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RESEARCH ARTICLE Open Access

Unusual acylation of chloramphenicol
in Lysobacter enzymogenes, a biocontrol
agent with intrinsic resistance to multiple
antibiotics
Wei Zhang1,2†, Justin Huffman2†, Shengying Li1, Yuemao Shen3* and Liangcheng Du2,3*

Abstract

Background: The environmental gliding bacteria Lysobacter are emerging as a new group of biocontrol agents due
to their prolific production of lytic enzymes and potent antibiotic natural products. These bacteria are intrinsically
resistant to many antibiotics, but the mechanisms behind the antibiotic resistance have not been investigated.

Results: Previously, we have used chloramphenicol acetyltransferase gene (cat) as a selection marker in genetic
manipulation of natural product biosynthetic genes in Lysobacter, because chloramphenicol is one of the two
common antibiotics that Lysobacter are susceptible to. Here, we found L. enzymogenes, the most studied species
of this genus, could still grow in the presence of a low concentration of chloramphenicol. Three chloramphenicol
derivatives (1–3) with an unusual acylation pattern were identified in a cat-containing mutant of L. enzymogenes and in
the wild type. The compounds included chloramphenicol 3'-isobutyrate (1), a new compound chloramphenicol 1'-
isobutyrate (2), and a rare chloramphenicol 3'-isovalerate (3). Furthermore, a mutation of a global regulator gene (clp)
or a Gcn5-related N-acetyltransferase (GNAT) gene in L. enzymogenes led to nearly no growth in media containing
chloramphenicol, whereas a complementation of clp restored the chloramphenicol acylation as well as antibiotic HSAF
production in the clp mutant.

Conclusions: The results indicated that L. enzymogenes contains a pool of unusual acyl donors for enzymatic
modification of chloramphenicol that confers the resistance, which may involve the Clp-GNAT regulatory system.
Because Lysobacter are ubiquitous inhabitants of soil and water, the finding may have important implications in
understanding microbial competitions and bioactive natural product regulation.

Keywords: Lysobacter, Antibiotic resistance, Chloramphenicol, Acylation

Background
Lysobacter is a genus of Gram-negative bacteria with
high genomic G + C content ranging between 65 and 72%.
As members of ecologically significant microbial commu-
nities ubiquitous in soil and aquatic environments,
their agricultural relevance is becoming increasingly
evident [1, 2]. Recent evidences also suggested that

Lysobacter may occupy a wide range of ecological
niches, including a broad range of ‘extreme’ environ-
ments [2–6]. Several Lysobacter species are prolific
producers of lytic enzymes and bioactive natural products
[1, 7]. These include multiple forms of β-1,3-glucanases
and chitinases [8, 9] and potent antibiotics anti-MRSA
cyclic peptides, such as lysobactin [10–12], tripropeptins
[13, 14], and WAP-8294A [15–20]. Hybrid peptide-
polyketides are also found in these bacteria, such as the
cephem-type β-lactam cephabacins [21–23] and the anti-
fungal compounds HSAF and analogs [24–33]. The latter
group is particularly interesting because it has a distinct
structure and unusual mode of action (Fig. 1). HSAF is
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the predominant antifungal compound produced by L.
enzymogenes and has a novel mode of action against fungi.
Thus, L. enzymogenes is considered a promising biocon-
trol agent against plant diseases caused by fungi, peronos-
poromycetes, nematodes, and bacteria, such as leaf spot of
tall fescue caused by Bipolaris sorokiniana [34], bean rust
caused by Uromyces appendiculatus [35] and Fusarium
head blight of wheat [36].
As the most thoroughly characterized strain at both

the molecular and biological levels [1, 7], L. enzymogenes
is a genetically tractable species allowing for construc-
tion of gene knockouts, supporting its utility as a genetic
model system for unraveling the molecular basis for
mechanisms of microbial antagonism, biological control
and natural products biosynthesis. However, Lysobacter
species are naturally resistant to antibiotics commonly
used in genetic selection in bacteria, such as kanamycin,
ampicillin, streptomycin, tetracycline, and rifampin. This
is a fairly unusual property for a group of ubiquitous
environmental bacteria. Despite the potential as a new
source of bioactive natural products and biocontrol
agent, the majority of Lysobacter species remain unex-
plored, and the mechanism behind this very broad
intrinsic antibiotic resistance is not known. An under-
standing of this mechanism is important because this
knowledge could lead to new methods in genetic
manipulation of this new emerging biocontrol agent.
The finding could also have important implications in
microbial ecology and agricultural application of the
whole genus.

Results
Metabolites analysis of L. enzymogenes C3 and 5E4
In the process of investigating the antibiotic resistance
in Lysobacter, we found that L. enzymogenes was able to

survive in media containing chloramphenicol at 5 μg/
mL or lower concentrations, and the OD600 can reach
1.1 after 3 days of incubation, which is also the normal
cell density when incubated without any antibiotics. This
is a surprising finding because chloramphenicol is one of
the few antibiotic selection markers currently used in
genetic manipulation in L. enzymogenes. Typically, chlor-
amphenicol at 50 μg/mL is used to select against the
wild type strain, while a genetic transformant of L. enzy-
mogenes carrying the cat gene (encoding chlorampheni-
col acetyltransferase, CAT) [37], can grow normally
under this concentration of chloramphenicol.
To understand the chloramphenicol resistance, we

searched for compounds derived from chloramphenicol
in the wild type strain as well as in the mutant strain
5E4, which carried mini-Tn5-lacZ1-cat that was inserted
into the clp gene encoding a global regulator belonging
to the cAMP-receptor protein (CRP) family of transcrip-
tional regulators [37]. On HPLC, several similar peaks
appeared in the extracts from the wild type and strain
5E4 grown in a medium containing chloramphenicol
(Fig. 2). One clear difference was that the wild type
produced HSAF, but the clp mutant did not produce any
detectable HSAF.

Structure elucidation of chloramphenicol derivatives
Three main compounds (1, 2, and 3) were isolated from
the cultures of 5E4. The 1H NMR spectra of compound
1 showed two doublets at δ 7.45 and 8.25, assigned to
four aromatic protons (Additional file 1: Table S1),
which indicates the presence of a 1,4-substituted ben-
zene ring. The singlet at δ 6.22 (−CHCl2) and the com-
plex resonance at δ 4.46 (m, H −2′) were identical to
that of chloramphenicol. [38, 39] The DEPT experiment
indicated the presence of one carbonyl group, suggesting

Fig. 1 Chemical structure of the antifungal natural product HSAF and the unusual chloramphenicol derivatives (compounds 1–3) produced in
Lysobacter enzymogenes C3. 1, chloramphenicol-3'-isobutyrate; 2, chloramphenicol-1'-isobutyrate; 3, chloramphenicol-3'-isovalerate. The structure
of chloramphenicol and the usual product of chloramphenicol acyltransferase, chloramphenicol-3'-acetate, is also shown
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compound 1 was a chloramphenicol ester. The acyl
group was determined to be isobutyrate based on the
molecular formula of compound 1 differing from that of
chloramphenicol by C4H7O and the 1H NMR doublet at
δ 1.17 integrated to six protons. The location of the iso-
butyrate group was determined at C-3′ hydroxyl based
on the chemical shift of H-3′ at δ 3.5 in chlorampheni-
col has shifted to 4.30 and 4.42 ppm (Additional file 1:
Table S1) [38, 39]. HRMS analysis gave a [M +Na]+ of
415.0440 (calc. 415.0440). Therefore, the structure of

compound 1 was determined to be chloramphenicol-
3′-isobutyrate (Fig. 1).
Compound 2 had a retention time on HPLC very close

to compound 1 (Fig. 2) and showed a mass, [M +Na]+

of 415.0442 (calc. 415.0440), identical to 1, and the only
differences between these two structures are that the
protons at δ 4.30 and 4.42 in 1 shifted to 3.50 and
3.66 ppm, and the proton at δ 5.10 in 1 shifted to
6.10 ppm (Additional file 1: Table S1), indicating the lo-
cation of isobutyrate group at C-1′ hydroxyl in 2. These
ester linkages were further supported by the HMBC
correlations between C-1′ and the ester carbonyl carbon
in 2 and between C-3′ and the ester carbon in 1
(Additional file 1: Table S1). Therefore, compound 2 was
determined to be chloramphenicol-1′-isobutyrate (Fig. 1),
which is a new compound, and this acylation has not
been recognized previously.
The NMR spectra of compound 3 were almost the

same as 1, except an additional methylene group. 1H-1H
COSY showed the correlation between this methylene
group and a methine group, which indicated that the
isobutyrate group seen in 1 was replaced by an isovale-
rate group in 3 (Additional file 1: Table S1). HRMS ana-
lysis gave a [M +Na]+ of 429.0600 (calc. 429.0596). This
compound was determined as chloramphenicol-3′-isova-
lerate (Fig. 1). This is the first NMR assignment for the
structure, although this compound had been reported
previously [38].

Involvement of the global regulator CLP and the Gcn5-
related N-acetyltransferase GNAT in the unusual acylations
of chloramphenicol
The structural elucidation of these three compounds (1,
2, and 3) clearly showed that L. enzymogenes contains a
pool of unusual acyl donors for modification of chloram-
phenicol. The acetyltransferase encoded by the cat gene
in mini-Tn5-lacZ1-cat was originally from E. coli and
typically catalyzes acetylation of 3′-hydroxyl of chloram-
phenicol to yield chloramphenicol-3′-acetate (Fig. 1).
The unusual acylation at 1′- and 3′-hydroxyl with non-
acetyl groups (isobutyrate and isovalerate) in mutant
5E4 suggested that L. enzymogenes C3 may have add-
itional chloramphenicol detoxification mechanisms dif-
fering from that in E. coli. When the wild type strain C3
was cultured in a medium containing 5 μg/ml chloram-
phenicol, compounds 1, 2 and 3 were also produced, al-
beit in a lower yield compared that from strain 5E4
(Fig. 2). LC-MS confirmed the chemical identity of the
compounds. This suggested that the wild type may
possess unusual acylation activity for chloramphenicol,
presumably an intrinsic acyltransferase. In strain 5E4,
the presence of the cat gene in the transposon enabled
the cells to grow well even in a medium containing a
high concentration (50 μg/mL) of chloramphenicol,

Fig. 2 HPLC analysis of metabolites from the wild type L. enzymogenes C3
(a), from the transposon mutant 5E4 (b) and from in trans complemented
strain (P2) of the clpmutant (5E4) (c). Strain C3 was grown in a medium
containing 5 μg/mL chloramphenicol, strain 5E4 and strain P2 were in
50 μg/mL chloramphenicol. The peaks for chloramphenicol (CM), three
acyl products of chloramphenicol (1, 2 and 3), and HSAF are
indicated with arrows. HR-LCMS also identified minor acyl derivatives
(Acyl-CM) in the cultures. Note that acyl derivatives (indicated
compound 1, see Fig. 1 for structure) of chloramphenicol were
also produced predominantly in the culture of strain P2
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which leads to a higher amount of 1, 2 and 3 than the
wild type. It is likely that the unusual acylation of chlor-
amphenicol observed in strain 5E4 could be also partly
due to this intrinsic acyltransferase activity in strain C3.
To further investigate this intrinsic acyltransferase ac-

tivity, we tested several mutants of strain C3 generated
by homologous recombination [37] without cat as the
selectable marker. Mutant DC211 contained a 445-bp
deletion within the global regulator gene clp. While
strain DC211 grew normally in media without chloram-
phenicol, it barely grew in media containing 5 μg/mL
chloramphenicol even after 3–4 days of incubation. This
indicated that the clp-deletion mutant failed to detoxify
the antibiotic by acylation, which consequently sup-
pressed its growth in the presence of chloramphenicol
even at 5 μg/mL. The result is in contrast to that from
the wild type and suggests that the clp gene might be
involved in the regulation of the intrinsic chlorampheni-
col resistance.
In the genome of L. enzymogenes C3, clp gene is

tightly linked to and co-transcribed with an acyltransfer-
ase gene that belongs to the Gcn5-related N-acetyltrans-
ferase (GNAT) superfamily [37, 40, 41]. We tested the
double mutant DCA2422 that lacks both clp and GNAT
genes. Again, when this strain was inoculated into a
medium containing 5 μg/mL chloramphenicol, there was
nearly no growth of cells. Next, we tested the single mu-
tant DA that resulted from a disruption of the GNAT
gene alone and observed the same phenomenon as the
double mutant. Because clp and the GNAT gene are
expressed on a single RNA transcript [37], disruption of
any of the genes is expected to have a nonfunctional
mutant for both clp and GNAT. The observed loss of
chloramphenicol resistance in all of these mutants sug-
gests that the pair of Clp-GNAT regulators is involved
in chloramphenicol detoxification in L. enzymogenes C3.
Finally, we tested a clp-complemented mutant, P2, in

which another copy of the clp gene was inserted into the
genome of mutant 5E4 [37]. P2 grew normally in the
presence of chloramphenicol and also produced HSAF
and the acylated chloramphenicols (Fig. 2). This result
supports the involvement of the regulator in the resistance
to chloramphenicol and is consistent with the role of Clp
in regulation of HSAF biosynthesis [42–44]. It also implies
that the cat gene of the mini-transposon (mini-Tn5-lacZ1-
cat) in strain 5E4 may also contribute to the unusual acyl-
ations of chloramphenicol in L. enzymegenes C3, because
the GNAT gene in P2 is nonfunctional.
To get more evidence, we tested if the E. coli CAT is

able to catalyze the unusual acylation in vitro. We incu-
bated purified CAT enzyme and acyl CoA (acetyl-CoA,
isobutyryl-CoA or isovaleryl-CoA) in the presence of
chloramphenicol. Because the purpose is to compare the
yield of in vitro reactions with the yield of the 3-day L.

enzymogenes culture, we kept the concentration of
both substrates saturated, 280 μM chloramphenicol
(Km = 12 μM) and 250 μM acyl-CoA (Km = 93 μM for
acetyl-CoA) [45, 46]. The results showed that E. coli
CAT gave a conversion rate of 59.9, 65.2, and 27.8%,
respectively, when acetyl-CoA, isobutyryl-CoA, and
isovaleryl-CoA was the substrate (Fig. 3). The results
from isobutyryl-CoA and isovaleryl-CoA are surprising,
but clearly show that CAT from E. coli is able to use alter-
native acyl-CoA as substrates. The in vitro results are sup-
portive to the in vivo observations from various strains of
L. enzymogenes. Apparently, the unusual acyl-CoA pool of
isobutyryl-CoA and isovaleryl-CoA in L. enzymogenes is
available to both the E. coli CAT encoded by the trans-
poson and the native acyltransferase(s) of L. enzymogenes.
The availability of the alternative acyl-CoA in the cellular
pool most likely determines the unusual acylation of
chloramphenicol as seen Fig. 2.

Fig. 3 HPLC analysis of the reaction products of E. coli CAT with
chloramphenicol and acetyl-CoA (a), isobutyryl-CoA (b), or isovaleryl-
CoA (c) as substrate. In each pair of the HPLC traces, the top trace is
from the reaction, and the bottom trace is from control (no CAT).
Two acyl chloramphenicol products were produced in each of the
reactions, as indicated by the arrows, with the first peak being the
1'-acyl chloramphenicol and the second the 3'-acyl chloramphenicol
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Discussion
This is the first study on the mechanism for intrinsic
antibiotic resistance in the genus of Lysobacter. The
study identified three unusual acyl derivatives of chlor-
amphenicol and showed the involvement of a global
regulator and a GNAT in the chloramphenicol resist-
ance. Chloramphenicol binds the 50S ribosomal subunit
in prokaryotic cells and inhibits peptidyl transferase dur-
ing protein biosynthesis [39]. Many bacteria inactivate
chloramphenicol by chloramphenicol acetyltransferase,
which catalyzes the acetylation of the primary hydroxyl
using acetyl-CoA as substrate, yielding chloramphenicol-
3′-acetate (Fig. 1). This action of CAT is the most
common mechanism of chloramphenicol resistance in
bacteria, such as E. coli, Staphylococcus aureus, S. epider-
midis, and enteric bacteria [45]. In L. enzymogenes C3, we
identified three compounds, chloramphenicol-3′-isobuty-
rate (1), a new compound chloramphenicol-1′-isobutyrate
(2), and a rare chloramphenicol-3′-isovalerate (3). In the
transposon mutant 5E4 containing the cat gene from E.
coli, the major metabolite was chloramphenicol-3′-isobu-
tyrate (1), rather than chloramphenicol-3′-acetate (Fig. 2).
The in vitro activity assays showed that the E. coli CAT
can use alternative acyl-CoA as substrate. Together, the
results show that the difference in acylation products de-
rives primarily from the availability of the acyl-CoA cellu-
lar pool and L. enzymogenes contains an acyltransferase(s)
that can acylate chloramphenicol to confer the wild type
with a low level chloramphenicol resistance. The results
also imply that the available acyl-CoA pool in L. enzymo-
genes could be different from that in other bacteria.
The results also showed that the global regulator clp

gene and the GNAT gene are involved in the observed
chloramphenicol resistance. Additional experimentation
is needed to establish the role of CLP in the chloram-
phenicol acylation. Whether this GNAT functions as
regulator or could directly catalyze the unusual acylation
reactions needs further biochemical studies.

Conclusions
The study identified the structure of three unusually
acylated derivatives of chloramphenicol and revealed a
potential regulation through the global regulator CLP.
Because Lysobacter are ubiquitous soil and water bac-
teria that produce several potent antibiotics and, in turn,
are subjected to antibiotics produced by other microor-
ganisms, the findings from this study provide important
clues to how mechanisms of competition in Lysobacter
are controlled. From an application perspective, the
discovery of a regulatory mechanism for antibiotic
biosynthesis could lead to new ways of metabolic engin-
eering Lysobacter to improve the production of these
compounds.

Methods
Chemicals, bacterial strains, and general procedures for
DNA manipulation
Chemicals used in this study were purchased from
Fisher Scientific or Sigma. L. enzymogenes C3 was used
as the wild type strain. With the exception of DA, which
is a GNAT disruption mutant of L. enzymogenes C3 de-
veloped in this study, all mutant strains were generated
by Kobayashi et al. [37] and obtained from G. Yuen’s
culture collection. Mutant strain 5E4 was generated
using mini-Tn5-lacZ1-cat, which inserted between bases
222 and 223 from the start codon of the 690-bp clp
gene. The clp gene deletion mutant DC211 contained a
445-bp deletion within the clp gene, beginning 182 bases
from the start codon and 60 bases from the stop codon;
the clp-GNAT double deletion mutant DCA2422 con-
tained a 725-bp deletion between base 182 of the clp
gene and base 211 of the 462-bp GNAT gene (there are
7 bases between clp and GNAT). Strain P2 was a clp-
complementing strain of 5E4, which was generated by a
chromosomal insertion of the clp gene into the sctV
gene (part of a type III secretion system that is not asso-
ciated with the clp gene or traits regulated by the gene).
Escherichia coli DH5α strain was used as the host for
general DNA propagations. E. coli S17-1 was used as the
donor host strain for interspecies conjugation. All bac-
terial strains were grown in Luria-Bertani (LB) broth
medium or 1/10-strength tryptic soy broth (1/10 TSB,
Sigma). Genomic DNA of L. enzymogenes was prepared
as previously described [37].

Generation of DA mutant
A mutant strain of L. enzymogenese C3 disrupted at the
GNAT gene was developed for this study. To construct
the GNAT disruption vector, the PCR primers P1, 5′-
TTA CTC GAG AGC TGC TGA GCC AGC TCG
GCT-3′ (XhoI site underlined), and P2, 5′-AAC TGC
AGG ACA CGT TGC TGG TGA CCT CG-3′ (PstI site
underlined), were designed to amplify an internal 302-bp
region (78 base from the start codon and 82 base from
the stop codon) within the 462-bp GNAT gene from the
genomic DNA of L. enzymogenes C3. The amplified frag-
ment was digested with XhoI/PstI and cloned into the
conjugation vector pJQ200SK [47] to yield pJQ200SK-
AT. The pJQ200SK-AT construct was first transformed
into E. coli S17-1 and then conjugally transferred from
E. coli S17-1 into L. enzymogenes C3. Colonies that grew
on plates containing 20 μg/mL gentamicin and 25 μg/
mL kanamycin were considered as putative GNAT dis-
ruption mutants with the construct inserted into the
GNAT site. To verify the putative mutant (strain DA),
the primers P3, 5′-TGG CGG AAA CGG GAG-3′, and
P4, 5′-ACC ATG ATT ACG CCA AGC-3′, were used
to amplify a 434-bp fragment present in true mutants
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resulting from homologous recombination, but absent in
the wild type or in mutants resulting from random
insertion.

Extraction and analysis of metabolites
To identify the new metabolites produced in cultures
supplemented with chloramphenicol, L. enzymogenes C3
or its mutant was grown in 1/10 TSB for 1 day, and an
aliquot of 2 mL was transferred to a 250 mL flask
containing 50 mL of fresh 1/10 TSB. The cultures were
incubated at 30 °C for 3 days with shaking at 200 rpm.
To extract metabolites, culture fluid was collected by
centrifugation, and the supernatant was extracted with
an equal volume of ethyl acetate. The organic phase was
dried with a rotavapor (Buchi, Rotavapor R-3) to afford
the crude extract. The extract was dissolved in 1 mL
methanol. A fraction (20 μL) of the extract was used for
HPLC analysis on an Agilent 1200 with a reverse phase
column (Agilent C18, 5 μ, 4.6 mm × 250 mm). HR-
LCMS analysis of the chloramphenicol derivatives was
performed on Dionex Ultimate 3000 with Bruker maxis
Q-TOF using a Zorbax C18 column (2.1 × 100 mm,
1.8 μ). Water/0.1% formic acid (solvent A) and aceto-
nitrile/0.1% formic acid (solvent B) were used as the
mobile phases with a flow rate of 0.20 mL/min. The pro-
gram was as follow: 5–20% B in A for the first 5 min,
20–80% B for the following 20 min, 80–100% B for
1 min, 100% B for 4 min, back to 5% B in 1 min and
remaining for another 5 min. All the peaks were re-
corded at UV wavelength 318 nm. For HSAF analysis,
the wild type C3 and mutant strains with various disrup-
tions in the clp-GNAT pair of genes were grown in 1/10
TSB for 3–4 days. The supernatant was extracted by
adding an equal volume of ethyl acetate. The ethyl acet-
ate phase was collected and evaporated to dryness, and
the residue was then dissolved in 1 mL methanol. A
20 μL aliquot of each extracts was analyzed by HPLC
using the same Agilent system as described above. The
mobile phases were water/0.1% trifluoroacetic acid
(solvent A) and acetonitrile/0.1% TFA (solvent B), with a
gradient of 5 to 40% mobile phase B in mobile phase A
in the first 10 min, 40 to 80% B in A from 10 to 15 min,
80% B in A from 15 to 20 min, 80 to 100% B in A from
20 to 21 min, 100% B in A from 21 to 23 min, and 100
to 5% B in A from 23 to 25 min. The flow rate was
1.0 mL/min. The peaks were detected at 318 nm on a
UV-visible detector (Agilent).

Structural determination of chloramphenicol derivatives
To isolate the metabolites produced by mutant 5E4, one
liter of fermentation broth was centrifuged and the cell
mass discarded. The supernatant was extracted with
ethyl acetate. The ethyl acetate extract was collected and
evaporated to dryness in vacuum to afford 100 mg of

extract. The extract (100 mg) was re-dissolved with
MeOH and subjected to medium pressure liquid chro-
matography (10 g, RP-18, Waters, Ireland) and eluted
sequentially with 100 mL of 30, 50, 70, and 100% MeOH
in water. This yielded 4 fractions, Fr. S1-S4; Fr. S3
(48 mg) was subjected to HPLC purification, which gave
3 pure samples, 1 (25 mg), 2 (1.9 mg) and 3 (8 mg). To
determine the structure of the compounds, HR-Q-TOF-
MS data was acquired by using Bruker Q-TOF 6520
mass spectrometer. NMR spectra (1H, 13C, 1H-1H COSY
and HMBC) were recorded on a Bruker DRX-500 spec-
trometer, at 500/125 MHz, respectively, in MeOD-d6, in
ppm relative to Me4Si.

In vitro chloramphenicol acyltransferase activity assay
Acyl-CoAs were purchased from Sigma, and E. coli CAT
was purchased from Promega (part # E1051). The reaction
contained 1.25 unit of CAT (one unit is defined as the
amount of enzyme required to transfer 1 nmol of acetate
to chloramphenicol in one minute at 37 °C), 250 μM acyl-
CoA, 280 μM chloramphenicol, in 100 μl of 100 mM Tris
buffer, pH 7.8. A reaction without CAT was served as con-
trol. The reaction was incubated at 37 °C for 2 h, and ethyl
acetate (100 μL) was added to stop the reaction. The mix-
ture was centrifuged (10,000 × g) for 10 min, and the ethyl
acetate phase was collected and dried under a N2 flow.
Methanol (100 μL) was added to dissolve the residues,
and a fraction (20 μL) of the methanol solution was
injected into HPLC for analysis (Agilent 1200 with a ZOR-
BAX SB-C18 column, 4.6 mm× 150 mm, 5 μ). Aceto-
nitrile (solvent B) and water (solvent A) were used as the
mobile phases with a flow rate of 1.0 mL/min. The pro-
gram was as follow: 10% B for 5 min, 10–90% B in A over
20 min, 90–100% B in A over 1 min, 100% B for 4 min,
100–10% B in A over 4 min, 10% B for 4 min. The detec-
tion wavelength was 220 nm. The peak integration area of
the acylated chloramphenicol products on HPLC was used
to calculate the conversion rate of each of the reactions
with a different acyl-CoA substrate.

Additional file

Additional file 1: Table S1. NMR spectroscopic data for compounds 1, 2
and 3.a -a 1H-NMR and 13C-NMR spectra were obtained at 500 MHz and
125 MHz, respectively, and were recorded in CD3OD at room temperature. b

Unless otherwise indicated, all proton signals integrate to 1H. (DOCX 14 kb)
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