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Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like
protein coding exons, show less divergence in sequence between related species than
functionless DNA. Several CNSs have been demonstrated experimentally to function as
cis-regulatory regions. However, the specific functions of most CNSs remain unknown.
Previous searches for CNS in plants have either anchored on exons and only identified
nearby sequences or required years of painstaking manual annotation. Here we present
an open source tool that can accurately identify CNSs between any two related species
with sequenced genomes, including both those immediately adjacent to exons and distal
sequences separated by >12 kb of non-coding sequence. We have used this tool to
characterize new motifs, associate CNSs with additional functions, and identify previously
undetected genes encoding RNA and protein in the genomes of five grass species. We
provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were
also able to identify regulatory sequences present in the common ancestor of grasses
that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs
and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice,
foxtail millet, sorghum, brachypodium, and maize.

Keywords: conserved non-coding sequences, comparative genomics, sorghum, rice, maize, gene regulation,

genome evolution

INTRODUCTION
Conserved non-coding sequences (CNSs) are islands of non-
coding sequence that show an unexpectedly low level of diver-
gence. In plants these sequences are identified by comparison of
non-coding regions surrounding homologous genes. The ideal
window to identify the CNS most likely to have biological func-
tion is to compare genomic regions which have experienced
between 0.5 and 0.9 synonymous substitutions per site (Freeling
and Subramaniam, 2009). For less diverged homologous genomic
regions, some functionless sequences will still retain detectable
sequence similarity, while in more diverged genomic regions
many functionally constrained sequences will have diverged too
much from each other to be identified as homologous, with only
the largest, most conserved CNSs remaining detectable. While
many CNS are expected to function as cis-regulatory regions
involved in regulating transcription and chromatin structure, the
specific function of most plant CNSs remains unknown (Freeling
and Subramaniam, 2009). As with mammals (Loots et al., 2000),
there are several cases in plants of CNSs being proved to con-
tain functioning cis-regulatory regions, as reviewed (Freeling and
Subramaniam, 2009) and (Raatz et al., 2011). An early genome-
wide analysis of CNSs in plants focused on duplicate genes in
arabidopsis (Arabidopsis thaliana, At) resulting from an ancient

whole genome duplication (Thomas et al., 2007). Such retained
pairs of genes are called homeologs, or homoeologs, Ohnologs
or syntenic paralogs. Regulatory genes tend to be associated with
larger quantities of these CNSs than are other classes of genes
and these CNSs are significantly enriched in transcription fac-
tor binding motifs. The G-box and G-box-like sequences were
the most enriched in CNSs as compared to all other known tran-
scription factor binding sites or random 7-mer motifs (Freeling
et al., 2007). Recent work in rice has shown a postive correla-
tion between open chromatin and CNSs (Zhang et al., 2012).
Arabidopsis homeologs with many associated five prime CNS
tend to show less expression than arabidopsis genes with fewer
CNS (Spangler et al., 2012). There is also evidence that genes with
the most associated CNS (CNS-richness) are more likely to be
retained following whole genome duplication, perhaps because
of selection against disruption of DNA-protein stoichiometries
(Schnable et al., 2011) or perhaps because they are more readily
subfunctionalized (Force et al., 1999).

Plant genes are generally associated with shorter and fewer
CNSs than mammalian genes at similar divergence (Inada et al.,
2003) and are expected to degrade relatively quickly in com-
parison to mammalian CNSs (Reineke et al., 2011). The most
studied plant CNSs are a set of 14,944 CNSs identified through the
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examination of 6,358 homeologous gene alpha (retained from the
most recent tetraploidy) pairs in arabidopsis (Freeling et al., 2007;
Thomas et al., 2007), based upon an updated list of those first
identified by Bowers and coworkers in the Patterson lab (Bowers
et al., 2003). The process of manually proofing each CNS took two
people two years of effort and the resulting large set of sequences
provides a standard against which automated methods can be
compared. The automated CNS Discovery Pipeline was devel-
oped to replicate the logic and consistency checks performed by
a human proofer, and compensates for many of the complexities
of both annotation and biology which were identified as prob-
lematic by human proofers, including errors in gene structure,
clusters of locally duplicated homologous genes, gaps in the pseu-
domolecule assembly, repetitive sequences and similar sequences

at non-syntenic locations relative to the anchoring homologous
gene pair.

The whole genome duplication which occurred in the ancestor
of all grasses (Paterson et al., 2004), as diagrammed in Figure 1,
also occurred within the useful window of pairwise CNS discov-
ery (modal synonymous substitutions per site 0.5–0.9; in this case
1.0 remains useful). For that reason, comparing the genes on the
subgenomes of grasses is useful for CNS discovery. In addition,
we identified CNSs by comparing orthologous genes between
different pairs of diverged grass species. As seen in Figure 1, rice-
sorghum and rice-setaria are ideally diverged for CNS discovery.
Few difference would be predicted between these sister ortholo-
gous gene lists and sister CNS lists. Comparing the genomes of
sorghum and setaria directly is informative, but these panicoid

FIGURE 1 | Phylogenetic relationships among published plant whole

genomes. Branch lengths are scaled based on the modal number of
synonymous substitutions per nucleotide (modal Ks) between the protein
coding open-reading-frame of orthologous (or homeologous) genes. The total
Ks separating orthologous genes in two species can be assessed looking at
the total length of all branch segments traversed to connect the two species
names. The total Ks separating homeologs in a given species is the distance
from the species name to the starburst representing that whole genome

duplication and back to the species name. Unequal branch lengths from a
common ancestor indicate the acceleration on base pair substitutions in
certain lineages. Each boldfaced species is involved in one or more pairwise
data sets, the output of the CNS Discovery Pipeline 3.0: Supplemental Data
Sets use the suffix “a” for orthologous or homeologous syntenic gene lists,
and the suffix “b” for the CNS list. They also use two letter abbreviations for
genomes based on species names. For example, Oryza sativa = Os. Syntenic
orthologs and Ks values were calculated using SynMap (Lyons et al., 2008).
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grasses are too closely related; CNSs discovered using our stan-
dard significance cutoff (equal to or more significant than a 15/15
exact match) would include those carried-over even though they
had no function.

Plant genomes sequenced to date (Figure 1) are skewed toward
species with smaller, more compact genomes. Orthologous CNSs
were identified between rice and maize (Zea mays, Zm) to test
the pipeline under the more challenging conditions presented
by the average plant. The recently sequenced maize genome
(Schnable et al., 2009) has increased 2.5-fold in size relative to
sorghum, its close sequenced relative (Figure 1), as the result
of multiple transposon blooms (Baucom et al., 2009) and a
whole genome duplication (Gaut and Doebley, 1997) 5–12 mil-
lion years ago (Swigonova et al., 2004). This whole genome
duplication means the modern maize genome consists of two
duplicate subgenomes, each potentially containing an ortholog
for any gene shared with other grass species. Both duplicate
genes (Woodhouse et al., 2010; Schnable et al., 2011) and
duplicate CNSs in maize are fractionating (fractionation refers
to the loss of duplicate sequences following whole genome
duplication), so the tetraploidy certainly introduces additional
complexity.

RESULTS
ACCURACY OF AUTOMATED CNS IDENTIFICATION
The accuracy of the pipeline was gauged by comparing the At-
At homeologous CNS previously identified by manual annotation
(Thomas et al., 2007; Subramaniam et al., 2013) to those identi-
fied through the CNS Discovery Pipeline 3.0 (Figure 2, Table S1
and Supplemental Data Sets 1 and 2). When the coordinates of
a manually annotated CNS overlapped with the coordinates of
a CNS discovered by the pipeline the CNS was scored as cor-
rectly identified (e.g., Figure 2). Eighty percent of the manually

annotated CNSs were identified by the CNS Discovery Pipeline
(Table S1). Re-examination of the CNSs found uniquely in the
manually annotated data set revealed that 54% were non-syntenic
relative to other CNSs occupying the same gene space, a stan-
dard that was less stringently enforced in the generation of that
dataset. The CNS Discovery Pipeline also does not consider low
complexity CNSs (like ATATATATATATATAT; 14% of manual
annotation-specific CNSs) and does not examine complex repet-
itive sequences present at 50 or more locations in the genome
(22% of manual-annotation specific CNSs, see Methods). The
remaining 10% of manual-annotation specific CNSs (198 CNSs)
was removed by an additional filtering step performed by the CNS
Discovery Pipeline which was not feasible for human annota-
tors: CNSs showing sequence similarity to any annotated coding
sequence (CDS) elsewhere in the genome or possessing signifi-
cant, putative RNA secondary structure are considered possible
unannotated RNA or protein-coding genes, not CNSs. The CNS
Discovery Pipeline also identified 1,777 CNSs (out of a total
of 12,088) that were missed by manual annotation. Almost all
of these were located more than 4 kb (kilobases) away from
the anchor gene or within introns. Based on these compar-
isons the overall accuracy of the CNS Discovery Pipeline appears
to be greater than manual annotation of CNSs in arabidopsis-
arabidopsis comparisons.

Figure 2 demonstrates how manually annotated CNSs and the
CNS Discovery Pipeline 3.0 CNSs were compared using the GEvo
graphical display. GEvo is a sequence comparison tool and an
application in the CoGe comparative genomics toolbox (Lyons
and Freeling, 2008). We used a CoGe customized (decorated)
TAIR8 genome, dsid 19494, to visualize our pipeline CNSs as
purple rectangles on the model track (Figure 2). Each row of
CNS data included in Supplementary Data Sets online includes
a link to GEvo allowing researchers to generate outputs similar

FIGURE 2 | Exemplary GEvo panel (Lyons and Freeling, 2008) depicting

BlastN HSPs (orange rectangles) resulting from on-the-fly comparison of

one particular homeologous gene pair in Arabidopsis thaliana. Coding
exons are yellow while non-coding UTRs are blue. The TAIR8 genomes being
used by GEvo is decorated by drawing purple rectangles for CNSs discovered
by our Pipeline 3.0 (customized genome = dsid19494 available as a pull-down

option in GEvo “Sequence Submission”) and green rectangles for CNS
discovered manually. Previously identified CNSs are displayed by selecting the
“show pre-annotated CNSs” option in GEvo. Illustrated are manual red lines
for “CNSs” that are non-syntenic, and in masked regions and manual green
lines for syntenic CNSs. Regenerate these data in GEvo http://genomevolution.
org/r/8ooz (Set reverse complement to achieve this orientation).
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to Figure 2 for any CNS or gene pair. Note in Figure 2 that
the typical pipeline CNS (purple) matches a manually annotated
CNS (green) and is verified by BlastN data, as depicted in the
exemplary case identified in Figure 2 as “a”.

APPLYING THE CNS DISCOVERY PIPELINE TO FIND ORTHOLOGOUS
CNSs IN NEW SPECIES
The CNS Discovery Pipeline 3.0 was used to identify CNSs
in the grasses. This aim required the identification of syntenic
orthologs between Japonica rice (Os) and sorghum (Sb) and inde-
pendently between rice (Os) and setaria (Si). Both sorghum and
setaria are panicoid grasses, a clade which is estimated to have
diverged from rice around 50 million years ago (Kellogg, 2001).
The modal synonymous substitution rates (Ks) between rice-
sorghum orthologs and rice-setaria orthologs are quite similar
(modal Ks between syntenic orthologous genes were 0.56 and
0.55 substitutions per site, respectively) as expected given their
shared divergence event. This modal Ks is within the window
of useful CNS discovery (Freeling and Subramaniam, 2009). We
reasoned that comparisons of sorghum and setaria to the rice
genome should show similar patterns of conservation. Syntenic
blocks were identified using the QUOTA-ALIGN algorithm (Tang
et al., 2011). Overall, the rice-sorghum comparison has fewer
and smaller syntenic blocks than the rice-setaria comparison.
This difference may be a byproduct of differences in genome
size, sequence coverage, and in assembly methods employed in
the two species. Note that all three species are diploid rela-
tive to each other, although all three share a common whole
genome duplication that occurred in the ancestor of all grasses
(Figure 1).

Table 1 compares the conservation of protein CDS between
sorghum and rice to the conservation between setaria and rice
(comparison of pipeline Gene Lists: Supplemental Data Sets 3A
and 4A). Rice genes without a syntenic ortholog but with a
homologous gene identified by LASTZ (Harris, 2007) at a non-
syntenic location are labeled as a “best hit,” and these genes are
not assumed to be orthologous. Clusters of local duplicate genes
are collapsed and treated as a single gene. While the total num-
ber of homologous genes between rice and sorghum and between
rice and setaria are similar, the numbers of these genes at syntenic
locations (orthologs) differ significantly (Table 1).

Table 1 | Gene conservation in Os-Sb and Os-Si.

Gene category Sorghum Setaria

Total officially annotated genes (MSU6 Japonica
rice = 57624)

33996 35853

Rice gene with a syntenic ortholog 16251 17210

Rice genes without a syntenic ortholog but a hit
with an e-value <1e-10 to a non-syntenic gene

12343 11345

Total conserved rice genes 28594 28555

Number of lineage specific (not shared; Sb or Si
only) genes losses

988 1067

Number of lineage specific (not shared with Os)
genes

2204 5632

In addition to total gene conservation, the pipeline-derived
data set was used to determine individual gene loss or gain from
a syntenic location. Each rice gene with an ortholog present in
one species (sorghum or setaria) but not the other was labeled as
lost in the corresponding species. A gene is recognized as gained if
no ortholog is present in rice, brachypodium (like rice, a member
of the BEP grass clade), and setaria (for candidate lineage spe-
cific genes in sorghum) or sorghum (for candidate lineage specific
genes in setaria). Table 1 shows that, by these criteria, the setaria
genome has gained and also has lost more genes than sorghum.
GO (http://www.geneontology.org) annotations for these genes
were compared to annotations for all genes in a Fisher Exact
Test using the Bonferroni method to correct for multiple test-
ing. Genes gained in sorghum are enriched in annotations related
to “transposons” and in genes with no functional annotation.
Setaria-gained genes are also significantly enriched in the above
two terms, with the addition of “drought induced.”

In addition to showing greater numbers of genes conserved
at syntenic locations, setaria also shows higher levels of non-
coding sequence conservation—relative to the rice genome—
than observed in the sorghum genome. Table 2 compares the CNS
data sets produced by the CNS Discovery Pipeline 3.0 for rice-
sorghum and rice-setaria (Supplemental Data Sets 3B and 4B,
respectively). Approximately 10,000 fewer CNSs were identified in
the rice-sorghum comparison than the rice-setaria comparison.
This effect was observed independently of differences in the

Table 2 | Summary of CNS distributions in Os-Sb and Os-Si.

CNS data Sorghum Setaria

Total number of (orthologous1)
CNSs

52958 64466

% of orthologs1 with at least 1
rice CNS

79.00% 80.00%

Average number of rice CNSs/pair 3.15 CNS/gene 3.61 CNS/gene

No. of Bigfoot genes (large gene
spaces)2

767 genes 949 genes

Mean length of rice CNSs 34.78 base pairs 36.87 base pairs

Median length of rice CNSs 26 base pairs 27 base pairs

Total quantity of conserved
non-coding sequence

1.84 megabases 2.38 megabases

% of CNS 5′ distal 19.92% 20.06%

% of CNS 5′ proximal3 14.29% 13.31%

% of CNS 5′UTR 10.36% 9.99%

% of CNS intron 21.49% 23.38%

% of CNS 3′ UTR 14.132% 14.11%

% of CNS 3′ Proximal 7.27% 7.01%

% of CNS 3′ distal 12.54% 12.14%

1Gene information includes “CNSs” reassigned as orthologous RNA genes or

protein-coding exons.
2Genes were identified as Bigfoot if the total non-coding space between CNSs,

or between the furthest CNS and exon, was at least 4 kb. Each Bigfoot gene

must also have at least one CNS every 1 kb.
3Proximal regions were identified as any region located 1 kb from the start or

end of the transcription unit.
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number of syntenic gene pairs identified in the two comparisons
as individual gene pairs tended to have both more and larger
CNS identified between rice and setaria than between rice and
sorghum (Table 2). Note that the two comparisons share a com-
mon absolute divergence date as sorghum and setaria shared a
common ancestor more recently than their shared divergence
from the lineage leading to rice (Figure 1).

To further investigate this unexpected difference between lin-
eages, the setaria CNS sequence (>30 bp (base pairs) derived from
comparing Os-Si and which were “unique” to rice-setaria gene
pairs) were used to probe the gene space surrounding ortholo-
gous sorghum genes. While setaria and sorghum are too closely
related to rule out neutral carryover as an explanation for sim-
ilar sequences, this comparison makes it possible to track the
fate of CNSs identified only in rice-setaria comparisons and
undetectable in rice-sorghum comparisons. Of the 41% of CNS
“unique” to rice and setaria and greater than 30 bp long, 50% can
be identified surrounding orthologous genes in sorghum when
using the setaria CNS sequence as a probe. This suggests rice-
setaria CNS are not deleted in sorghum but instead have diverged
sufficiently in sequence to be undetectable in comparisons to rice.
If studies of gene loss in maize and Brassica rapa are representa-
tive of the fate of functionless DNA in all plants, then functionless
DNA is quickly deleted in plants rather than slowly randomized
by base pair substitutions (Subramaniam et al., 2013). Thirty-
eight random 5′ distal, Os-Si CNSs greater than 30 bp uniden-
tified in Os-Sb were examined manually in GEvo panels using
various alignment algorithms and settings. None of the 38 were
deleted in Sb. 37 of 38 were present in Sb, but BlastN hits fell
just below our defined CNS cutoff. These CNSs were detected
by decreasing our BlastN cutoff from an e-value <15/15 exact
match to <13/13 exact match. One CNS was not found because
it was too far away and filtered out through the bowtie algorithm
of the pipeline; only this one of 38 constitutes a pipeline “error.”
The loss/turnover of some CNSs during evolution is challenging
and these follow-up experiments suggest that the lineage-specific
CNS loss seen here is not the result of CNS deletion, as will be
discussed.

The overall distribution of CNSs relative to their genes (five
prime, intronic, three prime) was equivalent in both compar-
isons, with a ratio of roughly 1.3:0.6:1 of five prime:intronic:three
prime positions (Table 2). This enrichment of 5′ CNSs is lower
than was previously reported for homeologous CNSs in arabidop-
sis (Thomas et al., 2007). Note the homeologous arabidopsis
CNSs are considerably more diverged than are the orthologous
CNSs (Figure 1). For rice genes with syntenic orthologs in both
sorghum and setaria, the number of CNS identified in each
pairwise comparison was also significantly correlated (Pearsen’s
R2 = 0.82, Figure A1). The most CNS-rich gene in compar-
isons to both setaria and sorghum is Os03g20090, a MYB family
transcription factor gene.

HANDLING UNUSUALLY LARGE AND UNUSUALLY SMALL GENOMES
The maize genome is repetitive, large, and abundant in trans-
posons, providing a difficult environment for identification of
CNS. To compensate for maize’s large size and large number of
non-syntenic genes, more relaxed parameters were used for the

identification of syntenic regions. While this relaxation makes
it more likely false syntenic regions and syntenic regions dating
from ancient whole genome duplications will also be introduced,
these contaminating syntenic blocks are removed during the
quota-filtering step of QUOTA-ALIGN. While the search space
used for identifying [query (--qpad) and subject (--spad)] was
kept at the default of 15 kb up and downstream for rice, it was
increased to 30 kb in maize. It was also necessary to implement
a new “large_genome” option in the CNS Discovery Pipeline.
This option allows greater differences between species in the
spacing of a CNS relative to its associated gene in large trans-
poson rich genomes such as maize where nests of transposon
insertions can drastically change the spacing of promoter ele-
ments. The “large_genome” option also triggers an additional
step to attempt to correct for cases where contigs generated by
sequencing of bacterial artificial chromosomes were placed onto
pseudomolecules in the wrong order or orientation (Schnable and
Freeling, 2011) by identifying synteny between CNS within indi-
vidual contigs. This option should become more useful as more
large and difficult-to-assemble genomes are sequenced, such a
barley (International Barley Sequencing Consortium, 2012) and
wheat. Allowing users to adjust these features provides a highly
versatile program for identification of CNS, although this large
genome option does affect the comparability of CNS whole-
genome data. Roughly 60,000 rice CNSs were identified from the
Os-Zm comparison with the settings adjusted to search a large
complex gene space (Supplementary Data Sets 5A and 5B). The
maize genome is not too large or ambiguously assembled for CNS
discovery, however, large genomes do require modifying the cri-
teria initially developed for working in the compact genomes of
model species.

Identifying CNS in large and small genomes represent two
fundamentally different challenges. As the genome gets smaller,
genes are packed closer together and it becomes more diffi-
cult to accurately identify the correct gene to assign a CNS.
The approach of the CNS Discovery Pipeline takes into account
the distance to the nearest conserved gene pair up and down-
stream of the gene in both genomes being compared. The
test case for small genome size was Brachypodium, the small-
est grass genome sequenced to date (270 mb). In a compar-
ison of the rice and brachypodium genomes 70,000 ortholo-
gous CNSs were identified (CNS Discovery Pipeline 3.0 ran
without the large genome option; Supplementary Data Sets 6A
and B).

PAN-GRASS CNSs
The CNS identified in rice-sorghum, rice-setaria, and rice-
brachypodium comparisons were combined using the genome
coordinates of the CNS in rice. This resulted in a set of 15,363
CNSs that were identified in all three analyses (Supplemental
Data Set 7). These “well behaved” CNSs can be considered to
be under the most stable purifying selection and appear to not
be affected by binding site turnover (Venkataram and Fay, 2010),
switching among “dormant” binding sites (Junion et al., 2012) or
any other scheme that shuffles functional sites among redundant
sites. In addition, these stable conserved sequences double the
number of syntenic anchor sequences to aid in syntenic path
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assembly of genomes from additional grass species (Mayer et al.,
2011), and aid in developing genetic maps and mapping mutants
and quantitative traits for species without significant genomic
resources.

INTRAGENOMIC PAIRS AND HOMEOLOGOUS (ALPHA) CNSs
Pairs of genes retained from a whole genome duplication
are called homeologs (Syn. homoeologs, syntenic paralogs,
Ohnologs, alpha paralogs, in-paralogs). Because whole genome
duplications duplicate all regulatory sequences along with the
genes these sequences are associated with, CNS can be identified
between homeologous genes, as was done for the arabidopsis–
arabidopsis CNSs (Supplemental Information 1 and 2). Rice,
brachypodium, sorghum, and setaria are all descended from a
tetraploid ancestor and homeologous genes in each species are
within the useful window for CNS discovery (Figure 1). We have
prepared the Pipeline 3.0 homeologous Gene List (suffix a) and
homeologous CNS List (suffix b) for three grass genomes as
Supplemental Datasets 8A and B to 10A and B, respectively. A
cursory examination found much similarity between these differ-
ent datasets, as expected if the majority of promoter fractionation
occurred in the time between the pre-grass whole genome dupli-
cation and the divergence of the major grass lineages, as was
observed for the fractionation of whole genes in these lineages
(Schnable et al., 2012).

BIOLOGICAL UTILITY EXAMPLE 1: ENRICHMENT OF THE LABEL
“TRANSCRIPTION FACTOR” AND PARTICULAR GO TERMS IN
ORTHOLOGOUS GRASS CNSs AS COMPARED TO NON-CNS
NON-CODING CONTROL SEQUENCE
Several studies have shown that regulatory genes tend to be associ-
ated with greater numbers of CNS in plants, as reviewed (Freeling
and Subramaniam, 2009). To assess whether orthologous grass
CNSs follow a similar pattern, genes were grouped based on num-
ber of associated rice-sorghum CNSs and gene ontology (GO)
terms were compared among groups (Figure 3, a complete list of
enriched GO terms is provided in Table S2). Genes with many
CNSs are enriched in the annotations related to “development”
and “response to” (GO:0032502 and GO:0050896). Genes with

fewer CNSs tend to be metabolic and housekeeping genes. This
finding is generally consistent with previous observations of ara-
bidopsis homeologous CNSs (Thomas et al., 2007). This finding
agrees with the model that genes expressed at constant levels
throughout development and under all environmental condi-
tions utilize less complex regulation than genes whose expression
changes between cell types, tissue/organ types, developmental
time points, or external conditions. Os-Si CNSs are also similar
to arabidopsis in the association of genes encoding transcription
factors with CNS-richness: 48% of rice-setaria genes with at least
25 CNSs encode transcription factors while only 4.6% of pairs
with 0 CNS encode transcription factors. Similar results were
obtained for rice-sorghum comparisons. Individual CNSs associ-
ated with genes encoding transcription factors are also more likely
to have been identified in both rice-sorghum and rice-setaria
comparisons.

BIOLOGICAL UTILITY EXAMPLE 2: G-BOXES AND OTHER DNA-PROTEIN
BINDING MOTIFS IN ORTHOLOGOUS CNSs AND THEIR POSSIBLE LINK
TO DROUGHT STRESS
Many CNSs are binding sites for transcription factors. Thus, it is
expected that the CNS sequences will be enriched in known func-
tional binding motifs. For the homeologous CNSs of arabidopsis,
the most enriched motifs were the G-box motif, and G-box
like sequences (Freeling et al., 2007). To determine enrichment
of these motifs a regular expression was used to find all non-
overlapping matches within CNSs and control sequences selected
from the promoters of the same grass genes (see Methods).
Rice-sorghum CNSs were enriched 2.5X in the extended G-box
(5′ACGTGGC), 2.3X for the G-box, and 3.8X for the telo-box
(5′AAACCCTAA) relative to a control set of non-conserved non-
coding sequences. To identify additional enriched motifs in grass
CNSs, CNS were compared to an equivalent set of non-conserved
non-coding control sequences using DREME (Bailey, 2011).
Motifs enriched in CNS were compared to the 469 published cis-
acting regulatory elements contained within the PLACE database
(Higo et al., 1999). Over 60% of motifs significantly enriched in
CNS correspond to at least one PLACE motif (Table S3). Many
of these enriched and characterized motifs were identified as

FIGURE 3 | Number of associated Os-Si CNSs and GO term enrichment for selected go terms. Only terms with a corrected p-value of ≤ 0.001 are
counted as over- or under-represented. White blocks denote insignificant enrichment values. Colors indicate fold enrichment.
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being involved in various “response to” pathways. The two most
significantly enriched motifs were the G-box (CACGTG) and
the MYCATERD1 box (5′CATGTG) which is implicated in early
response to dehydration (Tran et al., 2004). Other enriched motifs
are listed in and our complete DREME data set in Table S3.

To more directly investigate the link between CNS richness and
stress response, we took advantage of an existing stress response
RNA-Seq dataset in sorghum. The Klein lab characterized changes
in the expression of sorghum seedling shoots and seedling roots
in response to the hormone ABA and simulated osmotic stress
produced by the application of polyethylene glycol (Dugas et al.,
2011). Using the RNA-Seq reads generated in that set of exper-
iments we found that genes with many CNS tended to have
globally lower expression levels regardless of environmental con-
ditions (Figure 4), consistent with a previous microarray-based
study of the link between conserved promoter complexity and
gene expression in arabidopsis (Spangler et al., 2012). Genes
with few CNS were equally likely to show up or down regula-
tion when sorghum seedlings where exposed to ABA or osmotic
stress. However, genes in the highest categories of CNS rich-
ness tended to show even lower expression in ABA treated or
osmotically stressed seedlings than seedling grown under con-
trolled conditions (Figure 4). CNS associated with differentially
expressed genes were enriched in ABA related motifs, particu-
larly the ABA responsive element (ABRE: 5′ACGTGG) (Narusaka
et al., 2003) and ABASEED core elements (5′ACGTGC), which
respond to ABA only in developing seeds (Thomas, 1993).

DISCUSSION
PROMOTER AND cis-REGULATORY ANNOTATION IN THE AGE OF
ABUNDANT SEQUENCED GENOMES
The CNS Discovery Pipeline 3.0 was applied in pairwise fashion
to multiple genomes. The pipeline is able to largely replicate the
results of manual annotation of CNS, and requires approximately

30 min of one programmer’s time as opposed to the efforts of
two trained biologists over a two-year period. As whole genome
sequencing becomes increasingly commonplace, many tools have
emerged for the rapid and automatic annotation of protein cod-
ing exons. Yet transcribed sequence is only a portion of the
gene. To truly understand a gene it is important to also charac-
terize the regulatory sequences that determine when and where
the protein a gene encodes will be produced. Despite immense
progress/advancement in the field of comparative genomics, there
are still a very limited number of tools for CNS identification,
particularly in plants where non-coding sequence diverges at
much higher rates than observed in animals. Our pipeline repre-
sents one approach to identifying potential functional regulatory
sequence in an automated and high-throughput manner. The
pipeline also provides an unbiased platform for CNS discovery.
Past human annotation turned out to be biased toward 5′ CNS
assignments relative to the gene rather than 3′. This could explain
some of the distribution discrepancies found between manual
annotation and the pipeline. Additionally the pipeline further
increases accuracy by using known RNA and protein sequences
to filter likely transcribed sequences that have thus-far escaped
annotation. Thus, our pipeline is not only useful for discovery of
CNS but for identifying protein coding genes, RNA-genes, and
pseudogenes that had not been annotated previously. Finally, our
pipeline has the same chance of finding a CNS 12 kb upstream
from the nearest CDS, as it does in the proximal promoter. This is
important for discovery of distant enhancers and similar elements
known to function in animal systems (Bulger and Groudine,
2010).

COMPARISON WITH OTHER AUTOMATED METHODS OF CONSERVED
NON-CODING SEQUENCE DISCOVERY
Baxter et al. (2012) identified thousands of arabidopsis and other
dicot CNSs by comparing promoter regions globally among four

FIGURE 4 | Number of Os-Sb CNSs and association with both raw

expression levels and differential expression in sorghum. Panel (A)

compares the average raw expression values for stress and stress control to
CNS richness of genes. “Stress” here are FPKMs in response to PEG + ABA
treatment (Dugas et al., 2011). (B) Differentially expressed categories, as

defined exactly in Methods, display the percent of the genes differentially
expressed in each group. “Differential expression” is a measure of difference
between induced and control, so the most dramatic data above is the
increasing down regulation (negative) of stressed gene expression as the
number of CNSs increase.
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sequenced dicots: Arabidopsis thaliana, papaya, poplar and grape
and demonstrate the functional relevance of their CNS through
correlations between CNS-richness and regulatory GO terms,
known DNA-binding motifs and nucleosome occupancy data.
They state, correctly that their moving 60 bp window method—
the “seaweed” method—of find an optimized global alignment
over repeatmasked, paired queries is more sensitive than the
blastn, the local alignment algorithm used by PL3. The cost of
this sensitivity is that the seaweed approach is only practical for
the discovery of CNS located within the proximal non-coding
region—specifically the 2 kb region upstream of the TSS. PL3,
on the other hand, uses Blastn to find local HSPs anywhere in
a large window including all of the gene and all sequences to the
next paired gene, skipping over transposons and out-of-synteny
genes in the process without penalty. 3′, intronic and very dis-
tant CNSs are detected if syntenic and above 29.5 bitscore (the
e-value of a 15/15 exact match). For example, the 5 kb of CNS
rich space 5′ to the arabidopsis genes of Figure 2—gene encod-
ing a adaxial-abaxial axis protein-binding function—would have
been largely excluded by the methods of Baxter and coworkers
only because most of these CNSs are too far distal of the TSS.
Combining CNS identified using multiple techniques is likely the
best approach to identify exhaustive sets of conserved functional
non-coding sequences.

UNEQUAL GENOMIC STRUCTURE DIVERGENCE BETWEEN SISTER
PANICOIDS SORGHUM AND SETARIA
The growing wealth of genome assemblies now available in the
angiosperms empowers researchers to move beyond simply iden-
tifying conserved sequences between two species. It is now possi-
ble to compare CNSs identified among multiple species allowing
identification of conserved sequences present in a common ances-
tor but deleted from the genomes of one or more descendant
species. In this study we compared the genomes of two pani-
coid grasses, setaria, and sorghum, to an outgroup species, rice
(Figure 1). Since setaria and sorghum share a common diver-
gence from the lineage leading to rice and show similar rates
of synonymous substitutions between orthologous genes, the
two pairwise comparisons were expected to reveal generally sim-
ilar patterns of conservation in both coding and non-coding
sequence. Contrary to that expectation, setaria shows both a
larger number of syntenically conserved genes and more/larger
CNSs associated with each gene. Since the rate of base substi-
tution in the two lineages is the same, the difference must be
caused differences in the rate of some courser mutagenic mecha-
nism, like indels or small intrachromosomal recombination-type
deletions (Hollister et al., 2010). Or, perhaps insertions cause the
erosion of CNS detectability. The genome of sorghum is larger
and more repeat-rich than that of setaria. It has been argued that
sorghum’s large transposon-rich pericentromeric regions are evi-
dence of large transposon blooms in the history of that lineage
(Paterson et al., 2004). The disruptive effects of both trans-
poson insertion and deletion may be responsible for at least
some differences in conservation we observed between the two
genomes. Transposons can contribute to the erosion of syn-
teny, by serving as potential recombination sites for inversions
and translocations (Montgomery et al., 1991) and by capturing

host genes and inserting them at non-syntenic locations within
the genome (Jiang et al., 2004; Brunner et al., 2005). These
differences and rearrangements in CDS in sorghum could also
account for differences in the number of CNSs identified between
the two pairwise comparisons. It is also possible that a sudden
increase in DNA content, by polyploidy, as with some fish lin-
eages (Lee et al., 2011) induces mechanisms that tend to reduce
DNA content.

Use of CNSs identified between sorghum and setaria in com-
parison to CNSs “unique” to one species (rice-setaria or rice-
sorghum) turned out to be an effective way to detect grass CNSs
that are real but on the boarder of detectability. Fifty percent-
age of CNSs “unique” to only rice and setaria (not detected in
rice-sorghum comparisons) are detected in sorghum by using
orthologous setaria CNS sequence to probe the gene space. This
result indicates that many functionally constrained sites do not
consistently show enough sequence conservation to rise above
the threshold of detectability. A large number of functionally
constrained sites, which are sometimes above, and sometimes
below the threshold of detectability explains why the number of
CNS associated with orthologous genes in sorghum and setaria is
highly correlated despite the fact that many individual CNS show
no overlap between the two species.

TRAITS CORRELATED WITH PROMOTER SIZE
Grass genes with large conserved promoter regions are different
from other genes, as they tend to be “regulatory” (Inada et al.,
2003). Even in the absence of data on functional sequences within
promoters, it has been demonstrated that arabidopsis genes with
large five-prime non-coding regions separating them from the
next upstream gene show more complex patterns of expression in
response to external stimuli (Sun et al., 2010). A previous study
of arabidopsis homeologs determined that Bigfoot genes (genes
with large gene spaces and many CNSs) are generally enriched
in GO terms related to “transcription factor” and “response to”
while genes with few CNSs are associated with household and/or
metabolic GO terms (Freeling et al., 2007). As CNSs were pre-
viously only identified between arabidopsis genes with retained
homeologs, these correlations were determined using only a sub-
set of the genome. Genes with retained homeologs are already
biased toward certain functional GO categories (Blanc and Wolfe,
2004; Seoighe and Gehring, 2004; Maere et al., 2005). The current
set of orthologous CNS data allowed the study of a population of
genes more representative of the total gene set of plant species.
The broader representation of gene types provided by compar-
isons between orthologous genes lead to the discovery that genes
associated with regulation of development are also over repre-
sented among the most CNS rich grass genes. Some examples
include: “post-embryonic development” and “anatomical struc-
ture morphogenesis.” Genes with few CNS are expected to be
involved in “housekeeping” with consistent patterns of expression
(Thomas et al., 2007). It should be noted that the annotation “cel-
lular macromolecule metabolic process” GO term was enriched
among CNS rich genes, but these same genes tend to also be anno-
tated as “regulation of.” This is consistent with the hypothesis that
CNS-richness correlates positively with a more complex pattern
of expression.
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While functional annotations provide a broad view of gene
function, RNA-Seq experiments now make it possible to iden-
tify specific differences in the expression patterns of CNS-rich
and CNS-poor genes. The fact that CNS-rich sorghum genes were
more likely to show differential expression in response to stress
was consistent with the results of GO analysis. However, GO anal-
ysis alone would not have revealed the fact that this pattern was
only present when examining genes that showed lower expression
in response to environmental stimuli. This suggests that the aver-
age CNS rich gene may function in pathways sensitive to changes
in the external environment, rather than directly regulating the
responses of a plant to changes in its environment.

The experimentally determined function of CNS rich genes
also supports this hypothesis that genes associated with many
CNS tend to be those that must be expressed only at specific times
and/or places. For example, in our data set of homeologous rice
CNSs from the pregrass whole genome duplication, the most CNS
rich gene is OS06G40780. This gene is better known in rice as
MONOCULM1 (Li et al., 2003), it is expressed only within devel-
oping axillary meristems, and is involved in the control of rice
tillering. Uncharacterized grass genes with large complements of
CNSs are likely to also perform crucial functions in plant develop-
ment or environmental response and represent promising targets
for future genetic characterization.

Genomes are composed largely of non-protein-coding DNA.
Identification of CNSs in plants provides a method for separating
the rare functional non-coding sequence from the vast majority
of zero-function or low-function sequence within the genome.
Having a subset of non-coding DNA “known to function” should
generally advance our progress toward discovering the function
of individual sequences and understanding the language of gene
expression regulation. Our pan-grass CNS list organized on the
orthologous pan-grass genes (Supplemental Data Set 7) provides
this subset of known functional elements for the grass fam-
ily. Since these pan-grass CNSs are about as conserved as CDS
sequences and show more syntenic conservation than the average
gene, they should serve as useful anchors for the assembly of addi-
tional genomes based on conserved synteny, in translating map
positions from sequenced to unsequenced grass species, and in
more accurate genetic mapping.

CONCLUSION
The source code for our CNS Discovery Pipeline 3.0 is freely
available for download (https://github.com/gturco/find_cns) and
handles both the identification of syntenic orthologs or home-
ologs using the previously published algorithm QUOTA-ALIGN
(Tang et al., 2011) and the identification, proofing, and gene
pair assignment of CNSs. To facilitate proofing of our results
and further experimentation, direct links to CoGe comparisons
are provided in each row of our many “gene list” output data
spreadsheets (Supplemental Data Sets 1A–6A and 10A–12A).
The CNS Discovery Pipeline 3.0 should be generally useful
for improving gene annotations and CNS discovery when use-
fully diverged genomes are available, including those of species
suffering from transposon blooms or massive chromosomal
rearrangements. Although the pipeline was designed to accom-
modate the multiple whole genome duplications characterizing

angiosperms, it functions equally well on genomes throughout
the tree of life.

With the increasing number of sequenced plant genomes
becoming available, particularly in the grasses and crucifers, there
is great potential for phylogenetic footprinting to inform both
our understanding of conserved gene regulation and also to
identify specific loss of individual cis-acting regulatory modules
in specific lineages. Global alignments of genomes of multiple
species anchored on exonic sequences will certainly generate more
accurate phylogenetic footprints when close to conserved exonic
anchors (Baxter et al., 2012; Haudry et al., in review). However,
this pipeline excels in finding functionally constrained sequences
located multiple kb away from the nearest conserved feature such
as distal enhancers or repressors of gene expression. The genetic
code was cracked over a half-century ago. A combination of dif-
ferent approaches will ultimately be needed to finally decode the
language of gene regulation.

METHODS
PIPELINE 3.0
The source code for our CNS Discovery Pipeline 3.0 is avail-
able for download at https://github.com/gturco/find_cns with
instructions for installation at (https://github.com/gturco/
find_cns/blob/master/INSTALL.rst). Running the pipeline
requires the genomic sequence in FASTA format and annotation
data in BED format for each genome being compared. The CNS
Discovery Pipeline produces two data sets per run, the gene list
(suffix “a” in our Supplementary Data Sets) and the CNS list
(suffix “b”). For each gene in the genome, the gene list reports
any identified syntelog, CNSs and local duplicates. Proofing
early versions of the automated output of the CNS pipeline
was conducted using GOBE visualization software (Pedersen
et al., 2011). The CNS list reports detailed information on
each individual CNS identified by the pipeline: DNA sequence,
location in the genome, associated gene (usually closest), and
position relative to that gene. A CNS list can be loaded into
CoGe (Lyons and Freeling, 2008) upon request. Pipelines 2.0 and
3.0 were proofed in GEvo the sequence alignment application
of CoGe using genomes with CNS annotations. The following
steps, summarized in Figure 5, were automated through the
use of python, perl and UNIX scripts included within the CNS
Discovery Pipeline.

PREPARING GENOMIC SEQUENCES
Sequences were masked for any repeats that occurred over
50 times in the entire genome of each species using a self-
self-blast of the entire genome. BlastN was ran using a word
size of 15 bp (−W 15) with an e-value < 0.001 (−e 0.001).
An “N” replaced any base-pair position covered by 50 or
more separate blast hits. The scripts used for this step is
available from http://code.google.com/p/bpbio/source/browse/
trunk/scripts/mask_genome/mask_genome.py Masked repetitive
sequences are color-coded pink when a genomic region is dis-
played by the CoGe application GEvo.

To avoid errors in analysis, which can result from genes
missed by the official annotation of a genome, fasta files were
re-annotated through comparison of the query and subject

www.frontiersin.org July 2013 | Volume 4 | Article 170 | 9

https://github.com/gturco/find_cns
https://github.com/gturco/find_cns/blob/master/INSTALL.rst
https://github.com/gturco/find_cns/blob/master/INSTALL.rst
http://code.google.com/p/bpbio/source/browse/trunk/scripts/mask_genome/mask_genome.py
http://code.google.com/p/bpbio/source/browse/trunk/scripts/mask_genome/mask_genome.py
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Turco et al. CNS discovery pipeline

FIGURE 5 | The CNS Discovery Pipeline 3.0. The pipeline can be divided
into three stages: pre-processing, CNS discovery, and post-processing.
Co-annotation, where each genome helps find missed genes in the other,
occurs during preprocessing, so any new genes found become available
potential syntenic gene spaces for CNS discovery. Purple boxes represent
input and output files while green boxes represent python scripts that
make up each program. Each circle represents an individual program,

the CNS Discovery Pipeline being the largest of the programs. The
primary script for the QUOTA-ALIGN pipeline is published (Tang et al.,
2011). Masking genomes is computationally expensive and time
consuming. Researchers can download many pre-50× masked genomes
from CoGe (masked using the script referenced in methods) or apply
their own masking tools to screen out repetitive and low complexity
sequences.

sequence. We refer to this process as co-annotation. Sequences
were compared using BlastN, at a word size of 20 bp (−W 20)
and an e-value cutoff of 0.001 (−e 0.001). When a single gene
showed similarity to multiple regions within the genome and
were separated by less than one kb, these hits were merged into
a single co-annotated gene. If the total length of merged simi-
lar regions was less than 100 bp or blast hits covered less than
40% of the total length (start of the 5′ most blast hit of the
merged group to the end of the 3′ most hit) the region was dis-
carded. If the region was located within an already annotated
gene, it was assigned to that gene as a missed exon(s). Regions
in intergenic space were considered to represent either missed
genes or unannotated pseudogenes and added to our in-house
annotations of the genome using the naming convention: organ-
ism_chromosome_start_stop_strand (these annotations are pro-
vided in the, pipeline output, Supplemental Data Sets for each
species). These new CDS found by co-annotation are color-coded
purple when viewed in GEvo if the genome selected contains
“with CNS PL3.0” in the title line. Note that co-annotation pro-
vides new genes/pseudogenes that may or may not prove to be
syntenic with other genes, and thus may or may not provide a
new gene space for CNS discovery. Table S3 provides a list of our
customized genomes in CoGe, with their unique identification
numbers.

FINDING SYNTENOUS REGIONS
The CDS of each official and newly annotated gene in the
query and subject genomes were compared using LASTZ (Harris,
2007) run with default parameters. The results were filtered
with the Blast_to_raw script from the quota alignment package
[https://github.com/tanghaibao/quota-alignment; (Tang et al.,
2011)]. Homologous genes located near each other in the
genome, separated by no more than twenty intervening genes (--
tandem_Nmax 20), were clustered into a single group when their
similarity score was greater than 0.5 (--cscore 0.5). After CNS
discovery was performed (see below) only the gene copy with
the most CNS was retained for further analysis. The filtered data
was used to locate the appropriate orthologous or homeologous
syntenic blocks with QUOTA-ALIGN (Tang et al., 2011) using
a 20 gene distance cutoff for extending the chain (--Dm 20) a 4
gene minimum chain size (--min_size) and quotas appropriate to
each comparison; users have the option of changing these setting
before running the pipeline. For example, comparing Os to Zm
uses a quota of 1:2.

FINDING CNS BETWEEN SYNTENOUS REGIONS
For each syntenic gene pair identified by QUOTA-ALIGN, regions
of sequence starting 12 kb upstream of the annotated start site
of each gene and extending 12 kb past the end of transcription
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were extracted from the 50× masked genomic sequence files.
In addition to the 50× repetitive sequence masking all anno-
tated protein coding regions (CDSs) were also masked. Bl2Seq
was used to compare the two regions using the following param-
eters: wordsize 7 bp (-W 7), gap penalties extension 2 (-E2),
nucleotide mismatch penalty 2 (-q 2), nucleotide match reward
1 (-r 1), cost to open a gap 5 (-G 5), and DUST filtered turned
“on” (-F T). Hits with a bitscore less than 29.5 [equivalent to
a perfect match of 15 base pairs (Kaplinsky et al., 2002)] were
discarded.

FILTERING OUT NON-SYNTENIC BLAST HITS
Any blast hit not present in the same orientation relative to the
syntenic gene pair was discarded. The remaining potential CNSs
were treated as two-dimensional objects using the geographic
library GEOS (http://trac.osgeo.org/geos/) with python bindings
provided by Shapely (http://toblerity.github.com/shapely/index.
html). Using the intersection function of Shapely, any potential
CNSs located in the intron of one pair but not the other was
also removed. If a potential CNS overlapped with another
potential CNS, the potential CNS with the least significant
e-value was removed iteratively until no overlapping CNSs
remained. Potential CNSs in non-syntenic locations were also
removed if they crossed over three or more other potential CNSs.
If any of the remaining CNSs were still in conflicting syntenic
relationships, the conflicting CNS with the lowest bitscores were
iteratively removed until all remaining CNSs were present in
the same order in both genomes. To further enforce synteny, a
two dimensional expanding polygon shaped like a bow-tie with
the midpoint of each gene at the center was created through
GEOS and Shapely. All potential CNS outside this polygon were
discarded. The bow-tie shape of the polygon confirms that the
position of one CNS relative to its associated syntenic gene is
similar to the position of the corresponding CNS and its syntenic
gene. Increasing discrepancies in position were tolerated further
upstream/downstream from the respective gene. CNSs falling
within the polygon were found using a point in polygon route.
(http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/
pnpoly.html). Practically speaking, this bow-tie confirms synteny
between homologous CNSs, within 12 kb of the start and end of
any paired genes.

FILTERING OUT CNSs WITH HITS TO ARABIDOPSIS PROTEINS AND
RNA
All CNSs > 18 bp in length were filtered by comparison to all
arabidopsis TAIR10 proteins CNS with a LASTZ hit to ara-
bidopsis protein at an e-value < 0.01 and >90% coverage were
re-annotated as a missed gene/gene fragment and discarded.
CNS were also compared to annotated non-coding RNAs within
Arabidopsis TAIR10. BlastN was run at a wordsize of seven
bp (-W 7) and at an e-value cutoff of 0.001 (-e 0.001). CNSs
with hits to annotated RNAs were re-annotated as RNA and
discarded.

ASSIGNING CNS TO GENES
CNSs were assigned to genes based on the nearest syntenous fea-
ture. When the same CNS was identified in the comparison of

multiple syntenic genepairs, the genepair to which it is assigned
is determined by two rules. First, the CNS is assigned to the gene
pair with fewer intervening non-syntenic genes (up to a maxi-
mum of three). When there were no intervening non-syntenic
genes or equal numbers up and downstream of the CNS, the
CNS was assigned to the gene pair separated from the CNS by
the smaller number of total base pairs.

The location of each CNS was classified as intron, five prime or
three prime UTR (untranslated region), five prime or three prime
proximal, or five prime or three prime distal. A CNS is considered
to be in a UTR if it overlaps with an annotated UTR exon of either
member of the syntenic gene pair. A CNS is identified as proximal
if it is located <1 kb from the start or end of the transcription
unit, and distal if it is located further away from the gene. Genes
were classified as “Bigfoot” if the gene pair was associated with at
least four CNS spread over a non-coding 5′ + 3′ region of at least
4 kb and with at least one CNS every 1 kb of non-coding space.

PIPELINE GRAPHIC OUTPUT: CUSTOMIZED CoGe GENOME
CNSs, RNAs, and unannotated genes identified by the pipeline
were loaded into the CoGe database for visualization in GEvo.
Genomes annotated with these additional features are marked
by a PL2 or PL3 in their name, depending of the CNS pipeline
version. PL2 and PL3 differ only by a small change in how we
deal with tandem repeat genes. A data set identification num-
ber (dsid) denote a genome in CoGe that is available in GEvo
using the pull-down menu. To view CNSs click “Show pre-
annotated CNSs” under Results Visualization in GEvo. Os dsid
47668, for example, contains both Os-Sb CNSs and Os-Si CNSs
denoted as colored rectangles on opposing strands. This genome
is available from a pull-down menu in GEvo when rice is used
as either the subject or query in any genome. Upon clicking a
CNS in GEvo the annotation will appear indicating on which
two organisms and genomes the pipeline was run. For example,
at the time of this paper’s publication, there were a total of 15
different arabidopsis (At) genomes available in CoGe, compris-
ing different TAIR releases plus several different customizations.
Contact coge.genome@gmail.com for genome questions or to
load a new customized CoGe genome. For annotated genomes the
customization can be exported as GFF or TBL from the “Dataset
Information” box, under the “Organism View” application of
CoGe, and individual features making up any annotation may
be downloaded as a text “type, chromosome, start, stop, strand,
length.” A list of customized genomes in GEvo, and information
necessary to point to each in a GEvo URL (Uniform Resource
Locator) is in Table S3.

GO TERM ENRICHMENT
All enrichment and purification of GO-terms reported in
this paper were calculated using the goatools python pack-
age (https://github.com/tanghaibao/goatools). The GO anno-
tation file was retrieved through the MSU Rice Genome
Annotation Project (Ouyang et al., 2007). Co-annotated genes
identified by the CNS Discovery Pipeline were not included.
Enrichment was determined using a Fisher’s exact test. The
false discovery method was used to correct for multiple testing.
Results were considered significant at a p-value of < 0.001.
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Complete GO enrichment data for rice genes by CNSs are in
Table S2.

MEASUREMENT OF MOTIF ENRICHMENTS
Over-represented motifs were identified by DREME
[Discriminative Regular Expression Motif Elicitation (Bailey,
2011)] with the minimum core size set to 6 bp. Each
motif found in the CNS fasta file is compared to the non-
conserved-non-coding control sequence generated from the
non-conserved-non-coding sequence located 15,000 bp up and
downstream the gene. Non-conserved-non-coding sequences
consist of all genomic sequences excluding CDS, CNS, and
masked sequence. The Bonferroni multiple testing correction
was applied with a p-value cutoff of 0.005. A regular expression
was used to report all non-overlapping occurrences of motifs also
found in the PLACE database (Higo et al., 1999). Random subsets
of CNSs were used as control motifs to calculate the significance
of the enrichment of characterized binding sites. A two-tailed
chi-squared test was used to determine significance of a motif
appearing in PLACE. Table S4 shows all 103 of these significantly
CNS-enriched motifs.

TRANSCRIPTION FACTOR ANALYSIS
Transcription factor information was downloaded from the
Database of Rice Transcription Factors (Gao et al., 2006) in
June, 2012. Genes were matched to TF based on gene name.
Enrichment analysis was performed using a two-tailed chi-square
test.

SYNTENIC HITS AND BEST HITS
Data sets for rice gene comparisons were obtained from LASTZ
and syntenic pipeline outputs (described above). LASTZ results
were further filtered for distinct hits with an e-value < 1e-10.
Local duplication sets, genes interrupting a local duplicate array
were = 3, remained condensed as the pipeline ran. New candidate
genes identified by the CNS Discovery Pipeline (co-annotated)
were not included. Annotations enriched for lineage specific or in
one lineage but not in the other were identified through a Fisher
exact test. False discovery rate corrections were used to correct for
multiple comparisons. Annotations with a p-value above 5% were
considered significant.

EXPRESSION DATA
Data on the expression of sorghum genes in response to stress,
used as an example of the biological utility of CNS data, was
obtained from Dugas et al. (2011). Using the raw sequence
data from the International Nucleotide Sequence Database
Collaboration (INSDC) Sequence Read Archive (short reads
archive), expression values were calculated for each gene by
aligning reads to the sorghum genome using GSNAP (Wu and
Nacu, 2010) and calculating expression in units of FPKM using
Cufflinks (Roberts et al., 2011). The average expression value for
stress was calculated across all three replicates of ABA and PEG.
NAOH and H20 were used for calculating the average expression
value under unstressed conditions. Lists of genes showing sta-
tistically significant differential expression were taken directly
from those calculated by Dugas et al. (2011) using the EdgeR

statistical software package (Robinson et al., 2010) to analyze
digital gene expression data. A gene was considered positively
regulated in response to stress if it was significantly up regu-
lated in at least one of four treatment/organ combinations (ABA
roots, ABA shoots, PEG roots, PEG shoots) and did not show sig-
nificant down regulation in any treatment/organ combination.
The same logic was used to identify genes negatively regulated
in response to stress. Genes classified as “both” were those that
showed significant up regulation in at least one treatment/organ
combination and significant down regulation in at least one
other treatment/organ combination. Table S5 shows the resulting
FPKMs.
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APPENDIX

FIGURE A1 | Comparison of the number of discrete conserved noncoding sequences discovered for orthologous sorghum and setaria genes when

compared to their common ortholog in rice.
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