNL)	
rpp7-like	protein	(CNL)	
rpp7	downy	mildew	resistance	protein		
rpp7-like	protein	(CNL)			
rpp7-like	protein	(CNL)	
rpp7-like	protein	(CNL)			
rpp7-like	protein	(CNL)			
rpp7-like	disease	resistance	protein	(CNL)		
rpp7-like	disease	resistance	protein	(CNL)	
Disease	resistance-like	protein	(TNL)	

	

TAIR	
TAIR	
TAIR	
TAIR	
TAIR	
UniProt	
TAIR	
UniProt	
UniProt	
UniProt	
UniProt	
TAIR	
UniProt	
TAIR	
UniProt	
TAIR	
	

	

WRR-OyC3	

	
	
	
	
	
	
	
	
	
	

	

At3g44400	
At3g44480	
At3g44630	
At3g44670	
At3g51560	
At3g51570	
At3g46530	
At3g50950	
At3g44410	
At3g46710	
At3g46730	

	

Disease	resistance-like	protein	(TNL)	
Disease	resistance-like	protein	(TNL)	
Disease	resistance-like	protein	(TNL)	
Disease	resistance-like	protein	(TNL)	
Disease	resistance-like	protein	(TNL)	
Disease	resistance-like	protein	(TNL)	
rpp13	downy	mildew	resistance	homolog	(CNL)	
rpp13-like	protein	4		
rpp1	downy	mildew	resistance	homolog	(TNL)	
rpp13-like	disease	resistance	protein	(CNL)	
rpp13-like	disease	resistance	protein	(CNL)	

	

TAIR	
TAIR	
TAIR	
TAIR	
TAIR	
TAIR	
UniProt	
UniProt	
TAIR	
UniProt	
UniProt	
	

	

WRR-OyC5	

	
	
	
		
	
	

	

At5g11250	
At5g17680	
At5g17880	
At5g17890	
At5g17970	
At5g18350	
At5g18360	
At5g18370	

	

Disease	resistance	protein	(TNL)		
Disease	resistance	protein	(TNL)	
WRR5	white	rust	resistance	protein	(TNL)		
WRR6	white	rust	resistance	protein	(TNL-LIM)	
Disease	resistance	protein	(TNL)	
Disease	resistance	protein	(TNL)	
Disease	resistance	protein	(TNL)	
Disease	resistance	protein	(TNL)	

	

TAIR	
TAIR	
TAIR	
TAIR	
TAIR	
TAIR	
TAIR	
TAIR	

	



	 89	

3.4	 DISCUSSION	
The	 Columbia	 allele	 of	 WRR4	 has	 been	 previously	 shown	 to	 provide	 broad	

spectrum	resistance	and	mask	 the	effect	of	other	R	genes	(Borhan	et	al.,	2008).		

Here,	 Columbia-virulent	 isolates	 (AcExeter	 and	 AcCarlisle)	 have	 enabled	 the	

identification	 of	 additional	 sources	 of	 resistance	with	 potential	 applicability	 in	

transgenic	 crop	 production,	 including	 intriguing	 evidence	 for	 a	 potentially	

broader	 spectrum	 resistance	 in	 Oy-0	 that	 maps	 to	 the	 same	 region	 on	

chromosome	1	as	WRR4-Columbia,	but	also	spans	a	cluster	of	genes	including	a	

downy	mildew	resistance	gene	RPP7	in	Columbia.		

Comparative	 sequence	 analysis	 of	 MAGIC	 parental	 lines	 susceptible	 to	

AcEm2	 and	 resistant	 to	 AcExeter	 and	AcCarlisle	 using	 the	 data	 from	 the	 1001	

Arabidopsis	Genome	Project	 revealed	Ct-1	and	Edi-0	 to	have	an	 identical	Col-0	

allele	 of	WRR4.	 	 Bur-0	 and	 Ler-0	 showed	multiple	 non-synonymous	mutations	

throughout	 the	 exons	 of	 WRR4,	 WRR5	 and	 WRR6,	 suggesting	 that	 these	

accessions	 possess	 alternative	 sources	 of	 resistance	 to	 Col-avirulent	 isolates.		

The	mapping	of	broad	spectrum	resistance	in	Oy-0,	Mt-0	and	Rsch-4	to	both	Col-

avirulent	and	Col-virulent	isolates	indicated	that	these	accessions	share	a	major	

gene	 resistance	 on	 the	 bottom	 arm	of	 chromosome	1.	 	 This	was	 supported	 by	

fine-scale	mapping	of	resistance	in	Oy-0	to	AcExeter,	AcCarlisle	and	AcEm2	using	

an	F8	Oy-0	x	Col-0	recombinant	inbred	population.	

The	observation	of	a	full	spectrum	of	interaction	phenotypes	amongst	the	

Oy-0	 x	 Col-0	 inbreds	 following	 inoculations	 with	 AcExeter	 and	 AcCarlisle,	

indicates	 that	 the	 major	 effect	 resistance	 at	 the	WRR-OyC1	 locus	 is	 masking	

resistance	 conferred	 by	 genes	 at	 other	 loci.	 	 Thus,	 complete	 resistance	 to	 Col-

virulent	 isolates	 appears	 to	 be	 dependent	 on	 additive	 and	 interactive	 effects	

from	 elsewhere	 in	 the	 genome.	 	 Most	 noticeably,	 the	WRR-OyC3	 locus	 on	 the	

bottom	arm	of	chromosome	3	was	detected	above	the	threshold	for	significance	

for	both	isolates.		This	locus	contains	several	genes	that	encode	NB-LRR	proteins	

including	examples	of	specificities	 for	downy	mildew	resistance,	although	none	

of	 these	 have	 so	 far	 been	 attributed	 to	 resistance	 to	 A.	 candida.	 	 However,	 a	

second	 minor	 effect	 locus	 WRR-OyC5	 was	 detected	 on	 the	 top	 arm	 of	

chromosome	 5	 using	 AcExeter,	 which	 contains	 a	 pair	 of	 NBS-LRR	 genes	

(WRR5/WRR6)	 that	 are	 both	 required	 for	 a	 'yellowing	 patch'	 resistance	
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phenotype	 in	 Col-0	 to	 A.	 candida	 race	 4.	 	 Re-sequencing	 data	 from	 the	 1001	

Arabidopsis	 Genome	 Project	 was	 used	 to	 detect	 polymorphisms	 and	 showed	

both	WRR5	and	WRR6	are	highly	polymorphic	in	Oy-0	compared	with	Col-0.	

Allelic	 variation	 in	 specificity	 of	 white	 rust	 resistance	 at	 the	WRR4-Col	

locus	 has	 implications	 for	 the	 way	 crop	 resistance	 to	 A.	 candida	 could	 be	

developed.	 	 Col-virulent	 isolates	 are	 evidence	 of	 how	 single	 R	 genes	 can	 be	

overcome	 by	 functional	mutations	 in	 the	 pathogen,	 and	 this	 will	 be	 discussed	

further	in	Chapter	4.		Yet	Oy-0	demonstrates	that	alternate	and	potentially	more	

useful	R-alleles	exist	in	natural	variation	of	A.	thaliana	with	different	specificities.		

New	alleles	 can	only	be	discovered	 through	pathology	with	 isolates	 capable	 of	

breaking	known	resistance.		To	extend	this,	a	global	diversity	collection	of	400	A.	

thaliana	accessions	was	screened	with	AcEm2,	AcExeter	and	AcCarlisle,	and	50	

accessions	 were	 identified	 with	 resistance	 to	 all	 three	 isolates	 (Appendix	 4).		

Some	of	these	share	a	similar	Oy-0	haplotype	of	the	WRR4	gene,	however	most	

are	polymorphic	at	this	locus	and	may	therefore	provide	a	source	for	alternative	

broad	spectrum	resistance.	 	 Interestingly	 the	 set	also	 revealed	a	potential	host	

differential	 between	AcExeter	 and	AcCarlisle,	 indicating	 that	 they	 are	 different	

pathotypes.	

Pyramiding	 of	 functional	 alleles	 from	 multiple	 loci	 of	 R	 genes	 could	

potentially	enable	anticipatory	breeding	of	durable	resistance	for	disease	control	

using	 conventional	 marker-assisted	 breeding.	 	 Similarly,	 decisions	 of	 what	 R-

alleles	to	include	in	a	single	'stacked'	construct	for	GM	transformation	of	a	crop	

variety	 will	 depend	 on	 decision-support	 from	 complementary	 pathology	

research	 (focus	 of	 the	 next	 Chapter).	 	 Knowledge	 about	 pathogen	 avirulence	

elicitors	 that	match	each	R-gene	specificity	 is	essential	 for	choosing	the	best	R-

alleles	 and	 therefore	 an	 optimum	 combination	 of	 component	 genes.	 	 For	

example,	stacking	WRR-OyC1	resistance	with	WRR4-Col	in	the	same	construct	for	

transformation	would	provide	a	good	combination	for	use	in	transgenic	varieties	

of	 all	 brassica	 crops	 (B.	 rapa,	B.	 juncea	 and	 B.	 oleracea)	 if	 they	 each	 detect	 a	

different	 avirulence	 elicitor.	 	 However,	 this	 gene	 combination	 would	 be	

redundant,	 and	most	 likely	 less	durable,	 if	 both	genes	detect	 the	 same	elicitor.		

Consequently,	the	next	chapter	initiates	research	to	identify	candidate	avirulence	

genes	in	A.	candida.	
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4.1	 INTRODUCTION	

In	 order	 to	 achieve	 sustainable	 disease	 management,	 it	 is	 necessary	 to	

understand	the	effect	of	deploying	resistant	cultivars	on	the	population	structure	

of	 the	 pathogen.	 	 This	 will	 enable	 proactive	 changes	 to	 the	 resistance	 gene	

complement	 in	 the	 crop	 to	 counteract	 adaptive	 changes	 in	 virulence	 of	 the	

pathogen.		Many	pathogens	including	Albugo	candida	are	not	restricted	to	crops,	

and	 therefore	 wild	 relatives	 of	 the	 crops	 such	 as	 Capsella	 bursa-pastoris	

(Shepherds	 Purse)	 should	 also	 be	 considered	 as	 an	 overwintering	 host	 and	

potential	reservoir	of	virulent	pathotypes	that	could	overcome	a	newly	deployed	

R	 gene	 in	 a	 crop	 (Saharan	 et	 al.,	 2014).	 	 Thus,	 an	 assessment	 of	 the	 genetic	

variability	 in	 the	 wider	 pathogen	 population	 is	 important	 to	 identify	

recombination	 between	 sub-populations,	 and	 hence	 determine	 whether	 wild	

relatives	provide	a	source	of	inoculum	for	crops.		

In	 theory,	 sustainable	 disease	 control	 could	 be	 achieved	 through	

monitoring	pathogen	virulence	in	a	cropping	system	and	using	this	information	

as	decision-support,	for	example,	to	choose	a	combination	of	R-alleles	that	target	

different	 pathogen	 effectors	 for	 'stacking'	 in	 a	 single	 construct	 for	 GM	

transformation	of	the	crop.		In	practice,	such	a	strategy	is	already	being	used	in	

cereals	with	conventional	breeding	and	release	of	 cultivars	with	pyramiding	of	

R-alleles	 to	 control	 fungal	 rusts	 (Chen	 et	 al.,	 2008,	 Fukuoka	 et	 al.,	 2015).	 	 By	

persistent	monitoring	of	pathogen	variability,	 cultivars	can	be	withdrawn	 from	

commercial	 production	 and	 replaced	 with	 new	 cultivars	 possessing	 different	

recognition	specificities	to	control	the	emergence	of	new	virulent	races.		In	other	

words,	anticipating	new	races	before	they	can	cause	significant	crop	losses	is	the	

key	challenge	 for	a	combined	strategy	of	 conventional	and	GM	control	options.		

The	 alternative	 of	 uninformed	 and	 widespread	 deployment	 of	 R	 genes	 will	

ultimately	 select	 for	 virulence	 that	 is	 no	 longer	 controllable	 through	 host	

resistance	(McDonald	and	Linde,	2002,	Garcia-Arenal	and	McDonald,	2003).		This	

situation	is	analogous	to	the	growing	ineffectiveness	of	chemical	control	against	

a	range	of	pests,	weeds	and	diseases.	

Brassica	 hosts	 and	 physiological	 races	 of	 A.	 candida	 provide	 a	 useful	

experimental	 system	 to	 investigate	 adaptation	 of	 a	 pathogen	 to	 a	 family	 of	

closely	 related	 hosts.	 	A.	candida	isolates	 are	 classified	 into	 physiological	 races	
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according	to	their	pathogenicity	on	a	defined	set	of	lines	that	are	representative	

of	different	host	 species	 (Saharan	et	al.,	 2014,	 Srivastava	et	al.,	 2004,	Hill	et	al.,	

1988,	 Pound	 and	 Williams,	 1963).	 	 This	 provides	 an	 indication	 of	 discrete	

variation	 in	 host	 range,	 which	 has	 been	 useful	 for	 comparing	 results	 from	

researchers	 in	 different	 countries.	 	 	 However,	 race	 classification	 is	 not	 an	

absolute	 measure	 of	 host	 adaptation.	 	 A	 recent	 comparison	 of	 A.	 candida	

genomes	 indicates	 that	 sexual	 recombination	 has	 occurred	 amongst	 races	

(McMullan	et	al.,	2015).	Thus,	 recombination	and	derivation	of	new	pathotypes	

could	provide	a	source	for	hybrid	variants	and	new	physiological	races.	

White	rust	commonly	occurs	in	natural	populations	of	A.	thaliana	(Holub	

et	al.,	1995).	The	disease	primarily	appears	in	seedlings	and	in	rosettes	of	adult	

plants.		The	causal	pathogen	was	originally	thought	to	be	A.	candida.	However,	it	

was	 later	 determined	 that	 it	 is	 a	 distinct	 species	 based	 on	 divergent	 ITS1	 and	

COX2	 sequences	 (Thines	et	al.,	 2009).	 	Albugo	laibachii	appears	 to	 be	 narrowly	

restricted	to	a	single	host	species,	but	is	broadly	virulent	in	most	accessions	of	A.	

thaliana	 including	 the	 favoured	 laboratory	 accession	 Columbia	 (Col-0).	 	 In	

contrast,	 A.	 candida	 is	 broadly	 avirulent	 in	 a	 diverse	 collection	 of	 A.	 thaliana.		

However,	 accessions	have	been	 found	 that	 are	 susceptible	 to	A.	candida	 race	4	

(collected	from	C.	bursa-pastoris)	under	laboratory	conditions.		For	example,	the	

Col-0	allele	of	WRR4	has	been	shown	to	provide	broad	spectrum	resistance	to	A.	

candida	races	2,	4,	7	and	9	(Borhan	et	al.,	2008).	 	This	suggests	 that	host	genes	

are	 a	 major	 factor	 in	 determining	 the	 host	 range	 of	 A.	 candida,	 with	 host	

recognition	 and	 subsequent	 resistance	 being	 triggered	 by	 races	 with	 the	

corresponding	AVR	gene.			

Although	A.	candida	has	been	useful	to	investigate	disease	resistance	in	A.	

thaliana	 under	 controlled	 environment	 conditions,	 it	 is	 important	 to	 know	

whether	 A.	 thaliana	 is	 a	 potential	 reservoir	 for	 this	 pathogen	 under	 field	

conditions.	 	 	 Thus,	 a	 primary	 aim	of	 this	 chapter	was	 to	 determine	whether	A.	

candida	 could	 be	 readily	 detected	 as	 the	 cause	 of	 white	 rust	 in	 natural	

populations	of	A.	thaliana,	particularly	in	floral	stem	and	leaf	tissue	(i.e.,	a	largely	

ignored	 niche	 for	 white	 rust	 in	 A.	 thaliana	 field	 biology)	 of	 plants	 growing	 in	

close	proximity	to	C.	b.	pastoris,	which	is	the	most	prolific	source	of	inoculum.	
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Perennial	species	of	Arabidopsis	such	as	A.	lyrata	(syn.	Arabis	lyrata)	are	

also	 a	 natural	 host	 for	 white	 rust	 in	 North	 America	 and	 northern	 Europe	

(Jacobson	et	al.,	 1998).	 	 In	 the	 UK,	 an	 isolate	 of	A.	candida	from	A.	halleri	 was	

collected	 in	 2008	 from	 a	 white	 rust	 epidemic	 in	 a	 glasshouse	 (controlled	

environment)	 at	 the	 University	 of	 Exeter	 (AcExeter),	 which	 provided	 the	 first	

evidence	 that	 A.	 candida	 can	 overcome	 WRR4-mediated	 resistance	 (Fairhead,	

2012	 Masters	 thesis).	 	 This	 was	 the	 first	 evidence	 of	 a	 previously	 race	 non-

specific	 resistance	 breaking	 down.	 	 Thus,	 a	 second	 aim	 of	 this	 chapter	was	 to	

determine	 whether	 additional	 Col-virulent	 isolates	 could	 be	 collected	 from	

Arabidopsis	under	field	conditions.			

Association	 genetics	 can	 provide	 a	 means	 for	 identifying	 virulence	

determinants	in	microbial	pathogens	(Bart	et	al.,	2012).		Thus,	a	third	aim	of	this	

chapter	was	to	determine	whether	a	collection	of	Col-0-virulent	isolates	could	be	

used	 to	 search	 genome-wide	 effector	 sequences	 and	 identify	 candidates	 for	

avrWRR4-Col	(i.e.,	that	are	conserved	amongst	Col-avirulent	A.	candida	of	races	2,	

4,	7	and	9	but	altered	by	mutations	in	the	same	candidates	that	could	cause	loss-

of-function	amongst	the	Col-virulent	isolates).	

As	 described	 in	 the	 previous	 chapter,	 the	 Norwegian	 accession	 of	 A.	

thaliana	Oy-0	carries	resistance	to	AcExeter	that	maps	to	an	interval	containing	

WRR4.		It	is	currently	not	known	whether	this	WRR-OyC1	resistance	is	conferred	

by	 an	 alternative	 allele	 of	WRR4	 or	 a	 tightly	 linked	 gene	 in	 Oy-0	 conferring	

resistance	to	both	Col-virulent	and	Col-avirulent	A.	candida.	Consequently,	there	

are	two	possible	explanations	for	a	Col-virulence	pathotype	of	A.	candida.		Either	

AcExeter	has	mutations	in	a	highly	conserved	effector	(avrWRR4)	corresponding	

to	recognition	by	the	WRR4-Col	protein	(as	predicted	by	Borhan	et	al.,	2010)	that	

is	also	still	recognised	by	an	WRR-OyC1	protein,	or	AcExeter	possesses	a	further	

avirulence	 effector	 that	 is	 specifically	 recognised	 by	WRR-OyC1.	 	 Thus,	 a	 final	

aim	 of	 this	 chapter	 was	 to	 use	 the	 effector	 database	 to	 search	 and	 determine	

whether	candidates	exist	that	could	match	the	WRR-OyC1	resistance.		
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4.2	 MATERIALS	AND	METHODS	
4.2.1	 Collection	of	Albugo	candida	isolates	from	diseased	floral	tissue	

Sampling	of	A.	candida	 from	 floral	 tissue	of	A.	thaliana	 displaying	visible	white	

rust	 was	 performed	 from	 sites	 where	 plants	 were	 growing	 naturally	 in	 close	

proximity	 to	 C.	 b-pastoris	 that	 was	 heavily	 infested	 with	 white	 rust	 for	 the	

purpose	 of	 finding	 Col-0	 virulent	 isolates.	 	 Several	 samples	 were	 collected	 by	

Professor	Eric	Holub	in	2008	and	2010,	and	additional	samples	were	collected	at	

the	start	of	this	project	from	fields	at	Warwick	Crop	Centre.			In	addition,	isolate	

Ac167	sampled	 from	a	Northern	European	accession	of	Arabidopsis	lyrata	with	

confirmed	resistance	to	Col-0	avirulent	 isolates	was	added	to	 the	collection.	 	A.	

lyrata	(AL)	167	was	cultivated	on	a	flat	roof	site	in	Stratford-upon-Avon	for	the	

purpose	 of	 seed	 multiplication	 in	 a	 location	 presumed	 to	 be	 isolated	 from	

Albugo.	 	 In	April	 2014,	 plants	developed	white	 rust,	which	 could	 either	be	 the	

result	of	infection	the	previous	autumn	or	infection	brought	in	on	the	seed	from	

Sweden	 (the	 original	 source	 of	 the	 accession).	 	 The	 isolates	 were	 bulked	 and	

maintained	 on	 of	 on	 juvenile	 leaves	 of	 A.	 thaliana	Ws-eds1	 as	 described	 in	

Chapter	3.	
	

4.2.2	 Phenotyping	for	functional	genomics	

Phenotypes	 on	 Col-0,	 WS	 and	 four	 F9	 Col-0	 x	 Ws-0	 recombinant	 inbreds	

possessing	 single	 Col-0	WRR	 genes	 (Chapter	 3,	 Figure	 1)	 were	 examined	 and	

assessed	using	the	experimental	procedure	described	in	Chapter	3.	

	

4.2.3	 Molecular	genotyping	

Infected	tissue	samples	from	A.	thaliana	Ws-eds1	for	each	isolate	were	harvested	

ten	 days	 post	 inoculation.	 DNA	was	 extracted	 using	 the	DNeasy	 plant	mini	 kit	

according	protocol.	

The	selective	amplification	of	the	complete	ITS	region	was	performed	on	

all	 isolates	 using	 the	 oomycete-specific	 forward	 primer	 DC6	 (5-

GAGGGACTTTTGGGTAATCA-3)	 and	 complementary	 reverse	 primer	 LR-0R	 (5-

GCTTAAGTTCAGCGGGT-3)	 (Kaur	 et	al.,	 2011).	 	 PCR	 reactions	 were	 conducted	

using	PhusionÒ	high-fidelity	DNA	polymerase.	 	Reaction	volumes	of	25	µl	were	

created	containing	5	µl	of	5	x	GC	buffer,	0.5	µl	of	10	mM	dNTPs,	1.25	µl	of	10	µm	
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forward	and	reverse	primers,	1	µl	of	template,	15.75	µl	nuclease-free	water	and	

0.25	µl	of	DNA	polymerase	added	last.	 	All	reactions	were	prepared	on	ice.	PCR	

was	 performed	 using	 the	 standard	 touchdown	 program	 (Table	 4.1).	 A	 5	 µl	

sample	 of	 PCR	product	was	 added	 to	 2	 µl	 of	 loading	dye	 for	 assessment	 using	

electrophoresis.		

	

Table	4.1.		Standard	touch	down	polymerase	chain	reaction	PCR	program	used	
for	 the	 amplification	 of	 	 Internal	 Transcribed	 Spacers	 (ITS)	 to	 determine	 the	
species	 of	 pathogen	 causing	 white	 rust-like	 symptoms.	 D:	 denaturation,	 A:	
annealing,	E:	extension.	
	

	 Start	 Touchdown	(8	Cycles)	 (28	Cycles)	 Finish	

D	 D	 A	 E	 D	 A	 E	 E	

Temperature	

(°C)	

98	 98	 65	–	57	 72	 98	 56	 72	 72	

Time	(minutes)		 3.00	 0.30	 0.30	 1.30	 0.30	 0.30	 1.30	 7.00	

	
	

	 Genomic	DNA	and	PCR	products	were	assessed	through	electrophoresis,	

using	 agarose	 gel	 of	 1%	 volume	 to	 weight	 agarose/	 Tris	 Borate	 buffer	 (TBE).	

Centrifuge	 driven	 PCR	 purification	 was	 performed	 using	 the	 Qiagen	 PCR	

purification	kit	according	to	protocol.	

	 A	5	µl	aliquot	of	PCR	product	and	5	µl	of	primer	at	a	concentration	of	0.5	

mM	 were	 pipetted	 into	 1.5	 ml	 Eppendorf	 tubes	 and	 sequenced	 through	 the	

LightRun	service	provided	by	GACT	Biotech.	Sequence	analysis	was	performed	in	

silico.	Geneious	version	9.1.4	(Kearse	et	al.,	2012)	was	used	for	trimming	regions	

with	a	greater	than	0.5%	chance	of	an	error	per	base,	quality	control,	reference	

based	alignment	and	polymorphism	detection	for	all	sequenced	PCR	products.	

	

4.2.4	 Exome	sequence	capture	

An	exome	sequence	capture	method	called	PathSeq,	developed	at	the	Sainsbury	

Laboratory,	 	was	used	 to	 characterise	 sequence	variation	of	 genes	 that	 encode	

effector-like	 proteins	 in	 a	 collection	 of	 A.	 candida	 isolates	 including	 	 two	 Col-

virulent	 isolates	(AcExeter	and	Ac167)	and	 four	A.	candida	race	9	 isolates	 from	

UK	 production	 of	 B.	 oleracea	 (Table	 4.2).	 	 	 Baits	 for	 the	 PathSeq	 assay	 were	
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designed	 to	 capture	 sequences	 of	 secreted	 proteins	 ("the	 effectorome")	 with	

respect	 to	 alleles	 of	 genes	 annotated	 in	 the	 AcNc2	 –	 SRX884047	 reference	

genome	 (McMullan	et	al.,	 2015),	 and	 an	 additional	 set	 of	multi-locus	 sequence	

typing	 (MLST)	housekeeping	 genes	 for	 isolate	 characterisation.	 	 This	 sequence	

information	 was	 combined	 with	 whole	 genome	 sequences	 from	 a	 third	 Col-

virulent	 isolate	 AcCarlisle	 (unpublished)	 and	 three	 standard	 isolates	 that	 are	

representative	of	races	2,	4	and	7.	Ac2V	-	SRX884063,	AcEM2	-	SRX879636	and	

Ac7V	(unpublished).		

	 	

The	 combined	 dataset	 enabled	 comparative	 analyses	 across	 isolates,	

through	 the	presence/absence	and	allelic	 variation	amongst	 samples,	 variation	

in	heterozygosity	of	individual	genes,	and	between-isolate	variation	of	individual	

genes.	 	 Enabling	 the	 determination	 of	 candidate	 avr	 genes	 through	 sequence	

similarity	between	isolates	with	the	same	host	differential.		

	
Table	4.2.	Albugo	candida	isolates	 collected	 from	different	host	 species	 in	 the	UK	and	
Canada.	 Next	 generation	 sequencing	 data	 from	 each	 isolate	 was	 assembled	 for	
comparative	genomics	using	short	 read	sequencing	 (assembled	contigs	or	PathSeq)	or	
and	consensus	sequence	from	a	the	AcNc2	reference	genome.	
Isolate	 Host	 Location	 Data	Type	
AcNc2	 Arabidopsis	thaliana	 Norwich,	UK	 Reference	genome	

AcEm2	 Capsella	bursa-pastoris	 East	Malling,	UK	 Whole	genome	assembly	

AcExeter	 A.	halleri	 Exeter,	UK	 PathSeq	contigs	

AcCarlisle	 A.	halleri	 Carlisle,	UK	 Whole	genome	assembly	

Ac167	 A.	lyrata	 Stratford,	UK	 PathSeq	contigs	

AcBol	 Brassica	oleracea	 Wellesbourne,	UK	 PathSeq	contigs	

Ac101	 Brassica	oleracea	 Cornwall,	UK	 PathSeq	contigs	

Ac102	 Brassica	oleracea	 Cornwall,	UK	 PathSeq	contigs	

Ac116	 Brassica	oleracea	 Cornwall,	UK	 PathSeq	contigs	

Ac2v	 Brassica	juncea	 Saskatoon,	Canada	 Whole	genome	assembly	

Ac7v	 Brassica	rapa	 Saskatoon,	Canada	 Whole	genome	assembly	

	

	
4.2.5	 Data	pre-processing	and	analysis	
	
Bioinformatics	 support	 for	 PathSeq	 data	 analysis	 was	 provided	 by	 Dr.	 Laura	

Baxter.	 The	 reference	 genome	was	 defined	 as	 the	 exome	 sequence	 of	 the	 411	
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genes	 from	 the	 AcNc2	 genome	 from	which	 the	 baits	 were	 designed.	 	 PathSeq	

reads,	 assembled	 contigs	 and	 extracted	 genome	 sequence	 in	 the	 case	 of	

AcCarlisle	 were	 mapped	 to	 the	 reference	 genome	 using	 Bowtie2	 aligner	

(Langmead	and	Salzberg,	2012).	The	aligned	.sam	files	were	converted	into	.bam	

files	 using	 SAMtools	 (version	 0.1.19;	 (Li	 et	 al.,	 2009)).	 BEDTools	 was	 used	 to	

obtain	the	depth	and	breadth	of	coverage	of	each	target	sequence	(Quinlan	and	

Hall,	2010).	 	An	additional	filtering	step	characterised	all	alleles	supported	by	a	

depth	 of	 coverage	 as	 less	 than	 10.	 	 The	 *.tsv	 files	were	 then	 processed	with	 a	

custom	Perl	script	(Baxter,	unpublished)	to	generate	breadth	and	depth	metrics.		

4.3	 RESULTS	

4.3.1	 Albugo	candida	commonly	occurs	as	a	pathogen	of	floral	tissue	of	

Arabidopsis	thaliana		

The	 ten-class	 phenotype	 scale	 (Figure	 3.2)	 was	 used	 to	 characterise	 the	

pathogen-host	 interactions	 of	 five	 isolates	 that	 were	 revived	 from	 A.	 thaliana	

inflorescence	tissue,	collected	from	plants	that	were	growing	in	close	proximity	

to	C.	bursa-pastoris,	and	another	 isolate	collected	from	A.	lyrata	 (Table	4.3).		All	

six	isolates	were	fully	virulent	in	Ws-0,	producing	extensive	sporulation	and	no	

visible	host	response.	 	 ITS	sequence	and	NCBI	BLAST	against	AcNc2	confirmed	

that	all	six	isolates	are	A.	candida,	with	100%	identity	to	the	reference	sequence.		

Full	virulence	was	also	observed	 in	Col-0	with	 two	of	 these	 isolates	(AcCarlisle	

and	Ac167),	similar	to	AcExeter,	thus	confirming	that	natural	mutants	capable	of	

breaking	 all	 layers	 of	 Col-0	 resistance	 readily	 occur	 in	 the	 UK	 under	 natural	

conditions	in	annual	and	perennial	species	of	Arabidopsis.	

	 These	isolates	were	tested	further	using	a	differential	set	of	Col-0	x	Ws-0	

recombinant	 inbreds,	with	each	 inbred	possessing	 individual	Col-0	WRR	genes.		

Four	 isolates	(AcGear,	AcHardewijk,	AcTenterden	and	AcWCC2)	each	showed	a	

fully	 non-compatible	 phentype	 on	 CW20,	 and	 yellowing	 phenotype	 on	 CW5.		

These	 phenotypes	were	 consistent	with	 the	 standard	A.	candida	race	 4	 isolate	

AcEm2,	 suggestive	of	 recognition	by	WRR4	and	WRR5/WRR6.	CW14	created	a	

differential,	 indicating	that	variation	occurs	between	the	isolates	 in	the	effector	
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responsible	for	recognition	by	WRR7	(Table	4.3).		The	three	Col-virulent	isolates	

were	fully	virulent	in	the	inbred	different	as	expected.	
	
Table	 4.3.	 	 Phenotypic	 interactions	 between	 Albugo	 candida	 isolates	 and	 five	
Arabidopsis	 thaliana	 lines	 that	 contain	 differential	 combinations	 of	 White	 Rust	
Resistance	(WRR)	genes.	 	The	 isolates	were	derived	from	UK	field	samples	of	diseased	
floral	 tissue	 in	 two	 annual	 hosts	 (Capsella	 bursa-pastoris	 and	 A.	 thaliana)	 and	 two	
perennial	hosts	(A.	lyrata	and	A.	halleri).	
	 		 Host	differential	line	(WRR	gene)	

Pathogen	 	 Col-0	 Ws-0	 CW20	 CW5	 CW14	
Isolate	 Host	origin	 (4,5,6,7)	 (none)	 (4)	 (5,6)	 (7)	
AcEM2	 C.b.	pastoris	 0	 8	 0	 5	 7	

AcGear	 A.	thaliana	 0	 8	 0	 5	 7	
AcHardewijk	 A.	thaliana	 0	 8	 0	 5	 0	
AcTenterden	 A.	thaliana	 0	 8	 0	 5	 8	
AcWCC2	 A.	thaliana	 0	 8	 0	 5	 5	
AcCarlisle	 A.	thaliana	 8	 8	 8	 8	 8	

Ac167	 A.	lyrata	 8	 8	 nt	 nt	 nt	

AcExeter	 A.	halleri	 8	 8	 8	 8	 8	

nt=	not	tested	
	
	

4.3.2	 Candidate	avrWRR4-Col	and	avrWRR-OyC1	elicitors	were	identified	

by	association	genetics	

A	high	degree	of	conservation	was	observed	across	seven	MLST	genes	for	all	A.	

candida	race	4	and	race	9	isolates	enriched	through	PathSeq.		

	 Col-virulence	 of	A.	candida	could	 be	 explained	 by	 loss-of-function	 in	 an	

avirulence	 elicitor	 detected	 by	 the	 WRR4	 protein	 that	 is	 conserved	 in	 Col-

avirulent	 isolates,	 as	 predicted	 by	 Borhan	 et	al.	 (2008).	 	To	 identify	 candidate	

host	 genes	 for	 this	 predicted	avrWRR4-Col	 gene,	 a	 threshold	 of	 99%	 sequence	

identity	was	set	to	identify	alleles	in	the	database	that	are	conserved	within	the	

Col-avirulent	 group	 (AcNc2,	 AcEm2,	 Ac2v	 and	 Ac7v),	 and	 either	 absent	 or	

polymorphic	 within	 the	 Col-virulent	 group	 (AcExeter,	 AcCarlisle	 and	 Ac167).		

Five	 candidate	 effectors	 met	 these	 selection	 criteria,	 including	 two	 examples	

(CCG31	 and	 CCG71)	 of	 presence/absence	 polymorphisms	 between	 the	 isolate	

groups	(Table	4.4).	 	Conservation	of	alleles	across	 the	Col-avirulent	group	with	

non-synonymous	mutations	compared	to	the	virulent	group	was	used	to	identify	

candidate	effectors.	(Figure	4.1).	 	
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Table	4.4		Candidates	for	an	avirulence	determinant	in	Albugo	candida	of	recognition	by	
WRR4-Col	 in	A.	thaliana,	 based	 on	 sharing	 a	 predicted	 conserved	 allele	 (at	 least	 99%	
sequence	similarity)	between	a	representative	group	of	Col-avirulent	isolates	including	
race2	(Ac2V	from	Brassica	juncea)	and	race	4	(AcEm2	from	Capsella	bursa-pastoris),	and	
comparative	 sequence	 variation	 or	 absence	 in	 three	 Col-virulent	 isolates	 (AcExeter,	
AcCarlisle	 and	 Ac167	 collected	 from	 Arabidopsis	 halleri,	 A.	 thaliana	 and	 A.	 lyrata,	
respectively).		Identity	is	shown	as	a	percentage	similarity	with	the	allele	sequence	from	
the	AcNc2	reference	genome.		
	 	 	 A.	candida	 	 isolate	 	 	
	 AcEm2	 Ac2V	 Ac7V	 	 	 	 	
Effector	 race	4	 race	2	 race	7	 	 AcExeter	 AcCarlisle	 Ac167	
	 	 	 	 	 	 	 	

CCGlike10	 100	 99.8	 99.9	 	 94.9	 94.9	 94.9	

CCG31	 100	 99.6	 100	 	 ND	 ND	 ND	

CCG71	 100	 99.9	 100	 	 ND	 ND	 ND	

CCGlike42	 99.9	 99.9	 99.5	 	 97.9	 89.4	 97.8	

CCG63	 99.7	 99.2	 99.2	 	 98.1	 89.1	 95.1	

ND=	sequence	not	detected	(deleted	or	highly	divergent).	
	
Alternatively,	Col-virulence	of	A.	candida	could	be	explained	by	an	effector	that	is	

capable	 of	 suppressing	 an	 avrWRR4-Col	 avirulence	 elicitor.	 	 In	 this	 case,	

candidates	for	a	suppressive	effector	would	be	conserved	within	the	Col-virulent	

group	 (at	 least	 99%	 similarity)	 and	 either	 absent	 or	 polymorphic	 (<99%	

similarity)	 in	 Col-avirulent	 isolates.	 	 The	 same	 candidates	 could	 also	 be	 target	

avirulence	 elicitors	 detected	 by	 the	 R	 protein	 encoded	 by	 the	WRR-OyC1	 gene	

predicted	 in	 Chapter	 3.	 	 Nine	 candidate	 effectors	 met	 these	 selection	 criteria,	

including	 one	 example	 (CCG66)	 of	 presence/absence	 polymorphisms	 between	

the	 isolate	 groups	 (Table	 4.5).	 	 Conservation	 of	 alleles	 within	 the	 Col-virulent	

group	was	confirmed	by	non-synonymous	mutations	 in	nucleotide	 translations	

relative	to	the	reference	genome	(Figure	4.2).	
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Table	4.5.	 	Candidates	 for	an	avirulence	determinant	 in	Albugo	candida	of	 recognition	
by	WRR4-Col	in	A.	thaliana,	based	on	sharing	a	predicted	conserved	allele	(at	least	99%	
sequence	similarity)	between	a	group	of	Col-virulent	isolates	(AcExeter,	AcCarlisle	and	
Ac167	 collected	 from	 Arabidopsis	 halleri,	 A.	 thaliana	 and	 A.	 lyrata,	 respectively),	 and	
comparative	sequence	variation	or	absence	in	a	representative	group	of	Col-0	avirulent	
isolates	 including	race2	(Ac2V	 from	Brassica	juncea)	and	race	4	 (AcEm2	 from	Capsella	
bursa-pastoris),	 Identity	 is	 shown	 as	 a	 percentage	 similarity	 with	 the	 allele	 sequence	
from	the	AcNc2	reference	genome.		
	 	 	 A.	candida	 	 isolate	 	 	
	 AcEm2	 Ac2V	 Ac7V	 	 	 	 	
Effector	 race	4	 race	2	 race	7	 	 AcExeter	 AcCarlisle	 Ac167	
	 	 	 	 	 	 	 	

CCG66	 ND	 ND	 ND	 	 99.5	 99.5	 99.5	

CCG27	 99.5	 ND	 95.0	 	 99.1	 99.1	 99.1	

CCGlike41	 100	 99.7	 99.7	 	 99.3	 99.3	 99.3	

CCGlike8	 99.6	 99.0	 ND	 	 99.2	 99.2	 99.2	

CCGlike5	

CCGlike25	

CCGlike10	

CCG80	

100	

99.9	

100	

ND	

99.6	

97.6	

99.8	

93.7	

95.8	

97.7	

99.9	

100.	

	 98.5	

97.6	

94.9	

92.9	

98.5	

97.6	

94.9	

92.9	

98.5	

97.6	

94.9	

92.9	

ND=	sequence	not	detected	(deleted	or	highly	divergent).	
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4.4	 DISCUSSION	

In	 the	 current	 study,	 ITS	 sequencing	 revealed	 that	A.	candida	 could	 be	 readily	

detected	 in	 floral	 tissue	 as	 the	 cause	of	white	 rust	 in	natural	 populations	of	A.	

thaliana,	and	that	this	particular	niche	can	harbour	strains	which	are	capable	of	

breaking	 the	 broad-spectrum	 resistance	 conferred	 by	 WRR4	 in	 A.	 thaliana	

Columbia	(Col-0).	 	Association	genetics	enabled	 the	 identification	of	candidates	

for	the	matching	avirulence	elicitor	avrWRR4-Col	by	using	a	database	of	genome-

wide	effector	sequences	to	search	for	genes	with	a	conserved	allele	amongst	Col-

avirulent	isolates	of	races	2,	4,	7	and	9	but	altered	by	predicted	loss-of-function	

mutations	amongst	three	Col-virulent	isolates	(table	4.4).		Applying	a	reciprocal	

search	 of	 the	 database,	 effectors	 were	 identified	 that	 have	 a	 conserved	 allele	

amongst	 the	 Col-virulent	 isolates	 and	 mutational	 variation	 amongst	 the	 Col-

avirulent	 group	 (table	 4.5).	 	 These	 are	 potentially	 candidate	 avr	elicitors	 that	

match	a	new	broad	spectrum	resistance	gene	identified	near	WRR4	in	A.	thaliana	

Oy-0	(designated	WRR-OyC1).	

	 Collectively,	 this	 evidence	 provides	 a	 basis	 from	 pathology	 to	 support	

anticipatory	 breeding	 of	 white	 rust	 control	 in	 brassica	 crops	 such	 as	 oilseed	

mustard,	which	is	major	staple	food	and	biofuel	crop	in	India.		Primarily,	if	white	

rust	resistance	mediated	by	WRR4	can	be	broken	in	wild	host	populations,	then	

use	 of	 this	 gene	 in	 crop	 production	 as	 a	 sole	means	 of	 controlling	 the	 disease	

would	rapidly	select	for	existing	virulence	specificity	in	the	pathogen.		Verifying	

which	avr	 protein	 is	 recognised	by	WRR4	would	provide	means	of	monitoring	

pathogen	 populations	 within	 and	 in	 close	 proximity	 to	 cropping	 systems	 for	

WRR4	virulent	pathotypes	through	conventional	PCR	and	genotyping.		Of	the	five	

avrWRR4-Col	 candidates	 identified	 through	 association	 genetics,	 only	 one	

(CCG71)	exhibited	a	hypersensitive	cell	death	response	when	co-expressed	in	a	

transient	 assay	 with	 the	 WRR4-Col	protein	 in	 tobacco	 (Cevik,	 Sainsbury	 Lab,	

pers.	comm.).		The	other	candidates	did	not	exhibit	cell	death	in	the	same	tobacco	

experiment	and	are	therefore	not	expected	to	function	as	avrWRR4-Col	elicitors.		

	Interestingly,	 the	 tobacco	 transient	 assay	 identified	 three	 additional	

effector-like	 proteins	 (CCG28,	 CCG30,	 CCG33)	 that	 elicited	 hypersensitive	 cell	
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death	 in	a	WRR4-Col	dependent	manner.	 	None	of	 these	met	 the	search	criteria	

because	they	all	had	sequence	variation	(not	conserved)	within	the	Col-avirulent	

isolates	across	races	2,	4	and	7.		For	example,	CCG28	and	CCG30	have	conserved	

alleles	between	AcNc2	and	AcEm2	(race	4	isolates),	yet	neither	were	detected	in	

the	genomes	of	Ac2v	or	Ac7v.	 	Similarly,	CCG33	was	conserved	between	AcNc2	

and	 AcEm2,	 but	 showed	 98.4%	 variation	 including	 multiple	 non-synonymous	

mutations	throughout	the	coding	sequence	in	Ac2v	andAc7v.		

These	 effectors	 may	 not	 elicit	 hypersensitive	 cell	 death	 either	 because	

they	are	not	expressed	naturally	by	the	pathogen	in	a	compatible	host	in	a	way	

that	 would	 expose	 them	 to	 detection,	 or	 because	 their	 detection	 is	 actively	

suppressed	 from	 the	 earliest	 stages	 of	 infection.	 	 Dominant	 suppressors	 of	 an	

avirulence	elicitor	have	been	described	from	genetic	studies	of	fungal	pathogens	

including	 the	 seminal	 work	 in	 the	 flax	 rust	 pathosystem	 by	 H.	 H.	 Flor	 in	

Melampsora	 lini	 reviewed	 recently	 by	 Ellis	 et	 al.	 (2007)	 and	 in	 rice	 blast	 by		

Ellingboe	(2001).	In	A.	candida,	the	three	'transient	elicitors'	may	be	masked	by	a	

matching	 HR-suppressor	 when	 expressed	 by	 the	 pathogen	 in	 the	 host-isolate	

combinations	that	have	been	tested	thus	far.		

As	 discussed	 in	 Chapter	 3,	 it	 is	 still	 not	 known	 which	 gene	 on	

chromosome	1	in	Oy-0	provides	major	effect	resistance	to	Col-virulent	isolates	of	

A.	candida	such	 as	 AcExeter	 and	 AcCarlisle.	 	 However,	 it	 is	 logical	 to	 consider	

whether	this	source	of	white	rust	resistance	detects	a	second	avr	elicitor	or	the	

same	elicitor	as	WRR4-Col.		CCG71	remains	as	the	only	potential	candidate	that	is	

consistent	with	both	genetic	and	co-expression	evidence.		Yet	it	appeared	absent	

from	 the	 WRR4	 virulent	 group	 which	 we	 independently	 confirmed	 through	

conventional	 genotyping	 as	 part	 of	 this	 study.	 Consequently,	 if	 CCG71	 is	

responsible	 for	 Col-0	 WRR4	 recognition	 then	 this	 suggests	 that	 the	 Col-0	

avirulent	group	possess	a	highly	conserved	unique	effector.	 	 If	WRR4-OyC1	also	

detects	the	same	effector	as	WRR4-Col,	 then	stacking	the	both	of	these	R-alleles	

in	 the	 same	 construct	 for	 transformation	 would	 be	 an	 ineffective	 strategy.		

Instead,	 the	 durability	 of	 the	 broader	 spectrum	 allele	 (WRR4-OyC1)	 would	 be	

more	effectively	improved	by	combining	it	in	a	background	of	race	non-specific	

resistance	 such	 as	 conferred	 by	 the	 recessive	 aca2	 gene	 from	 B.	 oleracea	

described	in	Chapter	2.	



	 104	

	
	
	
	
	
	
	
	
	
	
	

	
	

Chapter	5	
	

General	discussion	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 105	

The	development	of	 increasingly	powerful	DNA	sequencing	technologies	

such	 as	 Genotyping-by-Sequencing	 and	 exome	 sequencing	 (e.g.,	 RenSeq	 and	

PathSeq)	 are	 beginning	 to	 enable	 the	 targeted	 deployment	 of	 durable	 disease	

resistance,	unachievable	through	conventional	plant	breeding.		The	cultivation	of	

varieties	possessing	durable	resistance	has	the	capacity	to	sustainably	intensify	

production	 in	two	ways.	 	Firstly,	production	capacity	under	disease	pressure	 is	

increased	 whilst	 reducing	 cost	 and	 environmental	 impact	 of	 production	 by	

reducing	 the	 requirement	 for	 excessive	 agrochemical	 application.	 	 Secondly,	

reduced	and	 targeted	agrochemical	application	on	varieties	possessing	durable	

resistance	 will	 both	 reduce	 the	 capacity	 of	 pathogens	 to	 evolve	 specificities	

capable	 of	 overcoming	 crop	 resistance	 and	 withstanding	 chemical	 treatment,	

enhancing	the	longevity	of	both	methods	of	control.	

The	introgression	of	dominant	or	semi-dominant	R	genes	into	commercial	

varieties	 has	 been	 achieved	 through	 conventional	 breeding,	 as	 selecting	 for	

functionality	 according	 to	 phenotype	 through	 each	 generation	 is	 relatively	

straight	forward.	 	Yet	single	R	genes	rapidly	become	redundant	when	deployed	

in	monoculture	 cropping	 systems	 through	selecting	 for	pathogen	variants	with	

mutations	 or	 loss	 of	 the	 corresponding	 effector	 allele.	 	 Examples	 of	 such	

redundancy	 can	 be	 found	 in	 P.	 infestans,	 stem	 rust	 of	 wheat	 caused	 by	 P.	

graminis,	 blackleg	of	oilseed	 rape	 caused	by	L.	maculans	 and	downy	mildew	of	

lettuce	 caused	 by	 B.	 lactucae	 (Ballini	 et	 al.,	 2013,	 Zhang	 et	 al.,	 2009,	

Sivasithamparam	et	al.,	2005,	Crute	and	Norwood,	1981).		

The	increased	efficiency	and	reduced	cost	of	isolating	of	R	genes	and	their	

corresponding	 effectors	 opens	 the	 possibility	 of	 new	 breeding	 strategies	 for	

durable	 resistance.	 	 Such	 as	 the	 isolation	 of	 core	 pathogen	 effectors	 and	 the	

identification	 of	 the	 corresponding	 R	 gene	 from	 crop	 wild	 relatives	 through	

transient	expression	experiments.		

The	 feasibility	 of	 mapping	R	genes	 is	 increasing	 as	 the	 development	 of	

next	 generation	 sequencing	 technologies	progresses.	 	The	ability	 to	 enrich	and	

assess	variation	across	gene	families	identified	from	reference	genomes	through	

technologies	 such	 as	 RenSeq	 has	 rapidly	 enhanced	 the	 ability	 to	 isolate	

functional	R	 genes.	 	 Combined	with	 accurate	 phenotype	 data,	 this	 can	 now	 be	

performed	across	extensive	diversity	collections	 to	 identify	candidates	 through	
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association	 genetics.	 	 The	 application	 through	bulk	 segregate	 analysis	 has	 also	

been	 realised,	 where	 crosses	 between	 resistant	 and	 susceptible	 accessions	

enables	 the	 bulk	 extraction	 and	 analysis	 between	 resistant	 and	 susceptible	

groups.	 	 In	 the	 event	 of	 a	 single	 dominant	R	gene	 conferring	 resistance,	which	

can	 be	 readily	 determined	 by	 assessing	 patterns	 of	 Mendelian	 inheritance,	

representation	of	both	parental	lines	would	be	expected	across	all	loci	other	than	

that	conferring,	or	tightly	linked	to	resistance.		

Although	 a	 pioneering	 development,	 the	 successful	 application	 of	 such	

technology	is	dependent	on	the	identification	and	targeting	of	the	correct	genes.		

With	different	copy	numbers	present	throughout	the	Brassicaceae,	and	variation	

between	 accessions	 within	 each	 species,	 distinguishing	 between	 paralogs	

remains	problematic.		The	development	of	pangenomes	for	bait	design	based	on	

the	whole	genome	sequence	of	multiple	accessions	will	ultimately	alleviate	 the	

problem,	 yet	 the	 ultimate	 and	 most	 compressive	 method	 of	 detection	 will	 be	

association	 genetics	 applied	 to	 whole	 genomes.	 	 Given	 the	 progression	 of	

technology	 this	 will	 become	 a	 reality	 across	 complex	 plant	 genomes	 in	 the	

foreseeable	future.		Currently,	sequence	capture	is	based	on	the	assumption	that	

what	is	baited	for	will	confer	resistance,	yet	as	we	have	demonstrated	with	the	A.	

candida	 -	 B.	 oleracea	 pathosystem	 this	 is	 not	 always	 the	 case.	 	An	 unbiased	

approach	to	R	gene	detection	may	well	reveal	resistance	mechanisms	currently	

unconsidered.	 	 Such	 as	 the	 transfer	 of	 complete	 networks	 conferring	 non-host	

resistance	from	one	organism	to	another.		

Following	 the	 identification	 of	 R	 genes	 their	 function	 can	 now	 be	

confirmed	 through	 gene	 editing	 approaches	 such	 as	 clustered	 regulatory	

interspaced	 short	 palindromic	 repeat	 (CRISPR),	 and	 introgression	 into	 crop	

varieties	 through	 conventional	 breeding	 and	 marker	 assisted	 or	 transgenic	

approaches.		These	approaches	will	increase	the	feasibility	of	breeding	recessive	

resistant	 traits	 in	 crop	 varieties,	 either	 through	 the	 selection	 of	 parental	 lines	

homozygous	for	the	resistant	gene,	or	through	inducing	a	resistant	allele	through	

gene	editing.		In	B.	oleracea	it	would	now	be	possible	to	induce	the	recessive	race	

non-specific	 resistance	 found	 in	 EBH527	 with	 the	 race	 specific	 resistance	

provided	 by	 WRR4-Col.	 	 Inducing	 different	 recognition	 specificities	 in	 the	

resulting	variety	would	increase	the	durability	of	control	as	the	pathogen	would	
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require	multiple	mutations	to	subvert	host	resistance.				

A	 race	 specific	R	 gene	will	 only	 provide	 resistance	 if	 the	 corresponding	

effector	 is	present	 in	 the	pathogen	 isolates	 local	 to	 the	 cropping	 system	and	 is	

important	for	virulence.		Consequently,	targeted	R	gene	deployment	is	necessary	

to	 achieve	 durable	 resistance.	 	 This	 has	 particular	 relevance	 to	 the	WRR-OyC1	

allele.		Should	it	be	a	broader	spectrum	of	WRR4-Col,	then	it	would	likely	provide	

resistance	to	races	2,	7	and	9	in	B.	juncea,	B.	rapa	and	B.	oleracea,	as	described	by	

Borhan	et	al	(2008).		If	recognition	is	caused	by	an	effector	present	in	only	race	

4,	 then	 it	would	have	 little	current	application	 in	crop	production.	 	Yet	 there	 is	

the	 potential	 of	 sexual	 reproduction	 between	 crop	 virulent	 and	 WRR4-Col	

virulent	 isolates	 (which	 are	 crop	 avirulent)	 through	 cohabitation	 of	 the	 same	

host,	made	possible	through	the	suppression	of	resistance	by	the	initial	infection	

of	a	virulent	isolate.		Such	an	occurrence	may	have	already	occurred,	but	has	not	

yet	been	detected	 through	 sampling.	 	 Consequently,	 the	 isolation	of	WRR-OyC1	

resistance	for	deployment	in	crop	varieties	would	be	a	pre-emptive	strategy	for	

mitigating	against	potential	new	virulence	specificities	in	crop	virulent	races.	

As	 demonstrated	 by	 the	 synteny	 between	 of	ACA2	 in	 EBH527	with	 the	

WRR5-Col	 and	WRR6-Col	 locus	 in	 A.	 thaliana,	 and	 the	 Aca1	 locus	 in	 B.	 rapa,	

conserved	syntenic	blocks	across	the	Brassicaceae	appear	to	confer	resistance	to	

different	 races	 of	 A.	candida.	 	 It	 can	 be	 speculated	 the	 allelic	 variation	 within	

these	blocks	has	driven	pathogen	divergence,	and	 the	emergence	of	 races	with	

different	host	ranges.		This	would	in	part	explain	variation	within	races	apparent	

through	different	host	specifies	within	a	given	host	species.		

	It	 is	 intriguing	 that	 in	 the	 centre	 of	 the	 QTL	 conferring	 resistance	 to	

AcAus	 is	a	 single	QTL	homologous	 to	a	CC-NB-LRR	 in	 the	vicinity	of	RPP7,	 and	

within	the	WRR-OyC1	locus	for	resistance	AcExeter	and	AcCarlisle.		R	genes	often	

appear	 in	 clusters,	 with	 different	 alleles	 conferring	 recognition	 of	 different	

avirulence	 specificities.	 	 	 It	 is	 therefore	 possible	 that	 other	 CC-NB-LRR	 genes	

exist	 in	 the	 A12-AcAus	 locus.	 	 The	 increased	 read	 length	 achievable	 through	

sequencing	technologies	such	as	Pacific	Biosciences	(PacBio)	sequencing	would	

allow	 effective	 cDNA	 sequencing	 of	 accession	 A12	 to	 investigate	 this	 further.		

Whether	or	not	this	is	the	case,	it	does	imply	that	a	CC-NBS-LRR	is	implicated	in	

resistance	to	A.	candida	race	4,	and	a	homolog	of	gene	identified	in	the	A12	QTL	
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exists	in	the	WRR-OyC1	locus.	

It	would	be	possible	to	investigate	whether	a	CC-NBS-LRR	is	implicated	in	

resistance	 to	 AcExeter	 and	 AcCarlisle	 through	 investigating	 the	 effects	 of	 non-

functional	NDR1	 and	 EDS1	 on	 the	 phenotype.	 	 Since	 TIR-NBL-LRR	 gene	 signal	

through	EDS1,	and	CC-NBS-LRR	genes	signal	 through	NDR1,	F2	progeny	would	

between	Oy-0	and	Ws-eds1	would	provide	a	resource	to	investigate	this	further,	

with	 differing	 segregation	 ratios	 expected	 between	 the	 phenotypes	 of	 Col-0	

virulent	and	Col-0	avirulent	isolates	expected	if	Oy-0	recognition	is	dependent	on	

CC-NBS-LRR	recognition	(McHale	et	al.,	2006).		If	the	same	ratios	were	observed	

it	 would	 add	 to	 the	 evidence	 that	 a	 different	 allele	 of	WRR4	 with	 a	 different	

specificity	 is	responsible	 for	recognition	of	Col-0	virulent	 isolates,	 justifying	co-

expression	experiments	with	 the	Oy-0	WRR4	allele	and	the	eleven	effectors	we	

have	identified	as	conserved	between	the	Col-0	virulent	isolates	yet	polymorphic	

within	 the	Col-0	avirulent	 isolates.	 	Should	 it	be	 that	different	R	 genes	 that	are	

recognising	different	effectors	are	responsible	for	WRR4-Col	mediated	resistance	

to	AcEm2	and	WRR-OyC1	 resistance	to	AcExeter	and	AcCarlisle,	 the	 isolation	of	

the	WRR-OyC1	gene	would	enable	stacking	of	potentially	two	NB-LRR	type	genes.		

The	 requirement	 of	 the	 pathogen	 to	 mutate	 multiple	 effectors	 would	 again	

reduce	or	delay	the	occurrence	of	isolates	capable	of	breaking	crop	resistance.	

In	this	study	we	have	built	on	knowledge	developed	in	a	model	organism	

and	 applied	 it	 to	 related	 crop	 species.	 	 The	 translation	 of	 oomycete	 resistance	

from	 A.	 thaliana	 into	 brassica	 production	 has	 the	 capacity	 to	 sustainably	

intensify	 the	 production	 of	 oilseed	 and	 vegetable	 brassicas.	 	 A	 small	 but	

significant	system	change	in	the	quest	for	local,	regional	and	global	food	security.		
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Appendix	1	

	

Brassica	oleracea	accessions	from	the	wild	species	and	

diversity	fixed	foundation	set	phenotyped	12	days’	post	

inoculation	with	Albugo	candida	AcBoWells	
	
	
Founder	accession	
no.	

Crop	type	 12	day	
phenotype	

A12DHd	 Kale,	Chinese	white	 6	
ARS18	 Kale	 6	
BI87053	 Broccoli	 7	
C04001	 B.	oleracea	x	B.	alboglabra	wild	species	 7	
C04001	 B.	oleracea	x	B.	alboglabra	wild	species	 7	
C04001	 B.	oleracea	x	B.	alboglabra	wild	species	 6	
C04001	 B.	alboglabra	 7	
C04003	 B.	oleracea	x	B.	atlantica	 6	
C04003	 B.	atlantica	 6.3	
C04006	 B.	bourgaei	x	B.	oleracea	 6	
C04006	 B.	bourgaei	x	B.	oleracea	 5.1	
C04006	 B.	bourgaei	 6.2	
C04008	 B.	cretica	x	B.	oleracea	 6	
C04008	 B.	cretica	x	B.	oleracea	 6	
C04008	 B.	cretica	x	B.	oleracea	 6	
C04008	 B.	cretica	 6.1	
C04009	 B.	cretica	 6	
C04010	 B.	cretica	 6	
C04010	 B.	cretica	 6	
C04011	 B.	cretica	x	B.	oleracea	 6	
C04011	 B.	cretica	x	B.	oleracea	 6	
C04011	 B.	cretica	 6	
C04012	 B.	cretica	x	B.	oleracea	 7	
C04012	 B.	cretica	x	B.	oleracea	 6	
C04012	 B.	cretica	x	B.	oleracea	 6	
C04013	 B.	oleracea	x	B.	cretica	 6.1	
C04013	 B.	oleracea	x	B.	cretica	 6	
C04013	 B.	oleracea	x	B.	cretica	 6	
C04013	 B.	cretica	 7	
C04014	 B.	cretica	x	B.	oleracea	 6	
C04014	 B.	cretica	x	B.	oleracea	 6	
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C04014	 B.	cretica	 6	
C04015	 B.	hilarionis	 6.1	
C04016	 B.	hilarionis	x	B.	oleracea	 6	
C04016	 B.	hilarionis	x	B.	oleracea	 6	
C04016	 B.	hilarionis	 6	
C04017	 B.	hilarionis	 6	
C04018	 B.	incana	 7	
C04019	 B.	incana	 6	
C04020	 B.	incana	 6	
C04023	 B.	oleracea	x	B.	incana	 6	
C04023	 B.	incana	 6	
C04024	 B.	insularis	 5.1	
C04028	 B.	macrocarpa	 5	
C04028	 B.	macrocarpa	 5	
C04029	 B.	macrocarpa	 6.1	
C04030	 B.	macrocarpa	 6	
C04032	 B.	macrocarpa	 6	
C04033	 B.	macrocarpa	 7.3	
C04035	 B.	macrocarpa	 7	
C04036	 B.	macrocarpa	 7	
C04037	 B.	macrocarpa	 7	
C04038	 B.	macrocarpa	 7	
C04039	 B.	macrocarpa	 7	
C04040	 B.	macrocarpa	 7	
C04041	 B.	macrocarpa	 7	
C04042	 B.	macrocarpa	 7	
C04043	 B.	macrocarpa	 7	
C04044	 B.	maurorum	 2	
C04045	 B.	oleracea	x	B.	montana	 6.1	
C04045	 B.	montana	x	B.	oleracea	 6	
C04045	 B.	montana	 2	
C04047	 B.	oleracea	 7	
C04048	 B.	oleracea	 7	
C04050	 B.	oleracea	 6	
C04051B	 B.	oleracea	wild	species	x	B.	oleracea	 6	
C04051B	 B.	oleracea	wild	species	x	B.	oleracea	 6	
C04051B	 B.	oleracea	 7	
C04052	 B.	oleracea	wild	species	x	B.	oleracea	 6.3	
C04052	 B.	oleracea	wild	species	x	B.	oleracea	 7.1	
C04052	 B.	oleracea	wild	species	x	B.	oleracea	 6.2	
C04052	 B.	oleracea	 7	
C04053	 B.	oleracea	 7	
C04054	 B.	oleracea	x	B.	oleracea	wild	cabbage	 6	
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C04054	 B.	oleracea	x	B.	oleracea	wild	cabbage	 6	
C04054	 B.	oleracea	 7	
C04055	 B.	oleracea	wild	species	x	B.	oleracea	 6	
C04055	 B.	oleracea	wild	species	x	B.	oleracea	 6	
C04056	 B.	oleracea	 7	
C04057	 B.	oleracea	 7	
C04060	 B.	oleracea	x	B.	oleracea	wild	species	 7	
C04060	 B.	oleracea	x	B.	oleracea	wild	species	 6	
C04060	 B.	oleracea	 7	
C04061	 B.	oleracea	 6	
C04062	 B.	oleracea	wild	cabbage	x	B.	oleracea	 7	
C04062	 B.	oleracea	wild	cabbage	x	B.	oleracea	 6	
C04062	 B.	oleracea	wild	cabbage	x	B.	oleracea	 7	
C04062	 B.	oleracea	 2	
C04063	 B.	oleracea	x	B.	oleracea	wild	cabbage	 7.1	
C04063	 B.	oleracea	 6	
C04066	 B.	oleracea	 6	
C04067	 B.	oleracea	 6	
C04067	 B.	oleracea	 2	
C04068	 B.	oleracea	 7	
C04069	 B.	oleracea	 7	
C04070	 B.	montana	x	B.	oleracea	 6.1	
C04070	 B.	montana	x	B.	oleracea	 6	
C04070	 B.	montana	x	B.	oleracea	 6	
C04073	 B.	rupestris	 7.1	
C04077	 B.	incana	x	B.	oleracea	 6	
C04077	 B.	incana	x	B.	oleracea	 6	
C04077	 B.	incana	x	B.	oleracea	 6	
C04077	 B.	incana	 6	
C04079	 B.	incana	x	B.	oleracea	 6	
C04079	 B.	incana	x	B.	oleracea	 6	
C04079	 B.	incana	(listed	as	villosa	in	seed	

book)	
6	

C04080	 B.	oleracea	x	B.	incana	 6	
C04080	 B.	incana	 6.1	
C04081	 B.	incana	 6	
C04082	 B.	incana	 7	
C04083	 B.	villosa	 7.1	
C04084	 B.	villosa	bivoniana	 7.1	
C04085	 B.	villosa	bivoniana	 7	
C04086	 B.	villosa	bivoniana	 7	
C04087	 B.	villosa	bivoniana	 6.1	
C04088	 B.	villosa	bivoniana	 6	
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C04092	 B.	villosa	drepanensis	 6.2	
C04093	 B.	villosa	tinei	 2	
C04093	 B.	villosa	tinei	 7	
C04097	 B.	oleracea	capitata	 7	
C04098	 B.	oleracea	capitata	 6	
C04098	 B.	oleracea	capitata	 6	
CA25	 Cauliflower,	autumn	 6	
Cal18b	 Broccoli	 7	
Cor12b	 Broccoli	 7	
Early	Big	Broccoli	 Broccoli	 7	
GDDH33	 Broccoli	 6	
HRIGRU000302	 Brussels	sprout	 7	
HRIGRU000434	 Brussels	sprout	 7	
HRIGRU002175	 Brussels	sprout	 7	
HRIGRU002291	 Cabbage	 6.1	
HRIGRU002400	 Broccoli	 7	
HRIGRU002401	 Broccoli	 2	
HRIGRU002405	 Broccoli	 6	
HRIGRU002484	 Kohl	rabi	 7	
HRIGRU002787	 Brussels	sprout	 7	
HRIGRU002891	 Cauliflower,	winter	 5	
HRIGRU003543	 Broccoli,	sprouting	 7	
HRIGRU003546	 Broccoli	 6	
HRIGRU003591	 Kale,	borecole	 7	
HRIGRU003592	 Kale,	borecole	 7.1	
HRIGRU003595	 Kale,	borecole	 6.2	
HRIGRU004239	 Cauliflower,	autumn	 5	
HRIGRU004293	 Kale	 7	
HRIGRU004492	 Cauliflower,	winter	 7	
HRIGRU004607	 Brussels	sprout	 7.1	
HRIGRU004701	 Calabrese	 2	
HRIGRU004705	 Broccoli	 7	
HRIGRU004707	 Broccoli	 7	
HRIGRU004709	 Calabrese	 7	
HRIGRU004710	 Calabrese	 7	
HRIGRU004771	 Cabbage,	summer	 7	
HRIGRU004785	 Brussels	sprout	 7	
HRIGRU004818	 Cauliflower,	autumn	 6.1	
HRIGRU004845	 Caulilfower,	green	 6	
HRIGRU004846	 Caulilfower,	green	autumn	 6	
HRIGRU004854	 Cauliflower,	green	 7	
HRIGRU004858	 Cauliflower,	romanesco	 7.1	
HRIGRU004860	 Caulilfower,	green	 7	
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HRIGRU004864	 Cauliflower,	romanesco	 7	
HRIGRU004865	 Caulilfower,	green	 5.1	
HRIGRU004872	 Broccoli	 7	
HRIGRU004885	 Broccoli	 6.3	
HRIGRU004991	 Cauliflower,	summer	 6.3	
HRIGRU005085	 Kale	 6	
HRIGRU005085	 Kale	 7	
HRIGRU005086	 Brussels	sprout	 7	
HRIGRU005108	 Kale,	Chinese	white	 2	
HRIGRU005259	 Caulilfower,	green	 6.1	
HRIGRU005281	 Calabrese	 7	
HRIGRU005282	 Calabrese	 7	
HRIGRU005295	 Broccoli	 2	
HRIGRU005297	 Broccoli	 7	
HRIGRU005312	 Caulilfower,	green	 7	
HRIGRU005364	 Caulilfower,	green	 7	
HRIGRU005389	 Kohl	rabi	 7	
HRIGRU005419	 Broccoli	 3	
HRIGRU005429	 Calabrese	 7	
HRIGRU005430	 Cauliflower,	autumn	 5.1	
HRIGRU005577	 Cabbage,	hybrid	autumn	 7	
HRIGRU005611	 Kohl	rabi	 7	
HRIGRU005652	 Cabbage	 7	
HRIGRU006212	 Brussels	sprout	 7	
HRIGRU006226	 Kale	 6	
HRIGRU006318	 Broccoli,	black	 2	
HRIGRU006556	 Cabbage,	heading	 7	
HRIGRU006628	 Cauliflower	 6.1	
HRIGRU006630	 Calabrese	 7	
HRIGRU006797	 Cauliflower,	autumn	 2	
HRIGRU007458	 Cauliflower	 6	
HRIGRU007474	 Cauliflower,	autumn	 2	
HRIGRU007514	 Broccoli	 2	
HRIGRU007517	 Broccoli	 6	
HRIGRU007518	 Broccoli	 6	
HRIGRU007520	 Cauliflower,	romanesco	 6	
HRIGRU007543	 Kale,	Chinese	 6	
HRIGRU007543	 Kale,	Chinese	 7	
HRIGRU007544	 Kale,	Chinese	white	 7	
HRIGRU007799	 Tronchuda	cabbage	 7	
HRIGRU007826	 Cabbage,	pickling	 7	
HRIGRU008202	 Kale	 2	
HRIGRU008266	 Cauliflower	 2	
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HRIGRU008267	 Kohl	rabi	 6	
HRIGRU008362	 Cabbage,	savoy	 7	
HRIGRU008558	 Cauliflower,	autumn	 5	
HRIGRU008567	 Cauliflower,	romanesco	 7	
HRIGRU008571	 Cauliflower,	romanesco	 7	
HRIGRU008658	 Calabrese	 5	
HRIGRU008723	 Kohl	rabi	 6	
HRIGRU008732	 Cabbage,	savoy	 7	
HRIGRU009467	 Tronchuda	kale	 4	
HRIGRU009489	 Tronchuda	kale	 7	
HRIGRU009553	 Tronchuda	kale	 2	
HRIGRU009579	 Tronchuda	cabbage	 7.1	
HRIGRU009598	 Tronchuda	cabbage	 7.1	
HRIGRU009617	 Cabbage	 7	
HRIGRU009845	 Kale,	Chinese	white	hybrid	 2	
HRIGRU009846	 Kale	 7	
HRIGRU009979	 Cabbage	 7	
HRIGRU010772	 Calabrese	 7	
HRIGRU011446	 Tronchuda	cabbage	 7.3	
HRIGRU011555	 Cabbage,	loose	head	 2	
HRIGRU011729	 Cauliflower,	autumn	 7	
HRIGRU011800	 Broccoli	 7.1	
HRIGRU011802	 Broccoli	 7.3	
HRIGRU011803	 Broccoli?	 6	
HRIGRU013023	 Kale	 2	
MarDH34	 Broccoli	 7	
Senna	 Kale,	Chinese	white	 7	
Sho5a	 Broccoli	 7	
Sir5a	 Cauliflower	 7	
TO1000DH3	 Rapid	cyling	alboglabra	 6	
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Appendix	2	

	

Internal	primers	used	for	whole	gene	sequencing	of	

candidate	genes	within	a	locus	conferring	resistance	to	

Albugo	candida	AcBoWells	
	
	
	
	
	
	
	
	
MARKER	 PRIMER	SEQUENCE	5’	TO	3	

BO-02	 GAATCTTCGTGGAGTAGTTAGAAAATCTAT	
TTAGTATTTTCTTGTACTCGGAGATTAGTA	
ATTGAAAACCGGTATCGTTGAGAATTCCAA	

BO-03	 TGCATAAAACTAAAACTCCCCAACC	
	

BO-04	 TAAAATTCTGTCCTCCTTTCAGTTTACATT	
AGATTGTGTACCCAAAAGAAAGCAG	
GGACCCAAAGATTGAACAAGTGAAT	
TTGAAGTTAATGGTGGTAGAGCAGA	
TCACCATTCTCATTTGGAAGGTTTG	

BO-05	 TACTTGACTCTGGAAACTTCGTGAT	
CTTTGACCATCCAACCAATGTGTTA	
TAACCTTAGAGCTGTCCAGAGAGTA	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 131	

Appendix	3	

	

Three	replications	of	A12DH	x	EBH527	F5	recombinant	

inbred	mapping	population	scored	10	days’	post	

inoculation	with	Albugo	candida	AcBoWells.	

Quantitative	phenotype	score	taken	in	accordance	with	

figure	2.8	

 
 

Accession	 Rep	1	 Rep	2	 Rep	3	
Mean	
Phenotype	

RIL_1	 1	 1	 1	 1	
RIL_2	 1	 6	 7	 4.7	
RIL_3	 6	 6	 6	 6	
RIL_4	 NA	 6	 6	 6	
RIL_5	 5.3	 4	 5.3	 4.9	
RIL_6	 1	 7	 7	 5	
RIL_7	 6	 6	 6	 6	
RIL_8	 7	 7	 7	 7	
RIL_9	 6	 6	 6	 6	
RIL_10	 1	 2	 1	 1.3	
RIL_11	 7	 6	 6	 6.3	
RIL_12	 NA	 2	 2	 2	
RIL_13	 6	 7	 7	 6.7	
RIL_14	 1	 NA	 NA	 1	
RIL_15	 1	 4	 2	 2.3	
RIL_16	 3	 6	 7	 5.3	
RIL_17	 7	 5	 7	 6.3	
RIL_18	 7	 7	 7	 7	
RIL_19	 6	 NA	 NA	 6	
RIL_20	 2	 2	 2	 2	
RIL_21	 7	 6	 7	 6.7	
RIL_22	 7	 4	 5.3	 5.4	
RIL_23	 NA	 3	 1	 2	
RIL_24	 6	 6	 7	 6.3	
RIL_25	 2	 4	 2	 2.7	
RIL_26	 7	 7	 7	 7	
RIL_27	 7	 7	 7	 7	
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RIL_28	 6	 NA	 1	 3.5	
RIL_29	 1	 NA	 NA	 1	
RIL_30	 7	 6	 7	 6.7	
RIL_31	 6	 NA	 NA	 6	
RIL_32	 6	 6	 7	 6.3	
RIL_33	 3	 3	 3	 3	
RIL_34	 1	 2	 2	 1.7	
RIL_35	 6	 6	 6	 6	
RIL_36	 7	 7	 7	 7	
RIL_37	 NA	 7	 7	 7	
RIL_38	 7	 NA	 NA	 7	
RIL_39	 1	 3	 3	 2.3	
RIL_40	 6	 6	 3.3	 5.1	
RIL_41	 7	 NA	 NA	 7	
RIL_42	 7	 3	 5	 5	
RIL_43	 7	 6	 6	 6.3	
RIL_44	 6	 6	 7	 6.3	
RIL_45	 1	 NA	 1	 1	
RIL_46	 6	 6	 7	 6.3	
RIL_47	 1	 1	 1	 1	
RIL_48	 1	 4	 1	 2	
RIL_49	 2	 3	 1	 2	
RIL_50	 5	 3	 1	 3	
RIL_51	 NA	 6	 7	 6.5	
RIL_52	 7	 7	 7	 7	
RIL_53	 7	 7	 7	 7	
RIL_54	 6	 6	 6	 6	
RIL_55	 NA	 6	 7	 6.5	
RIL_56	 6	 NA	 NA	 6	
RIL_57	 7	 4	 5	 5.3	
RIL_58	 NA	 1	 1	 1	
RIL_59	 1	 1	 1	 1	
RIL_60	 6	 7	 7	 6.7	
RIL_61	 NA	 6	 6	 6	
RIL_62	 7	 6	 7	 6.7	
RIL_63	 6	 6	 7	 6.3	
RIL_64	 2	 3	 5	 3.3	
RIL_65	 7	 7	 7	 7	
RIL_66	 7	 6	 7	 6.7	
RIL_67	 2	 4	 5	 3.6	
RIL_68	 7	 6	 6	 6.3	
RIL_69	 3	 6	 NA	 4.5	
RIL_70	 2	 2	 1	 1.7	



	 133	

Appendix	4	

	

Gene	models	retrieved	from	the	Brassica	oleracea	

TO1000	reference	genome	(Parkin	et	al,.	2014)	in	a	QTL	

conferring	resistance	to	Albugo	candida	AcAus	in	

accession	A12DH.	

 
 
 
 
GENE	ID	 DESCRIPTION	
BO4G037350	 Rop	guanine	nucleotide	exchange	factor%2C	putative	
BO4G037330	 Receptor-like	protein	kinase	
BO4G037340	 Eukaryotic	aspartyl	protease	family	protein	
BO4G038410	 TTF-type	zinc	finger	protein	with	HAT	dimerization	domain-

containing	protein	
BO4G038400	 hypothetical	protein	
BO4G038390	 serpin	
BO4G038380	 conserved	hypothetical	protein	
BO4G038350	 Copper	amine	oxidase	family	protein	
BO4G038370	 BREVIS	RADIX-like	protein	
BO4G038360	 Nucleotide-diphospho-sugar	transferase	family	protein	
BO4G038450	 hypothetical	protein	
BO4G038440	 Plant	protein	of	unknown	function	(DUF641)	
BO4G038430	 O-sialoglycoprotein	endopeptidase%2C	putative	
BO4G038420	 tRNA	2'-phosphotransferase	
BO4G038470	 Transketolase	
BO4G038460	 3-phosphoshikimate	1-carboxyvinyltransferase	
BO4G038500	 Secretory	carrier	membrane	protein	family	protein	
BO4G038510	 Aminotransferase-like%2C	plant	mobile	domain	family	

protein	
BO4G038530	 Ulp1	protease	family	protein	
BO4G038520	 Chaperone	protein	dnaJ	
BO4G038550	 Cystatin/monellin	superfamily	protein	
BO4G038540	 Myosin	heavy	chain-related	protein	
BO4G038560	 G-box-binding	factor	
BO4G038490	 O-sialoglycoprotein	endopeptidase%2C	putative	
BO4G038480	 tRNA	2'-phosphotransferase	
BO4G038600	 conserved	hypothetical	protein	
BO4G038660	 Chitinase	family	protein	
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BO4G038670	 Disease	resistance	protein	
BO4G038640	 RING	finger-like	protein	
BO4G038650	 Ribose-phosphate	pyrophosphokinase	
BO4G038620	 Late	embryogenesis	abundant	(LEA)	hydroxyproline-rich	

glycoprotein	family	
BO4G038610	 conserved	hypothetical	protein	
BO4G038630	 conserved	hypothetical	protein	
BO4G038570	 WWE	protein-protein	interaction	domain	family	protein	
BO4G038590	 Plastid-lipid	associated	protein	
BO4G038580	 Cysteine/histidine-rich	C1	domain-containing	protein	
BO4G038700	 Ubiquitin	family	protein	
BO4G038720	 EID1-like	F-box	protein	
BO4G038730	 Baculoviral	IAP	repeat-containing	protein	
BO4G038710	 Protein	phosphatase	2c%2C	putative	
BO4G038740	 Seed	maturation	protein	
BO4G038750	 conserved	hypothetical	protein	
BO4G038760	 AT	hook	motif	DNA-binding	family	protein	
BO4G038680	 Peroxidase	superfamily	protein	
BO4G038690	 Glycine	cleavage	system	H	protein	
BO4G038800	 DAG	protein	
BO4G038840	 Ribonuclease	H-like	superfamily	protein	.	
BO4G038830	 conserved	hypothetical	protein	
BO4G038820	 VQ	motif-containing	protein	
BO4G038810	 TTF-type	zinc	finger	protein	with	HAT	dimerization	domain-

containing	protein	
BO4G038780	 Glutathione	S-transferase	T3	
BO4G038790	 Ribosomal	protein-like	protein	
BO4G038770	 conserved	hypothetical	protein	
BO4G038850	 Separin	
BO4G038880	 RING	finger-like	protein	
BO4G038860	 Separase	
BO4G038870	 Zinc	finger	(CCCH-type)	family	protein	
BO4G038900	 conserved	hypothetical	protein	
BO4G038920	 O-fucosyltransferase-like	protein	
BO4G038910	 WD40	repeat-containing	protein	SMU1	
BO4G038950	 Receptor-kinase%2C	putative	
BO4G038940	 Putative	plant	snare	
BO4G038930	 hypothetical	protein	
BO4G038890	 conserved	hypothetical	protein	
BO4G039000	 Pentatricopeptide	repeat-containing	protein	
BO4G039010	 Glycine	cleavage	system	H	protein	
BO4G039020	 Nck-associated	protein	
BO4G038970	 Trypsin	family	protein	
BO4G038960	 Histone-lysine	N-methyltransferase%2C	putative	



	 135	

BO4G038980	 Phosphate-responsive	1	family	protein	
BO4G038990	 DCD	(Development	and	Cell	Death)	domain	protein	
BO4G039050	 Potassium	transporter	
BO4G039060	 Bifunctional	purine	biosynthesis	protein	PurH	
BO4G039030	 Exostosin	family	protein	
BO4G039040	 En/Spm-like	transposon	protein	
BO4G039070	 Pentatricopeptide	repeat-containing	protein	
BO4G039080	 UDP-N-acetylglucosamine	pyrophosphorylase	
BO4G039150	 Leucine-rich	repeat	receptor-like	protein	kinase	family	

protein	
BO4G039160	 CLAVATA3/ESR	(CLE)-related	protein	
BO4G039170	 RING/U-box	superfamily	protein	
BO4G039180	 root	hair	specific	4	.	
BO4G039090	 Ring	finger	protein%2C	putative	
BO4G039100	 SLL3	ORF2	protein%2C	putative	
BO4G039140	 Translation	initiation	factor	eIF-2B	subunit	epsilon%2C	

putative	
BO4G039130	 Phosphatidylinositol	N-acetylglucosaminyltransferase	subunit	

C	
BO4G039120	 Ring	finger	protein%2C	putative	
BO4G039110	 hypothetical	protein	
BO4G039190	 Bromodomain-containing	factor	
BO4G039200	 CTP	synthase	family	protein	
BO4G039220	 Chaperone	protein	dnaJ-related-like	protein	
BO4G039210	 hydroxyproline-rich	glycoprotein	family	protein	
BO4G039240	 conserved	hypothetical	protein	
BO4G039230	 UDP-glucose	4-epimerase%2C	putative	
BO4G039260	 WRKY	DNA-binding	protein	
BO4G039250	 Zinc	ion	binding	protein	
BO4G039290	 FAD-binding	Berberine	family	protein	
BO4G039270	 basic	helix-loop-helix	(bHLH)	DNA-binding	superfamily	

protein	
BO4G039280	 FAD-binding	Berberine	family	protein	
BO4G039300	 Maternal	effect	embryo	arrest	
BO4G039390	 Pistil	extensin-like	protein	
BO4G039380	 Class	III	homeodomain-leucine	zipper	
BO4G039370	 Nuclear	transcription	factor	Y	subunit	A-7	
BO4G039360	 RNA	polymerase	I	specific	transcription	initiation	factor	RRN3	

family	protein	
BO4G039350	 Tubulin%2C	beta	chain	
BO4G039340	 Ribosomal	protein-like	protein	
BO4G039330	 fatty	acid	hydroxylase	
BO4G039320	 hypothetical	protein	
BO4G039310	 fatty	acid	hydroxylase	
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BO4G039400	 Cytochrome	P450%2C	putative	
BO4G039420	 Multidrug	resistance	protein	ABC	transporter	family	
BO4G039410	 Glycolipid	transfer	protein	(GLTP)	family	protein	
BO4G039480	 N(6)-adenine-specific	DNA	methyltransferase	2%2C	putative	
BO4G039470	 Mitochondrial	transcription	termination	factor	family	protein	
BO4G039440	 Protein	kinase	superfamily	protein	
BO4G039430	 hypothetical	protein	
BO4G039460	 Geranylgeranyl	diphosphate	synthase	
BO4G039450	 Plastid	transcriptionally	active	
BO4G039490	 conserved	hypothetical	protein	
BO4G039510	 Pyruvate	dehydrogenase	E1	component	subunit	beta	
BO4G039520	 hypothetical	protein	
BO4G039530	 Homeodomain	leucine	zipper	family	IV	protein	
BO4G039500	 jasmonate-zim-domain	protein	
BO4G039590	 Alkylated	DNA	repair	protein	alkB	8	putative	
BO4G039550	 Similarity	to	non-LTR	retroelement	reverse	transcriptase	
BO4G039560	 ATP-dependent	Clp	protease	proteolytic	subunit	
BO4G039570	 ARM	repeat	superfamily	protein	
BO4G039580	 hypothetical	protein	
BO4G039540	 auxin	response	factor	
BO4G039600	 Galactose	oxidase/kelch	repeat	superfamily	protein	
BO4G039670	 En/Spm-like	transposon	protein	
BO4G039650	 Galactose	oxidase/kelch	repeat	superfamily	protein	
BO4G039660	 Galactose	oxidase/kelch	repeat	superfamily	protein	
BO4G039630	 Retrotransposon	protein%2C	putative%2C	Ty1-copia	

subclass	
BO4G039640	 conserved	hypothetical	protein	
BO4G039610	 hypothetical	protein	
BO4G039620	 Galactose	oxidase/kelch	repeat	superfamily	protein	
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Appendix	5	

	

Arabidopsis	thaliana	accession	phenotyped	10	days	post	

inoculation	Albugo	candida	Col-0	avirulent	isolate	

AcEm2,	and	two	Col-0	virulent	isolates	AcCarlisle	and	

AcExeter.	Quantitative	phenotype	score	taken	in	

accordance	with	figure	3.2	

 
 
 
 
 
Accession	 AcEm1	 AcCarlisle	 AcExeter	
Aco-1	 8	 NA	 8	
Alst-1	 0	 0	 0	
Amb-1	 NA	 8	 8	
Amb-1	 NA	 8	 8	
An-1	 0	 0	 8	
AN-1	 3	 8	 0	
An-2	 0	 0	 0	
Ang-0	 5	 0	 8	
Ba-1	 0	 8	 8	
Bak-0	 0	 8	 NA	
Bak-2	 8	 8	 8	
Bak-7	 8	 0	 8	
Ban-2	 NA	 NA	 8	
BAY-0	 0	 8	 8	
Bay-0	 3	 8	 8	
Bc-1	 0	 0	 8	
Bea-1	 0	 0	 0	
Bek-1	 0	 NA	 0	
Bet-1	 8	 8	 8	
Bg-2	 3	 0	 8	
Bid-1	 0	 0	 0	
Big-1	 0	 0	 NA	
BIL-5	 0	 8	 8	
Bil-5	 0	 8	 NA	
BIL-7	 8	 8	 8	
Bla-1	 0	 0	 0	
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Bla-1	 0	 3	 0	
Blh-2	 0	 0	 0	
Bog-2	 0	 NA	 8	
BOR-1	 0	 8	 8	
BOR-4	 0	 8	 8	
BR-0	 3	 8	 8	
Br-0	 NA	 NA	 8	
Brm-1	 0	 NA	 NA	
Bs-1	 3	 8	 8	
Bsch-0	 0	 0	 8	
Bu-0	 0	 0	 0	
Bur-0	 0	 8	 0	
BUR-0	 0	 8	 8	
Bur-0	 0	 8	 8	
C24	 0	 0	 0	
C24	(CO-1)	 0	 0	 0	
Ca-0	 3	 0	 8	
Cal-2	 0	 8	 8	
Cam-1	 NA	 NA	 8	
Cdm-0	 3	 8	 8	
Che-1	 0	 0	 0	
Chi-1	 3	 NA	 NA	
Chr-1	 0	 8	 NA	
CIBC-17	 8	 8	 8	
CIBC-5	 3	 0	 8	
CIBC17	 0	 8	 8	
CIBC5	 8	 8	 8	
Cnt-3	 0	 8	 8	
Co-2	 0	 0	 8	
Coc-1	 0	 0	 NA	
COL-0	 0	 8	 8	
Col-0	 0	 8	 8	
Cra-1	 3	 NA	 NA	
CS22491	 3	 8	 8	
CT-0	 0	 8	 8	
Ct-1	 0	 0	 8	
Cul-1	 0	 8	 NA	
CVI-0	 0	 NA	 NA	
Cvi-0	 8	 8	 8	
Del-10	 8	 8	 8	
Dog-4	 8	 8	 8	
Duc-1	 0	 8	 NA	
Dun-1	 0	 0	 0	
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EDEN-1	 8	 8	 8	
EDEN-2	 8	 8	 8	
EDI-0	 3	 8	 8	
Edi-0	 3	 NA	 8	
Edi-1	 0	 8	 8	
Edi-2	 5	 8	 8	
EI-2	 0	 8	 8	
Est-1	 0	 0	 8	
EST-1	 0	 8	 8	
Est-1	 0	 8	 8	
Ey-1.5.11	 8	 8	 8	
Ey-15.2	 8	 0	 8	
Ey-2	 8	 8	 8	
Ey-20	 8	 8	 8	
Ey-4	 8	 8	 0	
Fab-1	 NA	 NA	 8	
FAB-2	 8	 8	 8	
FAB-4	 3	 8	 8	
Far-1	 3	 NA	 8	
Fav-1	 0	 0	 0	
FEI-0	 0	 0	 0	
Fei-0	 0	 0	 0	
Fei-0	 3	 0	 0	
Fof-1	 NA	 0	 NA	
For-1	 0	 NA	 0	
Frd-1	 0	 0	 0	
Ga-0	 0	 0	 8	
GA-0	 0	 8	 0	
God-1	 8	 0	 8	
Goettingen-7	 8	 8	 8	
GOT-22	 8	 8	 8	
GOT-7	 8	 8	 0	
GU-0	 3	 8	 8	
Gü-0	 0	 8	 8	
Gy-0	 0	 0	 8	
GY-0	 3	 8	 0	
H55	 0	 8	 8	
Haes-1	 3	 8	 8	
Haes-6	 0	 8	 8	
Haw-1	 0	 0	 NA	
Hey-1	 8	 8	 8	
Hh-0	 0	 3	 0	
Hil-1	 0	 8	 8	
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HKT2-4	 0	 8	 8	
HR-10	 0	 0	 0	
HR-10	 0	 3	 8	
HR-5	 0	 8	 0	
HR5	 0	 NA	 NA	
Hs-0	 8	 0	 9	
ICE-1	(Bolin-1)	 8	 8	 8	
ICE-102	(Glado-1)	 0	 8	 8	
ICE-104	(Lago-1)	 NA	 8	 8	
ICE-106	(Mammo-
1)	 0	 NA	 8	
ICE-107	(Mammo-
2)	 3	 0	 8	
ICE-112	(Moran-1)	 0	 0	 8	
ICE-119	(Timpo-1)	 3	 0	 8	
ICE-120	(Valsi-1)	 NA	 8	 8	
ICE-127	(Kly-1)	 NA	 0	 8	
ICE-130	(Kly-4)	 3	 0	 8	
ICE-134	(Koz-2)	 3	 0	 8	
ICE-138	(Leb-3)	 3	 8	 8	
ICE-150	(Sij-1)	 3	 0	 8	
ICE-152	(Sij-2)	 0	 8	 8	
ICE-153	(Sij-4)	 0	 8	 8	
ICE-163	(Altenb-2)	 0	 0	 0	
ICE-169	(Bozen-1-
1)	 NA	 0	 8	
ICE-173	(Bozen	1-
2)	 3	 0	 8	
ICE-181	
(Mitterberg-1)	 3	 8	 8	
ICE-212	(Castelfed	
4.1)	 8	 8	 8	
ICE-213	(Castelfed	
4.2)	 8	 8	 8	
ICE-216	(Rovero-1)	 8	 8	 8	
ICE-226	(Vezzano	
2.1)	 8	 8	 8	
ICE-228	(Vezzano	
2.2)	 8	 8	 8	
ICE-29	(Slavi-1)	 8	 8	 8	
ICE-33	(Jablo-1)	 8	 8	 8	
ICE-36	(Dobra-1)	 3	 8	 8	
ICE-50	(Toufl-1)	 0	 8	 8	
ICE-60	(Stepn-2)	 3	 8	 8	
ICE-61	(Stepn-1)	 0	 8	 8	
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ICE-63	(Copac-1)	 3	 NA	 8	
ICE-7	(Lecho-1)	 0	 0	 8	
ICE-70	(Borsk-1)	 NA	 8	 8	
ICE-71	(Shigu-1)	 3	 0	 8	
ICE-72	(Shigu-2)	 0	 8	 8	
ICE-73	(Kidr-1)	 NA	 8	 8	
ICE-75	(Krazo-2)	 3	 8	 8	
ICE-79	(Voeran-1)	 8	 8	 8	
ICE-92	(Angit-1)	 0	 0	 0	
ICE-93	(Apost-1)	 8	 8	 8	
ICE-97	(Ciste-1)	 0	 8	 8	
ICE-98	(Ciste-2)	 0	 0	 0	
Igt-1	 0	 8	 8	
In-0	 8	 0	 8	
Inv-1	 3	 8	 8	
KAS-1	 0	 NA	 0	
Kas-1	 NA	 8	 8	
Kastel-1	 0	 0	 0	
Kil-1	 NA	 8	 8	
Kn-0	 8	 8	 8	
KNO-10	 0	 0	 0	
KNO-18	 0	 0	 0	
KNO-18	 0	 0	 0	
Koch-1	 3	 8	 8	
KONDARA	 0	 8	 8	
Kondara	 0	 8	 8	
Ksk-1	 0	 8	 8	
Ksk-2	 NA	 8	 8	
Kyl-1	 0	 NA	 NA	
KZ-1	 9	 8	 8	
KZ-9	 3	 0	 8	
KZ1	 3	 8	 8	
Lan-1	 0	 NA	 8	
Laz-1	 0	 0	 8	
Lee-1	 0	 0	 8	
Leg-1	 8	 NA	 8	
LER-1	 0	 8	 8	
Ler-1	 0	 8	 8	
Lerik1-3	 0	 8	 8	
Lha-1	 3	 8	 8	
LL-0	 0	 0	 8	
LL-0	 0	 8	 8	
LOV-1	 0	 0	 0	
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Lov-1	 0	 0	 8	
Löv-1	 NA	 8	 NA	
LOV-5	 0	 0	 0	
Lov-5	 0	 NA	 8	
LP2-2	 0	 8	 8	
Lp2-2	 0	 8	 8	
LP2-6	 0	 8	 8	
Lwe-0	 0	 0	 0	
LZ-0	 0	 0	 0	
Mer-6	 8	 8	 8	
Mit-1	 0	 8	 0	
MR-0	 8	 8	 0	
Mrk-0	 8	 0	 8	
MRK-0	 8	 8	 8	
MS-0	 8	 8	 8	
MT-0	 0	 0	 0	
Mt-0	 0	 NA	 NA	
MZ-0	 8	 8	 8	
Nas-0	 0	 8	 8	
ND-1	 3	 8	 8	
Nd-1	 3	 8	 8	
Nemrut-1	 0	 8	 8	
NFA-10	 0	 8	 8	
NFA-10	 NA	 8	 8	
NFA-8	 0	 8	 0	
Nie1-2	 0	 8	 8	
NOK-3	 8	 8	 8	
Nor-1	 NA	 0	 0	
Not-1	 0	 NA	 8	
Nun-1	 0	 NA	 0	
OMO-2-1	 8	 NA	 8	
OMO-2-3	 8	 8	 8	
Omo2-1	 8	 8	 NA	
Omo2-3	 8	 0	 8	
Or-0	 8	 0	 8	
Oy-0	 0	 0	 0	
OY-0	 0	 NA	 NA	
Pa-1	 0	 0	 8	
Pdw-1	 3	 8	 8	
Ped-0	 0	 8	 8	
Pee-1	 0	 8	 8	
PHW-26	 0	 0	 8	
PHW-28	 0	 0	 8	
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PHW-33	 8	 8	 8	
PHW-35	 0	 0	 0	
PHW-36	 0	 0	 8	
PHW-37	 0	 8	 8	
Pla-0	 NA	 0	 0	
Ply-1	 NA	 0	 NA	
Pn-0	 0	 8	 8	
PNA-10	 0	 0	 0	
Pna-10	 0	 0	 0	
PNA-17	 0	 8	 8	
Pna-17	 NA	 8	 8	
Pog-0	 0	 0	 8	
Poo-1	 3	 8	 8	
Pra-6	 0	 8	 8	
PRO-0	 0	 8	 0	
Pu2-23	 0	 8	 8	
PU2-23	 8	 8	 8	
PU2-7	 3	 8	 8	
Pu2-7	 3	 8	 8	
Qui-0	 0	 8	 8	
Ra-0	 0	 0	 9	
RA-0	 0	 8	 8	
Rd-0	 0	 8	 8	
REN-1	 3	 8	 8	
REN-11	 0	 8	 0	
Rennes-1	 3	 0	 8	
Rennes-11	 0	 0	 8	
Rip-1	 NA	 8	 8	
Rmx-A02	 0	 0	 0	
RMX-A02	 0	 8	 0	
RMX-A180	 0	 0	 0	
Rmx-A180	 0	 0	 3	
Rom-1	 0	 0	 8	
Rot-1	 0	 8	 8	
Rou-0	 9	 0	 0	
Roy-1	 0	 8	 0	
RRS-10	 0	 0	 0	
RRS-10	 0	 0	 0	
RRS-7	 0	 8	 8	
RRS-7	 8	 8	 8	
Rsch-4	 0	 0	 0	
Rü3.1-27	 0	 8	 8	
Rut-1	 0	 0	 NA	
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S96	 8	 0	 8	
Sap-0	 3	 8	 8	
Sau-0	 0	 8	 8	
Sco-1	 NA	 0	 NA	
SE-0	 3	 8	 8	
Se-0	 NA	 NA	 0	
Set-1	 0	 8	 8	
Sev-1	 0	 8	 0	
Sf-1	 9	 0	 8	
Sha	 0	 0	 NA	
Sha	 0	 0	 NA	
Sha-0	 0	 0	 8	
SHAKDARA	 0	 0	 0	
Si-0	 0	 0	 8	
Sis-1	 0	 8	 8	
Siz-1	 NA	 8	 NA	
Sma-1	 NA	 8	 8	
Sna-1	 NA	 0	 NA	
Som-1	 0	 8	 8	
Sorbo	 0	 0	 8	
SORBO	 3	 8	 8	
Sou-1	 3	 8	 8	
SPR-1-2	 0	 8	 8	
SPR-1-6	 8	 8	 8	
SQ-1	 0	 0	 0	
Sq-1	 0	 0	 0	
SQ-8	 0	 8	 8	
St-0	 0	 8	 8	
Sta-0	 0	 8	 NA	
Star-8	 3	 8	 8	
Su-1	 0	 8	 NA	
Ta-0	 3	 0	 8	
Tamm-2	 0	 0	 0	
TAMM-2	 0	 8	 0	
TAMM-27	 0	 8	 0	
Ting-1	 8	 8	 8	
Tiv-1	 3	 0	 8	
Ts-1	 3	 0	 8	
TS-1	 3	 8	 8	
TS-5	 3	 8	 8	
TSU-1	 0	 8	 0	
Tsu-1	 0	 8	 8	
Tsu-1	 0	 NA	 8	
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Tü-SB30-2	 3	 8	 8	
Tü-Scha-9	 3	 8	 8	
Tü-U-M1	 NA	 7	 8	
Tü-V12	 0	 0	 8	
Tü-Wa1-2	 3	 0	 8	
Ty-0	 3	 8	 NA	
Uk-1	 0	 8	 8	
Uk-3	 0	 0	 0	
ULL-2-3	 0	 8	 8	
ULL-2-5	 8	 8	 8	
Ull2-5	 8	 8	 8	
Unt-1	 3	 8	 8	
Uod-1	 0	 8	 8	
UOD-1	 3	 8	 8	
Uod-7	 0	 0	 NA	
UOD-7	 0	 8	 8	
VAN-0	 0	 8	 8	
Van-0	 0	 8	 8	
VAR-2-1	 7	 8	 8	
VAR-2-6	 0	 8	 8	
Vash-1	 0	 0	 0	
Vie-0	 0	 8	 8	
WA-1	 9	 8	 8	
Wal-HäsB-4	 8	 8	 8	
WEI-0	 0	 0	 0	
Wen-1	 3	 8	 8	
Wen-2	 0	 0	 0	
Wig-1	 0	 0	 NA	
Wim	 3	 NA	 0	
Wis-1	 0	 0	 8	
WS-0	 8	 8	 8	
Ws-0	 8	 NA	 8	
WS-2	 NA	 8	 8	
Wt-5	 0	 0	 8	
WT-5	 0	 8	 8	
Xan-1	 0	 8	 0	
Yeg-1	 0	 8	 8	
YO-0	 0	 0	 0	
Yo-0	 0	 NA	 8	
ZDR-1	 0	 8	 8	
Zdr-1	 0	 8	 8	
ZDR-6	 0	 8	 8	
Zdr-6	 0	 NA	 NA	
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